
New Algorithm for Classical Modular Inverse

Róbert Lórencz

Department of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University

Karlovo nám. 13, 121 35 Praha 2, Czech Republic
lorencz@fel.cvut.cz

Abstract. The Montgomery inverse is used in cryptography for the
computation of modular inverse of b modulo a, where a is a prime.
We analyse existing algorithms from the point of view of their hard-
ware implementation. We propose a new, hardware-optimal algorithm
for the calculation of the classical modular inverse. The left-shift binary
algorithm is shown to naturally calculate the classical modular inverse
in fewer operations than the algorithm derived from the Montgomery
inverse.

1 Introduction

The basic arithmetic operations in modular arithmetic where the modulo is
prime are a natural and inseparable part of cryptographic algorithms [6], [8], as
well as nowadays often used elliptic curve cryptography [9], [10]. Modular inverse
is especially important in computations of point operations on elliptic curves de-
fined over a finite field GF (p) [9], in acceleration of the exponentiation operation
using the so-called addition-subtraction chain [11], [4], in Diffie-Hellman key ex-
change method [7], and in decipherment operations in RSA algorithm [6]. The
modular inverse of an integer a ∈ [1, p−1] modulo p, where p is prime, is defined
as an integer r ∈ [1, p − 1] such that a.r ≡ 1 (mod p), often written as

r = a−1 mod p. (1)

This classical definition of the modular inverse and an algorithm for its calcu-
lation in a binary form is specified in [4]. Kaliski has extended the definition of
the modular inverse to include the so-called Montgomery inverse [2]. The Mont-
gomery inverse is based on the Montgomery multiplication algorithm [1]. The
Montgomery inverse of an integer a ∈ [1, p − 1] is b such that

b = a−12n mod p, (2)

where p is prime and n = �log2 p�. In this paper, we present a left-shift binary
algorithm for the computation of the classical modular inverse which is more
efficient than the algorithm derived from the Montgomery modular inverse al-
gorithm [2], [3] and the ordinary inverse algorithm [4].
Our incentive for the search of effective computation of modular inverse was,

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 57–70, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

58 R. Lórencz

besides the above facts, to use it in a modular system for solving systems of
linear equations [16], [17]. In the whole paper, we assume that least significant
bit (LSB) is the rightmost position.

2 The Classical Modular Inverse in Previous Works

The two commonly used approaches for the computation of ordinary modular
inverse are a binary algorithm derived from the Montgomery modular inverse [2],
[3] and a binary algorithm for ordinary inverse [4]. Both of these approaches are
based on the same algorithmic principle, which is the binary right-shift greatest
common divisor algorithm (gcd) [4] that calculates the value for two integers
using halving and subtraction. Both of the mentioned algorithms are suitable
for implementation in hardware, since the halving operation is equal to a binary
right shift.

2.1 The Right-Shift Algorithm for the Classical Modular Inverse

The ordinary modular inverse algorithm described in [4], attributed to M.Penk
(see exercise 4.5.2.39 in [4]), calculates the modular inverse r = a−1 mod p us-
ing the extended Euclidean algorithm. We have modified the Penk’s algorithm
with the aim to enable its easy hardware implementation. The modified Penk’s
algorithm, called Algorithm I, is given below:

Algorithm I

Input: a ∈ [1, p − 1] and p
Output: r ∈ [1, p − 1] and k, where r = a−1 mod p

and n ≤ k ≤ 2n
1. u := p, v := a, r := 0, s := 1
2. k := 0
3. while (v > 0)
4. if (u is even) then
5. if (r is even) then
6. u := u/2, r := r/2, k := k + 1
7. else
8. u := u/2, r := (r + p)/2, k := k + 1
9. else if (v is even) then
10. if (s is even) then
11. v := v/2, s := s/2, k := k + 1
12. else
13. v := v/2, s := (s + p)/2, k := k + 1
14. else x := (u − v)
15. if (x > 0) then
16. u := x, r := r − s
17. if (r < 0) then
18. r := r + p

New Algorithm for Classical Modular Inverse 59

19. else
20. v := −x, s := s − r
21. if (s < 0) then
22. s := s + p
23. if (r > p) then
24. r := r − p
25. if (r < 0) then
26. r := r + p
27. return r and k.

Algorithm I continuously halves (shifts to the right) both values, even and odd;
if the value is odd, the modulus p which is odd (p is prime) is added to it
beforehand. These operations are performed in steps 8 and 13. Any negative
values of r and s that result from the subtraction are converted to positive ones
in the same residue class in steps 18 and 22 by adding p so that r, s ∈ [1, p − 1].
The algorithm outputs two integers, r and k, where k is the number of halvings
during the calculation of gcd(p, a) and it satisfies n ≤ k ≤ 2n.

2.2 The Montgomery Algorithm for the Classical Modular Inverse

In contrast to Algorithm I, Montgomery algorithms for computing modular in-
verse (in integer or Montgomery domains) split the computation to two phases.
In the first phase the so-called Almost Montgomery Inverse a−12k mod p [3] is
calculated in k iterations, where k follows from input values. In case of integer
domain, k is taken to be the number of deferred halvings in the second phase [3].
Hence, the modular inverse according to Equation (1) is computed by k hlavings
modulo p. This algorithm, called Algorithm II, is given below:

Algorithm II

Phase I
Input: a ∈ [1, p − 1] and p
Output: y ∈ [1, p − 1] and k, where y = a−12k (mod p)

and n ≤ k ≤ 2n
1. u := p, v := a, r := 0, s := 1
2. k := 0
3. while (v > 0)
4. if (u is even) then
5. u := u/2, s := 2s, k := k + 1
6. else (if v even) then
7. v := v/2, r := 2r, k := k + 1
8. else
9. x := (u − v)
10. if (x > 0) then
11. u := x/2, r := r + s, s := 2s, k := k + 1
12. else

60 R. Lórencz

13. v := −x/2, s := r + s, r := 2r, k := k + 1
14. if (r > p) then
15. r := r − p
16. return y := p − r and k.

Phase II
Input: y ∈ [1, p − 1], p and k from Phase I
Output: r ∈ [1, p − 1], where r = a−1 (mod p), and 2k from Phase I
17. for (i = 1 to k) do
18. if (r is even) then
19. r := r/2
20. else
21. r := (r + p)/2
22. return r and 2k.

In case of Montgomery domain, the number of deferred halvings in the second
phase is k − n, where k is guaranteed to n ≤ k ≤ 2n [2]. It is interesting to
compare Algorithms I and II. The operation of the correction of an odd number
before halving performed in steps 8 and 13 of Algorithm I is done in step 21
of Phase II of Algorithm II. Conversion of negative values of r and s is not
necessary here, since no subtraction of r or s is performed during calculation. It
is clear that the number of iterations in Algorithm II is 2k, k iterations in Phase
I and k iterations in Phase II.

3 New Left-Shift Algorithm for the Classical Modular
Inverse

The new approach to the calculation of modular inverse, which is the subject
of this paper, avoids the drawbacks of the above algorithms. In Algorithm I,
these are especially: high number of tests such as ’u > v’, ’s < 0’, ’r < 0’, which
essentially represent a subtraction and also an addition ’r + p’, ’s + p’ if s and r
are negative so that r, s ∈ [1, p − 1]. In case of the modular inverse calculation
using the Montgomery modular inverse, it is necessary to perform the deferred
halving in k iterations in Phase II of Algorithm II, including corrections of r if
it is odd (step 21 of the algorithm). An algorithm that avoids the mentioned
problems is presented below:

Algorithm III

Input: a ∈ [1, p − 1] and p
Output: r ∈ [1, p − 1], where r = a−1 (mod p), c u, c v

and 0 < c v + c u ≤ 2n
1. u := p, v := a, r := 0, s := 1
2. c u = 0, c v = 0
3. while(u �= ±2c u & v �= ±2c v)
4. if (un,un−1= 0) or (un, un−1 = 1 & OR(un−2, . . . , u0) = 1) then

New Algorithm for Classical Modular Inverse 61

5. if (c u ≥ c v) then
6. u := 2u, r := 2r, c u := c u + 1
7. else
8. u := 2u, s := s/2, c u := c u + 1
9. else if (vn, vn−1 = 0) or (vn, vn−1 = 1 & OR(vn−2, . . . , v0) = 1) then
10. if (c v ≥ c u) then
11. v := 2v, s := 2s, c v := c v + 1
12. else
13. v := 2v, r := r/2, c v := c v + 1
14. else
15. if (vn = un) then
16. oper = ” − ”
17. else
18. oper = ” + ”
19. if (c u ≤ c v) then
20. u := u oper v, r := r oper s
21. else
22. v := v oper u, s := s oper r
23. if (v = ±2c v) then
24. r := s, un := vn

25. if (un = 1) then
26. if (r < 0) then
27. r := −r
28. else
29. r := p − r
30. if (r < 0) then
31. r := r + p
32. return r, c u, and c v.

Algorithm III was designed to be easily implemented in hardware (Section 5).
Registers Ru, Rv, Rs are m = n + 1 bit wide registers and contain individual
values of the variables u, v, s. The value of variable r is in m+1 bit wide register
Rr. Counters Cu and Cv are auxiliary e = �log2 n� bit wide counters containing
values c u and c v. The presented left-shifting binary algorithm computes the
modular inverse of a according to Equation (1)) using the extended Euclidean
algorithm and shifting the values u and v to the left, that is multiplying them by
two. The multiplication is performed as long as the original value multiplied by 2i

is preserved, where i is the number of left shifts. Negative values are represented
in the two’s complement code. The shift is performed as long as the bits un,
un−1 or vn, vn−1 are zeros for positive values or ones for negative values, while
at least one of the bits un−2, un−3, . . .u0 or vn−2, vn−3, . . . v0 is not zero -
binary ’OR’ (steps 4 and 9). With each shift, counters Cu and Cv (values c u
and c v) that track the number of shifts in Ru, Rv are incremented (steps 6, 8,
11, and 13). Registers Rr and Rs (values r and s) are also shifted to the right
(steps 8 and 13) or left (steps 6 and 11) according to conditions in steps 5 and
10. In step 15, addition or subtraction, given variable oper, is selected according

62 R. Lórencz

to sign bits un and vn for the subsequent reduction of u, v and r, s in steps 20
and 22. Results of these operations are stored either in Ru and Rr (values u and
r), if the number of shifts in Ru is less or equal to the number of shifts in Rv, or
in registers Rv and Rs (values v and s) otherwise. The loop ends whenever ’1’
or ’-1’ shifted by the appropriate number of bits to the left appears in register
Ru or Rv. Branch conditions used in steps 4, 9, and 15 are easily implemented
in hardware. Similarly, the test in steps 5, 10, and 19 can be implemented by an
e bit comparator of values c u and c v with two auxiliary single-bit flips-flops
u/v̄ and wu (see Section 5). Table 1 shows an example of the calculation of the

Table 1. Example of the calculation

l operations values of registers tests

0 u(0) = (13)10 = (01010.)2 u(0) �= ±20

v(0) = (10)10 = (01010.)2 v(0) �= ±20

r(0) = (0)10 = (00000.)2
s(0) = (1)10 = (00001.)2

1 u(1) = u(0) − v(0) u(1) = (3)10 = (00011.)2 u(1) �= ±20

v(1) = (10)10 = (01010.)2 v(1) �= ±20

r(1) = r(0) − s(0) r(1) = (−1)10 = (11111.)2
s(1) = (1)10 = (00001.)2

2 u(2) = 4u(1) u(2) = (12)10 = (011.00)2 u(2) �= ±22

v(2) = (10)10 = (01010.)2 v(2) �= ±20

r(2) = 4r(1) r(2) = (−4)10 = (111.00)2
s(2) = (1)10 = (00001.)2

3 u(3) = (12)10 = (011.00)2 u(3) �= ±22

v(3) = v(2) − u(2) v(3) = (−2)10 = (11110.)2 v(3) �= ±20

r(3) = (−4)10 = (111.00)2
s(3) = s(2) − r(2) s(3) = (5)10 = (00101.)2

4 u(4) = (12)10 = (011.00)2 u(4) �= ±22

v(4) = 4v(3) v(4) = (−8)10 = (110.00)2 v(4) �= ±22

r(4) = r(3)/4 r(4) = (−1)10 = (11111.)2
s(4) = (5)10 = (00101.)2

5 u(5) = u(4) + v(4) u(5) = (4)10 = (001.00)2 u(5) = 22

r(5) = r(4) + s(4) r(5) = (4)10 = (00100.)2

modular inverse for p = 13 and a = 10. Therefore, n = 4 and m = 5. The
computed result is r = a−1 mod 13 = 4.
Description of Table 1: l is the iteration number, column operations lists the
performed arithmetic operations of iteration l and column tests lists conditions
evaluated in iteration l . The notation u(l) means the actual value u of register
Ru in the l-th iteration, etc. The dot in binary representation of values in column

New Algorithm for Classical Modular Inverse 63

values of registers specifies the reference shift position that is equal to the current
position of initial LSB. It represents the value of accumulated left-shift for u and
v and left/right shift for r and s.

4 Results and Discussion

A simulation and a quantitative analysis of the number of additions or subtrac-
tions (’+/−’), shifts and tests was performed for all the algorithms presented.
Simulation of modular inverse computation according to Equation (1) was per-
formed for all integers a ∈ [2, p−1] and all 1899 prime moduli p < 214 (n ≤ 14) .
A total of 14,580,841 inverses were computed by each method. Simulation results
are presented in Table 2. The number of all tests, additions and subtractions are
listed in column ”+/− & tests”. The tests include all ”greater than” and ”less
than” comparisons except ’v > 0’ in the main loop, which is essentially a ’v �= 0’
test that does not require a subtraction. The ”+/−” column lists additions and
subtractions without tests. The column ”total shift” indicates the number of
all shift operations during the computation. The last column lists the number
of shifts minus the number of ’+/−’ operations, assuming the shift is performed
together with storing the result of the ’+/−’ operation. The columns give mini-
mum and maximum numbers of operations (min; max) and their average (av.)
values.

Table 2. Results for primes less than 214

Algorithm +/− & tests +/− total shift shift − (+/−)
min;max av. min;max av. min;max av. min;max av.

Algorithm III - - 2 - 21 9.9 2 - 26 23.3 1 - 24 13.4
Algorithm II Ph. I 3 - 28 15.7 1 - 15 10.6 3 - 27 19.1 0 - 23 8.5
Algorithm II Ph. II 2 - 25 10.5 2 - 25 10.5 3 - 27 19.1 0 - 24 8.6
Algorithm II 5 - 45 26.2 4 - 40 21.1 6 - 54 38.2 0 - 43 17.1
Algorithm I 9 - 80 40.4 6 - 53 27.1 2 - 26 18.1 0 0

Shift operations are faster in hardware than additions, subtractions, and com-
parison operations performed with the Ru, Rv, Rr, Rs registers. The comparison
operations are about as slow as additions/subtractions, since they cannot be per-
formed in parallel; they depend on data from previous operations. In Algorithm
I, they are the conditions in steps 15, 17, and 21. If a suitable code is used to
represent negative numbers, this condition can be realized as a simple sign test,
avoiding the complicated testing in steps 17 and 21. The Algorithms I and Al-
gorithm II suffer from a large number of additions and subtractions that correct
odd numbers before halving in steps 8 and 13 of Algorithm I and step 21 in
Algorithm II, and convert negative numbers in steps 18 and 22 of Algorithm I.

64 R. Lórencz

Moreover, Algorithm II needs twice the number of shifts compared to Algorithm
I, required by the Phase II.

The previous analysis shows that Algorithm III removes drawbacks of Algo-
rithm I and Algorithm II. Let us assume full hardware support for each algorithm
and simultaneous execution of operations specified on the same line of the pseu-
docodes. Let us further assume that no test is needed in step 10 of Algorithm II.
Then, we can use the values in columns ”+/−” and ”total shift” to compare the
number of operations. Algorithm III needs half the number of ’+/−’ operations
compared to Algorithm II, and 2.7 times less the number of ’+/−’ operations
compared to Algorithm I.

Fig. 1. Average number of execution cycles T of the three algorithms as a function of
the ratio ρ

The simulation results from Table 2 for prime moduli less than 214 (n = 14)
are plotted in Figure 1. It shows the average number of cycles T needed to
compute the modular inverse using Algorithms I - III as a function of the ratio
ρ, where ρ is defined as the ratio of the critical path length in cycles of the shift
and the critical path length in cycles of the adder/subtracter. All (Algorithm
I) or a part of (Algorithms II and III) shift operations are included in ’+/−’
operations. Shift operations that are not performed as a part of ’+/−’ operations
are performed individually (they are listed in the last column of Table 2).

With an increasing word length, the time complexity of shift operations re-
mains constant. However, the complexity of additions/subtractions increases ap-
proximately �log2 m� - times, m is the number of bits of a word. For long words,

New Algorithm for Classical Modular Inverse 65

often used in cryptographic algorithms, the modular inverse computation for in-
dividually algorithms is strongly dependent on addition/subtraction operations.
That in such cases Algorithm III is twice faster than Algorithm II and 2.7-times
faster than Algorithm I.

Table 3. Results of Algorithm III for three cryptographic primes

Primes n +/− total shift inverses
min;max av. min;max av.

2192 − 264 − 1 192 64 - 182 132.9 343 - 382 380 3,929,880
2224 − 296 + 1 224 81 - 213 154.8 408 - 446 441 4,782,054
2521 − 1 521 18 - 472 387.5 999 - 1040 1029 4,311,179

The statistical analysis of Algorithm III (see the previous page) for large
integers of cryptographic was performed. The results of the analysis are presented
in Table 3. The first column contains values of primes, the second column gives
the word length and the last column gives number of inverses. Other columns
have the same meaning as columns in Table 2. The average number of ’+/−’
operations grows with n approximately linearly. The multiplicative coefficient is
≈ 0.7 for all three primes. The average number of shifts is nearly equal to 2n.
Similar results hold for primes p < 214.

5 HW Implementation

Algorithm III is optimized in terms of reducing the number of additions and
subtractions, which are critical in integer arithmetic due to carry propagation
in long computer words. Other optimization criteria included making the evalu-
ation of tests during the calculation as simple as possible and minimizing data
dependencies to enable calculation in parallel calculations. Figure 2 shows the
circuit implementing the computation of classical modular inverse . Only data
paths for computing the classical modular inverse according to Algorithm III are
shown. The system consists of three basic parts. The first two parts form the
well-known ”butterfly” [14], [15], typical for algorithms based on the extended
Euclidean algorithm; the third part consists of the controller and support cir-
cuitry. ”Master” half of the ”butterfly” calculates the gcd(m, a) and consists of
two m bit registers Ru, Rv, m bit adder/subtracter ADD1, multiplexer MUX1,
and left-shift logic SHFT1. ”Slave” half of the butterfly consists of (m + 1) bit
register Rr and m bit register Rs, m bit adder/subtracter ADD2, multiplexers
MUX2, MUX3, MUX4, and right/left-shift logic SHFT1. The controller unit
controls the operation of the entire system. The controller part also includes an
m bit mask register Rm with test logic provided test in step 3, two e bit counters
Cu, Cv with the comparator d and single-bit flip-flops u/v̄ and wu.

66 R. Lórencz

Cu

Ru RvRv Rr

Controller
Controller

Cv

ADD1

d

SHFT1 SHFT2

Rs

ADD2

I/O

m

mm

m

m+1 m

m+1

m

e

e

1

Rm

u/v

TL

m

3

m

wu

MUX3 MUX4

MUX2MUX1

Fig. 2. The circuit implementation of Algorithm III

6 Conclusion

A new algorithm (Algorithm III) for classical modular inverse was presented
and its HW implementation has been proposed. A mathematical proof (see the
Appendix) that the proposed algorithm really computes classical modular inverse
was performed. A statistical analysis of the new algorithm for large cryptographic
integers was carried out. Computation of the modular inverse using the new
algorithm is always faster and in the case of long words at least twice faster than
other algorithms currently in use. The principles of the presented algorithm will
also be used in a modular system for solving systems of linear equations without
rounding errors [17].

References

1. P. L. Montgomery: Modular Multiplication Without Trial Division. Mathematics
of Computation 44 No. 170 (1985) 519–521

2. B. S. Kaliski Jr.: The Montgomery Inverse and Its Application. IEEE Transaction
on Computers 44 No. 8 (1995) 1064–1065

New Algorithm for Classical Modular Inverse 67

3. E. Savaş and Ç. K. Koç: The Montgomery Modular Inverse - Revisited. IEEE
Transaction on Computers 49 No. 7 (2000)

4. D. E. Knuth: The Art of Computer Programming 2 / Seminumerical Algorithms.
Addison-Wesley, Reading, Mass. Third edition (1998)

5. Ç. K. Koç: High-Radix and Bit Recoding Techniques For Modular Exponentiation.
Int’l J. Computer Mathematics 40 (1991) 139–156

6. J.-J. Quisquarter and C. Couvreur: Fast Decipherment Algorithm for RSA Public-
key Cryptosystem. Electronics Letters 18 No. 21 (1982) 905–907

7. W. Diffie and M. E. Hellman: New Directions in Cryptography. IEEE Transactions
on Information Theory 22 (1976) 644–654.

8. Nat’l Inst. of Standards and Technology (NIST). FIPS Publication 186: Digital
Signature Standard (1994)

9. N. Koblitz: Elliptic Curve Cryptosystem. Mathematics of Computation 48 No. 177
(1987) 203–209

10. A. J. Menezes: Elliptic curve Public Key Cryptosystem. Kluwer Academic Pub-
lishers, Boston, MA (1993)

11. Ö. Eg̃eciog̃lu and Ç. K. Koç: Exponentiation Using Canonical recoding. Theoretical
Computer Science 129 No. 2 (1994) 407–717

12. R. T. Gregory and E. V. Krishnamurthy: Methods and Applications of Error-free
Computation. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo (1984)

13. K. H. Rosen: Elementary Number Theory and Its Applications. Addison-Wesley,
Reading, Massachusetts (1993)

14. J. D. Dworkin, P. M. Glaser, M. J. Torla, A. Vadekar, R. J. Lambert, S. A. Van-
stone: Finite Field Inverse Circuit. US Patent 6,009,450 (1999)

15. B. Bruner, A. Curiger, M. Hofstetter: On Computing Multiplicative Inverse in
GF(2m). IEEE Trans. Computer 42 (1993) 1010–1015

16. M. Morháč and R. Lórencz: A Modular System for Solving Linear Equations Ex-
actly, I. Architecture and Numerical Algorithms. Computers and Artificial Intelli-
gence 11 No. 4 (1992) 351–361

17. R. Lórencz and M. Morháč: Modular System for Solving Linear Equations Exactly,
II. Hardware Realization. Computers and Artificial Intelligence 11 No. 5 (1992)
497–507

7 Appendix: The Mathematical Proof of Proposed
Algorithm

Algorithm III has similar properties as the Euclidean Algorithm and algorithms
derived from it, introduced in [4], [12], [13], where methods for their verification
are also presented. By using similar proof techniques we have carried out a proof
that Algorithm III computes correctly the classical modular inverse.

For computing multiplicative inverse of an integer a in the finite field GF(p),
where p is a prime, the following lemma is important.

Lemma 1. If gcd(p, a) = 1 and if

1 = px + ab,

then
a−1 mod p = b mod p.

68 R. Lórencz

The proof of the lemma is in [12]. By finding a pair of integers x and b that satisfy
equations in Lemma 1, we prove that Algorithm III computes classical inverse
in GF(p). Individual iterations of Algorithm III can be described by following
system 3 of recurrent equations and guarding conditions for quotients,

r1 = p − aq1 0 < r1 < aq1 q1 = 2(〈p〉−〈a〉) q1 > 1
r2 = |r1| − aq2 0 < r2 < aq2 q2 = 2(〈r1〉−〈a〉) q2 > 1

...
rj = |rj−1| − aqj 0 < |rj | < a qj = 2(〈rj−1〉−〈a〉) qj > 1
rj+1 = a − |rj |qj+1 0 < |rj+1| < |rj |qj+1 qj+1 = 2(〈a〉−〈rj〉) qj+1 > 1
rj+2 = |rj+1| − |rj |qj+2 0 < |rj+2| < |rj |qj+2 qj+2 = 2(〈rj+1〉−〈rj〉) qj+2 > 1

...
rk = |rk−1| − |rj |qk 0 < |rk| < |rj | qk = 2(〈rk−1〉−〈rj〉) qk > 1
rk+1 = |rj |−|rk|qk+1 0 < |rk+1| < |rk|qk+1 qk+1 = 2(〈rj〉−〈rk〉) qk+1 > 1
rk+2 = |rk+1| − |rk|qk+2 0 < |rk+2| < |rk|qk+2 qk+2 = 2(〈rk+1〉−〈rk〉) qk+2 > 1

...
rl = |rl−1| − |rk|ql 0 < |rl| < |rk| ql = 2(〈rl−1〉−〈rk〉) ql > 1

...

...
rm = . . .
rm+1 = . . .

...
rn = |rn−1| − |rm| 0 < |rn| < |rn−1| qn = 2(〈rn−1〉−〈rm〉) qn = 1
rn+1 = |rn−1| − |rn|qn+1 0 < |rn+1| < |rn|qn+1 qn+1 = 2(〈rn−1〉−〈rn〉) qn+1 > 1
rn+2 = |rn+1| − |rn|qn+2 0 < |rn+2| < |rn|qn+2 qn+2 = 2(〈rn+1〉−〈rn〉) qn+2 > 1

...
ro = |ro−1| − |rn|qo |ro| = 1 qo = 2(〈ro−1〉−〈rn〉) qo > 1
0 = |rn| − |ro|qo+1,

(3)
where r1, r2, . . . , ro+1 are remainders, q1, q2, . . . , qo+1 are quotients, 〈ri〉 is the
number of bits needed for binary representation |ri|. If the recursive definition of
ri is unrolled up to p and a, each ri can be expressed by a Diophantine equation
ri = pfi + aqi, where fi = fi(q1, q2, . . . , qi), and gi = gi(q1, q2, . . . , qi).

The last non-zero remainder equal ro fulfils the following theorem:

Theorem 1. gcd(p, a) = 1 iff |ro| = 1.

New Algorithm for Classical Modular Inverse 69

Proof.

gcd(p, a) = gcd(r1, a) = gcd(r2, a) = . . . = gcd(rj−1, a)
= gcd(a, |rj |) = gcd(|rj+1|, |rj |) = . . . = gcd(|rk−1|, |rj |)
= gcd(|rj |, |rk|) = gcd(|rk+1|, |rk|) = . . . = gcd(|rl−1|, |rk|)
= gcd(|rk|, |rl|) = . . .
...
= . . . = gcd(|rn−1|, |rm|) = gcd(|rn|, |rm|) = gcd(|rn−1|, |rn|)
= gcd(|rn−1|, |rn|) = gcd(|rn+1|, |rn|) = . . . = gcd(|ro−1|, |rn|)
= gcd(|rn|, |ro|) = gcd(|ro|, 0)
= |ro| = 1.

�

The previous statement assumed the following trivial properties of gcd:

gcd(0, d) = |d| for d �= 0,
gcd(c, d) = gcd(d, c),
gcd(c, d) = gcd(|c|, |d|),
gcd(c, d) = gcd(c + ed, d),

where c, d, and e are integers. The description of the properties are introduced
in [12], [13].

The fact that the guarding conditions for quotients qi guarantee correct values
of remainders ri follows from the Lemma 2:

Lemma 2. Let c and d be positive integers with binary representations c =
2i + ci−12i−1 + . . . + c0 and d = 2j + dj−12j−1 + . . . + d0. Assume i ≥ j. Let
q = 2(i−j) and e = c − qd. Then:

|e| < qd and |e| < c.

Proof. Follows easily from identity

i∑

k=1

1
2k

= 1 − 1
2i

,

which is proven for example in [13]. �

The computation specified in Equations (3) can be expressed in the form of
Table 4, which gives the expressions for integer values fi and gi.

Since ro = pfo + ago, it follows that:

if (ro = 1) then
x = fo, b = go, and a−1 mod p = go mod p,

if (ro = −1) then
x = −fo, b = −go, and a−1 mod p = (−go) mod p.

70 R. Lórencz

Table 4. The computation of fo, go, and ro

i ri fi gi

1 r1 1 −q1

2 r2 ±1 ±q1 − q2

3 r3 ±1 ±q1 ± q2 − q3

...
...

...
...

j rj ±1 ±q1 ± q2 ± . . . − qj

j + 1 rj ±qj+1 1 ± qj+1(±q1 ± q2 ± . . . − qj)
...

...
...

...
k rk fk gk

...
...

...
...

o ro fo go

o + 1 0 fo+1 go+1.

�

It is the last step of the proof that Algorithm computes classical modular
inverse. Finally, we take note of the principal features of the proposed Algorithm
III from the point of view of the presented proof. The algorithm employs two’s
complement code for additions or subtractions. Therefore, the test whether an
addition or subtraction is to be performed becomes a simple sign test. If the
signs of both operands are equal, we subtract one from the other and in the
opposite case we add both operands. Equations in (3) respect this rule when
using absolute values of operands. According to Lemma 2, successive values ri

of remainders decrease in such a way that p > a > |r1| > |r2| > . . . |ro|.
The selection of operands which will be rewritten with a new value of the

computed remainder is based on a simple test. The write is performed into
the operand which needs more bits for its binary representation. This fact is
respected in (3) by the value qi. If qi = 1, the write is into one of operands without
respect on their absolute values. This case is demonstrated for remainder rn. The
conditions given by inequalities of Lemma 2 for rn are fulfilled, too. Hence it
holds p > a > |r1| > |r2| > . . . > |rn−1| > |rn| > |rn+1| > . . . > |ro|.

	Introduction
	The Classical Modular Inverse in Previous Works
	The Right-Shift Algorithm for the Classical Modular Inverse
	The Montgomery Algorithm for the Classical Modular Inverse

	New Left-Shift Algorithm for the Classical Modular Inverse
	Results and Discussion
	HW Implementation
	Conclusion
	Appendix: The Mathematical Proof of Proposed Algorithm

