LNCS 2573

Ludék Kucera (Ed.)

Graph-Theoretic
Conceptsin
Computer Science

28th International Workshop, WG 2002
Cesky Krumlov, Czech Republic, June 2002
Revised Papers

€); Springer

Lecture Notes in Computer Science 2573
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan

Paris

Tokyo

Ludék Kucera (Ed.)

Graph-Theoretic
Concepts 1n
Computer Science

28th International Workshop, WG 2002
Cesky Krumlov, Czech Republic, June 13-15, 2002
Revised Papers

&) Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Ludék Kucera

Charles University Department of Applied Mathematics
Malostranské ndm. 25

118 00 Prague, Czech Republic

E-mail: ludek @kam.mff.cuni.cz

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress.
Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): F2, G.1.2,G.1.6, G.2, G.3,E.1,1.3.5

ISSN 0302-9743
ISBN 3-540-00331-2 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 10872302 06/3142 543210

Preface

The 28th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2002) was held in Cesky Krumlov, a beautiful small town in the
southern part of the Czech Republic on the river Vltava (Moldau), June 13-15,
2002. The workshop was organized by the Department of Applied Mathematics
of the Faculty of Mathematics and Physics of Charles University in Prague.

Since 1975, WG has taken place in Germany 20 times, twice in Austria and
The Netherlands, and once in Italy, Slovakia, and Switzerland. As in previous
years, the workshop aimed at uniting theory and practice by demonstrating how
graph-theoretic concepts can be applied to various areas in Computer Science,
or by extracting new problems from applications.The workshop was devoted to
the theoretical and practical aspects of graph concepts in computer science, and
its contributed talks showed how recent research results from algorithmic graph
theory can be used in computer science and which graph-theoretic questions
arise from new developments in computer science.

Altogether 61 research papers were submitted and reviewed by the program
committee. The program committee represented the wide scientific spectrum,
and in a careful reviewing process with four reports per submission it selected
36 papers for presentation at the workshop. The referees’ comments as well as the
numerous fruitful discussions during the workshop have been taken into account
by the authors of these conference proceedings.

The participants of WG 2002 came from universities and research institutes in
various countries such as Australia, Belgium, Brazil, Canada (2), Czech Republic
(6), France (7), Germany (13), Great Britain, Greece (2), Hong Kong, Ireland,
Israel (2), Ttaly (2), Japan (2), New Zeeland, Norway (6), Poland (3), Russia,
Slovakia, Spain, The Netherlands (2), U.S.A. The unusually small number of
participants from the U.S.A. and Canada was most likely due to the short space
of time between 11th of September, 2001 and the workshop deadline.

It is our pleasure to thank all those who contributed to the scientific success
of WG 2001: all the authors of submitted and of presented papers, and in partic-
ular the speakers, the referees, and the subreferees. The organizational work of
Lucie Stépanové, Viliam Holub, and Stépan Kuéera during the workshop and the
historical ambience, technical facilities, and helpful personnel of the Hotel Ruze
in Cesky Krumlov greatly contributed to the succeess of the workshop. A concert
given by Olga Stépanova (mezzosoprano), Lucie Stépanova (violloncello), and
Alexandr Zlobin (piano) in Castle Kratochvile was a beautiful counterpart to
the exhausting scientific program of the workshop.

November 2002 Ludék Kucera

Program Committee

Hans Bodlaender, Universiteit Utrecht (NL)

Andreas Brandstadt, Universitat Rostock (DE)

Michel Habib, LIRMM Montpellier (F)

Juraj Hromkovi¢c, RWTH Aachen (DE)

Michael Kaufmann, Universitdt Tibingen (DE)

Ludék Kucera, Karlova Universita, Prague (CZ), chair
Alberto Marchetti-Spaccamela, Universita di Roma “La Sapienza” (I)
Ernst Mayr, TU Miinchen (DE)

Manfred Nagl, RWTH Aachen (DE)

Hartmut Noltemeier, Universitat Wiirzburg (DE)

Andrzej Proskurowski, University of Oregon, Eugene (US)
Ondrej Sykora, Loughborough University (UK)

Gottfried Tinhofer, TU Miinchen (DE)

Dorothea Wagner, Universitdt Konstanz (D)

Peter Widmayer, ETH Ziirich (CH)

Christos Zaroliagis, CTI Patras (GR)

Additional Reviewers

Jochen Alber, Luzi Anderegg, Maria I. Andreou, Hans-Joachim Béckenhauer,
Thomas Bayer, Dirk Bongartz, Franz Brandenburg, Ulrik Brandes,

Kathie Cameron, Serafino Cicerone, Mark Cieliebak, Andrea Clementi,
Olivier Cogis, Sabine Cornelsen, Camil Demetrescu, Ingo Demgensky,
Joerg Derungs, Hristo Djidjev, Stefan Dobrev, Feodor F. Dragan,

Stephan Eidenbenz, Frank van den Eijkhof, Jens Ernst, Dimitris Fotakis,
Jean-Luc Fouquet, Cyril Gavoille, H.-D.O.F. Gronau, Yubao Guo,

Jens Gustedt, Volker Heun, Klaus Holzapfel, Miriam Dilanni, Ton Kloks,
Spyros Kontogiannis, Sven Kosub, Dieter Kratsch, Van Bang Le,
Zsuzsanna Liptak, Matthias Miiller, Moritz Maaf}, Maria Flavia Mammana,
Sebastian Maneth, Fabien de Montgolfier, Matthew Newton,

Sotiris Nikoletseas, Alexander Offtermatt-Souza, Gabriel Oksa,

Aris Pagourtzis, Jérome Palaysi, Vicky Papadopoulou,

Francesco Parisi-Presicce, Christophe Paul, Leon Peeters, Paolo Penna,
Guido Proietti, Martin Raab, Udi Rotics, Thomas Schickinger,

Konrad Schlude, Frank Schulz, Sebastian Seibert, Riccardo Silvestri,
Jeremy Spinrad, Ladislav Stacho, Ludwig Staiger, Yannis Stamatiou,
Gabriele Di Stefano, Gabor Szabo, Hanjo Téubig, Dimitrios M. Thilikos,
Peter Ullrich, Walter Unger, Jean-Marie Vanherpe, Imrich Vrto,

Birgitta Weber, Thomas Willhalm, Hans-Christoph Wirth, Mark Withall.

The Tradition of WG

1975 U. Pape — Berlin

1976 H. Noltemeier — Gottingen

1977 J. Miihlbacher — Linz

1978 M. Nagl, H.J. Schneider — Schlof} Feuerstein, near Erlangen
1979 U. Pape — Berlin

1980 H. Noltemeier — Bad Honnef

1981 J. Miihlbacher — Linz

1982 H.J. Schneider, H. Giittler — Neunkirchen, near Erlangen

1983 M. Nagl, J. Perl — Haus Ohrbeck, near Osnabriick

1984 U. Pape — Berlin

1985 H. Noltemeier — Schlofl Schwanenberg, near Wiirzburg

1986 G. Tinhofer, G. Schmidt — Stift Bernried, near Miinchen

1987 H. Gottler, H.J. Schneider — Schlof§ Banz, near Bamberg

1988 J. van Leeuwen — Amsterdam

1989 M. Nagl — Schlo8 Rolduc, near Aachen

1990 R.H. Mohring — Johannesstift Berlin

1991 G. Schmidt, R. Berghammer — Richterheim Fischbachau, Miinchen
1992 E. W. Mayr — Wilhelm-Kempf-Haus, Wiesbaden-Naurod

1993 J. van Leeuwen — Sports Center Papendal, near Utrecht

1994 G. Tinhofer, E. W. Mayr, G. Schmidt — Herrsching, near Miinchen
1995 M. Nagl — Haus Eich, Aachen

1996 G. Ausiello, A. Marchetti-Spaccamela — Cadenabbia

1997 R.H. Mo6hring — Bildungszentrum am Miiggelsee, Berlin

1998 J. Hromkovi¢, O. Sykora — Castle Smolenice, near Bratislava
1999 P. Widmayer — Centro Stefano Franscini, Monte Verita, Ascona
2000 D. Wagner — Waldhaus Jakob, Konstanz

2001 A. Brandstddt — Boltenhagen, near Rostock

2002 L. Kucera — Cesky Krumlov

Table of Contents

Maximum Cardinality Search for Computing Minimal Triangulations 1
Anne Berry, Jean R.S. Blair, and Pinar Heggernes

DNA Sequencing, Eulerian Graphs,

and the Exact Perfect Matching Problem 13
Jacek Btazewicz, Piotr Formanowicz, Marta Kasprzak,
Petra Schuurman, and Gerhard J. Woeginger

On the Minimum Size of a Contraction-Universal Tree 25
Olivier Bodini

Optimal Area Algorithm for Planar Polyline Drawings 35
Nicolas Bonichon, Bertrand Le Saéc, and Mohamed Mosbah

Cycles in Generalized Networks 47
Franz J. Brandenburg

New Graph Classes of Bounded Clique-Width 57
Andreas Brandstddt, Feodor F. Dragan, Hoang-Oanh Le,
and Raffaele Mosca

More about Subcolorings. i 68
Hajo Broersma, Fedor V. Fomin, Jaroslav Nesetril,
and Gerhard J. Woeginger

Search in Indecomposable Graphs 80
Alain Cournier

On the Complexity of (k,1)-Graph Sandwich Problems............... ... 92
Simone Dantas, Celina M.H. de Figueiredo, and Luerbio Faria

Algorithms and Models for the On-Line Vertex-Covering 102
Marc Demange and Vangelis Th. Paschos

Weighted Node Coloring: When Stable Sets Are Expensive 114
Marc Demange, D. de Werra, J. Monnot, and Vangelis Th. Paschos

The Complexity of Restrictive H-Coloring 126
Josep Diaz, Maria Serna, and Dimitrios M. Thilikos

A New 3-Color Criterion for Planar Graphs 138
Krzysztof Diks, Lukasz Kowalik, and Maciej Kurowski

An Additive Stretched Routing Scheme for Chordal Graphs 150
Yon Dourisboure

X Table of Contents

Complexity of Pattern Coloring of Cycle Systems
Zdenék Dvordk, Jan Kdra, Daniel Krdl’, and Ondiej Pangrdc

Safe Reduction Rules for Weighted Treewidth
Frank van den Eijkhof and Hans L. Bodlaender

Graph Separator Algorithms: A Refined Analysis
Henning Fernau

Generalized H-Coloring and H-Covering of Trees.......................
Jir{ Fiala, Pinar Heggernes, Petter Kristiansen, and Jan Arne Telle

The Complexity of Approximating the Oriented Diameter
of Chordal Graphs
Fedor V. Fomin, Martin Matamala, and Ivan Rapaport

Radiocolorings in Periodic Planar Graphs: PSPACE-Completeness
and Efficient Approximations for the Optimal Range of Frequencies
D.A. Fotakis, S.E. Nikoletseas, V.G. Papadopoulou, P.G. Spirakis

Completely Independent Spanning Trees in Maximal Planar Graphs.
Toru Hasunuma

Facets of the Directed Acyclic Graph Layering Polytope
Patrick Healy and Nikola S. Nikolov

Recognizing When Heuristics Can Approximate Minimum Vertex
Covers Is Complete for Parallel Accessto NP
Edith Hemaspaandra, Jorg Rothe, and Holger Spakowski

Complexity of Some Infinite Games Played on Finite Graphs
Hajime Ishihara and Bakhadyr Khoussainov

New Algorithms for k—Face Cover, k—Feedback Vertex Set,
and k—Disjoint Cycles on Plane and Planar Graphs.....................
Ton Kloks, C.M. Lee, and Jiping Liu

A Multi-scale Algorithm for the Linear Arrangement Problem
Yehuda Koren and David Harel

On the b-Chromatic Number of Graphs............
Jan Kratochvil, Zsolt Tuza, and Margit Voigt

Budgeted Maximum Graph Coveraget .
Sven Oliver Krumke, Madhav V. Marathe, Diana Poensgen,
S.S. Ravi, and Hans-Christoph Wirth

Online Call Admission in Optical Networks with Larger Demands
Sven Oliver Krumke and Diana Poensgen

Table of Contents XI
The Forest Wrapping Problem on Outerplanar Graphs.................. 345
Isabella Lari, Federica Ricca, and Andrea Scozzari

On the Recognition of P;-Comparability Graphs 355
Stavros D. Nikolopoulos and Leonidas Palios

Bend-Minimum Orthogonal Drawings of Plane 3-Graphs 367
Md. Saidur Rahman and Takao Nishizeki

Cluster Graph Modification Problems 379
Ron Shamir, Roded Sharan, and Dekel Tsur

Two Counterexamples in Graph Drawing 391
0. Sykora, L.A. Székely, and 1. Vrto

Connected and Loosely Connected List Homomorphisms 399
Narayan Vikas

Any Load-Balancing Regimen for Evolving Tree Computations
on Circulant Graphs Is Asymptotically Optimal 413
Rolf Wanka

Author Index 421

Maximum Cardinality Search
for Computing Minimal Triangulations

Anne Berry!, Jean R. S. Blair?, and Pinar Heggernes?
! LIMOS, Universite Clermont-Ferrand II, F-63177 Aubiere, France, berry@isima.fr
2 US Military Academy, West Point, NY, USA, Jean-Blair@usma.edu
3 Informatics, University of Bergen, N-5020 Bergen, Norway, pinar@ii.uib.no

Abstract. We present a new algorithm, called MCS-M, for comput-
ing minimal triangulations of graphs. Lex-BFS, a seminal algorithm for
recognizing chordal graphs, was the genesis for two other classical algo-
rithms: Lex-M and MCS. Lex-M extends the fundamental concept used
in Lex-BFS, resulting in an algorithm that also computes a minimal tri-
angulation of an arbitrary graph. MCS simplified the fundamental con-
cept used in Lex-BFS, resulting in a simpler algorithm for recognizing
chordal graphs. The new simpler algorithm MCS-M combines the exten-
sion of Lex-M with the simplification of MCS, achieving all the results
of Lex-M in the same time complexity.

1 Introduction

Many important problems in graph theory rely on the computation of a chordal
completion or, equivalently, a triangulation of a graph. Typically the goal is
to compute a minimum triangulation, that is, a triangulation with the fewest
number of edges. Computing a minimum triangulation is NP-hard [11]. In this
extended abstract, we study the problem of finding a minimal triangulation. A
minimal triangulation H of a given graph G is a triangulation such that no
subgraph of H is a triangulation of G.

Several practical algorithms exist for finding minimal triangulations [1], [2],
[3], [5], [8], [9]- One such classical algorithm, called Lex-M [9], is derived from
the Lex-BFS (lexicographic breadth first search) algorithm [9] for recognizing
chordal graphs. Both Lex-BFS and Lex-M use lexicographic labels of the un-
processed vertices. As processing continues, the remaining labels grow, each po-
tentially reaching a length proportional to the number of vertices in the graph.
Lex-BFS adds to the labels of the neighbors of the vertex being processed, while
Lex-M adds to the labels of vertices that can be reached along special kinds of
paths. Interestingly, the simple extension of adding to labels based on reachabil-
ity along special kinds of paths, rather than only along single edges, results in
an algorithm that produces minimal triangulations.

The adjacency-labeling concepts developed for the Lex-BFS algorithm have
proved to be central in the understanding of chordal graphs and triangulations.
Tarjan and Yannakakis later came up with the surprising result that for the

L. Kucera (Ed.): WG 2002, LNCS 2573, pp. 1-12, 2002.
© Springer-Verlag Berlin Heidelberg 2002

2 Anne Berry, Jean R.S. Blair, and Pinar Heggernes

case of recognizing chordality, knowing the specific processed neighbors (i.e., la-
bels) is not necessary; one need only maintain and compare the cardinality of
processed neighbors [10]. This was a major breakthrough, resulting in a signifi-
cantly simplified implementation of Lex-BF'S which has come to be known as the
MCS (maximum cardinality search) algorithm. A natural question that arises is
whether or not cardinality comparisons are also sufficient for the case of minimal
triangulations. That is, is there a significantly simplified implementation of Lex-
M that uses only the cardinality of processed vertices that can be reached along
special kinds of paths? Or, equivalently, can MCS be extended from neighbors
to paths in order to yield a minimal triangulation algorithm, imaging the exten-
sion from Lex-BFS to Lex-M? In this paper, we introduce an algorithm called
MCS-M to fill exactly this gap.

The relationships between the four algorithms discussed thus far are sum-
marized in Figure 1. In the figure, the algorithms on the left recognize chordal
graphs while those on the right produce provably minimal triangulations of arbi-
trary graphs, as well as recognizing chordality. Both algorithms on the left have
time complexity O(n 4+ m); both algorithms on the right have time complexity
O(nm).

Lex-BFS > Lex-M
(lexicographic labelling (lexicographic labelling
of neighbors) along paths)
|
i
!
RN LA :
i i
MCS - MCS-M ;
(cardinality labelling (cardinality labelling i
1
1
1

1
of neighbors) : along paths)
1

Fig. 1. Relationships between algorithms. Solid arrows represent previous evolution.
Dashed arrows represent the natural evolution to a new MCS-M algorithm.

This paper is organized as follows. In the next section we assume that the
reader is familiar with standard graph terminology, and briefly review only a few
key definitions before presenting background material. Included in that section is
a classical characterization of minimal triangulations that forms the basis for our
proofs of correctness. The three algorithms that lead to the results in this paper
are presented in Section 3. In Section 4 we present the new minimal triangulation
algorithm MCS-M, and prove its correctness.

2 Background

All graphs in this work are undirected and finite. A graph is denoted by G =
(V, E), with n = |V|, and m = |E|. The neighborhood of a vertex z in G is
Ng(x) ={y # 2 | zy € E}. The neighborhood of a set of vertices A is Ng(A) =

Maximum Cardinality Search for Computing Minimal Triangulations 3

UzeaNg(z) — A, and we define Ng[A4] = Ng(A)UA. When the graph G is clear
from the context, we will omit the subscript G.

A clique is a set of pairwise adjacent vertices. A vertex x is simplicial if N(x)
is a clique. A chord of a cycle is an edge connecting two non-consecutive vertices
of the cycle. A graph is chordal, or equivalently triangulated, if it contains no
chordless cycle of length > 4. A triangulation of a graph G is a chordal graph
Gt = (V, EUF) that results from the addition of a set F of fill edges.

Given any graph G = (V, E), an elimination ordering o on G is simply a
numbering of the vertices of G with integers from 1 to n. The algorithm shown

Algorithm EliminationGame
Input: A general graph G, and an elimination ordering « of the vertices in G.
Output: The filled graph G.
begin
G° =G,
fori=1tondo
Let v be the vertex for which a(v) = i;
Add edges to G~ so that Ngi—1(v) becomes a clique;
G'=G"1 —w;
GE = Ul G
end
Fig. 2. The elimination game.

in Figure 2, called the elimination game, was first introduced by Parter [7]. For
any graph G and any ordering a of G, we will denote by G¥ the transitory graph
after step k of the elimination game on G. The resulting filled graph G7 is a
triangulation of G [4]. The ordering « is a perfect elimination ordering if no fill
edges are added during the elimination game i.e. G = G. Note that this is
equivalent to choosing a simplicial vertex at each step of the elimination game.
Fulkerson and Gross [4] showed that the class of chordal graphs is exactly the
class of graphs having perfect elimination orderings.
The following theorem characterizes the edges of the filled graph.

Theorem 1. (Rose, Tarjan, and Lueker [9]) Given a graph G = (V,E) and an
elimination ordering o of G, yz is an edge in GT if and only if yz € E or
there exists a path y,x1, 22, ..., Tk, 2 in G where a(z;) < min{a(y),a(z)}, for
1<i<k.

Ohtsuki, Cheung, and Fujisawa [6] define « to be a minimal elimination or-
dering if GT is a minimal triangulation of G and further characterize a sufficient
condition for a vertex to be numbered one in a minimal elimination ordering.
Below we define an OCF-vertex (OCF representing the initials of the authors of
[6]) as a vertex that satisfies their condition and summarize in a theorem their
results that are key in proving the correctness of our algorithm.

Definition 1. A vertex x in G = (V, E) is an OCF-vertex if, for each pair of
non-adjacent vertices y,z € N(x), there is a path y,x1,x2,...,xk, 2z in G where
x; € G— Nlz], for 1 <i<k.

4 Anne Berry, Jean R.S. Blair, and Pinar Heggernes

Theorem 2. (Ohtsuki, Cheung, and Fujisawa [6]) A minimal elimination or-
dering o is computed by choosing an OCF-vertex x in G*~1 for elimination so
that a(x) =, at each step i of the elimination game.

3 Lex-BFS, Lex-M, and MCS Algorithms

The MCS algorithm, which is shown in Figure 3, is a simple linear time algorithm
that processes first the vertex « for which a(z) = n and continues generating an
elimination ordering in reverse. The MCS algorithm maintains, for each vertex v,
an integer weight w(v) that is the cardinality of the already processed neighbors
of v. When given a chordal graph as input, MCS produces a perfect elimination
ordering.

Algorithm MaximumCardinalitySearch - MCS
Input: A graph G.
Output: An elimination ordering « of G.
begin
for all vertices v in G do w(v) = 0;
for i = n downto 1 do
Choose an unnumbered vertex z of maximum weight; a(z) = i;
for all unnumbered vertices y € N(z) do w(y) = w(y) + 1;

end Fig. 3. Maximum Cardinality Search.

Lex-BFS has the exact same description as MCS, but uses labels that are
lists of the names of the already processed neighbors instead of using weights. In
the beginning [(v) = @ for all vertices. At step n — 4 + 1, an unnumbered vertex
v of lexicographically highest label is chosen to receive number 4, and ¢ is added
to the end of the label lists of all unnumbered neighbors of v.

Lex-M is an extension of Lex-BFS that computes a minimal triangulation in
the following way. When v receives number ¢ at step n — ¢ + 1, it adds ¢ to the
end of the label lists of all unnumbered vertices x for which there exists a path
between v and x consisting only of unnumbered vertices with lexicographically
lower labels than those of v and .

The fact that using weights rather than the labels of Lex-BF'S is sufficient for
computing a perfect elimination ordering was a major breakthrough, resulting in
the substantially simpler implementation of MCS. In the next section we show
that using weights rather than the labels of Lex-M is also sufficient for computing
a minimal triangulation. This results in a substantially simpler implementation
of Lex-M which we call MCS-M.

Throughout the remainder of this paper, while speaking about MCS or MCS-
M, the following phrases are considered to be equivalent: w is numbered higher
than v and w s processed earlier than v. The symbols v— and v+ are used as time
stamps, denoting the time right before and right after v receives its number. For
any two vertices v and v, where v is numbered higher than v during an execution
of MCS or MCS-M, w,—(u) is the weight of u at time v—, and w,4(u) is the
weight of w at time v+. Analogously, h,_(A) and h,+(A) denote the highest

Maximum Cardinality Search for Computing Minimal Triangulations 5

weight of a vertex among the unnumbered vertices of A C V, at times v— and
v+, respectively.

4 The New MCS-M Algorithm

The new algorithm MCS-M is an extension of MCS in the same way that Lex-
M is an extension of Lex-BFS. That is, in MCS-M when v receives number ¢ at
step n — i + 1, it increments the weight of all unnumbered vertices x for which
there exists a path between v and x consisting only of unnumbered vertices with
weight strictly less than w,_(v) and w,_(z). The details of this O(nm) time
algorithm are given in Figure 4. An example of an MCS-M ordering on a given
graph is shown in Figure 5(a).

Algorithm MCS-M
Input: A general graph G = (V, E).
Output: A minimal elimination ordering a of G and the corresponding filled graph H.
begin
F = (; for all vertices v in G do w(v) = 0;
for i = n downto 1 do
Choose an unnumbered vertex z of maximum weight; a(z) = i;
for all unnumbered vertices y € G do
if there is a path y,x1,x2, ..., xk, z in G through unnumbered vertices
such that w._(z;) < w.—(y) for 1 <i < k then
w(y) =w(y) +1;
F=Fu{yzh
H=(V,EUF);
end
Fig. 4. The MCS-M algorithm.

6(1) 3 6(7) 47

42) (a) 12) 2(6,5)(a) 1(4,3>

502) 2(2) 5(7.6) 3(74)

(a) (b)
Fig. 5. (a) An MCS-M numbering. (b) A Lex-M numbering. Numbers in bold represent
the produced ordering «. The weight/label of each vertex at the time it receives its
number is given in parentheses.

We will show that MCS-M simulates a process of choosing an OCF vertex at
each step of the elimination game, thereby producing a minimal triangulation.
We begin by proving a property about paths with lower weight intermediary
vertices, after which we prove that MCS-M produces exactly the same graph as
the one that would be produced by the elimination game using the ordering «
produced by MCS-M.

6 Anne Berry, Jean R.S. Blair, and Pinar Heggernes

Lemma 1. Let a be an elimination ordering produced by an execution of MCS-
M on G. For any step of MCS-M, let v be the vertex chosen to receive its number.

Among the unnumbered vertzcss zf<) <)
Wy— (Y) < wy—(2

for all x; on a path y,x1,x2,...,x, 2 in G, then
a(z;) < min{a(y), a(z)}.

Proof. Suppose there is a path for which w,_(z;) < wy—(y) < wy—(z) as in
the premise of the lemma. Note that for any uw such that a(v) > a(u) >
min{a(x;), a(y), a(z)}, wy—(u) > max{w,—(y), wy—(2)}. Thus, if w,_(z;) <
min{wy,— (y), wy—(z)} then any lower weight path from u to some z; that causes
Wyt (x;) = wy—(z;) + 1, can be extended as a lower weight path through x; to y
and z causing wy+(y) = wy—(y) + 1 and wy4(2) = wy,—(z) 4+ 1. Since MCS-M al-
ways chooses next a vertex with highest weight to receive the highest remaining
number, the result follows by induction. =

Theorem 3. Let H and « be the graph and ordering produced by an execution
of MCS-M on G. Then H = G .

Proof. Given an input graph G, let « be the elimination ordering and H be
the supergraph computed by an execution of MCS-M. In order to prove that
H = G}, we will prove that a fill edge yz with a(y) < a(z) is added by MCS-
M if and only if there is a path y,x1, o, ...,z,, 2z in G with a(z;) < a(y) for
1 <4 < r. The result will then follow from Theorem 1. (=) Since yz is added,
there is a path y,x1,x2,...,z,, 2z in G where z; is unnumbered with w,_(z;) <
wy—(y) <w,_(z) for 1 <4 <r. Then by Lemma 1 a(x;) < a(y), for 1 <i <r.
(<) Let X = {1, 2, ...,z }. Since z is the first to receive its number among all
mentioned vertices, w,_(z) > w,_(y) and w,_(z) > h,_(X). We want to prove
that h,_(X) < w,—(y), which means that w(y) is incremented and yz is added
when z receives its number. Assume on the contrary that h,_(X) > w,_(y) and
that yz is not added. Then h,4(X) > w,4(y). Let j be the index such that
xj € X is the closest to y among vertices of X with w,4(z;) > w.4(y). When
a vertex ¢ receives its number and increments w(y) for the first time after the
numbering of z, it will also increment w(z;) since y is on the path between z; and
g and has lower weight. Thus we cannot increment w(y) without incrementing
w(x;), which contradicts that a(y) > a(x;). =

We have shown that the filled graph produced by MCS-M is equivalent to
the graph produced by the elimination game using the same ordering. In proving
our main lemma (Lemma 4), we will use this to infer the existence of fill edges
added during MCS-M, which in turn implies the existence of paths in G through
lower numbered vertices. First we prove two other necessary results.

Lemma 2. Let a be an elimination ordering produced by an execution of MCS-
M on G. For any step of MCS-M, let v be the vertex chosen to receive its number.

Among the unnumbered vertzcz&s zf<) <)
Wy— (Y) < wy—(2

for all x; on a path y,x1,xa,...,7, 2 in G, then for all w with a(u) > a(v),
wu—(2;) < min{wy—(y), wu—(2)}-

Maximum Cardinality Search for Computing Minimal Triangulations 7

Proof. Let v and the path y, 1,23, ..., 2, 2 in G be as stated in the premise and
suppose to the contrary that for some vertex u with a(u) > a(v), there exists a
vertex x; on the path for which w,_(2;) > min{w,—(y), w,—(z)}. Without loss
of generality assume w,,— (y) < w,—(z) and let v and z; be such that x; is the the
closest vertex to y on the path that has w,— (x;) > w,—(y) at some time before v
is numbered. Let p, be the portion of the path between y and x;. Thus, we have
Wy—(2;) > Wu—(y) > wy—(z;) for all x; on p,. Since wy,—(y) > wy—(z;) for the
later (lower) numbered vertex v, there must be a vertex ¢, a(u) > a(q) > a(v),
such that w—(x;) < we—(y) < wg—(x;) and wey (y) = wey (x;). But this cannot
happen for the following reasons. The fact that ¢ is the next to be numbered
vertex means that wy—(¢) > wy—(2;). The increase of y when ¢ is numbered
means there is a path (possibly a single edge), say pi1, between ¢ and y that
allowed the weight of y to be increased. The path ¢ — p; — y — p, — x; then is a
lower weight path between ¢ and x; that would result in the weight of x; being
incremented as well, contradicting the assumption that the weight of y and not
x; is increased when ¢ is numbered. =

Lemma 3. Let a be an elimination ordering produced by an execution of MCS-
M and consider the vertices u and vy, a(u) < a(v1), such that MCS-M incre-
ments w(u) through a path (or single edge) p, = v1,va,- -, v, u of lower weight
intermediate vertices when processing vi. Let x be any vertex with a(x) < a(u)
and define k = a(x). If wy, —(z) = wy, — (u) and v;x is an edge in GE=1 for some
1 <i<r then MCS-M also increments w(x) when processing v;.

Proof. Assume w,, _(x) = w,,(u) and v;z is an edge in GE~1. Either zv; is
an edge in G or it is a fill edge introduced when v; is numbered by MCS-M. In
either case, there is a path pgman (or single edge) connecting x and v; in G such
that hy,— (Psmair) < Wy, — () < wy,—(v;). Applying Lemma 2 we see that
hvl*(psmall) < min{wm*(x%wvl*(vl)}

< wvl*(vl)

< wy,—(u) (by the definition of p,)

= wvl—(x)
It follows that v, -, v; — Psmau is a lower weight path through unnumbered
vertices connecting v; and z just before v; is processed by MCS-M. Thus,
Wyt () = wy—(x) + 1. =

Lemma 4. Let o be an elimination ordering produced by an execution of MCS-
M. For 1 <k <n, if a(y) = k then y is an OCF vertex in GE~1.

Proof. Let a be an elimination ordering produced by an execution of MCS-M,
and consider a vertex yo with a(yo) = k. Let y; and yo be any two vertices
in Ngr-1(yo) with y1y2 & E(GE~1). We will show that there exists a path pj,
between y; and yp in GE~! with all intermediate vertices belonging to G*=1 —
Ngr— [y0], thereby proving that 1o is an OCF vertex in G*~1.

Without loss of generality, assume a(y1) < a(y2) and hence that a(yg) <
a(y1) < alys). Since yoy; is an edge in GE~1, either yoy; is in G or it is intro-
duced by MCS-M when y; is processed. In either case, at time y;— there is a

8 Anne Berry, Jean R.S. Blair, and Pinar Heggernes

path (or possibly an edge) py,y, in G through unnumbered vertices such that
hyy— (Dyoyr) < Wy, —(Yo) < wy,—(y1). Likewise at time yo— there is a path py,y,
through unnumbered vertices such that hy, (Pyoy.) < Wys—(Y0) < Wy, —(Y2)-

The fill edge y1y2 € GT because it is introduced during the elimination game
by yo. It follows then from Theorem 3 that the edge y;y- is introduced by MCS-
M when ys is numbered. Hence there is a path y1,v1,v2, -+, v, y2, 7 > 1, such
that wy, — (v;) < wy,—(y1) < wy,—(y2), for all 1 <i <. If wy,_(yo) < wy,—(y1),
then the path py,y, — Yo — Pyey. Provides such a path. We consider first, however,
the case where wy,— (yo) > wy,—(y1)-

Observe that since y1y2 & G’;_l, there is at least one vertex on pg; =
v1, V9, - v, that is higher numbered then yy. We will show that the vertices
on pgy; that are higher numbered than yo form the desired path p;, in GE~1. By
Theorem 1 the vertices on pg;; that are higher numbered than gy induce a path
in GE~1 between y; and yo. Thus, we need only show that no vertex on py is
adjacent to yo in GE~L.

Assume to the contrary that there is a vertex v; on pg that is adjacent to
Yo in GE~1. Either yov; is an edge in G or it is a fill edge introduced when v; is
numbered by MCS-M. In either case, there is a path (or edge) psmanu connecting
yo and v; in G such that Ay, — (Psmaii) < Wy, —(Yo) < Wy, —(v;). Applying Lemma 2
we see that hy,— (Psmen) < min{wy,—(yo), wy,— (vi)} < wy,—(v;). We further
know that wy,—(v;) < wy,—(y1) < wy,—(yo), since pg is the path through
which MCS-M added the edge y1y2. Therefore hy,_ (psmair) < wy,—(yo). This
gives us two paths in G:

Yo — Psmall — Vi, Vi—1, .-, V1, Y1

and
Yo — Psmall — Vi, Vi1, oy Ur, Y2

that, just before y, is numbered by MCS-M, satisfy the premise to Lemma 1.
Combined the two paths contain all of the vertices of p,;; as internal vertices.
Thus, by Lemma 1 we can conclude that every vertex v; on pgj is such that
a(v;) < a(yo), contradicting the fact that at least one vertex on pg is numbered
higher than yq. It follows that our assumption that v; is adjacent to yo in GE~1
was wrong, and therefore that the path p; of vertices on pg;; that are higher
numbered than yg is a path in GE~1 from y; to y2 through vertices that are not
adjacent to yq.

We are left then with the case where the path py,y, — Yo — Pyoy. is a path of
lower weight vertices between o and y; just before yo is numbered, and hence
Wy, —(Yo) < Wy,—(y1). In this case we know that there is some vertex, say ys
that first (earliest in MCS-M) increases the weight of y; to a value greater than
the weight of yp.

The path p; will be constructed iteratively from its two endpoints, y; and
12, towards its center, through ys and vertices like it. That is, we will be growing
two subpaths, p,gq from y; and peyen from yo, that will eventually meet to form
pr- Simultaneously we will show by induction that the vertices on pygq and peyen
are not adjacent to yo in GE~1. In order to prove this, we will utilize properties
of another path that goes through yo and overlaps with portions of p,qq and

peven .

Maximum Cardinality Search for Computing Minimal Triangulations 9

At odd steps of the induction the subpath p,qq is extended from its endpoint
that is furtherest away from y;; at even steps of the induction the subpath peyen
is extended from its endpoint that is furtherest away from ys. If y;_o is the
current to-be-extended endpoint, then the corresponding subpath is extended
through a particular path to a vertex y;. These extensions are defined as follows.
Let y; be the first vertex for which wy, 1 (y;—2) > wy,+(yi—3). Note then that
wyi*(yi*2) = wyi*(yi*3)7 and wyi+(yi*2) = wyi*(yi*Q) + 1. Define Pyiyi—o to
be the path of lower weight unnumbered vertices at time y;— through which
MCS-M increments the weight of y;_o. The partial path of p; is then defined
recursively as follows.

i J0 ifi=2
Ph = {pzl extended to include py,y, , and y; if 1 > 2
The overlapping path that goes through yo is defined recursively as follows.

pi _) Pyoyr — Y0 — Pyoy2 ifi=2
0 pg_l extended to include py,,, , and y;_o if i > 2
The path p5 and the corresponding pj are shown in Figure 6. Note that for
i > 2 the path pj contains all of the partial path pj, except for its two internal
endpoints.

The p°> path The p° partial path
0 h

Fig. 6. The path pj and the partial path pj.

There are four properties, shown in the induction hypothesis below, that we
will maintain throughout the induction. The second and third are properties of
the pp path and the last is the desired property of the p; subpaths.

Induction hypotheses: For all [, 2 <[< i, the following properties hold:
a-ORDER: al(yi—1) < a(y1) < a(Yit1)-
SAME-WEIGHT: wy(yo) = w¢(y;) for 1 < j <1 —1 at times ¢t = y;11— and earlier.
Po-WEIGHT: hy(ph) = we(yo) < min{wy(yi), we(yi—1)} at times t = y;— and earlier.
NO-yo-ADJ: No vertex on pﬁ,/ is adjacent to yg in G’;_l.

Base case (i = 2): Here we begin with the fact that a(yo) < a(y1) < a(y2) and
observe that a(ys) > a(ya2), since at the time that ys is processed by MCS-M the
weight of y; is already higher than the weight of yo. Thus, the a-ORDER property
holds for the base case.

The SAME-WEIGHT property trivially holds since, by definition of y3, w(yo) =
wy(y1) at all times ¢ = y3— and earlier.

10 Anne Berry, Jean R.S. Blair, and Pinar Heggernes

For the po-WEIGHT property recall that when py,,, and py,,, were defined
above we saw that hy, —(pyoy,) < wy,—(Yo) < wy,—(y1) and hy,—(pyoy,) <
Wy, —(Yo) < wy,—(y2). Combining these two facts with the fact that wy,—(yo) <
Wya—(41) < g, (y2) and applying Lemma 2, we see that he(Pyoy, — Yo Pyoys) <
min{we(y1), w:(y2)} at all times ¢ = yo— and earlier, giving the base case po-
WEIGHT property.

The NO-yo-ADJ property holds since at this first step in the iteration the path

p3 is empty, and hence has no adjacency to yo in Gk

Induction step (i > 2): Assume the induction hypotheses hold. We must
either close the path pj, at this step, or prove the four properties hold for the i*"
iteration. We begin by establishing that wy, — (yi—2) < wy,—(yi—1). By definition
of yi,

Wy, — (Yi—2) = wy,—(Yi-3)
< hy— (") (because y,—s € ph)
< min{wy, (yi—1),wy,—(yi—2)} (by the induction hypothesis)
Thus, wy, - (yi—2) < wy,—(yi—1), and we have two cases.
Case 1 (wy,—(yi—2) = wy,—(yi—1)): In this case y; must also increment the
weight of y;_1 through a path p,;; not containing yq. To see this, observe first that
it cannot increment the weight of y;_1 using a path containing yq since, by the
SAME-WEIGHT induction hypothesis, wy,—(y0) = wy,— (yi—2) = wy,—(yi—1) and
thus yo cannot be on a lower weight path between y; and y;_1. Furthermore, if the
weight of y;_1 were not incremented when y; was processed, then wy, 4 (y;—2) >
Wy, +(yi—1). Since the MCS-M processing time y;+ is no later than y;_1—, we
know also from the pg-WEIGHT induction hypothesis that
hyo (5 1) < min{wy, 1 (yi-2), wy,+ (yi-1)}
< wyi+(yi71)
< Wy, +(Yi—2)
Therefore, at any time after y;+ that the weight of y;_1 is incremented, the
lower weight path (or edge) that was used to increment the weight of y;_1 can
be extended through péfl as a lower weight path to increment the weight of y;_».
But then the weight of y;_o will always exceed the weight of y;_1, contradicting
the a-ORDER induction hypothesis.

Now consider this path pg;: of lower weight vertices connecting y; and ;1
at the time that y; is processed. By Lemma 3 (z = yo, v = y;—1, v1 = y; and
Vg, - U = DPait) the vertices on pyi¢ are not adjacent to yo in G’gfl. Combining
this with the NO-y9-ADJ induction hypothesis, we see that the vertices on the
pﬁl_l connected together through py,,, , — ¥i — Pair that are higher numbered
than yo form the desired path pj, in GE~! that is not adjacent to yo in GF~1.

Case 2 (wy,—(Yi—2) < wy,—(yi—1)): For this case we prove that the four proper-
ties hold for the next iteration in constructing pp. We begin with the po-WEIGHT
property and observe that by definition, hy,— (Pyiy: o) < Wy,—(Yi—2). Also, by
the po-WEIGHT induction hypothesis, h,,_(ph ') < wy,—(yi—2). Thus, since

wyi*(yi*2) < wyif(yifl)v we have hyi*(py'iyi—z — Yi—2 — p%)_l) < wyi*(yifl) <

Maximum Cardinality Search for Computing Minimal Triangulations 11

wy,— (y;). And then by Lemma 2 hy(py,y; »—vi—2—ph *) < min{w;(y:), we (yi—1)}
at all times ¢t = y;,— and earlier, proving the po-WEIGHT property.

Note that since wy,— (yi—2) < wy,—(yi—1) there exists a vertex y;41 that in-
creases the weight of y;_1 beyond the weight of y;_o for the first time. Further-
more, a(y;) < a(y;+1) since at time y;— the vertex y; 41 had already increased
the weight of y;_1 past the weight of y;_o. This proves the next a-ORDER prop-
erty.

The next NO-yo-ADJ property comes from Lemma 3 where x = yo, ©u = y;_2,
vy =y; and va, - vy = Pyiyi—z-

By the definition and existence of y;11 we know that w;(y;—1) = wi(yi—2) at
times ¢ = y;+1— and earlier. This, together with the SAME-WEIGHT induction
hypothesis, gives us the SAME-WEIGHT property for the next iteration.

We have proven by induction that at each step in the iterative process either
the path pj is completed or there exists an extension to one of the subpaths of
pr, that is being constructed. Since there are a finite number of vertices in the
graph G, the iteration process must eventually not be able to extend a subpath
of pp, and hence, the path p, must be completed. It follows then, that the vertex
Yo is an OCF-vertex in GE~1. w

Theorem 4. MCS-M computes a minimal triangulation.

Proof. Follows from Lemma 4 and Theorem 2. =

5 Conclusion

We have described a new algorithm MCS-M that computes a minimal elimination
ordering and a minimal triangulation of a graph. MCS-M can be viewed as a
simplification of the Lex-M algorithm for computing a minimal triangulation. In
fact, in [9] a clever implementation of Lex-M is described that uses label numbers,
rather than lists of vertices as labels. The storage used and comparisons made in
that implementation are similar to those required with the use of weights in MCS-
M. However, in order for the label numbers to properly implement the relative
lexicographic labels in Lex-M, their implementation must sort and normalize
all unprocessed label numbers after each vertex is processed. This effectively
adds a (lower-order) term to their time complexity, requiring O(nm + n?) =
O(nm) time. Our MCS-M implementation does not require this extra sorting
step, thereby avoiding the extra term in the time complexity.

As can be seen in the example of Figure 5, Lex-M and MCS-M are not
equivalent; the MCS-M ordering shown in Figure 5(a) cannot be produced by
Lex-M, and the Lex-M ordering shown in Figure 5(b) cannot be produced by
MCS-M.

The impetus for generating minimal triangulations is the desire to approxi-
mate minimum triangulations, since in general finding minimum triangulations
is NP-hard. It is well know that minimal triangulations can have substantially
more fill edges than minimum triangulations. In many cases, MCS-M can pro-
duce triangulations with less than half the fill of other minimal triangulations.

12

Anne Berry, Jean R.S. Blair, and Pinar Heggernes

But like Lex-M, MCS-M cannot always do so well. For example, for the graph
representing an n x n square grid, MCS-M produces exactly the same fill as Lex-
M does, and as pointed out in [9], the minimum fill for such graphs is O(n? logn)
whereas the fill produced by Lex-M (and hence MCS-M) is O(n?).

References

1.

2.

10.

11.

A. BERRY, A wide-range efficient algorithm for minimal triangulation, in Proceed-
ings of the 10th Annual ACM-STAM Symposium on Discrete Algorithms, 1999.

J. R. S. BLAIR, P. HEGGERNES, AND J. A. TELLE, A practical algorithm for
making filled graphs minimal, Theoretical Computer Science, 250 (2001), pp. 125—
141.

E. DAHLHAUS, Minimal elimination ordering inside a given chordal graph, in Graph
Theoretical Concepts in Computer Science - WG 97, R. H. Méhring, ed., Springer
Verlag, 1997, pp. 132-143. Lecture Notes in Computer Science 1335.

D. R. FULKERSON AND O. A. GROSS, Incidence matrices and interval graphs,
Pacific J. Math., 15 (1965), pp. 835-855.

T. OHTSUKI, A fast algorithm for finding an optimal ordering in the vertex elimi-
nation on a graph, STAM J. Comput., 5 (1976), pp. 133-145.

T. OnTsuki, L. K. CHEUNG, AND T. FuJISAWA, Minimal triangulation of a graph
and optimal pivoting ordering in a sparse matriz, J. Math. Anal. Appl., 54 (1976),
pp. 622-633.

S. PARTER, The use of linear graphs in Gauss elimination, SIAM Review, 3 (1961),
pp. 119-130.

B. PEYTON, Minimal orderings revisited, SIAM J. Matrix Anal. Appl., 23 (2001),
pp. 271-294.

D. J. RosE, R. E. TARJAN, AND G. S. LUEKER, Algorithmic aspects of vertex
elimination on graphs, STAM J. Comput., 5 (1976), pp. 266—283.

R. E. TARJAN AND M. YANNAKAKIS, Simple linear-time algorithms to test chordal-
ity of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hyper-
graphs, SIAM J. Comput., 13 (1984), pp. 566-579.

M. YANNAKAKIS, Computing the minimum fill-in is NP-complete, SIAM J. Alg.
Disc. Meth., 2 (1981), pp. 77-79.

DNA Sequencing, Eulerian Graphs,
and the Exact Perfect Matching Problem

Jacek Blazewicz!, Piotr Formanowicz!, Marta Kasprzak!,
Petra Schuurman?, and Gerhard J. Woeginger?

! Poznani University of Technology, Poland
2 CWI, The Netherlands
3 University of Twente, The Netherlands

Abstract. We investigate the computational complexity of a combina-
torial problem that arises in DN A sequencing by hybridization: The input
consists of an integer ¢ together with a set S of words of length k over
the four symbols A, C, G, T. The problem is to decide whether there
exists a word of length ¢ that contains every word in S at least once as
a subword, and does not contain any other subword of length k.

The computational complexity of this problem has been open for some
time, and it remains open. What we prove is that this problem is polyno-
mial time equivalent to the exact perfect matching problem in bipartite
graphs, which is another infamous combinatorial optimization problem
of unknown computational complexity.

Keywords: graph theory, computational complexity, computational bi-
ology, DNA computing, DNA sequencing.

1 Introduction

This paper is centered around two algorithmic problems. The first problem is the
Ezact Perfect Matching problem that asks whether a given edge weighted graph
possesses a perfect matching with weight exactly equal to a given bound. This
problem is of great practical importance, and it has applications in bus-driver
scheduling, in biomedical image analysis, and in the Ising model in theoretical
physics; see Leclerc [10]. In 1982, Papadimitriou & Yannakakis [14] observed that
this problem is NP-complete when the weights are encoded in binary, and they
asked about its complexity when the weights are encoded in unary. Barahona &
Pulleyblank [2] and Leclerc [11] show that some special cases (like the case of
planar graphs) are polynomially solvable for unary encoded weights. Mulmuley,
Vazirani & Vazirani [13] show that the Exact Perfect Matching problem with
unary encoded weightd lies in the complexity class RP, and consequently has a
randomized polynomial time solution algorithm. However, determining the exact
deterministic complexity of this problem still remains unsettled after twenty
years, and by now is recognized as an outstanding open problem. A slightly
simpler looking, but equally open variant is the following restriction of the exact
perfect matching problem to bipartite graphs:

L. Kucera (Ed.): WG 2002, LNCS 2573, pp. 13-24, 2002.
© Springer-Verlag Berlin Heidelberg 2002

14 Jacek Blazewicz et al.

Problem: Exact bipartite matching (EX-MATCH)

Input: A bipartite multigraph (X UY, E) where E is a multi-subset of
X x Y. Non-negative integer weights w(e) on the edges e € E that are
encoded in unary. An integer «.

Question: Is there a perfect matching of weight exactly a?

This bipartite variant is also discussed by Barahona & Pulleyblank [2]. Karzanov
[9] gives a polynomial time algorithm for the special case where the input graph
is a complete bipartite graph, and where the edge weights are restricted to 0
and 1.

Now let us turn to the second main problem that will be investigated in this
paper. Deoxyribonucleic acid (DNA, for short) exists in the form of a double
helix that consists of two twisted strings of nucleotides. These nucleotides only
differ in their nitrogenous bases adenine (A), cytosine (C), guanine (G), and
thymine (T). Their order codes genetic information that is symbolically written
as a sequence over the four letters A, C, G, and T. The first stage of discovering
genetic information is to analyze and to determine this sequence of bases for
a given DNA sequence (see for instance Bains & Smith [1]). The length of the
sequence can be determined by so-called gel electrophoresis. One method of
sequence structure analysis is based on hybridization experiments that compare
a DNA chain against a library of all possible single-stranded DNA fragments of
length k. The outcome of the hybridization is the k-spectrum of the sequence,
i.e., the set of all fragments of length k of this sequence.

In the ideal case no errors occur in the hybridization experiment, and the
k-spectrum of a DNA sequence of length ¢ consists of exactly £ — k + 1 pairwise
distinct words of length k. This ideal case with a complete k-spectrum is well-
understood (see Theorem 1), but never occurs in the real world. In the real world,
the hybridization experiments suffer from negative errors (if the measured spec-
trum is incomplete) and from positive errors (if the measured spectrum contains
additional elements that do not show up in the sequence). Especially, a fragment
of length k& may appear many times in the sequence, whereas the experiments
only detect that it occurs at least once. DNA sequencing under negative and
positive errors is discussed by Blazewicz, Formanowicz, Kasprzak, Markiewicz
& Weglarz [4]. In a follow-up paper, Blazewicz & Kasprzak [6] investigate the
computational complexity of several variants of DNA sequencing under negative
and positive errors; all these variants turn out to be unary NP-hard in their
search versions. However, the complexity of the following fairly innocent looking
variant remained open.

Problem: DNA sequencing with unknown multiplicities (DNA-SEQ)

Input: Integers ¢ and k. A set S of words of length k over the alphabet
{4,C,G,T}.
Question: Is there a word of length ¢ with k-spectrum equal S7

In this paper we will prove that the two problems EX-MATCH and DNA-
SEQ are polynomially reducible to each other and hence are polynomial time

DNA Sequencing, Eulerian Graphs 15

equivalent. If one of them is polynomially solvable, then the other one is poly-
nomially solvable, too. If one of them is NP-complete, then the other one is
NP-complete, too. More generally, if one of these two problems is complete for
some complexity class under polynomial time reductions, then so is the other
problem.

Organization of this paper. The paper is a long (cyclic!) chain of polynomial time
reductions that traverses a number of intermediate problems. In Section 2 we re-
duce problem DNA-SEQ to the problem of deciding the existence of certain Eu-
lerian multigraphs. Then in Section 3, this Eulerian problem EX-EULERCYCLE
is reduced to problem EX-MATCH. Next, in Section 4 problem EX-MATCH is re-
duced to a highly restricted special case of EX-MATCH that we call EX-MATCH™.
Finally, in Section 5 this highly restricted special case Ex-MATCH™ will be re-
duced to problem DNA-SEQ. By doing this, we return to our starting point,
and the chain of reductions is closed to a cycle.

Notation and definitions. Throughout the paper, we stick to the standard graph
terminology as given in the book of Berge [3]. However, we want to clarify the
usage of the following terms: A graph G = (V, E) is cubic, if each vertex in V
is incident to exactly three edges. For a multigraph G = (V, E), its underlying
simple graph G' = (V, E’) is the (unique) simple graph that results from G by
keeping exactly one edge from every bundle of multiple edges. A multigraph G
is a super-multigraph of a simple graph G, if G’ is the underlying simple graph
of G. In other words, a super-multigraph of the simple graph G’ contains every
edge in G’ at least once, and does not contain any other edges.

A path is an alternating sequence vg,e1,v1, ..., ey, U, of vertices and edges
such that edge e; always connects vertex v;_1 to v;. A path is called simple if
its vertices are pairwise distinct (except possibly the pair vy and v,,). A cycle is
a path with vg = v,,. The length of a path (cycle) is the number of edges in this
path (cycle). A Eulerian path (Eulerian cycle) in a graph G = (V, E) is a path
(cycle) in G that uses every edge in E exactly once. It is known that a directed
multigraph possesses a Eulerian cycle if and only if all vertices have in-degree
equal to their out-degree and if its underlying undirected graph is connected.

2 From DNA Sequencing to Exact Eulerian Cycles

In this section we recapitulate the relationship between DNA sequencing and the
existence of Eulerian paths in certain directed graphs. This relationship has been
observed by Pevzner [15], and lateron has been discussed in detail by Blazewicz,
Hertz, Kobler & de Werra [5]. The underlying combinatorial ideas go (at least)
back to De Bruijn [7].

For a word u of length k over the alphabet {A,C,G,T}, we denote by
prefix;_;(u) the word that consists of the first &k — 1 letters in w, and by
suffix;_; (u) the word that consists of the last k — 1 letters in u. For a set S
of words of length k over the alphabet {A,C, G, T}, we introduce the following
directed graph Gg = (Vg, Ag): The vertex set is defined by

16 Jacek Blazewicz et al.

Vs = {prefix,_;(u), suffixi_1(u): u € S}

The arc set Ag contains |S| arcs that are defined as follows: For every word u € S,
there is a corresponding arc a(u) in Ag that goes from the vertex prefix;_;(u)
to the vertex suffix;_1(u).

Theorem 1 (Pevzner [15])

Let S be a set of words of length k over the alphabet {A,C,G, T}, and let Gg =
(Vs, Ag) be the corresponding directed graph. Then there exists a word w of length
|S| + k — 1 with k-spectrum equal to S, if and only if Gg possesses a Eulerian
path. ®

The statement of this theorem is actually quite easy to see: For i = 1,...,]|5|
let w; denote the subword of w of length k that starts with the ith letter
and ends with the (i + & — 1)th letter. Then S = {w,...,wg/} and the arcs
a(wi),...,a(wg)) in this ordering form a Eulerian path for G's. Vice versa, every
Eulerian path in G gives a sequence wy, ..., w|g| of words of length k that can
be combined into a word of length |S| 4 k — 1. To summarize, Theorem 1 yields
a polynomial time algorithm for the special case of problem DNA-SEQ where
every word in S occurs ezactly once as a subword in the word w. By consider-
ing the exact number of occurrences of every subword from S, the statement in
Theorem 1 can be generalized to our sequencing problem DNA-SEQ.

Theorem 2 Let S be a set of words of length k over the alphabet {A,C,G, T},
let Gg = (Vg, Ag) be the corresponding directed graph, and let £ > |S|+k—1 be
an integer.

Then there exists a word w of length ¢ with k-spectrum equal to S, if and
only if there exists a super-multigraph of Gg that contains exactly £ — k+1 arcs
and that possesses a Eulerian path. =

As an immediate consequence of Theorem 2, problem DNA-SEQ is polyno-
mial time reducible to the problem EX-EULERPATH defined below. Indeed, by
trying all possibilities for a start vertex s and an end vertex ¢ in the graph Gg
and by setting = £ —k+1, one may solve an instance of DNA-SEQ by solving
O(|Vs|?) = O(]S|?) instances of EX-EULERPATH.

Problem: Exact Eulerian path (EX-EULERPATH)

Input: A simple directed graph G = (V, A). Two vertices s,t € V. An
integer (.

Question: Does there exist a super-multigraph of G that contains ex-

actly (8 arcs and that possesses a Eulerian path that starts in s and ends
in t?7

In the special case of problem EX-EULERPATH where s = ¢ holds, we are
looking for an exact Eulerian cycle in some super-multigraph of G (EX-
EULERCYCLE). The general problem EX-EULERPATH is polynomial time re-
ducible to EX-EULERCYCLE: Take an instance G of EX-EULERPATH, and cre-
ate a new directed path with § arcs that goes from t to s. Consider this new
graph G together with the value v = 23 as an instance of EX-EULERCYCLE.

DNA Sequencing, Eulerian Graphs 17

It can be easily verified that the original graph G has a super-multigraph with
a Bulerian path of length 3 going from s to ¢, if and only if the new graph G+
has a super-multigraph with a Eulerian cycle of length v = 2.

Problem: Exact Eulerian cycle (EX-EULERCYCLE)

Input: A simple directed graph G = (V, A). An integer ~.

Question: Does there exist a super-multigraph of G that contains ex-
actly v arcs and that possesses a Eulerian cycle?

To summarize, in this section we have shown that DNA-SEQ is polynomial time
reducible to EX-EULERPATH, and that EX-EULERPATH in turn is polynomial
time reducible to EX-EULERCYCLE.

3 From Exact Eulerian Cycles
to Exact Bipartite Matchings

In this section we will show that problem EX-EULERCYCLE is polynomial time
reducible to the exact bipartite matching problem Ex-MATCH. Hence, consider
an arbitrary instance (G) of problem EX-EULERCYCLE. We denote by deg™ (v)
and deg™ (v) the in-degree and the out-degree of the vertex v € V. A vertex v is
called positive if deg™ (v) > deg™ (v), neutral if deg™ (v) = deg™ (v), and negative
if deg™ (v) < deg™ (v). Furthermore, we denote by A the sum of deg™ (v)—deg™ (v)
taken over all positive vertices v. Clearly, this value A also equals the sum of
deg™ (v) — degt(v) taken over all negative vertices v. Note furthermore that
A< V2.

For vertices z,y € V and for integers k with 1 < k < |V|, we introduce
the Boolean predicate P[x,y; k] that is true if and only if in the graph G there
exists a (not necessarily simple) directed path of length k that goes from z to y.
Moreover, for integers k with 1 < k < |V| we introduce the Boolean predicate
C[k] that is true if and only if in the graph G there exists a (not necessarily
simple) directed cycle of length k. The truth values of all these predicates can be
determined in polynomial time by standard dynamic programming approaches.

Now assume that the instance (G;~v) of EX-EULERCYCLE has answer YES,
and let G* = (V, A*) be a super-multigraph of G with « arcs that certifies this
answer. That means that the graph G* is strongly connected (or equivalently:
that the graph G is strongly connected), and that in G* every vertex v € V has
its in-degree equal to its out-degree.

Lemma 3 The arc set A* of the graph G* can be partitioned as follows:

(A1) The set A of arcs in the underlying simple graph G.

(A2) A set of A (not necessarily simple) directed paths of length less or
equal to |V|. Fach such path starts in a positive vertex and ends
in a negative vertex. In every positive vertex v, there start eractly
deg™ (v) — deg™ (v) of these paths. In every positive vertex v, there
end ezactly deg™ (v) — deg™t (v) of these paths.

(A3) A set of (not necessarily simple) directed cycles of length less or equal
to |V|.

18 Jacek Blazewicz et al.

We denote by m(A1), m(A2), m(A3) the number of arcs of type (A1), (A2),
(A3) in such a partition. Now if we want to solve EX-EULERCYCLE, we must
determine whether there exist arc sets of type (A1), (A2), (A3) with m(Al) +
m(A2) + m(A3) = . Trivially, m(A1) = |A|. Moreover, since |A| < |V|? we get
m(A2) < |V|?. But what are the exact candidate values that m(A2) and m(A3)
can take?

The candidate values for m(A2) can be determined via the exact bipartite
matching problem (see the introductory section for an exact definition of this
problem). This is done as follows. For every positive vertex z in G, we introduce
deg™ (x) — deg™ () independent copies in the set X of the bipartition. For every
negative vertex y in G, we introduce deg™ (y) — deg™ (y) independent copies in
the set Y of the bipartition. Whenever the predicate P[z,y; k] is true for some
positive vertex x, some negative vertex y, and some integer k with 1 < k < |V,
we introduce an edge of weight k£ in E from every copy of x to every copy of y.
Since the edge weights are polynomially bounded by |V|, we may as well encode
them in unary. It is easily verified that asy is a possible value for m(A2) if and
only if the resulting bipartite graph has a perfect matching of weight exactly as.
Hence, by solving a polynomial number of exact bipartite matching instances we
can determine for every ap with 1 < ap < |V|® whether it is a candidate value
for m(A2).

The candidate values for m(A3) can be expressed in terms of the predicates
Clk] with 1 < k < |V|. We define C = {k : C[k], 1 < k < |V|} as the set of
possible cycle lengths. In determining whether an integer aj is a candidate for
m(A3) we distinguish the two cases az < |V|? and a3 > |V|?. The first case
az < |V|? boils down to an unbounded subset sum problem in which the item
sizes in C and the goal value a3 all are polynomially bounded in |V|. It is well-
known that such a polynomially bounded special case of the subset sum problem
is polynomially solvable by dynamic programming (see for instance the book by
Martello & Toth [12]). For the second case az > |V|? we apply a famous result
on the Frobenius problem.

Theorem 4 (Erdés & Graham [8])
Let 0 < 21 < 29 < -+ < z, < Z be integers with ged(z1,29,...,2,) = 1.
Then every integer above 2Z*%/n can be expressed in the form Yo @iz with
non-negative integers ri,...,T,. M

In our case, all the values in the set C' are bounded by |V|; therefore we have
Z =|V]and n = |C|. If |C| > 2 and the greatest common divisor of the numbers
in C is one, then every ag > |V|? is a candidate for m(A43). If |C] > 2 and the
greatest common divisor of the numbers in C equals d, then az > |[V|? is a
candidate for m(A3) if and only if it is divisible by d. The case |C| = 0 is
straightforward. In the case |C| = 1, a number az > |V|? is a candidate value
for m(As) if and only if it is divisible by the unique element d in C.

Now let us put everything together. In order to solve an instance of EX-
EULERCYCLE, we first determine the candidate values for m(A2) (by solving a
polynomial number of exact bipartite matching instances) and for m(A3) (by
solving a polynomially bounded subset sum instance). The instance has a solu-

DNA Sequencing, Eulerian Graphs 19

tion if and only if G is strongly connected and v = m (A1) +m(A2) + m(A3) has
a solution over the candidate values for m(A1l), m(A2), m(A3). We know that
m(A1l) = |A| and that all candidate values for m(A2) are between 1 and |V|3.
Therefore, we can simply search through all O(|V|?) possibilities for m(A2) and
check whether v — |A| — m(A2) is a feasible candidate for m(A3). Summarizing,
this yields that problem EX-EULERCYCLE indeed is polynomial time reducible
to problem EX-MATCH.

4 From Exact Matching to Restricted Exact Matching

In this section we will prove that the exact bipartite matching problem EX-
MATCH is polynomial time reducible to the following highly restricted special
case of it.

Problem: Restricted exact bipartite matching (EX-MATCH™)

Input: A bipartite graph B = (X UY, E) with F C X x Y that is
connected and cubic. For every edge e € E a weight w(e) € {0,1,a+ 1}
where « is a given integer.

Question: Does this bipartite graph have a perfect matching of weight
exactly a?

The reduction to EX-MATCH™ is done in four steps: The first step is a simple
preprocessing step that makes the graph connected, and that also gets rid of
vertices of degree one. In the second step, we get rid of the vertices of degree
four and more; simultaneously, the graph becomes simple. In the third step, we
bring the edge weights down to 0-1. Finally in the fourth step, we make the
graph cubic. All details of these four steps are omitted in this extended abstract.

Corollary 5 Problem EX-MATCH is polynomial time equivalent to its special
case where the bipartite input graph is simple and connected, and has only vertices
of degree two and three, and has only edge weights zero and one.

5 From Restricted Exact Matching Back
to DN A Sequencing

In this section we will prove that the restricted exact bipartite matching problem
Ex-MATCH™ is polynomial time reducible to problem DNA-SEQ. This will be
done by moving through an auxiliary instance of problem EX-EULERCYCLE (see
Section 2 for the definition of this problem).

Indeed, consider a connected, cubic, bipartite graph B = (X UY, E) as in-
stance for Ex-MATCH ™. If | X| # |Y] holds, then the graph B does not possess
any perfect matching, and the answer to EX-MATCH™ is trivially NO. Therefore,
we will assume that | X| = |Y| = ¢ holds. Without loss of generality, we assume
furthermore that ¢ is sufficiently large to satisfy 2¢ > 100¢3. Note that any per-
fect matching in B has weight at most ¢ (in case it does not use edges of weight

20 Jacek Blazewicz et al.

a + 1) or weight at least & 4+ 1 (in any other case). Therefore, we will assume
from now on that a < ¢q. We denote by mg, mi, and mq41 the number of edges
of weight 0, 1, and « + 1, respectively. Note that mqg + m1 + ma+1 = |E| = 3¢.
Finally, let f be an arbitrary bijection between the two sets X and Y, and let
Q =2q+8.

From the bipartite graph B we will now construct a directed graph G = (V, A)
as an instance of EX-EULERCYCLE. This directed graph G consists of 2q primary
vertices and of many secondary vertices. The primary vertices are grouped into
the two sets X’ = {z/|z € X} and Y/ = {¢/|y € Y}. The arcs in G are defined
as follows.

(P1) For every edge e = [z,y] in B with z € X and y € Y, there is a
corresponding directed path P(e) in G that goes from z’ to y'. If the
edge e has weight w(e), then this path has length (w(e) + 1)Q.

(P2) For every y € Y and x = f(y) in B, there are four directed paths of
length 8(¢? + ¢)Q in G that all connect ' to z’.

All these introduced directed paths are internally pairwise vertex-disjoint. Their
internal vertices (that all have in-degree and out-degree one) form the secondary
vertices of the graph G. Every vertex in X’ has in-degree four and out-degree
three. Every vertex in Y’ has in-degree three and out-degree four. Since the
bipartite graph B is connected, also the constructed graph G is connected. A
crude estimation shows that G has less than 50¢3Q vertices.

Lemma 6 The instance B of EX-MATCH™ has a perfect matching of weight
exactly a, if and only if the constructed instance G of EX-EULERCYCLE has a
super-multigraph with o Eulerian cycle of length exactly

v = (moQ+m12Q+may1(a+2)Q) + 32¢(¢* +¢)Q + (a+q)Q.

Proof. (Only if). Assume that B has a perfect matching M of weight «. We
construct a super-multigraph G* of G, in which all vertices in X’ UY” have in-
degree and out-degree four. We take all arcs from G into G*. Moreover, for each
of the ¢ edges e € M, we take one additional copy of the directed path P(e) into
G*. This completes the description of G*. It is easily verified that in G* every
vertex has in-degree equal to out-degree. Since the graph G* is also connected,
it has Eulerian cycle.

Now let us determine the number of arcs in G*. First, G* contains all paths
of type (P1). There are mq of those paths that have length @, m; of length
2Q, and my41 of length (a+ 2)Q. Secondly, G* contains all paths of type (P2).
There are 4q of them, and each has length 8(¢? + ¢)Q. Thirdly, there are the
arcs in the additional ¢ paths P(e) with e € M. These paths contribute

Y wE)+1)Q = QY wle) + QM| = (a+9)Q.

ecM ecM

arcs. Altogether, this yields exactly v arcs in G*.

DNA Sequencing, Eulerian Graphs 21

(If). Assume that G has a super-multigraph G* with a Eulerian cycle of
length ~. It can be seen that this multigraph G* must consist of one or more
copies of every path introduced in (P1) and (P2). We claim that G* cannot
contain two copies of any path of type (P2). Otherwise, the total number of arcs
in the copies of paths of type (P2) is at least

(40+1)-8(+9)Q = 6(*+9)Q +32¢ (> +)Q + 2(* + 9)Q > 7.

Since G* has only ~ arcs, we have arrived at the desired contradiction. We
conclude that every path of type (P2) shows up exactly once in G*, and hence
these paths altogether contribute 32¢q (¢* + ¢)@ arcs. As a consequence, in G*
every vertex in X' has in-degree four, and every vertex in Y’ has out-degree four.

Since G* has a Eulerian cycle, every vertex in X’ must have out-degree four,
and every vertex in Y’ must have in-degree four. These degrees can only result
from copies of paths of type (P1). Each path P(e) with e € E must show up at
least once in G*. This yields (mg Q + m1 2Q + ma41 (a4 2)Q) arcs, out-degrees
three for vertices in X', and in-degrees three for vertices in Y’. The remaining
(o + q)@Q arcs in G* must come from a system of ¢ paths of type (P1) that
connect every vertex in X’ to exactly one vertex in Y’. In the bipartite graph
B, the edge set M that contains those edges e for which P(e) is in this system
of paths forms a perfect matching of weight . m

Our next goal is to establish that for an appropriate value k, there exists
a k-spectrum S of words over the alphabet {A,C,G, T} such that the above
constructed directed graph G = (V, A) equals Gg = (Vs, Ag); see Section 2 for
definitions. The technical main difficulty is to ensure that distinct vertices in V'
are associated with distinct DNA words of length £ — 1.

We partition the vertices in V' into a set C of so-called crucial and a set V—C
of non-crucial vertices. Every vertex in the set X’UY” is crucial. Moreover, every
vertex on the paths of type (P1) and (P2) whose distance to X’ UY” is divisible
by @ is a crucial vertex. Note that the length of every path of type (P1) and (P2)
is a multiple of), and that the crucial vertices divide these paths into connected
chunks of @ arcs and) — 1 non-crucial vertices. If there is a directed path of
length @ from a crucial vertex u to another crucial vertex v in G, then we say
that u is a predecessor of v, and that v is a successor of u. It can be seen that
every vertex in X’ has four predecessors and three successors, that every vertex
in Y’ has three predecessors and four successor, and that all remaining crucial
vertices have one predecessor and one successor. Moreover, it can be checked
that |C] < 50¢® holds.

For every crucial vertex v € C, we fix two labels LLABEL(v) and RLABEL(v).
These labels are 2|C| pairwise distinct words of length ¢ over the alphabet
{A, G}. We need 2|C| < 100¢® distinct labels that we can choose from 29 words.
Since we assumed 100¢> < 29, such pairwise distinct labels indeed exist and can
be found easily. With the help of these labels, we will now define for every vertex
z € V a corresponding word WORD(z) of length @ = 2q + 8.

22 Jacek Blazewicz et al.

— If z is a crucial vertex, then WORD(z) starts with one of the letters A, C, G, T,
followed by the label LLABEL(z), followed by a string of six 7”s, then followed
by the label RLABEL(z), and ending with one of the letters A, C,G,T. For
crucial vertices, these words fulfill the following conditions: (W1) If v; and
vy are successors of the same vertex u, then WORD(v;) and WORD(vs) end
with different letters. (W2) If u; and wus are predecessors of the same vertex
v, then WORD(u1) and WORD(uz) start with different letters. Since every
crucial vertex has at most four successors and at most four predecessors,
these conditions can indeed be met with the alphabet {A,C, G, T} of size
four.

— If z is a non-crucial vertex, then it lies on a uniquely defined directed path
of length @ that connects some crucial vertex u to another crucial vertex v.
Let u = 2y, 21, ..., 2¢ = v denote the sequence of vertices along such a path.
Then WORD(z;) consists of the last @ — i letters of WORD(u) followed by
the first i letters of WORD(v).

Lemma 7 For u,v € V with u # v, we always have WORD(u) # WORD(v).

Proof. Consider a word WORD(z) of length 2¢ + 8 over {4,C,G,T}. We show
that from WORD(z), we can uniquely localize the corresponding vertex z in G.

By our construction, WORD(z) either contains a subword of six consecutive
T’s, or it starts with ¢ consecutive T’s and ends with 6 — i consecutive T’s for
some 1 < ¢ < 5. In either case, the q letters preceding or succeeding these T’s in
WORD(z) will form one of the labels LLABEL(v) or RLABEL(v) for some crucial
vertex v. If vertex v is not contained in X’ UY”, then the relative position of this
label in WORD(z) uniquely determines the vertex z. If v is contained in X’ UY”,
then either (i) WORD(z) contains the first letter of the word of a successor of v, or
(ii) it contains the last letter of the word of a predecessor of v, or (iii) it contains
none of these letters. In the cases (i) and (ii), by conditions (W1) and (W2)
these letters uniquely identify the corresponding successor or predecessor. Then
we can again use the relative position of the label LLABEL(v) or RLABEL(v) in
WORD(z) to uniquely determine the vertex z. Finally, in case (iii) the vertex z
must coincide with v. =

Now we are almost done: We choose k = Q + 1 = 2¢ + 9 as the word length
for the k-spectrum S. Every vertex v € V is labeled by the word WORD(v) of
length £ — 1, and thus becomes a member of Vg. By Lemma 7, different vertices
are labeled by different words. For every arc a = (u,v) € A, the last k — 2 letters
in WORD(u) agree with the first k — 2 letters in WORD(v). Hence, this arc a can
be correctly encoded by the word WORD(a) of length k that starts with the first
letter of WORD(u), followed by these k — 2 agreeing letters, and ending with the
last letter of WORD(v). We define S = {WORD(a)|a € A} as our k-spectrum,
and we thus derive Gg = G. By the above discussion and by Lemma 6, the graph
Gs has a super-multigraph with a Eulerian cycle of length +y, if and only if the
bipartite graph B has a perfect matching of weight «.

DNA Sequencing, Eulerian Graphs 23

In the final step, we move from problem EX-EULERCYCLE to problem EX-
EULERPATH: Let a = (u,v) be an arc on one of the paths of type (P2) such that
u and v both are non-crucial vertices. We remove this arc a from the graph G,
and we simultaneously define Syina = S — {WORD(a)}. This leads to a vertex
u of out-degree 0 and to a vertex v of in-degree 0. It can be verified that the
resulting graph has a super-multigraph with a Eulerian path of length y—1 (that
of course starts in vertex v and ends in vertex u), if and only if the bipartite
graph B has a perfect matching of weight «. Finally, we get from Theorem 2
that there exists a word of length v —1 with k-spectrum Sfinai, if and only if the
bipartite graph B has a perfect matching of weight «. This means that problem
EX-MATCH™ is polynomially reducible to problem DNA-SEQ.

By combining the reductions from Sections 2 through 5, we arrive at the
main result of this paper.

Theorem 8 The two problems ExX-MATCH and DNA-SEQ are polynomial time
reducible to each other. m

Acknowledgement

Jacek Blazewicz, Piotr Formanowicz, and Marta Kasprzak acknowledge support
by KBN grant 7T11F02621. Gerhard J. Woeginger acknowledges support by the
START program Y43-MAT of the Austrian Ministry of Science.

References

1. W. BaiNs AND G.C. SMITH [1988]. A novel method for nucleic acid sequence
determination. Journal of Theoretical Biology 135, 303-307.

2. F. BARAHONA AND W.R. PULLEYBLANK [1987]. Exact arborescences, matchings,

and cycles. Discrete Applied Mathematics 16, 91-99.

C. BERGE [1973]. Graphs and Hypergraphs. North Holland.

4. J. Brazewicz, P. ForMANOwICZ, M. KASPRzZAK, W.T. MARKIEWICZ, AND J.
WEGLARZ [1999]. DNA sequencing with positive and negative errors. Journal of
Computational Biology 6, 113—-123.

5. J. BLAZEWICZ, A. HERTZ, D. KOBLER, AND D. DE WERRA [1999]. On some
properties of DNA graphs. Discrete Applied Mathematics 98, 1-19.

6. J. BEAZEWICZ AND M. KAspPrRzAK [2001]. Complexity of DNA sequencing by hy-
bridization. To appear in Theoretical Computer Science.

7. N.G. DE BRULN [1946]. A combinatorial problem. Koninklijke Nederlandse
Akademie van Wetenschappen te Amsterdam. Proceedings 49, 758-764.

8. P. ErRDOs AND R.L. GRAHAM [1972]. On a linear diophantine problem of Frobe-
nius. Acta Arithmetica 21, 399—408.

9. A.V. KaRrRzANOV [1987]. Maximum matching of given weight in complete and com-
plete bipartite graphs. Cybernetics 23, 8—13; translation from Kibernetika 1, 1987,
7-11.

10. M. LECLERC [1986]. Polynomial time algorithms for exact matching problems.
Master’s thesis, University of Waterloo, Waterloo.

@

24

11.

12.

13.

14.

15.

Jacek Blazewicz et al.

M. LECLERC [1988/89]. Optimizing over a slice of the bipartite matching polytope.
Discrete Mathematics 73, 159-162.

S. MARTELLO AND P. T'OoTH [1990]. Knapsack problems: Algorithms and computer
implementations. John Wiley & Sons.

K. MULMULEY, U. VAZIRANI, AND V.V. VAZIRANI [1987]. Matching is as easy as
matrix inversion. Combinatorica 7, 105-113.

C.H. PAPADIMITRIOU AND M. YANNAKAKIS [1982]. The complexity of restricted
spanning tree problems. Journal of the ACM 29, 285-3009.

P.A. PEVZNER [1989]. ¢-tuple DNA sequencing: Computer analysis. Journal of
Biomolecular Structure and Dynamics 7, 63-73.

On the Minimum Size
of a Contraction-Universal Tree

Olivier Bodini

LIP, Ecole Normale Supérieure de Lyon,
46 Allée d’Ttalie, 69364 Lyon Cedex 05, France

Abstract. A tree Ty,; is m-universal for the class of trees if for
every tree T' of size m, T can be obtained from T,,; by successive
contractions of edges. We prove that a m-universal tree for the class
of trees has at least mIn(m)+ (y—1)m+ O(1) edges where ~ is the
Euler’s constant and we build such a tree with less than m® edges
for a fixed constant ¢ =1.984 ...

1 Introduction

What is the minimum size of an object in which every object of size m embeds?
Issued from the category theory, questions of this kind appeared in graph theory.
For instance, R. Rado [1] proved the existence of an “initial countable graph”.
Recently, Z. Firedi and P. Komjath [2] studied a connected question.

We use here the following definition: given a sub-class C of graphs (trees,
planar graphs, etc.), a graph G,; is m-universal for C' if for every graph G of
size m in C, G is a minor of G, i.e. it can be obtained from G,,; by successive
contractions or deletions of edges.

Inspired by the Robertson and Seymour work [3] on graph minors, P. Duchet
asked whether a polynomial bound in m could be found for the size of a m-
universal tree for the class of trees. We give here a positive sub-quadratic answer.

From an applied point of view, such an object would possibly allows us to
define a tree from the representation of its contraction.

The main results of this paper are the following theorems which give bounds
for the minimum size of a m-universal tree for the class of trees:

Theorem 1. A m-universal tree for the class of trees has at least mIn(m) +
(v = 1)m + O(1) edges where « is the Euler’s constant.

Theorem 2. There exists a m-universal tree T.,,; for the class of trees with less
than m¢ edges for a fixed constant ¢ = 1.984...

Our proof follows a recursive construction where large trees are obtained by some
amalgamation process involving simpler trees. With this method, the constant
¢ could be reduced to 1.88... but it seems difficult to improve this value.

We conclude the paper with related open questions.

L. Kucera (Ed.): WG 2002, LNCS 2573, pp. 25-34, 2002.
© Springer-Verlag Berlin Heidelberg 2002

26 Olivier Bodini

2 Terminology

Our graphs are undirected and simple (with neither loops nor multiple edges).
We denote by G(V, E) a graph (its vertex set is V(G) and its edge set is E(G)
(a subset of the family of all the V' (G)-subsets of cardinality 2)). Referring to C.
Thomassen [4], we recall some basic definitions that are useful for our purpose:

We denote by P, the path of size n.

If = is a vertex then d(x), the degree of x, is the number of edges incident
to x.

Let e be an edge of F(G), the graph denoted by G — e is the graph on the
vertex set of GG, whose edge set is the edge set of G without e. We call classically
this operation deletion.

Let e = {a, b} be an edge of G(V, E), we name contraction of G along e, the
graph denoted by G/e = H(V', E’), with V' = (V/{a,b}) U{c} where c is a new
vertex and E’ the edge set which contains all the edges of the sub-graph G; on
V/e and all the edges of the form {c,z} for {a,z} or {b, 2} belonging to E.

We say that H is a minor of G if and only if we can obtain it from G by
successively deleting and /or contracting edges, in an other way, we can define
the set M(G) of minors of G by the recursive formula:

M@G=Gu| |J M@G/e)|ul | M(@G-¢

e€E(G) e€E(G)

The notion of minor induces a partial order on graphs. We write A < B to
mean “A is a minor of B”.

For technical reasons, we prefer to use the size of a tree (edge number) rather
than its order (vertex number).

Finally, let us recall that, a graph G,,; is m-universal for a sub-class C of
graphs if for every element G of C' with m edges, G is a minor of Gp;.

3 A Lower Bound

In this section, we prove that a m-universal tree T,,; for the trees has asymp-
totically at least mIn(m) edges. We use the fact that T,,; has to contain all
spiders of size m as minors. A spider S on a verter w is a tree such that
Yo € V (S)\ {w},d(v) < 2. We denote the spider constituted by paths of lengths
1 <my < ... <my by Sp(myq,...,mi) (Fig.1).

Fig.1. Sp(2,2,2,3,3)

On the Minimum Size of a Contraction-Universal Tree 27

Definition 1. Let T be a tree, we denote by T the subtree of T with V(0T) =
V(T)\A, where A is the set of the leaves of T. Also, we denote by OF the k-th
iteration of 0.

Lemma 1. Sp(my,...,my) = T involves that 9Sp(my,...,my) < OT. Moreover,
if for all i, m; = 1 then dSp(my, ...,my) is a vertex. Otherwise, put a the first
value such that m, > 1, we have dSp(my,....,my) = Sp(ms — 1,...,my — 1)
excepted for k =1, in this last case we have dSp(my) = Sp(my — 2).

Proof. This just follows from an observation. a

Lemma 2. For every tree T, Sp(mq,...,my) < T = T has at least k leaves.

Proof. Trivial. a
m
Theorem 3. A m-universal tree Ty, for the class of trees has at least > L%J
i=1,i#2
edges.

Proof. A m-universal tree T,,,; for the class of trees has to contain as minors all
spiders of size m. So, for all p it contains as minors the spiders Sp(p, ..., p) where

we have L%J times the letter p. By the lemma 1, for all p < %, Sp(1,...,1) =

0P Tp; and if m is odd, Sp(1) < 8L%J71Tum-. Moreover, it is clear that the
terminal edges of the OPT,; constitute a partition of T),,;. By the lemma 2,

% | L%
this involves that T,,,; has at least Z L—J edges if m is even and 1+ Z L J

edges if m is odd. An easy calculatlon proves that these values are always equal
to Z | 2. O
i=1,i#2

n

Proof. (of the theorem 1) it follows from the usual estimate Y. 1 ~In(n)+~+

i=1
m m—1
@) (%) and the inequality > L%J >1+ 3 (? _ 1)' .
i=1,i7#2 i=1,i#2

What the above proof shows, in fact, is the following:

Corollary 1. A minimum m-universal spider for the class of spiders has

f: | 2] edges.

i=1,i#2

Proof. The spider Sp (L%J , {%J sy L%J , (%D is clearly a m-universal spi-

der of size Y, | 2] for the class of spiders, and by theorem 3 it is a minimum
i=1,i#2

value. 0

28 Olivier Bodini

4 The Main Stem

In the sequel, we deal with rooted graph, i.e. graph G where we can distinguish a
special vertex denoted by r(G), called the root. Conventionally, any contracted
graph G’ of same rooted graph G will be rooted at the unique vertex which is
the image of the root under the contraction mapping, we say in this case that
the rooted graph G’ is a rooted contraction of G. Note that, the contraction
operator suffices to obtain all minor trees of a tree. So, we can now define the
following new notion for sub-classes of rooted trees: a rooted tree Ty,,; is strongly
m-universal for a sub-classes C' of rooted trees if for every rooted tree T' in C
of size m, T is a rooted contraction of T,,;. The concept of root is introduced to
avoid problems with graph isomorphisms that, otherwise would greatly impede
our inductive proof.

For every edge e of a tree T', the forest T\e has two connected components.
We call e-branch, denoted by Be, the connected component of 77 which does not
contain r (1), we define the root of B, as eNV (B.).

A main stem of a rooted tree of size m is defined as a path P which is issued
from the root and such that for all e-branches B, with e ¢ E(C), we have
B (B.)| < %] (Fig.2).

X

Fig.2. A main stem in bold

The following lemma suggests the procedure which will be used to find a sub-
quadratic upper bound for universal trees. Roughly speaking, it endows every
tree with some recursive structure constructed with the help of main stems.

Lemma 3. Every rooted tree has a main stem.

Proof. By induction on the size of the rooted tree. Let T be a rooted tree, if
T has one or two edges, it is trivial. Otherwise let us consider the sub-graph
T\r (T), which is a forest. We choose a connected component 7; with maximum
size and we denote by by the unique vertex of 71 which is adjacent to r(7). Tree
T1, rooted in by, has, by the induction hypothesis, a main stem B. Then the
path (V(B)U{r(T)},E(B)U{{r(T),b1}}) is a main stem of 7. O

Remark 1. A tree may possess in general several main stems. Let us notice also
that a main stem is not necessarily one of the longest paths which contain the
root.

On the Minimum Size of a Contraction-Universal Tree 29

|~

(L

Fig.3. A rooted brush Fig.4. A rooted comb

5 The Upper Bound

We need some new definitions. A rooted brush (Fig.3) is a rooted tree such that
the vertices of degree greater than 2 are on a same path P issued from the root.

A rooted comb X (Fig.4) is a rooted brush with d (r (X)) < 2 and Vv € V (X)),
d(v) <3.

The length of a rooted comb corresponds to the length of the longest path P
issued from the root which contains all vertices of degree greater than 2.

To obtain an upper bound, we consider two building processes: the first one,
a brushing Mp, maps rooted trees with a main stem into rooted brushes, the
second one, a ramifying Mr, consists in obtaining a sequence of rooted trees,
assuming that we have an increasing sequence of rooted combs. We note M% the
k-th element of the sequence. These building processes will possess the following
fundamental property:

Property 1. Let (T, 0) arooted tree with a main stem ¢ and (X,,),,cy a sequence
of rooted combs:

(VT' = T, Mp (T',0) = X|ger) = T < MO (X)), en) -

Lemma 4. If building processes verify the property 1 and if for all i, the rooted
comb X; is strongly i-universal for the class of rooted brushes then the rooted
tree M7 ((Xn)neN> is strongly m-universal for the class of rooted trees.

Proof. It is just an interpretation of the property. a

We now establish the existence of building processes which satisfy property 1.

Brushing Mg (Fig.5). Let T be a rooted tree with a main stem o. We are
going to associate a rooted brush B with it, denoted Mg (T, o) of the same size
built from the same main stem o with the following process: every e-branch B,
connected to the main stem by edge e is replaced by a path of length |E (B.)|
connected by the same edge.

Ramifying quw For the second building process we work in two steps:

30 Olivier Bodini

T a Mp(T,)

Fig. 5.

Fig. 6. A rooted comb [T1,T>, T3]

First step. Given rooted trees 71,...,T); with disjoint vertex sets, we build
another rooted tree T, denoted [T7, ..., Tk], in the following way:

\% (Tl) U {Ul, . Uk+1} ,

=
3
I
=

s
Il
—

E(T) U {{vr,r (T} o {vw, 7 (Ti) 3} U {{on, 02} 5 oo {vr, vk 1}

&
3
I
=

H
I
-

and r(T) = v.

If T; = (), conventionally {v;,r (T;)} = 0.

Prosaically, from a path Py = [v1, ..., vx4+1] of size k and from k rooted trees
Ty, ..., Tk, we build a rooted tree joining a branch T; to the vertex v; of P (Fig. 6).
Second step. By convention, P_; = ().

We are going to construct rooted trees T}, in the following way:

Tor=0,To = Xo, and Vi, 1 <0 < b Ti = [Tmin(uhi—l)v""Tmin(un, i—1)
Xi = [Pu;s s P,]
We can now define ME:

if

ME ((Xn),en) = Th-

neN

Lemma 5. The building processes described above verify the property 1.

Proof. First, note that Mp ((Xn)neN) is an increasing sequence. We prove the
lemma by recurrence on the size m of T. When m = 0 or m = 1, this is

On the Minimum Size of a Contraction-Universal Tree 31

trivial. We suppose the property is verified for T" with size m < myg. Let T be
a rooted tree of size mg with a stem o, we note ey, ..., e the edges of T issued
from o which do not belong to o. To each e-branch of T with e € {ey,...,ex}
corresponds by Mp a e-branch (it is a path of same size) in Mp (T,0). So
there exists k distinct e-branches Ry,..., Ry in X,,, that we can respectively
contract to obtain each e-branch with e = ey, ...,e; in Mp (T, o). By recurrence

hypothesis, we have for 1 <i <k, B,, < M\TE(B)

((Xn),,en) and we have also

MQLE(BE"” (X0)pen) = M'TE(Ri)| ((X1),en)- So each e-branch of T is a minor

contraction of MITE(Ri)‘ ((Xn)neN). By associativity of contraction map, we have
E(T
T = My (X)) 0

In this phase, we determine a sequence of rooted combs (X;);.y such that
the rooted combs X; are strongly i-universal for the rooted brushes.

In order to achieve this result, we define F, as the set of functions f :
{1,....,p} — {1, ceny LgJ} satisfying the following property:

(Vn e {1,...p}) (Wg [%J) FkeN)(n—i+1<k<nand f(k)>i)

Lemma 6. F), is not empty, it contains the following function y,, defined for

1<i<pby:
¢, (i) = min (2“’2“)“ 1, gJ i 1)
where vy (k) is the 2-valuation of k (i.e. the greatest power of 2 dividing k).

Proof. The verification is obvious. ad

Lemma 7. For every sequence F' = (f1, fa,...) of functions such that f; € F; for
i>1and f; (k) < fix1 (k) for alli > 1 and 1 < k < i, the rooted comb defined by
Combl, = [Pf, ..., Pf™] where Pf™ designs the path of size fm(m—+1—1i)—1,
for 1 <i < m is strongly m-universal for the rooted brushes.

Proof. By induction on m : Comb! is strongly 1-universal for the rooted brushes.
Suppose that Comb!" has all rooted brushes with i — 1 edges as rooted con-
tractions.

We consider two cases depending on the shape of a rooted brush B of size i:
case 1 case 2

32 Olivier Bodini

Brushes of case 1 are clearly rooted contractions of the rooted comb Comb!
(B" = Comb! |, s0 B < [Py, Pfi™", ..., PfiZ}] = Combl). Let us study case 2:
B’ is by induction hypothesis a rooted contraction of the rooted comb Comb!” i
moreover C’ombf_j = [Pf;_H, ,Pff] . Finally, by the property of f;, there
exists 1 < a < j, such that Pf! has more than j edges. Linking these two
points, we can conclude that the rooted brush B is always a rooted contraction
of the rooted comb Combf . O

The rooted comb built as in lemma 7 will be said to be associated to the
sequence F' and denoted by CombE .

Theorem 4. A minimum strongly m-universal rooted brush for the rooted
brushes has O(mIn(m)) edges.

Proof. Proceeding as for theorem 1, we obtain, mutatis mutandis, that a m-
universal brush for the brushes has at least m In(m)+ O(m) edges. This order of
magnitude is precisely the size of the strongly m-universal rooted comb Combl,
for the class of rooted brushes. ad

We have this immediate corollary:

Corollary 2. A minimum m-universal brush for the brushes has O(mln(m))
edges.

By convention, we put Combf = Py (tree reduced in a vertex)
We define Treel, = M™ ((Combf)neN).
As before, we will say that the tree built in such a way is recursively associated

to the sequence F and denoted by Treel .
Thus, we have:

Theorem 5. The rooted tree Treel, is strongly m-universal for the class of
rooted trees.

We now analyze the size of Treel .

Proposition 1. Let F = (fy, f2,...) be a sequence of functions such that f; € F;
for i > 1. The size of a m-universal tree constructed from the sequence is given
by the following recursive formula:

E
u_y1=—1uy =0 and up =2k — 14 > up ()—1
i=1
Proof. Tt derives from the following observation:
m edges constitute the main stem, we have to add m — 1 edges to link branches

k
to the main stem and) uy, ;)1 edges for the branches. a
i=1

Theorem 6. There is a sequence of functions G = (g1, g2, ...) such that g; € F;
and ‘E (Tree,cfl)| < (2m)¢ where ¢ = 1.984... is the unique positive solution of
the equation%—&—%—i—ﬁ—ﬁ: .

On the Minimum Size of a Contraction-Universal Tree 33

Proof. We take the following sequence of functions:
gm (i) = min (2v2(0F1 4) if i < m and i even, g, (i) = 1 if i odd and g,, (m) =
L%J It is clear that, if m is a power of 2, the comb CombS is strongly m-
universal for the brushes.
In fact, the function g¢,, takes the value 2v2()+1 when i is not a power of 2,
m

otherwise it is equal to i. Thanks to this remark and with w,, <m+ > uy, @),
i=1

n—1
(the sequence of sizes is increasing), we obtain ugn < 27 42771 4 3= 27y, —
i=2
n—1
> ugi +ugn—1 +ugn—2. Thus, in evaluating the sums and reorganizing the terms,
i=2
we obtain:

ugn < ap + 270
with

= 2n—1 + 1424 1 _ 2" +27L(c—1)
" 2¢ -1 2(e=1) —1

1 n 1 1
9% ") 1 201

1
B=g+

Now a,, < 0 when m > 1 and 8 < 1 by definition of c.
So ugn < 2M¢ hence u,, < (2m)°. O

In(z)

Tn(2) where z is the positive root of X4 —5X3 +

Remark 2. We observe that ¢ =
4X?2+X -2=0.

Theorem 2 then follows since any rooted tree which is strongly m-universal
for the rooted trees is also clearly m-universal for the class of trees.

6 Conclusion and Related Questions

When using the sequence & = (1, 2, ...) of lemma 7, the induction step leads to
involved expressions that do not allow us to find the asymptotic behavior of the
corresponding term u,,. A computer simulation gives that such a m-universal
tree for the trees has less than m'88 edges. In any case, the constructive approach
we proposed here, seems to be hopeless to reach the asymptotic best size of a
m-universal tree for the trees.

Conjecture 1. The minimal size of a m-universal tree for the trees is m!'To(),

As a possible way to prove such a conjecture, it would be interesting to obtain
an explicit effective coding of a tree of size m using a list of contracted edges
taken in a m-universal tree for the trees.

A variant of our problem consists in determining a minimum tree which
contains as a subtree every tree of size m. This is closely related to a well known
still open conjecture due to Erdés and Sos (see [5]).

34 Olivier Bodini

References

—

. R. Rado, Universal graphs and universal functions, Acta Arith., 9 (1964), 331-340.

2. Z. Firedi and P. Komjath, Nonexistence of universal graphs without some trees,
Combinatorica, 17, (2) (1997), 163-171.

3. N. Robertson and P.D. Seymour, series of papers on Graph minors, Journal of
combinarotics, serie B, (1983-...).

4. C. Thomassen, Embeddings and Minors, chapter 5 in Handbook of Combinatorics,
(R. Graham, M. Grotschel and L. Lovasz, eds.), Elsevier Science B.V., 1995, 301-
349.

5. P. Erdos and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Sci.

Hungar. 10 (1959), 337-356.

Optimal Area Algorithm
for Planar Polyline Drawings*

Nicolas Bonichon, Bertrand Le Saéc, and Mohamed Mosbah

LaBRI-Université Bordeaux 1, 351 Cours de la Libération,
33405 Talence, France
{bonichon,lesaec,mosbah}@labri.fr

Abstract. We present a linear time algorithm based on Schnyder trees

that produces planar polyline drawings. These drawings have the optimal
2

area (@) and width (L@J), and have at most n—2 bends, where

n is the number of vertices of the graph. Moreover, at most one bend per

edge is needed.

1 Introduction

The subject of graph drawing has received intense attention due to a large variety
of applications. We focus on planar graph drawings. Such graphs can be drawn
without any edge crossing. So, several classes of drawings [1,2,9,11,17,19] are
needed. Common objectives include small area, few bends and good angular res-
olution. In this paper, we deal with polyline drawings [3,4,7,14-16]. A polyline
drawing is a drawing of a graph in which each edge is represented by a polygonal
chain. In this paper, we focus on the grid size with a small number of bends.

In general, three kinds of criteria are used for polyline drawings: the grid
size, the angular resolution and the number of bends. Clearly, it is difficult to
optimize simultaneously all of them. In [14], a tradeoff is proposed. Precisely,
a linear-time algorithm has been given to construct a polyline drawing of any
plane graph with n vertices and maximum degree d on a (2n — 5) x (37" — %)
grid with at most 5n — 15 bends and minimum angle > % where each edge has
at most three bends. In [7], polyline drawings with one bend per edge and an
angular resolution of @(1/d(v)) on a grid of size 30n x 15n are given where d(v)
is the degree of a vertex v and n the number of vertices of the graph.

Our goal is to have a tradeoff between the grid size and the number of bends.
It is known from [20] that any plane graph can be drawn in a (n—2) x (n—2) grid
without bends; i.e. straight-line segments between vertices (for n > 3). However,
no grid smaller than (L@J) X (L@J) can be used for such a drawing
[12,18].

We present an algorithm that produces polyline drawings with a grid (n —
|2] —1) x (p+1) where p < 222 the number of bends is at most n—2 and each

3
edge has at most one bend. If we consider optimal width polyline drawings, we

* This work has been supported by the TMR Research Network GETGRATS.

L. Kucera (Ed.): WG 2002, LNCS 2573, pp. 35-46, 2002.
© Springer-Verlag Berlin Heidelberg 2002

36 Nicolas Bonichon, Bertrand Le Saéc, and Mohamed Mosbah

can obtain drawings of height at most (n—2). The width and the area of the grid
are optimal. Since these drawings are obtained in linear-time, our contribution
has both a theoretical interest and a practical application to graph drawing.

With a maximal plane graph G, is associated a realizer R [20], which is a
partition of the set of internal edges into three particular trees. This partition
can be computed in linear-time. Realizers are useful for many graph algorithms
[6,10,13,16], and particularly for graph drawing [8,21]. We use the realizer of a
plane graph to obtain a polyline drawing. The algorithm consists of mainly two
steps. The first step is to compute a function, called weak-stratification, which
associates to each vertex a horizontal layer corresponding to its ordinate. The
second step is to compute the vertex abscissas and the bend coordinates. The
weak-stratification verifies a set of conditions which guarantees that it is possible
to compute such vertex abscissas and the bend coordinates so that the resulting
polyline drawing is planar.

The paper is organized as follows. In Section 2, we recall a few definitions and
we present realizers. In Section 3, the weak-stratification is defined and is used
to obtain a polyline drawing algorithm of a plane graph. We give an algorithm
that builds a weak-stratification associated with a realizer in Section 4.

2 Realizers of Plane Graphs

We assume that the reader is familiar with graph theory, and we use definitions
from [2]. The graphs, we deal with, are simple and undirected. A plane graph
is a planar graph with a given planar embedding, represented combinatorially
by cyclic orderings of edges incident to all vertices, and by the choice of the
external face. The vertices of the external face are also called external and the
other vertices are called inner vertices.

Definition 1 (Schnyder [20]) A realizer of a mazimal plane graph G is a par-
tition of the interior edges of G in three sets Ty, Th, To of directed edges such
that for each interior vertex u there hold:

1. u has out-degree exactly one in each of Ty, T1, T5.

2. The counter-clockwise order of the edges incident on u is: leaving in Tp,
entering in Ts, leaving in Ty, entering in Ty, leaving in Ty and entering in
Ty (see Fig. 1).

Fig. 1. Edge coloration and orientation around a vertex.

Optimal Area Algorithm for Planar Polyline Drawings 37

Schnyder showed that, Ty, T and T» are three ordered rooted trees where their
edges are oriented toward their roots, which are the external vertices vy, vy, vs.
An example of a maximal plane graph, and one of its realizer is given in Fig. 2.

Fig. 2. An example of a realizer (a graph on the left side, and one of its realizers on
the right side).

In the sequel, the edges of the tree T; are colored with color ¢, where i €
{0,1,2}. P;(u) denotes the parent of w in the tree T;. Ch;(u) denotes the set
of children of u in the tree T;. u is a descendant of v in T if u is a child of v
or u is a child of a descendant of v. If u is a descendant of v, v is an ancestor
of w. If v is an ancestor of u, u v denotes the path colored i from u to w.
Moreover, v i u denotes also u 4 v. If Chi(u) = 0 u is a leaf of T; otherwise,
u is an inner verter of T;. We write ug >%., us (resp. u; >, wo) if ug is
after ug in the counterclockwise preordering (resp. clockwise preordering) of the
tree T;. Counterclockwise (resp. clockwise) preordering of a tree means visiting
the root, then recursively the subtrees in the counterclockwise (resp. clockwise)
order. Similarly, counterclockwise postordering (resp. clockwise postordering) of
a tree T; means recursively visiting the subtrees in the counterclockwise (resp.
clockwise) order and then visiting the root.

Theorem 1 [20] Let G be a mazximal plane graph. A realizer R of G can be
computed in linear-time.

3 Polyline Drawing

In this section, we show how to compute a planar polyline drawing of a graph
such that a weak-stratification is given. We recall first a few definitions and
results related to polyline drawings.

A polyline drawing of a graph G is a drawing of G where the vertices are
represented by points having integer coordinates and where edges are represented
by polylines whose bends have integer coordinates. A planar polyline drawing is a
polyline drawing without edge crossings. The width of a given polyline drawing is
defined as the difference between the x-coordinates of the leftmost vertex or bend
and the rightmost vertex or bend. Similarly, the height of a polyline drawing is

38 Nicolas Bonichon, Bertrand Le Saéc, and Mohamed Mosbah

Fig. 3. Construction of the graph Hg.

given by the difference between the y-coordinates of the highest vertex or bend
and the lowest vertex or bend.

Property 1 For each n > 3, there is an n-vertex plane graph H, such that the
width and the height of each polyline drawing of H,, is at least L@J and the

grid area is at least _2("3_1)J X _2013_1)]

Proof. The result has been proved for straight-line drawings [12], using nested
triangles (see Fig. 3). Using the same construction, the result can be directly gen-
eralized to polyline drawings: a drawing of H, needs at least two more columns
and at least two more rows than a drawing of H,,_3

3.1 Outline of the Polyline Drawing of a Realizer

Given a plane graph G and one of its realizers R = (Tp,71,72) we compute a
planar polyline drawing of G.

After choosing a tree of R, say Ty, a column is allocated to each leaf u of Ty
in clockwise prefix order. We denote by x(u) this column. Each inner vertex u
of Tj is placed on a column of a particular leaf of its subtree.

It remains to compute the ordinate y(u) of each vertex u of G. In order to
compute these ordinates, we first set some rules for the edge bend positions:

— If a bend is needed for an edge (u,Py(u)), it will be located at (z(u),
y(Po(w)) +1).

— If a bend is needed for an edge (u,P; (u)), it will be located at (z(last_leaf(u)),
y(u)), where last_leaf(u) denotes the last leaf of the subtree of w.

— Similarly, if a bend is needed for an edge (u, Pa(u)), it will be located at
(z(firstleaf(u)),y(u)), where firstleaf(u) denotes the first leaf of the
subtree of .

Fig. 4 illustrates the way the different kinds of edges are drawn.

For a planar polyline drawing, partial overlapping of edges are also forbidden.
Therefore, other rules are needed. Fig. 5 illustrates an overlapping configuration.
We propose a new set of rules on vertex abscissas: if v = Py(u) and y(v) = y(u)
then z(v) = x(last leaf(v)) else z(v) = x(firstleaf(v)).

Finally, we will consider the external edges (vi,v9) and (ve,v) as if they
were in Ty and the edge (v1,v2) as is it was in Tb.

Optimal Area Algorithm for Planar Polyline Drawings 39

A
y

Fig. 4. Edge Drawings.

Lo fd} 9 /E

R PN K7

0 \/4 e >
an]

\ 4
D)
O)
A
)
A4

O)

A 4
N
~

v

Fig. 5. Edge overlapping configuration and its corrected configuration.

Having defined the drawing design of the realizer (and so the graph), we pro-
pose a set of constraints on vertex ordinates which ensures that such a drawing
is possible. In the sequel, ordinates satisfying these constraints will be computed
in linear-time for any realizer. Moreover, we will show that the obtained drawing
grid size is optimal.

3.2 Weak-Stratification of a Realizer

A Layering of a graph G is an application from the set of vertices of G to the
set of non-negative integers. As we will show, a layering will define the layers of
the plane on which the vertices will be positioned. In order to obtain a planar
polyline drawing, a particular layering, defined as follows, will be considered.

Definition 2 Let G be a mazimal plane graph, R = (To,T1,T2) be a realizer of
G, and L be a Layering of G. Assume that Lygz, (v) and Lygs, (u) are defined as
follows: Lyaq, (u) = maz(L(u'), v € Chi(u)) and Lygq, (u) = maz(L(u'), v €
Cha(u)). L is a weak-stratification of R if for every inner vertex u of G, we
have:

Limaz, (1)
Loz, (u) < L
min(Lmam (U), Lmarg (’Z,L)) < L(u)
L(Ul) > Lmaxz (UQ)

0 NS G o~

40 Nicolas Bonichon, Bertrand Le Saéc, and Mohamed Mosbah

L(v) is called the layer of the vertex v. The height of a layering is maxz(L(v),v €
V(@)).

Conditions 2, 3 and 4 set the ordinate of a vertex relatively of the ordinates
of its parents in Ty, 77 and T5.

Condition 5 ensures that all the children of w in T are placed on a lower
layer than L(P;(u)) — 1. Since they are also children of w in T they are on a
lower layer than L(u) (see condition 4).

Moreover, all the descendant of u in T3 are also on lower layers than L(u) and
L(Pi(u)) — 1). So the edge (u, P1(u)) can be drawn without crossing. Similarly,
condition 6 ensures that the edge (u, P2(u)) can also be drawn without crossing.

Condition 7 ensures that any vertex u cannot have on its layer one of its
children in T3 and one of its children in T5.

The last condition guarantees that we can draw the external edges.

In [5] a more restrictive definition of layering, called stratification, was de-
fined. This definition has been used to compute orthogonal drawing of plane
graph. The weak-stratification is less restrictive and then allows more compact
drawing.

3.3 Polyline Drawing Algorithm of a Weak-Stratification

For each vertex v, we denote by x,(v) (resp. xr(v)) the abscissa of the leftmost
(resp. rightmost) leaf of the subtree of v.

The following algorithm computes the abscissas of inner vertices and the
coordinates of edge bends of a realizer’s weak-stratification. The resulting vertex
and bend coordinates give a planar polyline drawing.

Algorithm 1 Polyline drawing.

for each vertex u of G, y(u) < L(u)
Associate with each leaf of Ty a column from left to right
for each inner vertex u of Ty do
if L(u) = Lmaa,(u) then
2(u) — zr(u)
else
z(u) — zr(u)
end if
for each child v of u in Ty do
add the bend (z(v),y(u) + 1) on the edge (u,v) if needed.
end for
add the bend (zr(u),y(u)) on the edge (v, P2(u)) if needed
add the bend (zr(u),y(u)) on the edge (v, P1(u)) if needed
end for
add the bend z(vo),y(vo) + 1 on the edge (vo,v1)

Lemma 1 Let G be a maximal plane graph with n vertices. Let L be a weak-
stratification of a realizer R = (To,T1,T>) of G. Let p be the number of leaves

Optimal Area Algorithm for Planar Polyline Drawings 41

of Ty and k the height of L. Algorithm 1 computes a planar polyline drawing of
G in linear-time, on a grid (p+ 1) x (k). Moreover, the obtained drawing has at
most n — 2 bends and at most one bend per edge.

Proof. Conditions 5 and 6 of the definition 2 ensure that for each vertex u we
can draw the edges toward P;(u) and Pa(u).

Condition 7 ensures that we cannot have the 2 children of u, one in T} and
one in T5, on its layer. So, if a vertex u has a child in 75 on its layer, the abscissa
of u is set to zr(u). This avoids any overlapping with the edge (u, Pi(u)) (see
Fig. 5). Otherwise, the abscissa of u is set to z(u) (even if u has no child in
T1). This avoids any overlapping of with the edge (u, P2(u)) (see Fig. 4).

Condition 8 ensures that the edge (v1,v2) can be drawn with a straight-line.
Since vy has no child in Ts, z(vg) = z1(vg). So the edge (vg, v2) can be drawn
with a straight-line.

Let us see when the edges are drawn with straight lines.

— If w is a leaf of Ty, then the edges (u, P1(u)) and (u, P>(u)) are drawn with
straight-lines.

— If z(u) = xp(u) (resp. z(u) = zr(u)) then the edge (u, P>(u)) (resp. the
edge (u, P1(u))) and the edge from u toward its first child (resp. last child)
in Ty are drawn with straight-lines.

All the other edges are bended once. As shown in the previous subsection, the
chosen coordinates for the bends ensure that the polyline drawing contains nei-
ther overlapping nor edge crossing.

The number of bended edges from a vertex u toward its children in Ty or
toward P;(u) and P(u) is bounded by the number of its children in T (at least
two of these edges are straight-lines). Hence the number of bends on internal
edges is bounded by number of edges in Tp: n — 3. Moreover, the edges (vg, v1)
and (v1,v2) can be drawn with a straight-line. So, the number of bends is at
most n — 2.

4 An Algorithm for Computing a Weak-Stratification
of a Realizer

We present in this section an algorithm that builds a weak-stratification of a
realizer. First, all the vertices of G are placed on layer 0. The children of vy in
Ty are placed on layer 1. Then, the algorithm treats each inner vertex of G with
respect to the counter-clockwise postordering of T5. The treatment of a vertex
v consists of applying several rules on L(v) (1, 2, 3.a, 3.b, 4.a and 4.b.). These
rules can only increase the layers of vertices. Let us recall, as stated in Section 2,
that vy, v1 and vs are respectively the roots of Ty, 17 and T5. When rules 1 and
2 are applied on a vertex v, the value L(v) will no longer change. This vertex
becomes fized.

Property 2 Let R be a realizer. If u is a descendant of v in T;, then u cannot
be a descendant nor an ancestor of v in T; where i # j.

42 Nicolas Bonichon, Bertrand Le Saéc, and Mohamed Mosbah

Algorithm 2 Weak-stratification construction.
for each vertex u of G do
L(u) <0
end for
for each inner vertex u of GG in the counter-clockwise postordering of 7> do
L. L(u) < max(L(u), L(Po(u)) + 1)
2. L(u) < maz(L(u), min(Lmaz, (4), Lmaz, (1)) + 1)

3.a L(P(u)) < max(L(P2(u)), L(u))

3.b L(P1(u)) «— maz(L(Pi(u)), L(u))

4.a L(P2(u)) < max(L(P2(u)), Lmaz, (u) + 1)

4.b L(P1(u)) < maz(L(P1(v)), Lmazy (w) + 1)
end for

5. L(v1) < maz(L(v1), Lmaa, (v2) + 1)

Property 3 Let R = (Ty,T1,T2) be a realizer of a mazimal plane graph G. Let
(u,v) be an edge of R. If u= Py (v) or u = Py(v) or u € Cho(v) then u is after
v in the counter-clockwise postordering of Ts.

Lemma 2 Let G be a mazimal plane graph. Let R = (Ty,T1,T3) be a realizer
of G. Algorithm 2 computes a weak-stratification of R in linear-time.

Proof. vy is fixed on layer 0 and condition 1 of definition 2 is verified. The vertices
are fixed in the counter-clockwise postordering of T5, so a vertex u is treated, its
children in 77 and T» and its parent in Ty have already been fixed (see property
3). Since the first vertex u treated in the main loop is a child of vy, and a leaf
of T1 and a leaf of Ty, conditions 2 — 7 of the definition 2 are verified for u.

Assume now that these conditions are verified for the m first fixed vertices
and let us show that it is also true after the treatment of the next vertex u.

Rule 1 ensures that vertex w is on a higher layer than its parent in 7j. So
after applying the rule 1, condition 2 is verified for wu.

Rule 2 says that if v has 2 children, one in 77 and the other in T on its layer,
then L(u) is incremented. So after applying the rule 2, condition 7 is true for u.

Rules 3.a (resp. 3.b) ensures that vertex Py(u) (resp. Pi(u)) is on a higher
layer than u. This corresponds to condition 3 (resp. 4) of definition 2.

Similarly, rules 4.a and 4.b ensure that conditions 5 and 6 are satisfied for
vertex u.

During the treatment of u, L(u), L(Pi(u)) and L(Ps(u)) are not decreased,
so conditions 2 — 7 remain true for the mt" first vertices.

So at the end of the main loop, conditions 2 — 7 are verified for all inner
vertices of G. Moreover, the last step of the algorithm ensures that condition
8 is true. Hence, at the end of the execution, L is a weak-stratification of the
realizer R. Obviously the algorithm is linear-time.

Fact 1 At each step of Algorithm 2, for all i < maz{L(u),u € V(G)}, there
exists a fized vertex v such that L(v) = 1.

Optimal Area Algorithm for Planar Polyline Drawings 43

Lemma 3 Let L be a weak-stratification of R generated by Algorithm 2. If v is
a leaf of Ty, then there exists u # v such that L(v) = L(u). Moreover, it is also
true for vs.

Proof. Since vs is neither in Tj nor in 77, the only rules that can change its layer
are 3.a and 4.a. When applying rule 5, either L(ve) = Ljaz,(v2) and then vy is
on the same layer than one of its children, or L(ve) = Lyaa,(v2) + 1 then v and
v1 are on the same layer.

Let v be a leaf of Ty. When v becomes fixed, two configurations could have
oceur:

— Case 1: there was already a vertex u such that L(u) > L(v). Since at each
step of the algorithm, each layer lower than L(u) contains at least one fixed
vertex, it is also the case for the layer L(v) before v was fixed (see fact 1).

— Case 2: vertex v was the highest vertex of L. Consider u the first vertex set
on L(v)+1. This vertex was set on this layer after that v became fixed. Such
a vertex always exists since at the end of the algorithm, v; is the highest
vertex of L.

Let us consider the rule that has set w on L(v) + 1.

e Case 2.1: if it is rule 1, then L(Py(u)) = L(v). Since v is a leaf of Ty,
Py(u) #v.

o Case 2.2: if it is rule 2. This means that there are at least 2 fixed vertices
on layer L(v), one child of w in 77 and one child of u in T5.

e Case 2.3: if it is rule 3.a (resp. 3.b). This implies that u has a fixed child
w in Ty (resp. in T7) such that L(w) = L(v) + 1. This is in contradiction
with the fact that v was the first one to appear in L(v) + 1.

e Case 2.4: if it is rule 4.a (resp. 4.b). Then if u = Py (v) (resp. u = P2(v)),
we have L(v) = Lmaz,(v) (resp. L(v) = Lpas, (v)). So, v has a fixed
child w in Ty (resp. Ty) such that L(v) = L(w).

e Case 2.5: if it is rule 5, then u = vy and L(v2) = Liaz, (v2). So L(v) =
L(Ug).

Lemma 4 Algorithm 2 computes, in O(n) time, a weak-stratification of a real-
izer R = (Ty,T1,Ty), with height at most n — | 5] — 1 where p is the number of
leaves of Ty.

Proof. We know that there is at least one vertex per layer; moreover a leaf of T
is never alone on its layer. So in the worst case, the highest layer contains only
v1, and each other layer contains either an inner vertex of Tj, two leaves of T
or one leaf of Tj; and vs.

So we have n — 2 — p layers with one inner vertex of Ty, Lp—;lj layers for
the leaves and vy and one other layer for vy. Hence, the height of the computed
weak-stratification by the previous algorithm is at most n — [5] — 1.

Theorem 2 [8] Let R = (Ty,T1,T5) be a realizer. At least one of the trees of R

has at most |22] leaves.

44 Nicolas Bonichon, Bertrand Le Saéc, and Mohamed Mosbah

Theorem 3 Let G be a plane graph with n vertices. G has a planar polyline

2
drawing with at most w as area and at most L@J as width. Such a
drawing can be obtained in linear-time. Moreover, each edge has at most one

bend and the drawing has at most n — 2 bends.

Proof. Let G’ be a triangulation of G. G’ can be obtained in linear-time. Let
R = (Ty, T1,T>) be a realizer of the maximal plane graph G.

Let T; be a tree with at most [22-2] leaves. Let R’ = (Tf = T;,T{ =
Tit1,Ty = Tit2) be the realizer of G’ obtained by circular permutation on the
trees of R. Let p be the number of leaves of Tj).

Algorithm 2 computes in linear-time a weak-stratification with p leaves and
height n—| 5] —1. Using this weak-stratification, Algorithm 1 computes a planar
polyline drawing of G on a grid of (p + 1) x (n — [§] — 1) with at most n — 2
bends. Since p < |22 |, the width of the drawing is at most L@J Since

3
2
the area is an increasing function in p, its value is at most dn=1)” Property 1

states that the width and the area of the drawing obtained by Algorithm 1 are
optimal.

Here is an example of a drawing of a graph with 50 vertices on a grid of 22 x 20:

Fig. 6. Example of a polyline drawing.

References

1. C. Batini, , G. di Battista, and R. Tamassia. Automatic graph drawing and
readability of diagrams. IEEE Transactions on Systems, Man, and Cybernetics,
18(1):61-79, 1988.

2. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms
for the visualisation of graphs. Prentice Hall, 1999.

3. G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic
digraphs. In Theoret. Comput. Sci, volume 61, pages 175-198, 1988.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Optimal Area Algorithm for Planar Polyline Drawings 45

G. Di Battista, R. Tamassia, and I.G. Tollis. Constrained visibility representations
of graphs. In Inform. Process. Lett., volume 41, pages 1-7, 1992.

N. Bonichon, B. Le Saéc, and M. Mosbah. Orthogonal drawings based on the
stratification of planar graphs. Technical Report RR-1246-00, LaBRI, 2000.

N. Bonichon, B. Le Saéc, and M. Mosbah. Wagner’s theorem on realizers. In Inter-
national Colloquium on Automata, Languages and Programming 2002 (ICALP’02),
LNCS, to appear.

C. C. Cheng, C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Drawing
planar graphs with circular arcs. In Graph Drawing (Proc. GD ’99), volume 1731
of Lecture Notes in Computer Science, pages 117-126. Springer-Verlag, 1999.
Yi-Ting Chiang, Ching-Chi Lin, and Hsueh-I Lu. Orderly spanning trees with
applications to graph encoding and graph drawing. In Proc. 12th Symp. Discrete
Algorithms, pages 506-515. ACM and STAM, 2001.

N. Chiba, T. Yamanouchi, and T. Nishizeki. Linear algorithms for convex drawings
of planar graphs. Progress in Graph Theory, pages 153-173, 1984.

Richie Chih-Nan Chuang, Ashim Garg, Xin He, Ming-Yang Kao, and Hsueh-I
Lu. Compact encodings of planar graphs via canonical ordering and multiple
parentheses. In Proc. 25th International Colloquium on Automata, Languages,
and Programming (ICALP’98), volume 1443, pages 118-129, 1998.

U. FéBmeier and M. Kaufmann. Drawing high degree graphs with low bend num-
bers. In F. J. Brandenburg, editor, Graph Drawing (Proc. GD ’95), volume 1027
of Lecture Notes in Computer Science, pages 254—266. Springer-Verlag, 1996.

H. De Fraysseix, J. Pach, and J. Pollack. Small sets supporting fary embeddings
of planar graphs. In 20th Annual ACM Symp. on Theory of Computing, pages
426-433, 1988.

H. De Fraysseix, J. Pach, and J. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10:41-51, 1990.

C. Gutwenger and P. Mutzel. Planar polyline drawings with good angular reso-
lution. In S. Whitesides, editor, Graph Drawing (Proc. GD ’98), volume 1547 of
Lecture Notes in Computer Science, pages 167—182. Springer-Verlag, 1998.

G. Kant. Hexagonal grid drawings. In In Proc 18th Internat. Workshop Graph-
Theoret. Concepts Comput. Sci, 1992.

G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16:4—
32, 1996.

Gunnar W. Klau and Petra Mutzel. Quasi-orthogonal drawing of planar graphs.
Research Report MPI-1-98-1-013, Max-Planck-Institut fiir Informatik, Im Stadt-
wald, D-66123 Saarbriicken, Germany, May 1998.

M.Chrobak and S. Nakano. Minimum-width grid drawings of plane graphs. In
Graph Drawing (Proc. GD ’94), pages 104-110, 1995.

P. Rosenstiehl and R.E. Tarjan. Rectilinear planar layouts and bipolar orientations
of planar graphs. Discrete Comput. Geom., 1:343-353, 1986.

W. Schnyder. Planar graphs and poset dimension. Order, 5:323-343, 1989.

W. Schnyder. Embedding planar graphs on the grid. Proc. 1st ACM-SIAM Symp.
Discrete Algorithms, pages 138-148, 1990.

46 Nicolas Bonichon, Bertrand Le Saéc, and Mohamed Mosbah

Appendix

Proof. (Property 2)

Assume that u is a descendant of v in Ty and wu is an ancestor of v in Tj. Since
vertex v satisfies condition 2 of the realizer’s definition, Py(u) is in the region
delimited by the cycle C' =u 0 v,v 1 u (see Fig. 7). Let ¢ be the common vertex
of C and the path u 1 v;. Assume that ¢ is on the path u 0, v. This is impossible
because this contradicts condition 2 on vertex ¢t. So t can only be on the path
w 1 v. But in this case we have a cycle colored 1:¢ 1 w,u : 1 ¢. This is also
impossible since T7 is a tree. So, if u is a descendant of v in Tgy, then u cannot
be an ancestor of v in 7. A similar reasonning can be made to show that if u is
a descendant of v in Ty, then w cannot be an descendant of v in T7.

u

Fig. 7. Impossible configuration where u is a descendant of v in T and w is an ancestor
of vin Ty.

Proof. (Property 3) Let us consider the three following cases:

— u = Py(v): obvious.

— u = Py (v): Assume that u is before v in the counter-clockwise postordering
of T,. Let w be the nearest common ancestor of u and v in T5. The cycle
C = ((v,u),u 2, w,w 2 v) determines a region of the plan (see Fig. 8 a.).
In order to respect condition 2 of the realizer’s definition for vertex u, Py(u)
must be in this region. Let us consider the vertex ¢ that belongs to u 0, vo
and to the cycle C'. Condition 2 implies that ¢ is on the path u 2, w. So t is
an ancestor of u in T and ¢ is an ancestor of u in T3. This is a contradiction
with Property 2.

— u € Chp(v): Let w be the nearest common ancestor of P;(v) and v in T5. Ver-
tex u must be in the region delimited by the cycle C' = ((v, P (v)), P1(v) 2, w,
w 2 v) (see Fig. 8 b.). In this region, all the vertices are after v in the counter-
clockwise postordering of T5. So u is after v in this order.

P w
CS—o-)
v v, u
. WL
u="P,(v) v
a. ! b.

Fig. 8. a. An impossible configuration where P;(v) is before v in the counter-clockwise
postordering of T». b. A region delimited by C = ((v, Pi(v)), Pi(v) —2 w,w <2 v).

Cycles in Generalized Networks

Franz J. Brandenburg

University of Passau,
94030 Passau, Germany
brandenb@informatik.uni-passau.de

Abstract. Generalized networks specify two parameters for each arc, a
cost and a gain. If z units enter an arc a, then z - g(a) exit. Arcs may
generate or consume flow, i.e., they are gainy or lossy. The objective is a
cheapest path of a unit flow from the source (SGSP) and the single-pair
cheapest path (SPGSP).

There are several types of negative cycles. A lossy cycles decreases the
gain. Then even a negative cost cycle has only bounded cost. A gainy
cycle increases the flow. Then even a positive cost cycle may induce a
total cost of minus infinity.

We solve SGSP by an extension of the Bellman-Ford algorithm. At the
heart of the algorithm is a new and effective cycle detection strategy.
The algorithm solves SGSP in O(nmlogn), which improves to O(nm)
in lossless networks and to O(nlogn + m) in a monotone setting. Our
algorithm is simpler and at least a factor of O(n) faster than the previ-
ous algorithms using linear programming or complex parametric search
and scaling techniques. This improvement is a big step for such a well-
investigated problem.

To the contrary, the single-pair generalized shortest path problem SPGSP
is NP-hard, even with nonnegative costs and uniformly lossy arcs.

1 Introduction

What is the cheapest way to send data through a communication network when
links are charged per unit and each link expands or compresses the data, e.g., by
attaching or erasing routing information? How much does it cost transporting a
unit commodity in a generalized network? In generalized networks each arc has
a gain g(a) which might expand or consume the flow. If & units enter an arc,
then x - g(a) units exit. An arc may be gainy or lossy, and accordingly there are
gainy and lossy cycles. The cost may be positive or negative and is charged per
unit. The objective is a cheapest path of a unit flow from the source.

Generalized network flow problems have been studied intensively in the liter-
ature from the early days of production planning and combinatorial optimization
[8,10, 14,16, 18] to recent research [2,9,12, 21,22, 25]. They arise in several appli-
cation contexts and can be used to model many situations which are impossible
to express as standard network flow problems [2, 8, 10, 14].

Examples of generalized network flow problems usually deal with the loss of a
commodity. Examples are the conversion of currencies, the evaporation of liquids

L. Kucera (Ed.): WG 2002, LNCS 2573, pp. 47-56, 2002.
© Springer-Verlag Berlin Heidelberg 2002

48 Franz J. Brandenburg

and gas or the loss due to damage, theft, or toll. The use of an arc is charged
per unit. It is paid by a fraction of the transported commodity. As a particular
example, suppose there is radioactive waste, waste oil, or rubbish and there is a
toll for the transportation and a fee at a waste disposal site. What are the least
costs to dispose the waste, if you do not hazard the consequences. Radioactive
material dissociates over time, waste oil disposes by an ocean dumping, and you
can put your rubbish into your neighbor’s trash bin or litter it on highways. It
may be cheaper to wait or drive around and get rid of your waste than paying
for the ordinary disposal! The general scenario has losses and gains, such as
stocks, data communication or behavioral sciences, with an increase due to better
quotations, the attachment of routing information or junk to each data package,
or breeding.

The generalized shortest path problem is a special case of the min-cost gen-
eralized network flow problem, where some flow is transported on a single path
without capacities. The amount of flow is the product of the gains of the arcs,
and all nodes except the ends are flow conserving. Most approaches towards a
solution use linear programming techniques (LPs) and exploit the specific prop-
erties of the dual problem as a two-variables-per-inequality problem, which can
be solved by specialized techniques in O(n?mlogn) [1,6,13].

Our focus is on combinatorial algorithms. Goldberg et al. [12] stated in 1991
that no polynomial-time bounds were known for combinatorial algorithms of gen-
eralized maximal flow problems. Ahuja et al. [2] could not bound the number of
iterations of their generalized network simplex algorithm for the generalized min-
cost flow problem. Recently, Oldham [21, 22] investigated the generalized short-
est path problem and presented fully polynomial-time approximation schemes.
Oldham’s algorithm combines a comparison subroutine with a good guess of
the cost of a cheapest path with a scaling technique and has a running time of
O(n?mlogn). Restricted instances with nonnegative costs and flow multipliers
at most one can be solved more efficiently by a variant of Dijkstra’s algorithm,
as discovered by Charnes and Raike [5] and stated as a combinatorial algorithm
by Wayne and Fleischer [9, 25], if the objective is a unit at the target. All these
approaches to the generalized shortest path problem attempt to use the classical
shortest path algorithms by of Dijkstra and Bellman-Ford from the source.

Our approach is ”backwards”. We solve the from-the-source generalized short-
est path problem SGSP from the target. Proceeding backwards has been pro-
posed by Vladimir Batagelj and Patrice Ossona de Mendez at the Dagstuhl
Seminar 98301 ”Graph Algorithms and Applications”, 1998, where the general-
ized shortest path problem has been discussed in an open problem session. By
the backwards approach, an extension of the classical Bellman-Ford algorithm
applies and solves SGSP in O(nmlogn). Our algorithm is even more powerful
and solves SGSP from all nodes.

At the heart of our algorithm is an advanced cycle detection strategy, which
combines Tarjan’s subtree disassembly [3, 19, 24] with a direct subtree test. The
direct subtree test costs a factor of O(logn), which is an improvement over the
O(n) factor for the "walk-to-the-root” and ”subtree-traversal” strategies of [3].

Cycles in Generalized Networks 49

In standard networks the cycle detections can be done in O(1) amortized time,
since the detected cycles are deleted.

There are well-founded specializations of generalized networks. It can be
checked in O(nm) whether or not it has lossy cycles; otherwise it is lossless. In
lossless networks SGSP can be solved in O(nm). If the costs are nonnegative and
all arcs are gainy then SGSP can be solved by a variant of Dijkstra’s algorithm in
O(nlogn+n). For the symmetric to-the-target problem this has been discovered
by Charnes and Raike [5] and has been stated explicitly by Fleischer and Wayne
[9,25]. Hence, generalized shortest path problems are not much harder than
standard shortest path problems.

To the contrary, if cycles are excluded, then the generalized shortest path
problem is NP-hard by a reduction of the Hamilton path problem. Hence, the
single-pair shortest path problem SPGSP is NP-hard. The NP-hardness result
also holds for SPGSP instances with nonnegative costs and lossy arcs with uni-
form gains g < 1 and with negative costs and purely gainy arcs or purely lossy
arcs.

Our NP results increase the list of known infeasible instances of generaliza-
tions of shortest paths and maximum flow problems, such as the longest simple
path [11], the exact path length problem [20], the constraint shortest path prob-
lem [2] and the integer generalized flow problem [2].

2 Generalized Shortest Paths

Let G = (V, A) be a directed graph with n nodes and m arcs. There are two
weighting functions for the arcs, a cost function ¢ : A — R into the reals and a
gain function g : A — R™ into the positive reals. The cost of a path is the sum
of the cost of its arcs. The cost of each arc is ¢(a) per unit of flow. The gain g(a)
of each arc increments or decrements the flow by a certain percentage. If x units
of flow enter an arc a, then x - g(a) units exit. An arc is lossy, if g(a) < 1, and
gainy, if g(a) > 1.

The cost of a path 7 with the arcs (ay,...,a,) is c(r) = Yi_; c(a;)(Ij<;
g(a;)), and an initial flow of k units costs k-c(7). The objective is a cheapest path
with minimal cost. Various applications and solutions of generalized network
problems are described in Chapter 15 in [2].

The generalized shortest paths problem is commonly known as the restricted
generalized uncapacitated transshipment problem. A solution partitions the set
of nodes into feasible and infeasible nodes. A node is infeasible, if it is unreachable
or if it has minus infinite cost. The feasible nodes have bounded cost, and the
cheapest path from a feasible node either reaches the target or ends in a lossy
cycle. These four cases are detected by our algorithm.

3 Lossy and Negative Cycles

At the heart of our algorithm is a cycle detection strategy for cost decreasing
cycles. For efficiency reasons we use an extension of Tarjan’s subtree disassem-

50 Franz J. Brandenburg

bly together with a direct subtree test [19,24]. Other negative cycle detection
strategies are discussed in [3]. With unrestricted costs and gains there are cy-
cles with minus infinite cost. These negative cycles are detected and, as usual,
the nodes of such cycles and beyond are eliminated from further shortest path
computations at O(1) amortized time. As a particularity, there are cheap lossy
cycles. These are the Type III paths of Theorem 2.6 in [12]. If a lossy cycle is
traversed infinitely often it absorbes the flow and operates as a sink.

The cycle detection needs a test whether or not a node is in a particular
subtree of the cheapest path tree. In Tarjan’s subtree disassembly this costs
O(1) amortized time, since the subtree can be destroyed while being traversed.
Here we must preserve the subtree for efficient lossy cycle detections, which
costs a factor of O(logn). This is an improvement over the O(n) factor of the
walk-to-the-root and subtree-traversal strategies of [3].

Before we come to the main algorithm we develop some formulas for the
computation of generalized shortest paths and characterize lossy and negative
cycles.

Let G be a generalized network with the cost and gain functions ¢ and g.
Suppose that a path 7 = 71 o 75 is the concatenation of two subpaths 7 and 5.
Then g(7) = g(71) - 9(72) and ¢(7) = ¢(71) + g(71)c(72).

These equations are used for the analysis of negative cycles and for the solu-
tion of the generalized path problem by our Reverse-Generalized-Bellman-Ford
algorithm. They define a left-distributive closed semi-ring, which is not right-
distributive, as stated by Oldham [21,22]. Since the gains are positive, we can
conclude that the suffix of a cheapest path is a cheapest path. This does not
necessarily hold for prefixes.

Consider bad cycles which decrease the cost or the gain. A cycle is lossy, if
its gain is less than one. It is a megative cycle, if the cost is negative.

Let v be a cycle at some node v with cost ¢(y) and suppose that the target
t is reachable from v by a path 7 with cost ¢(7) and gain g(7). v decreases the
cost of a unit flow from v, if ¢(yo71) < ¢(7). Since ¢(yo 1) = () + g(7)c(7), this
is equivalent to ¢(y) < ¢(7)(1 — g(v)). This formula gives raise to cycles with
bounded and unbounded costs.

First consider the case with bounded cost. A lossy cycle v at v with 0 <
g(7) < 1 operates as a flow absorbing sink. Its cost is Y .0, ¢(v)g(7)" = ¢(v)/(1—
g(7)). Running through ~ decreases the cost of transporting one unit from v to
the target ¢ if and only if ¢(y) < ¢(7)(1 — g(7)). Then the path 7 from v to ¢ is
replaced by the infinite cycle v at v and the cost ¢(7) of v is replaced by the limit
¢(7)/(1 = g(v)). Hence, it may be cheaper to absorb the flow than transporting
it to the destination. The algorithm detects this situation and settles it by a new
arc (v, t) with the label lossy and the cost ¢(y)/(1 — g(7)). A cheapest path is a
path of Type I or Type III according to [12].

Lemma 1. If 7 is the cheapest path with a minimal set of arcs from a feasible
node v, then T is a simple path from v to the target t or T = o oy, where o is
a simple path from v to some node x, 7y is a lossy cycle at x and x is the only
common node of o o~y.

Cycles in Generalized Networks 51

Proof. Assume the contrary, and let x be the first node that repeats on 7 and
has two distinct successors. Then 7 = (v1,...,Vp,...,,...), Where v = vy,
T = vp = vq and vp41 # Vg4+1. The subpath from v, to v, is a cycle v at « with
cost ¢(7) and gain g(y). For each node v; of 7 let ¢(v;) be the cost of the suffix of
7 from v;. ¢(v;) is minimal, since the suffix of a cheapest path is a cheapest path.
Then c(vy) = ¢(v)/(1— g(7)); otherwise the deletion of «y or using v twice yields
a cheaper path. Then the deletion of +y yields a shorter path (v1,...,vp—-1,7,--.)
with the same cost and a subset of the set of arcs of 7, and the number of nodes
with two distinct successors is decreased by one. By induction all nodes with two
distinct successors are deleted from 7. Then 7 is a simple path or 7 is a simple
path and a lossy cycle.

Next, we investigate cycles with minus infinite cost. Such nodes define an
infeasible instance and are deleted immediately.

Lemma 2. Let vy be a cycle at some node v and let T be a path from v. v induces
minus infinite cost at v if and only if

(i) 9(v) = 1Le(y) <Oand ¢(T)(g9(7) — 1) < |e(v)]
(i) or g(v) > 1, ¢(7) < 0 and c(y) < [e(7)[(9(7) = 1)

Proof. After i rounds of v the cost at v is c¢(y* o 7) = Zi‘:o c(V)g(y)?! +
c(7)g(y)**1. Then ¢(y¢ o 7) — —oc if and only if (i) or (ii) hold true.

In the first case, the cycle itself decreases the cost and this decrease is not
consumed by the path 7 transporting g(v)**! units. In the second case, the path
7 has negative cost and the cycle increases the gain faster than its cost. Observe,
that a positive cost cycle may give raise to minus infinite total cost.

4 The Reverse-Generalized-Bellman-Ford Algorithm

Our algorithm for SGSP is the Reverse-Generalized-Bellman-Ford algorithm.
The algorithm runs twice. In the first run it computes the cheapest paths tree of
simple paths to the target and detects the cheapest lossy cycles. This detection
costs an extra factor of O(logn) for a direct subtree test. The output are the
unreachable nodes and cost estimates for the other nodes, which are translated
into new arcs directly to the target. In O(nm) the second run completes the
computation of a cheapest path from each node and its cost.

For efficiency reasons we use an extension of Tarjan’s subtree disassembly [24]
as an immediate cycle detection strategy. Tarjan’s variant has been described
in detail in [19], Section 7.5.9. It performs very well in experimental evaluations
[3,4,19]. However, the subtree disassembly destroys subtrees at O(1) amortized
cost. Subtree disassembly is inadaequate for lossy cycles, since the nodes of such
cycles must be reused, if they belong to a cheaper lossy cycle. A deletion and
a reconstruction would cause an O(n) delay. This situation is illustrated by a
graph with a node v such that the cheapest path tree T looks like a palm tree.
T has a path of length n/4 from v to some node z, and = branches to n/4 nodes

52 Franz J. Brandenburg

Wi, ..., Wy/4 such that for 1 < < n/4, w; has a back-arc to v and the cycle
from v through w; is a lossy cycle with lower cost than the lossy cycle through
w;—1. Our algorithm performs an explicit cycle test in O(logn) time and tests
whether or not a node w is in a subtree rooted at another node v.

The input of the Reverse-Generalized-Bellman-Ford algorithm is a directed
graph G = (V, A), a target ¢, and for each arc a cost ¢(a) and a gain g(a).

The nodes of G are stored in a node array and are accessed directly in O(1).
Each node has its list of incoming arcs of G, which is scanned sequentially, and a
pointer to its copy in T', and reverse. The computed costs and gains are recorded
by ¢(v), g(v), and ccycle(v)~

The main data structure is a cheapest path tree T' consisting of the nodes v
of G. The arcs of T are defined by the successor relation while relaxing arcs of
G. T is an in-tree rooted at the target . Moreover, T is traversed in preorder
and in postorder, and the pre- and postorder numbers pre(v) and post(v) of
the nodes v of T are stored in balanced trees with O(logn) for the operations
search, insert, and delete-subtree. Delete-subtree deletes the preorder (postorder)
numbers of all nodes of a subtree of T. These are consecutive. A 2-3-4 tree
guarantees O(logn) time for all operations using split and join operations for
delete-subtree, see [7].

The pre- and postorder numbers are used for subtree tests w € T'(v), where
T'(v) is the subtree of T rooted at v. For nodes v,w € T, w € T'(v) if and only
if pre(v) < pre(w) and post(v) > post(w). All other operations can be done in
O(1) time. Recall that in Tarjan’s subtree disassembly w € T'(v) is checked in a
straight-forward manner in O(|T'(v)|) while traversing and deleting 7T'(v). This
amortizes to O(1), since T'(v) is destroyed.

The Reverse-Generalized-Bellman-Ford algorithm operates in phases. In the
k-th phase it visits the nodes of G at distance k to the target. The distance is the
number of arcs of a simple path and is used in the correctness proof. The nodes
in the k-th phase are the current leaves of T'. They are stored in a FIFO-queue
@, as described in [19]. The algorithm inspects the incoming arcs of these nodes
for a relaxation and an improvement of the cost of the other endnode. It starts
with the target ¢ in the 0-th phase.

Reverse-Generalized-Bellman-Ford(G, t, ¢, g)
Input: a generalized graph G = (V, A, ¢, g) and a target ¢
Output: the cheapest path tree T, and parameters for the nodes.
1 for each v € V do
v = nil; ceyele(v) 00
T—1tQ «—t
c(t) < 0; g(t) «— 1
while @ # () do
w « extract-first(Q)
for each v € V with (v,w) € Ado // Relax(v,w, ¢, g)
if ¢(v) > ¢(v,w) + g(v, w)c(w) then
if w ¢ T(v) then // no cycle at v, update v
0 delete the nodes of T'(v) from T and from Q

= ©O© 00 3O Ui W N

Cycles in Generalized Networks 53

1 (v) — e(v,w) + g(v, w)e(w)

12 g(v) < g(v,w)g(w)

13 T—v;Q«—v // re-insert(v)

14 else // w e T(v) and a cycle v
15 () = (v, w) + g(v,w)(c(w) — c(v)g(w)/g(v))

16 9(7) = g(v,w)g(w)/g(v)

17 if g(v) < 1 then // lossy or negative cycles
18 Ceycle (v) « min{coycle (v),e(v)/ (1 —g(v)}
19 else

20 delete v and all nodes which reach v in G

After the first run all nodes of G with v = nil are deleted. These nodes
are unreachable; there is no path from v to the target ¢. The nodes with a
computed cost of minus infinity are deleted too; more such nodes may be de-
tected in the second run. For each remaining node v add an arc (v,t) with cost
min{ceycle(v), ¢(v)} and gain one. Moreover, if ceye(v) < c(v) then label the
arc lossy. Hence, the nodes are initialized with the computed cost of the first run.
Then the Reverse-Generalized-Bellman-Ford algorithm is run on the so modified
graph. It can be simplified to run in O(nm), since there are no lossy cycles and
the tests g(y) < 1 in line 17 are false.

Theorem 1. The Reverse-Generalized-Bellman-Ford algorithm solves SGSP
from all nodes in O(nmlogn).

Proof. The correctness of the Reverse-Generalized-Bellman-Ford algorithm is
proved as for Tarjan’s variant of the Bellman-Ford algorithm [19, 24]. The num-
ber of arcs of a simple path from a node v to the target is used as the inductive
parameter, and corresponds to the phases of the algorithm.

For each node v there is a path from v to the target t if and only if v # nil.
Secondly, the nodes with minus infinite cost are detected in line 19 in either run
of the algorithm. Finally, let v be a feasible node of G with —oco < ¢(v) < 400,
and let 7 = (v1,...,v,) be a cheapest path from v with minimal length.

If 7 is a simple path to the target ¢t of G, then the path is computed in the
first run. Otherwise, 7 = ¢ o 7y consists of a simple path and a lossy cycle at
a node x, as shown in Lemma 1. Then there is a node u of v such that in the
first run the lossy cycle is detected at u and ceycle(u) = ¢(7)/(1 — g(7)) is the
cost of the cycle v at u. Using this value the second run skips lossy cycles and
computes the costs of the cheapest paths from each feasible node. Again this is
an inductive argument on the length.

Each run of the Reverse-Generalized-Bellman-Ford algorithm takes at most
n — 1 phases. In each phase at most O(m) arcs are visited and relaxed, and
all but the subtree tests in line 9 take O(1) time. In the first run, these tests
are done in O(log(|T)), storing the pre- and postorder numbers of the nodes in
2-3-4 trees. In the second run the costs are amortized O(1) as in the standard
Bellman-Ford algorithm in [19, 24].

54 Franz J. Brandenburg

Theorem 2. It can be checked in O(nm) time whether or not a generalized
network has lossy cycles, and in lossless networks SGSP can be solved in O(nm).

For the single-source problem SGSP care must be taken that the Reverse-
Generalized-Bellman-Ford algorithm visits all lossy cycles and all negative cycles
that are reachable from the source. This can be achieved by connecting all nodes
or representatives of the cycles to the target by new arcs with appropriately high
costs. This pre-processing takes at most O(nm) using the standard Bellman-Ford
algorithm from the source and the distance functions — log g(a) and log g(a) for
the detection of lossy and negative cycles, respectively.

Theorem 3. The single-source generalized shortest path problem SGSP can be
solved in O(nmlogn) and in O(nm) in lossless networks.

Standard shortest path problems with nonnegative arc lenghts can be solved
by Dijkstra’s algorithm in O(nlogn + m), see [7]. This can be extended to
monotone instances of the generalized shortest path problem with nonnegative
costs and gainy arcs and running Dijkstra’s algorithm backwards from the target
with the distance function ¢(v, w) + g(v, w)c(w).

Theorem 4. In generalized networks with nonnegative costs and gainy arcs
SGSP can be solved in O(nlogn + m).

To summarize, the solution of the generalized shortest path problem SGSP
is only a O(logn) factor slower than the solution of the standard shortest paths
problem by the Bellman-Ford algorithm. Our algorithm improves the previously
known algorithms at least by a factor of O(n). This improvement is a major
(and probably the final) step in the long history of this problem.

5 Single-Pair Generalized Shortest Paths

The cheapest path from a node ends at the target or at a lossy cycle, where
the flow is consumed. The single-pair generalized shortest path problem SPGSP
excludes cycles and all flow reaches the target. Recall that the amount of flow
may increase or decrease due to the gains of the used arcs. The exclusion of cycles
completely changes the character and the complexity of generalized shortest path
problems and relates them to the Hamilton path problem.

Theorem 5. The single-pair generalized shortest path problem from the source
is NP-hard. It remains NP-hard, even (1) if the costs are nonnegative and all
arcs are uniformly lossy, e.g., g(a) = 0.5, or (2) if the costs are negative and all
arcs are purely lossy (purely gainy).

Proof. We reduce the directed Hamilton path problem. Let G be an instance of
the Hamilton path problem with distinguished nodes s and ¢ for the source and
the target. For (1) let all arcs have unit cost and gain 0.5. Add a new target t
and an arc (t,tA) with cost 27*! and gain 0.5. Then G has a Hamilton path from

Cycles in Generalized Networks 55

s to t if and only if ¢(s) = 2 — 1/2"~1 + 4 is the cost of the cheapest path from
s to t excluding lossy cycles. Notice that each lossy cycle has cost two. For (2)
let ¢(a) = —1 and g(a) = g for some fixed g > 0 for each arc a of G. Then a
Hamilton path induces minimal cost.

6 Conclusion

We have considered generalized shortest path problems with two parameters
on the arcs. Surprisingly, if the gains multiply and accumulate progressively, the
generalized version can be solved almost efficiently as the standard shortest path
problems, if lossy cyles are allowed. However, the single-pair problem is NP-hard.

There is a related version of generalized shortest path and network flow prob-
lems, which has been discarded so far: additive gains. Additive gains describe a
fixed servic charge for using an arc. This has lots of applications. Nevertheless
we could not find any reference to algorithmic solutions of this problem. The
additive generalized shortest path problem is not continuous, and thus not di-
rectly solvable by LP techniques. Its complexity is open. However, if the cost
and gain of the arcs are non-negative and the gains are integral then there is a
pseudo-polynomial time solution by a dynamic programming approach.

Acknowledgement

I wish to thank Arunabha Sen for bringing the problem of generalized paths
to my attention and pointing out the application in communication networks,
and to Vladimir Batagelj and Patrice Ossona de Mendez for the ”backwards”
strategy, and to Christian Bachmaier, Michael Forster, Andreas Pick, Marcus
Raitner and Katja Strecker for intensive discussions.

References

1. I. Adler and S. Cosares, A strongly polynomial algorithm for a special class of linear
programs, Oper. Res. 39 (1991), 955-960.

2. R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows, Prentice Hall, Engle-
wood Cliffs, 1993.

3. B.V. Cherkassky and A.V. Goldberg, Negative-cycle detection algorithms, Math.
Program. 85 (1999), 277 — 311.

4. B.V. Cherkassky, A.V. Goldberg and T. Radzik, Shortest paths algorithms: theory
and experimental evaluation, Math. Program. 73 (1996), 129 — 174.

5. A. Charnes and W.M. Raike, One-pass algorithms for some generalized network
problems, Oper. Res. 14 (1962), 914-924.

6. E. Cohen and N. Megiddo, Improved algorithms for linear inequalities with two
variables per inequality, STAM J. Comput. 23 (1994), 1313 — 1347.

7. T.H. Cormen, C. E. Leiserson and R.L. Rivest, Introduction to Algorithms, MIT
Press, Cambridge, 1990.

56

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

Franz J. Brandenburg

G.B. Dantzig, Linear Programming and Extensions, Princeton Univ. Press, Prince-
ton, NJ (1963).

L.K. Fleischer and K.D. Wayne, Fast and simple approximation schemes for gen-
eralized flow Math. Program. 91 (2002), 215 — 238.

L.R. Ford Jr. and D.R. Fulkerson, Flows in Networks, Princeton Univ. Press,
Princeton, NJ (1962).

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness, W.H. Freeman, San Francisco, 1979.

A. V. Goldberg, S. A. Plotkin and E. Tardos, Combinatorial Algorithms for the
generalized circulation problem, Math. Oper. Res., 16 (1991), 351 — 381.

D.S. Hochbaum and J. Naor, Simple and fast algorithms for linear and integer
programs with two variables per inequality, SIAM J. Comput. 23 (1994), 1179 —
1192.

L.V. Kantorovich, Mathematical methods of organizing and planning production,
Publication House of the Leningrad State University, (1939), 68. Translated in
Management Science, 6 (1960), 366 — 422.

N. Karmarkar, A New Polynomial-Time Algorithm for Linear Programming, Com-
binatorica 4 (1984), 373 — 395.

W.S. Jewell, Optimal flow trough networks with gains, Oper. Res. 10 (1962), 476
—499.

L. G. Khachian, Polynomial Algorithms in Linear Programming, Zhurnal Vychis-
litelnoi Matematiki i Matematicheskoi Fiziki 20 (1980), 53 — 72.

E.L. Lawler, Combinatorial Optimization: Networks and Matroids Holt, Rinehard,
and Winston, New York, (1976)

K. Mehlhorn and S. Ndher, LEDA A Platform for Combinatorial and Geometric
Computing Cambridge University Press, Cambridge, (1999).

M. Nykénen and E. Ukkonen, The exact path length problem, J. Algorithms, 42
(2002), 41 — 53.

J.D. Oldham, Combinatorial approzimation algorithms for generalized flow prob-
lems, Proc. Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, (1999),
704 — 714.

J.D. Oldham, Combinatorial approzimation algorithms for generalized flow prob-
lems, J. Algorithms, 38 (2001), 135 — 168.

A. S. Tanenbaum, Computer Networks, Prentice Hall, Englewood Cliffs, 1996.
R.E. Tarjan, Data Structures and Network Algorithms Society for Industrial and
Applied Mathematics, Philadelphia, 1983.

K.D. Wayne and L. Fleischer, Faster approximation algorithms for generalized flow,
Proc. of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, (1999),
981 — 982.

New Graph Classes of Bounded Clique-Width*

Andreas Brandstidt!, Feodor F. Dragan?,
Hoang-Oanh Le!, and Raffaele Mosca®

! Institut fiir Theoretische Informatik, Fachbereich Informatik,
Universitat Rostock, 18051 Rostock, Germany
{ab,hoang-oanh.le}@informatik.uni-rostock.de
2 Department of Computer Science, Kent State University, Kent, Ohio 44242, USA
dragan@cs.kent.edu
3 Via Latina 7, Pescara 65121 Italy
ciufolini@tiscalinet.it

Abstract. Clique-width of graphs is a major new concept with respect
to efficiency of graph algorithms; it is known that every algorithmic
problem expressible in a certain kind of Monadic Second Order Logic
called LinEMSOL(m,) by Courcelle, Makowsky and Rotics, is solvable
in linear time on any graph class with bounded clique-width for which
a k-expression for the input graph can be constructed in linear time.
The concept of clique-width extends the one of treewidth since bounded
treewidth implies bounded clique-width.

We give a complete classification of all graph classes defined by forbidden
one-vertex extensions of the Py with respect to their clique-width. Our
results extend and improve recently published structural and complexity
results in a systematic way.

1 Introduction

Recently, in connection with graph grammars, Courcelle, Engelfriet and Rozen-
berg in [15] introduced the concept of clique-width of a graph which has attracted
much attention due to the fact that, in [16], Courcelle, Makowsky and Rotics
have shown that every graph problem definable in LinEMSOL(7, 1) (a variant
of Monadic Second Order Logic) is linear-time solvable on graphs with bounded
clique-width if a k-expression describing the input graph is given. The problems
Vertex Cover, Maximum Weight Stable Set (MWS), Maximum Weight Clique,
Steiner Tree and Domination are examples of LinEMSOL(7y 1) definable prob-
lems. Note that every class of bounded treewidth has bounded clique-width as
well (see [17].

It is known that the class of Py-free graphs (also called cographs) is exactly
the class of graphs having clique-width at most 2, and a 2-expression can be
found in linear time along the cotree of a cograph. Due to the basic importance
of cographs, it is of interest to consider graph classes defined by forbidden one-
vertex extensions of a P4 - see Figure 1 - which are natural generalizations of

* Research of the first author partially supported by Kent State University, Kent, Ohio,
research of the third and fourth author partially supported by German Research
Community DFG Br 1446-4/1

L. Kucera (Ed.): WG 2002, LNCS 2573, pp. 57-67, 2002.
© Springer-Verlag Berlin Heidelberg 2002

58 Andreas Brandstadt et al.

cographs. The aim of this paper is to investigate the structure and to classify
the clique-width of all these graph classes in a systematic way. This is also
motivated by known examples such as the (Ps,co-Ps,bull)-free graphs studied by
Fouquet in [20] (see Theorem 16) and the (Ps,co-Ps,chair)-free graphs studied by
Fouquet and Giakoumakis in [21] (see Theorem 13). Moreover, there are papers
such as [29, 34] dealing with (chair,co-P,gem)-free graphs and [24] dealing with
(Ps,P,gem)-free graphs where it is shown that the MWS problem can be solved
in polynomial time on these classes. Our results imply bounded clique-width
and linear time for the MWS problem and any other LinEMSOL(7 1) definable
problem for these classes as well as for many other examples. This also continues
research done in [2-5,8-11].

Due to space limitations, all proofs in this extended abstract are omitted;
they are contained in the full version of the paper.

Throughout this paper, let G = (V, E) be a finite undirected graph without
self-loops and multiple edges and let |V| = n, |E| = m. The edges between two
disjoint vertex sets X,Y form a join, denoted by @ (co-join, denoted by @) if
forall pairsxz € X,y €Y, zy € E (zy ¢ E) holds. A vertex z € V distinguishes
vertices z,y € V if zx € F and zy ¢ E. A vertex set M C V is a module if no
vertex from V'\ M distinguishes two vertices from M, i.e., every vertex v € V\ M
has either a join or a co-join to M. A module is trivial if it is either the empty
set, a one-vertex set or the entire vertex set V. Nontrivial modules are called
homogeneous sets. A graph is prime if it contains only trivial modules. The notion
of modules plays a crucial role in the modular (or substitution) decomposition
of graphs (and other discrete structures) which is of basic importance for the
design of efficient algorithms - see e.g. [32] for modular decomposition of discrete
structures and its algorithmic use.

For U C V let G(U) denote the subgraph of G induced by U. Throughout
this paper, all subgraphs are understood to be induced subgraphs. A vertex
set U C V is stable (or independent) in G if the vertices in U are pairwise
nonadjacent. Let co-G = G = (V, E) denote the complement graph of G. A
vertex set U C V is a clique in G if U is a stable set in G.

For k > 1, let Py denote a chordless path with k vertices and k — 1 edges,
and for k > 3, let C) denote a chordless cycle with k vertices and k edges. A
hole is a Ck, k > 5. Note that the Py is the smallest nontrivial prime graph and
the complement of a P, is a P, itself.

See Figure 1 for the definition of the chair, P, bull, gem and their comple-
ments. Note that the complement of a bull is a bull itself. The diamond is the
K4 — e, i.e., a four vertex clique minus one edge.

Let F denote a set of graphs. A graph G is F-free if none of its induced
subgraphs is in F. There are many papers on the structure and algorithmic
use of prime F-free graphs for F being a set of P, extensions; see e.g. [20-22,
25,26,28,2,4,3,11]. A graph is a split graph if G is partitionable into a clique
and a stable set. It is known [19] that G is a split graph if and only if it is a
(2K5,C4,Cs)-free graph.

New Graph Classes of Bounded Clique-Width 59

(1) co-gem @) Ps (3) chair
(4) co-P (5) P 6) Cs
(7) bull (8) co-chair (9) house (co-P5)

(10) gem

W

Fig. 1. All one-vertex extensions of a Py

In what follows, we need the following classes of (prime) graphs:

— (G is a thin spider if its vertex set is partitionable into a clique C' and a stable
set S with |C] = |S] or |C| = |S] + 1 such that the edges between C and S
are a matching and at most one vertex in C' is not covered by the matching
(an unmatched vertex is called the head of the spider).

— A graph is a thick spider if it is the complement of a thin spider.

— G is matched co-bipartite if its vertex set is partitionable into two cliques
Cy,Cy with |Cy] = |Cs| or |Cy] = |Cs| — 1 such that the edges between C
and C5 are a matching and at most one vertex in C; and C5 is not covered
by the matching.

— G is co-matched bipartite if G is the complement graph of a matched co-
bipartite graph.

— A bipartite graph B = (X,Y, E) is a chain graph [33] if for all vertices
from X (Y), their neighborhoods in Y (X) are linearly ordered. If moreover,
|X| = |Y] and for all vertices from X (Y), their neighborhoods in ¥V (X)
have size 1,2,...,|Y| (1,2,...,]|X]) then these graphs are prime.

— G is a co-bipartite chain graph if it is the complement of a bipartite chain
graph.

— G is an enhanced co-bipartite chain graph if it is partitionable into a co-
bipartite chain graph with cliques C7, Cy and three additional vertices a, b, ¢
(a and ¢ optional) such that N(a) = Cy U Cy, N(b) = Cy, and N(c) = Cy,
and there are no other edges in G.

— G is an enhanced bipartite chain graph if it is the complement of an enhanced
co-bipartite chain graph.

60 Andreas Brandstadt et al.

2 Cographs, Clique-Width and Expressibility of Problems

The P,-free graphs (also called cographs) play a fundamental role in graph de-
composition; see [14] for linear time recognition of cographs, [12-14] for more
information on Py-free graphs and [7] for a survey on this graph class and related
ones. For a cograph G, either G or its complement is disconnected, and the cotree
of G expresses how the graph is recursively generated from single vertices by re-
peatedly applying join and co-join operations. The cotree representation allows
to solve various NP-hard problems in linear time when restricted to cographs,
among them the problems Maximum Weight Stable Set and Maximum Weight
Clique. Note that the cographs are those graphs whose modular decomposition
tree contains only join and co-join nodes as internal nodes.

Based on the following operations on vertex-labeled graphs, namely

— creation of a vertex labeled by integer [,

— disjoint union (i.e., co-join),

— join between all vertices with label ¢ and all vertices with label j for i # j,
and

— relabeling vertices of label i by label 7,

the notion of clique-width cwd(G) of a graph G is defined in [15] as the
minimum number of labels which are necessary to generate G by using these
operations. Cographs are exactly the graphs whose clique-width is at most two.

A k-expression for a graph G of clique-width &k describes the recursive gen-
eration of G by repeatedly applying these operations using at most & different
labels.

Proposition 1 ([16,17]) The clique-width of a graph G is the mazimum of
the clique-width of its prime subgraphs, and the clique-width of the complement
graph G is at most twice the clique-width of G.

Recently, the concept of clique-width of a graph attracted much attention
since it gives a unified approach to the efficient solution of many algorithmic
graph problems on graph classes of bounded clique-width via the expressibility
of the problems in terms of logical expressions.

In [16], it is shown that every problem definable in a certain kind of Monadic
Second Order Logic, called LinEMSOL (1 1,) in [16], is linear-time solvable on
any graph class with bounded clique-width for which a k-expression can be
constructed in linear time.

Hereby, in [16], it is mentioned that, roughly speaking, MSOL(7) is Monadic
Second Order Logic with quantification over subsets of vertices but not of edges;
MSOL(7y,1) is the restriction of MSOL(7;) with the addition of labels added
to the vertices, and LinEMSOL(7y 1) is the restriction of MSOL(7y,1,) which
allows to search for sets of vertices which are optimal with respect to some
linear evaluation functions.

The problems Vertex Cover, Maximum Weight Stable Set, Maximum Weight
Clique, Steiner Tree and Domination are examples of LInEMSOL(7 1) definable
problems.

New Graph Classes of Bounded Clique-Width 61

Theorem 1 ([16]) LetC be a class of graphs of clique-width at most k such that
there is an O(f(|E|,|V|)) algorithm, which for each graph G in C, constructs a
k-expression defining it. Then for every LinEMSOL(m 1) problem on C, there
is an algorithm solving this problem in time O(f(|E|,|V])).

As an application, it was shown in [16] that Ps-sparse graphs and some
variants of them have bounded clique-width. Hereby, a graph is P,-sparse if no
set of five vertices in G induces at least two distinct Py’s [25,26]. From the
definition, it is obvious that a graph is Ps-sparse if and only if it contains no Cs,
Ps, P5, P, P, chair, co-chair (see Figure 1). See [11] for a systematic investigation
of superclasses of Pj-sparse graphs.

In [25], it was shown that the prime Pj-sparse graphs are the spiders (which
were called turtles in [25]), and according to Proposition 1 and the fact that the
clique-width of thin spiders is at most 4 (which is easy to see), it follows that
P,-sparse graphs have bounded clique-width.

Recently, variants of P,-sparse graphs attracted much attention because of
their applications in areas such as scheduling, clustering and computational se-
mantics. Moreover, all these classes are natural generalizations of cographs.

It is straightforward to see that the clique-width of matched co-bipartite (co-
matched bipartite) graphs, bipartite chain (co-bipartite chain) graphs as well as
the clique-width of induced paths and cycles is at most 4, and corresponding
k-expressions can be determined in linear time. Distance-hereditary graphs are
the (house,hole,domino,gem)-free graphs - see [1, 7]. In [23], Golumbic and Rotics
have shown that their clique width is at most 3 and corresponding k-expressions
can be determined in linear time.

3 Further Tools

Lemma 1 ([27]) If a prime graph contains an induced Cy (induced 2K5) then
it contains an induced co-Ps or A or domino (induced Ps or co-A or co-domino).

A domino co-A co-domino

Fig. 2. The A and domino and their complements

The proof of Lemma 1 can be extended in a straightforward way to the case
of a diamond instead of a Cy4. For this purpose let us call d-A the graph resulting
from an A graph by adding an additional diagonal edge in the Cy4, and d-domino

62 Andreas Brandstadt et al.

d-A d-domino co-d-A co-d-domino

Fig. 3. The d-A and d-domino and their complements

the graph resulting from a domino graph by adding an additional diagonal edge
in one of the Cy’s - see Figure 3.

Lemma 2 If a prime graph contains an induced diamond (co-diamond) then it
contains an induced gem or d-A or d-domino (co-gem or co-d-A or co-d-domino).

Theorem 2 ([2]) Prime (Ps,diamond)-free graphs are either matched co-
bipartite or a thin spider or an enhanced bipartite chain graph or have at most
9 vertices.

For a structure description of (Ps,gem)-free graphs see [4] where the following
Lemma is shown:

Lemma 3 ([4]) Prime (Ps,gem)-free graphs containing a co-domino are
matched co-bipartite.

Theorem 3 ([9]) If G is a prime (diamond,co-diamond)-free graph then G or
G is either a matched co-bipartite graph or G has at most 9 vertices.

Lemma 4 ([3]) Prime chair-free bipartite graphs are co-matched bipartite, a
path, or a cycle.

Lemma 5 ([10]) Prime chair-free split graphs are spiders.

Lemma 6 ([3,18]) Prime (bull, chair)-free graphs containing a co-diamond
are either co-matched bipartite or a cycle or a path.

Lemma 7 Prime co-gem-free bipartite graphs are co-matched bipartite.

Lemma 8 Prime (co-diamond,gem)-free graphs containing a diamond have at
most 11 vertices.

4 Structure and Clique-Width Results

Figure 4 contains all combinations of three forbidden P, extensions (enumerated
according to Figure 1). Each class together with its complement class occurs
only once; we take the lexicographically smaller class; for example, the (Ps,co-
Ps,gem)-free graphs are the (2,9,10)-free graphs, and its complement class is the
class of (Ps,co-Ps,co-gem)-free graphs, i.e., the (1,2,9)-free graphs; in Figure 4,
only the class (1,2,9) occurs.

New Graph Classes of Bounded Clique-Width 63

123 124 || 125 126 | 127 || 128 129 || 1210
- - - — - —~ - -
134 || 135 136 137 I 138 || 139 || 1310 || 145
- - - - - + - -
146 147 I 1438 149 || 1410 ff 156 Y| 157 158
- — - + - —~ - +
159 167 || 168 169 || 1610] 178 179 || 1710
+ - - + - + + -
189 || 234 || 235 || 236 || 237 || 238 239 || 245
- — — - — — + —
246 || 247 || 248 || 249 || 256 || 257 258 || 267
— — —_ — — — _l’_ —
268 || 269 1 278 || 279 || 345 || 346 347 || 348
— - + - - - - -
356 357 367 || 368 378 || 456 || 457 467
_ _ _ _ + _ _ —

Fig. 4. All combinations of three forbidden P; extensions; + (—) denotes bounded
(unbounded) clique-width

Theorem 4 ((1,2,9)) If G is a prime (Ps,co-Ps,gem)-free graph then G is
distance-hereditary or a Cs.

The subsequent Theorems 5 and 6 are a simple consequence of Lemma 2.

Theorem 5 ((1,2,10),(1,4,10)) IfG is a prime (Ps,gem,co-gem)-free or (gem,
co-P, co-gem)-free graph then G is (diamond,co-diamond)-free.

Theorem 6 ((1,3,9),(1,7,9),(1,8,9)) If G is a prime (Ps,gem,co-chair)-free
or (Ps,gem,bull)-free or (Ps,gem,chair)-free graph then G is (Ps,diamond)-free.

Thus, the structure of the classes considered in Theorems 5 and 6 is described
in Theorems 2, 3 respectively.

Theorem 7 ((1,3,10)) If G is a prime (co-gem,chair,gem)-free graph then G
or G is a matched co-bipartite graph or G has at most 11 vertices.

64 Andreas Brandstadt et al.

Theorem 8 ((1,4,9)) If G is a prime (Ps,P,gem)-free graph then G is a
matched co-bipartite graph or a distance-hereditary graph or a Cs .

Theorem 9 ((1,5,8), [8]) If G is a prime (chair, co-P, gem)-free graph then
G fulfills one of the following conditions:

(1) G is an induced path Py, k > 4, or an induced cycle Cy, k > 5;
it) G is a thin spider;

(#i1) G is a co-matched bipartite graph;

(tv) G has at most 11 vertices.

The next theorem is partially based on the structure of (Ps, gem)-free graphs
described in [4]:

Theorem 10 ([5]) The clique width of (Ps, gem)-free graphs is at most 9.

Thus, according to Theorem 10, the classes (1,5,9) and (1,6,9) have bounded
clique-width as well; however, their structure is more complicated than the pre-
vious examples and we do not know any linear time algorithm for determining
k-expressions for these graphs.

Theorem 11 ([6]) The clique-width of (gem,co-gem)-free graphs is at most 24.

The proof of Theorem 11 is technically very involved and does not give any
simpler structure description for the subclasses (1,6,10), (1,7,10), (1,6,7,10); we
do not know any linear time algorithm for determining k-expressions for these
graphs.

Theorem 12 ((1,7,8)) If G is a prime (bull,chair,gem)-free graph then G ful-
fills one of the following conditions:

(1) G org is an induced path Py, k > 4, or an induced cycle Cy, k > 5;
(it) G or G is a co-matched bipartite graph;
(#i1) G has at most 11 vertices.

Theorem 13 ((2,3,9), [21]) If G is a prime (Ps,Ps,chair)-free graph then G
is either a co-bipartite chain graph or a spider or Cs.

Theorem 14 ((2,5,8), [11]) If G is a prime (chair,co-P,house)-free graph then
G fulfills one of the following conditions:

(i) G is an induced path Py, k > 4, or an induced cycle Cy, k > 5;
(it) G is a co-matched bipartite graph;
(791) G is a spider.

Theorem 15 ((2,7,8), [3]) If G is a prime (Ps,bull,chair)-free graph then G
is either a co-matched bipartite graph or an induced path or cycle or G is
(Ps,diamond)-free.

New Graph Classes of Bounded Clique-Width 65

<D

@

Fig. 5. Essential classes for all combinations of forbidden 1-vertex P, extensions; +
(—) denotes bounded (unbounded) clique-width

Theorem 16 ((2,7,9), [20]) If G is a prime (Ps,Ps,bull)-free graph then G or
G 1is a bipartite chain graph or a Cs.

Theorem 17 ((3,7,8), [3]) If G is a prime (bull,chair,co-chair)-free graph then
G or G is either a co-matched bipartite graph or an induced path or cycle.

Corollary 1 Every LinEMSOL(11,1,) definable problem is solvable in linear time
on all graph classes of bounded clique-width (i.e. not indicated with — in Fig-
ure 4), except the classes (1,5,9), (1,6,9), (1,6,10), (1,7,10), (1,6,7,10).

Makowsky and Rotics have shown in [31] that the following grid types have
unbounded clique-width:

— the F, grid (whose complements are (1,2,3,4,6,8)-free);
— the H,, , grid (whose complements are (1,2,3,4,5,6,7)-free)

Moreover, they show that split graphs have unbounded clique width. This
implies unbounded clique-width for all classes with — in Figure 4 and in Figure 5.

Let F denote the 10 one-vertex extensions of the P, (see Figure 1). For
F' C F, there are 1024 classes of F’'-free graphs. Figure 5 shows all inclusion-
minimal classes of unbounded clique-width and all inclusion-maximal classes of
bounded clique-width. As before, we consider the class of F’-free graphs together
with its complement class, the co-F'-free graphs, and mention only the lexico-
graphically smaller class. Note that any subclass of bounded clique-width has

66 Andreas Brandstadt et al.

bounded clique-width as well, whereas any superclass of unbounded clique-width
has unbounded clique-width as well. Obviously, a graph with at least 5 vertices
is a cograph if and only if it contains none of the 10 possible one-vertex exten-
sions of a P,. For |F’| € {9, 8}, all these classes have bounded clique-width. For
|F’'| = 7 there is exactly one inclusion-minimal class (together with its comple-
ment class) of unbounded clique-width namely (1,2,3,4,5,6,7) (enumeration with
respect to Figure 1), and similarly for |F'| = 6 and |F’| = 5. For [F'| = 4 there
is exactly one inclusion-maximal class of bounded clique-width namely (3,4,5,8).
For |F’'| = 3, the inclusion-maximal classes of bounded clique-width are (1,5,8),
(1,7,8), (2,3,9), (2,5,8), (2,7,8), (2,7,9), (3,7,8). For |F'| = 2, the only classes
of bounded clique-width are (1,9) and (1,10), and for |F'| = 1, all classes have
unbounded clique-width.

Open problem.

1. Is there a linear time algorithm for determining a k-expression with constant
k for the classes (1,9), (1,5,9), (1,6,9), (1,10), (1,6,10), (1,7,10), (1,6,7,10)?

Acknowledgement

The authors thank Van Bang Le for helpful discussions.

References

1. H.-J. BANDELT, H.M. MULDER, Distance-hereditary graphs, J. Combin. Theory
(B) 41 (1986) 182-208

2. A. BRANDSTADT, (Ps,diamond)-Free Graphs Revisited: Structure, Bounded clique-
width and Linear Time Optimization, Manuscript 2000; accepted for Discrete Ap-
plied Math.

3. A. BRANDSTADT, C.T. HOANG, V.B. LE, Stability Number of Bull- and Chair-
Free Graphs Revisited, Manuscript 2001; accepted for Discrete Applied Math.

4. A. BRANDSTADT, D. KRATSCH, On the structure of (Ps,gem)-free graphs,
Manuscript 2001

5. A. BRANDSTADT, H.-O. LE, R. Mosca, Chordal co-gem-free graphs have bounded
clique-width, Manuscript 2002

6. A. BRANDSTADT, H.-O. LE, R. Mosca, (Gem,co-gem)-free graphs have bounded
clique-width, Manuscript 2002

7. A. BRANDSTADT, V.B. LE, J. SPINRAD, Graph Classes: A Survey, SIAM Mono-
graphs on Discrete Math. Appl., Vol. 3, SIAM, Philadelphia (1999)

8. A. BRANDSTADT, H.-O. LE, J.-M. VANHERPE, Structure and Stability Number
of (Chair, Co-P, Gem)-Free Graphs, Manuscript 2001

9. A. BRANDSTADT, S. MAHFUD, Linear time for Maximum Weight Stable Set on
(claw,co-claw)-free graphs and similar graph classes, Manuscript 2001; to appear
in Information Processing Letters

10. A. BRANDSTADT, R. Mosca, On the Structure and Stability Number of Ps- and
Co-Chair-Free Graphs, Manuscript 2001; accepted for Discrete Applied Math.

11. A. BRANDSTADT, R. Mosca, On Variations of P4-Sparse Graphs, Manuscript 2001

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

New Graph Classes of Bounded Clique-Width 67

D.G. CorNEIL, H. LERCHS, L. STEWART-BURLINGHAM, Complement reducible
graphs, Discrete Applied Math. 3 (1981) 163-174

D.G. CornElL, Y. PERL, L. K. STEWART, Cographs: recognition, applications,
and algorithms, Congressus Numer. 43 (1984) 249-258

D.G. CornEIL, Y. PERL, L.K. STEWART, A linear recognition algorithm for
cographs, SIAM J. Computing 14 (1985) 926-934

B. COURCELLE, J. ENGELFRIET, G. ROZENBERG, Handle-rewriting hypergraph
grammars, J. Comput. Syst. Sciences, 46 (1993) 218-270

B. COURCELLE, J.A. MAKOWSKY, U. ROTICS, Linear time solvable optimization
problems on graphs of bounded clique width, extended abstract in: Conf. Proc.
WG’98, LNCS 1517 (1998) 1-16; Theory of Computing Systems 33 (2000) 125-150
B. COURCELLE, S. OLARIU, Upper bounds to the clique-width of graphs, Discrete
Appl. Math. 101 (2000) 77-114

C. DE SIMONE, On the vertex packing problem, Graphs and Combinatorics 9
(1993) 19-30

S. FOLDES, P.L. HAMMER, Split graphs, Congress. Numer. 19 (1977), 311-315
J.-L. FOuQUET, A decomposition for a class of (Ps, Ps)-free graphs, Discrete Math.
121 (1993) 75-83

J.-L. FOUQUET, V. GIAKOUMAKIS On semi- Ps-sparse graphs, Discrete Math. 165-
166 (1997) 267-290

J.-L. FouQuUET, V. GIAKOUMAKIS, H. THUILLIER, F. MAIRE, On graphs without
P5 and Ps, Discrete Math. 146 (1995) 33-44

M.C. GorumBIc, U. RoTtics, On the clique-width of some perfect graph classes,
Int. Journal of Foundations of Computer Science 11 (2000) 423-443

A. HERTZ, On a graph transformation which preserves the stability number, Yu-
goslav Journal of Oper. Res., to appear,

C.T. HOANG, A Class of Perfect Graphs, Ms. Sc. Thesis, School of Computer
Science, McGill University, Montreal (1983)

C.T. HOANG, Perfect Graphs, Ph. D. Thesis, School of Computer Science, McGill
University, Montreal (1985)

C.T. HoANG, B. REED, Some classes of perfectly orderable graphs, J. Graph
Theory 13 (1989) 445-463

B. JAMISON, S. OLARIU, A unique tree representation for Ps-sparse graphs, Dis-
crete Appl. Math. 35 (1992), 115-129

V.V. LoziN, Conic reduction of graphs for the stable set problem, Discrete Math.
222 (2000) 199-211

N.V.R. MAHADEV, U.N. PELED, Threshold Graphs and Related Topics, Annals
of Discrete Mathematics 56 (1995)

J.A. MAaKOowsKY, U. RoTics, On the clique-width of graphs with few P,’s, Int. J.
of Foundations of Computer Science 3 (1999) 329-348

R.H. MOHRING, F.J. RADERMACHER, Substitution decomposition for discrete
structures and connections with combinatorial optimization, Annals of Discrete
Math. 19 (1984) 257-356

M. YANNAKAKIS, The complexity of the partial order dimension problem, SIAM
J. Algebraic and Discrete Methods 3 (1982) 351-358

I.E. ZvEROVICH, 1.I. ZVEROVICH, Extended (Ps,Ps)-free graphs, Rutcor Research
Report RRR 22-2001 (2001) http://rutcor.rutgers.edu/~rrr

More about Subcolorings
(Extended Abstract)*

Hajo Broersma', Fedor V. Fomin?,

Jaroslav Negettil®, and Gerhard J. Woeginger!

! Faculty of Mathematical Sciences, University of Twente,
7500 AE Enschede, The Netherlands
{broersma,g.j.woeginger}@math.utwente.nl
2 Heinz Nixdorf Institute and Paderborn University,
Fiirstenallee 11, D-33102 Paderborn, Germany
fomin@uni-paderborn.de
3 Department of Applied Mathematics and
Institute of Theoretical Computer Science (ITI),
Faculty of Mathematics and Physics, Charles University,
118 00 Prague, Czech Republic

nesetril@kam.ms.mff.cuni.cz

Abstract. A subcoloring is a vertex coloring of a graph in which every
color class induces a disjoint union of cliques. We derive a number of
results on the combinatorics, the algorithmics, and the complexity of
subcolorings.

On the negative side, we prove that 2-subcoloring is NP-hard for compa-
rability graphs, and that 3-subcoloring is NP-hard for AT-free graphs and
for complements of planar graphs. On the positive side, we derive polyno-
mial time algorithms for 2-subcoloring of complements of planar graphs,
and for r-subcoloring of interval and of permutation graphs. Moreover,
we prove asymptotically best possible upper bounds on the subchromatic
number of interval graphs, chordal graphs, and permutation graphs in
terms of the number of vertices.

Keywords: graph coloring; subcoloring; special graph classes; polyno-
mial time algorithm; computational complexity.

1 Introduction

We denote by G = (V, E) a finite undirected and simple graph. The complement
G of G = (V, E) is the graph on V with edge set E such that {u,v} € F if and

* The work of HJB and FVF is sponsored by NWO-grant 047.008.006. Part of the
work was done while FVF was visiting the University of Twente, and while he was
a visiting postdoc at DIMATIA-ITI (supported by GACR 201/99/0242 and by the
Ministry of Education of the Czech Republic as project LNO0A056). FVF acknowl-
edges support by EC contract IST-1999-14186: Project ALCOM-FT (Algorithms and
Complexity - Future Technologies). JN acknowledges support of ITI - the Project
LNO0AO056 of the Czech Ministery of Education. GJW acknowledges support by the
START program Y43-MAT of the Austrian Ministry of Science.

L. Kucera (Ed.): WG 2002, LNCS 2573, pp. 68-79, 2002.
© Springer-Verlag Berlin Heidelberg 2002

More about Subcolorings 69

only if {u,v} € E. For a set of graphs G, we denote by G the set of complements
of graphs from G; hence G € G if and only if G € G. Let G = (Vg, Eg) and
H = (Vyg, Eg) be graphs with VaNVy = 0. The disjoint union GUH is the graph
with vertex set Vo UVy and edge set EqU Eg. The join GV H of G and H is the
graph with vertex set VgUVy and edge set EgUEgU{{u,v}: u € Vg,v € Vy}}.
Finally, G X H denotes the graph that results by adding a new vertex v to the
disjoint union of G and H, and by joining v to all the vertices in G and H.

For every non-empty W C V', the subgraph of G = (V, E) induced by W is
denoted by G[W]. A clique C of a graph G = (V, E) is a non-empty subset of
V such that all the vertices of C are pairwise adjacent, i.e., G[C] is a complete
graph. The maximum size of a clique in G is denoted by w(G). A subset of vertices
I C V is independent if no two of its elements are adjacent. An r-coloring of
the vertices of a graph G = (V, E) is a partition Vi, Va,...,V, of V; the r sets
V; are called the color classes of the r-coloring. An r-coloring is proper if every
color class is an independent set. The chromatic number x(G) is the minimum
value r for which a proper r-coloring exists.

Evidently, an r-coloring is proper if and only if for every color class V; the
induced subgraph G[V}] is the union of complete graphs of cardinality one. This
awkward reformulation leads to several interesting generalizations of the classical
chromatic number.

— An r-coloring Vi, Vs, ..., V.. is an r-subcoloring, if for every color class the
induced subgraph G[V;] is the disjoint union of complete graphs (there is no
restriction on the sizes of these complete graphs).

— An r-coloring is a cocoloring, if for every color class the induced subgraph
G[V;] either is a clique or an independent set.

— Let F' be some fixed graph. An r-coloring is an F'-free coloring, if for every
color class the induced subgraph G[V;] does not contain F' as an induced
subgraph.

The subchromatic number X..,(G), the cochromatic number x.,(G), and the F-
free chromatic number x(F, Q) of a graph G, is the smallest number r for which
G has an r-subcoloring, an r-cocoloring, and an F-free r-coloring, respectively.
Note that a coloring is a subcoloring if and only if it is a Ps-free coloring (where
Py, denotes the path on k vertices).

In this paper, we study the algorithmic and combinatorial behavior of the
subchromatic number on various classes of specially structured graphs. See the
books of Brandstidt et al. [3] and Golumbic [11] for definitions of these graph
classes.

1.1 Known Results

Finding proper colorings for various classes of perfect graphs is a long studied
and well understood problem. We refer to the book [11] of Golumbic for a clas-
sical source on algorithmic aspects of perfect graphs. By a celebrated result of
Grotschel, Lovasz & Schrijver [12], the chromatic number of a perfect graph

70 Hajo Broersma et al.

can be computed in polynomial time. Simple and fast algorithms are known for
different subclasses of perfect graphs like chordal graphs, comparability graphs,
permutation graphs etc. However, even small steps away from proper coloring
towards more general concepts like subcoloring and cocoloring increase the com-
putational complexity of coloring enormously.

For instance, the cochromatic number is NP-hard to compute even for per-
mutation graphs (Wagner [17]). Gimbel, Kratsch & Stewart [9] proved the NP-
hardness of computing the cochromatic number for circle graphs and line graphs
of comparability graphs, and they derived a polynomial time algorithm for
chordal graphs. Achlioptas [1] proved that for any graph F' with at least three
vertices and for any fixed integer r > 2, the problem of deciding whether a given
input graph has an F-free r-coloring is NP-hard. By putting F' = Ps, we get
that r-subcoloring is NP-hard for any fixed integer r > 2. Fiala, Jansen, Le &
Seidel [8] strengthened this hardness result to input graphs that are triangle-
free, planar, and have maximum vertex degree four. On the positive side, [8]
gave polynomial time algorithms for the subcoloring problem on cographs and
on graphs of bounded treewidth.

The literature also contains a number of results on Py-free colorings: Gimbel
& Nesetfil [10] showed that Py-free r-coloring in r = 2 or r = 3 colors is NP-hard
even for planar input graphs. Since Pj is isomorphic to its complement P, we
conclude that Pj-free coloring in 2 or 3 colors is NP-hard for complements of
planar graphs. Hoang & Le [13] proved that Py-free 2-coloring is NP-hard for
comparability and cocomparability graphs.

Now let us list a number of useful combinatorial results from the literature
on subcolorings and cocolorings.

Proposition 1. For any graph G, X..,(G) < X..(G) < min{x(G), x(G)}.

Proposition 2. (Mynhardt & Broere [16])
Let Ky m,....m be the complete m-partite graph containing m classes of m ver-
tices. Then Xsub(Km,m,...,m) = Xco(K’m,m,A..,m) = X(Km,m,...,m) =m.

Proposition 3. (Albertson, Jamison, Hedetniemi & Locke [2])
Let G and H be graphs with X,.,(G) >k and x,..,(H) > k. Then x,.,(GX H) >
k+1.

1.2 Owur Results

We study combinatorial, algorithmic and complexity aspects of the subcoloring
problems. In particular, we derive the following results.

— For general n-vertex graphs the subchromatic number may be ©(n/logn);
for perfect graphs, permutation graphs, and cographs, it may be ©(y/n); for
chordal graphs and interval graphs, it may be @(logn). All these bounds are
best possible up to constant factors. These results are proved in Section 2.

More about Subcolorings 71

— For complements of planar graphs 2-subcoloring is polynomially solvable
(Section 4) whereas 3-subcoloring is NP-hard (Section 3).

— For AT-free graphs, r-subcoloring is NP-hard for any fixed r» > 3 (Section 3).
For comparability graphs, r-subcoloring is NP-hard for any fixed r > 2
(Section 5.1).

— For interval graphs (Section 5.2) and for permutation graphs (Section 5.3)
r-subcoloring is polynomially solvable for any fixed r > 2.

Perfect graphs AT-free graphs
NP-hard for fixed r > 2 NP-hard for fixed r > 3 [#]
Comparability graphs Cocomparability
NP-hard for fixed r > 2 [x] graphs Open
Permutation graphs Interval graphs
Poly-time for fixed r [*] Poly-time for fixed r [*]
Cographs
Poly-time [8]

Fig. 1. Summary of some of our results on r-subcoloring for special graph classes,
and the containment relations between these classes. [*] denotes a contribution of this
paper.

Figure 1 summarizes some of our results and illustrates the relations between
some of the graph classes studied in this paper. The definitions of these graph
classes can be found in books [3] and [11].

2 Upper and Lower Bound Results

In this section we derive several bounds on the subchromatic number of graphs
in terms of their number of vertices. We first state two useful results from the
literature.

Proposition 4. (Albertson, Jamison, Hedetniemi & Locke [2])
For any graph G on n vertices, X..,(G) < 2n/(logon — 2) + O(n/(logyn)?).

Proposition 5. (Erdds, Gimbel & Kratsch [6])
FEvery perfect graph G on (k'f) — 1 wvertices has cochromatic number at most k.

Therefore, x..(G) < [v/2n+1/4 —1/2].

72 Hajo Broersma et al.

As our first result, we observe that up to constant factors the upper bound
stated in Proposition 4 is best possible.

Lemma 1. For every n, there exists a graph G on n vertices with X,.,(G) >
n/(2logyn +1).

Proof. We slightly modify the famous argument of Erdds [5]. Consider the ran-
dom graph on n vertices that contains every edge independently with probabil-
ity 1/2.

A subset X of k = 2log,n + 1 vertices is called good, if it induces a disjoint
union of cliques, and thus constitutes a feasible color class for a subcoloring. Let
us estimate the probability that some fixed set X is good. Altogether, there are
2(2) possibilities for the edges in X. Out of these exactly By are good, where By,
denotes the kth Bell number that is the number of ways a set of n elements can
be partitioned into nonempty subsets. The crude upper bound By < k! yields
that the probability that X is good is at most k'/2(§)

Therefore, the expected total number of good subsets of cardinality k is at
most (}) k'/2(g) Since (}) < n*/k! and since k = 2log, n+1, a straightforward
calculation reveals that this expected number is strictly less than 1. Hence, there
exists a graph G in the probability space that does not contain any good subset.
In any subcoloring of G all color classes contain fewer than k vertices, and thus
Xoun(G) > n/k. O

For perfect graphs, the subchromatic number is much smaller than n/log n:
Propositions 5 and 1 yield that for every perfect graph G on n vertices, X,.,(G) <
Xeo(G) < |V/2n+1/4 — 1/2]. Erdés, Gimbel & Kratsch [6] observed that the
disjoint union of cliques H = K1UK,U - - - UK}, (this is a graph on (k—2+1> vertices)
has cochromatic number k. In every subcoloring of H every color class is either
a clique, or an independent set. Thus X,.,(H) = X..(H) = X..(H) = k. Since H
is a perfect graph (in fact, it is even a cograph and a permutation graph), we get
that up to additive constant the bound v/2n is the best possible upper bound
for the subchromatic number of perfect graphs.

In the rest of this section, we will discuss interval graphs. We will show that
for interval graphs the subchromatic number is bounded by O(logn).

Lemma 2. For every interval graph G on n vertices, X,.,(G) < |logy(n+1)].
This bound is best possible.

Proof. For the upper bound we use induction on n. The statement is clearly
true for n = 1. Consider an interval representation of an interval graph G on
n vertices; without loss of generality we assume that the left endpoints of the
intervals are the integers 1,2,...,n. If n is odd, we take an arbitrary maximal
clique C' that contains the interval with left endpoint (n + 1)/2. Then every
component of G — C contains at most (n — 1)/2 vertices. We color C' by one
color, and we use |log,((n+1)/2)] additional colors to color all these components
inductively. If n is even, a similar analysis goes through.

More about Subcolorings 73

For showing that the bound |log,(n + 1)| is best possible, we consider the
following graphs G;: For k = 1, the graph G consists of one vertex. For k > 1,
we set G = Gr_1 M Gi_1 where the new vertex is called v. Note that Gy
has 2¥ — 1 vertices, and that by Proposition 3 x..,(Gx) = k. Moreover, G}, is
an interval graph; its interval representation can be obtained by putting two
disjoint interval representations of GG_1 next to each other, and by adding one
long interval that corresponds to the vertex v. ad

We mention without proof that a similar inductive argument yields x.,.,(G) =
O(logn) for any chordal graph G. Albertson, Jamison, Hedetniemi & Locke [2]
observed that the interval graphs Gy in the proof of Lemma 2 form a class
of interval graphs with unbounded subchromatic number. We now present a
stronger result on the coloring of interval graphs with forbidden subgraphs.

Lemma 3. For any m and r, there exists an interval graph Z(m,r) that does
not have a P,-free r-coloring.

Proof. Let N = R(K,,+1;7) be the Ramsey number that specifies the smallest
number of vertices in a complete graph such that every r-coloring of the edges
of this graph induces a monochromatic clique K,,+1 (that is, a clique in which
all edges have the same color). Let K be the complete graph on vertex set
{1,2,...,N}. Let Zn be the intersection graph of all closed intervals with integer
endpoints from {1,2,..., N}. Every interval [a,b] in Zy naturally corresponds
to the edge {a,b} in Ky.

Now consider an arbitrary r-coloring of the intervals in Z. This induces a
corresponding r-coloring of the edges in K, and hence there exists a monochro-
matic clique K41 with vertex set X with |X| = m 4 1. In Zy, the intervals
with both endpoints in X also form a monochromatic set Zx. Since Zx contains
an induced path P,,, every r-coloring of Zn contains an induced monochromatic
path P,,. a

3 Negative Results: AT-Free Graphs

In this section we derive a generic NP-hardness result. As corollaries to this
result, we derive the NP-hardness of 3-subcoloring for graphs with independence
number two (and hence for AT-free graphs).

For an integer p > 1 and a graph G, we denote by pG the disjoint union of
p copies of G.

We omit the proof of the following lemma in the extended abstract.

Lemma 4. For any graph G and for any integer p > x(G), the chromatic num-
ber x(G) of G coincides with the subchromatic number X..,(pG) of the graph
pG.

The following theorem is the main result of this section. It is an immediate
consequence of Lemma 4.

74 Hajo Broersma et al.

Theorem 1. Let G be a graph class that is closed under taking disjoint unions
(that is, G, H € G implies GUH € G). Let r be an integer.

If the proper r-coloring problem is NP-hard for graphs from G, then the r-
subcoloring problem is NP-hard for graphs from G.

Corollary 1. The 3-subcoloring problem is NP-hard even when restricted to

(a) graphs with independence number at most two,
(b) AT-free graphs,

(c) complements of planar graphs.

Proof. Maffray & Preissmann [15] proved that proper 3-coloring is NP-hard even
for triangle-free graphs. The class of triangle-free graphs is closed under taking
disjoint unions, and a graph is triangle-free if and only if its complement has
independence number at most two. With this, (a) follows from Theorem 1.
Since the graphs with independence number at most two form a subclass
of the AT-free graphs, (b) is a consequence of (a). Finally, the class of planar
graphs is closed under taking disjoint unions, and it is well-known that proper
3-coloring of planar graphs is an NP-hard problem. Thus, Theorem 1 implies
(). O

We conclude this section with some consequences of Lemma 4 on the hardness
of approximation of the subcoloring problem for general graphs. We rely on the
results of Feige & Kilian [7] on the hardness of approximating the chromatic
number of a graph: For any € > 0, the chromatic number of n-vertex graphs
cannot be approximated within a factor of n'~¢, unless NP C ZPP.

Corollary 2. For anye > 0, the subchromatic number of n-vertex graphs cannot
be approzimated within a factor of n'/?>=¢, unless NP C ZPP.

Proof. Let G be an arbitrary graph on n vertices. Then the graph nG has n?
vertices, and by Lemma 4 we have x(G) = X..,(nG). Now the result of Feige &
Kilian [7] completes the argument. O

4 Positive Results: Complements of Planar Graphs

Gimbel & Nesetfil [10] showed that deciding Py-free 2-colorability of a planar
graph is NP-hard. Since the complement of P, is again Py, this implies that Py-
free 2-subcolorability is NP-hard for complements of planar graphs, too. Fiala,
Jansen, Le & Seidel [8] showed that deciding 2-subcolorability of a planar graph
is NP-hard. Surprisingly, we will show in this section that 2-subcolorability is
polynomially solvable for complements of planar graphs. This will follow as a
corollary from the main theorem of this section. The proof of this theorem will
appear in the full version of the paper.

Theorem 2. Let £ > 2, and let G be a class of graphs that do not contain
Ko as an (inciitced or non-induced) subgraph. Then 2-subcolorability of a graph
G = (V,E) in G can be decided in polynomial time O(|V[3%).

More about Subcolorings 75

Q<00

A\b

Fig. 2. The gadget graphs Source-Source and Source-Sink.

S
(S
IS}

Since planar graphs do not contain K33 3 as a subgraph, we have the following
corollary to Theorem 2. Corollaries 1.(c) and 3 together provide a complete
classification of the complexity of subcolorings of complements of planar graphs.

Corollary 3. The 2-subcoloring problem on complements of planar graphs is
polynomially solvable.

5 Perfect Graphs

In this section, we discuss three classes of perfect graphs. In Section 5.1 we
prove NP-hardness of r-subcolorability for every fixed r > 2 on comparability
graphs. In Sections 5.2 and 5.3, we give polynomial time dynamic programming
algorithms for r-subcolorability for every fixed r > 2, on interval graphs and on
permutation graphs, respectively.

5.1 Comparability Graphs

In this section we prove the NP-hardness of r-subcolorings on comparability
graphs for every fixed r > 2. Our NP-hardness reduction is based on the two
graphs Source-Source (depicted to the left) and Source-Sink (depicted to the
right) in Figure 2. Both graphs have two contact vertices a and b.

Lemma 5. (a) The graphs Source-Source and Source-Sink are comparability
graphs.

(b) The graphs Source-Source and Source-Sink possess a 2-subcoloring, in
which no contact point recetves the same color as its neighbor.

(¢) In every 2-subcoloring of Source-Source and Source-Sink, the contact
vertices a and b must receive different colors.

Proof. Proof of (a). The orientations depicted in Figure 2 are transitive. Proof
of (b). The 2-colorings depicted in Figure 2 are subcolorings. Proof of (c). By
checking all possible cases. a

Statements (b) and (c) in Lemma 5 are extremely useful for our NP-hardness
proofs: Consider a graph G, and let =,y be a pair of vertices in G. Let the graph
G result from G by adding an independent copy of a Source-Source or a Source-
Sink gadget to G, and by identifying vertex x with contact point a, and vertex
y with contact point b. Then the graph G has a 2-subcoloring, if and only if G
has a 2-subcoloring in which x and y receive different colors.

76 Hajo Broersma et al.

Theorem 3. The 2-subcoloring problem is NP-hard for comparability graphs.

Proof. The proof is by a reduction from the NP-complete SET SPLITTING
problem [14]: Given a finite set S and a collection C' of triples over S, decide
whether there is a partition of S into two subsets S; and Sy such that every
triple in C' has a non-empty intersection with S; and with Ss.

Now let C' = {e1,c¢2,...,¢m} be a collection of triples over a finite set S =
{s1,52,...,8,}. We construct the following graph G¢ from C': For every s; € S,

there is a corresponding vertex z; € X. For every triple ¢; = (s},s2,53) € C,

1791 %1
there are three corresponding vertices y},y?,y3 that form a Ps; there is an edge
between y} and y?, and there is an edge between y? and y}. Vertex y? is called
the middle vertex of this path, and vertices y} and y3 are called the end vertices.
Moreover, we introduce the following copies of the Source-Source and Source-
Sink gadgets:
— For every occurrence of s; in the first or third position of some triple

c; = (s},s2,53), the graph G¢ contains a copy of the Source-Source gad-

17519 %
get; the contact points are identified with vertex z;, and with vertex Y}
(first position) or y? (third position), respectively.
— For every occurrence of s; in the second position of some triple ¢; = (s}, 52,
s3), the graph G¢ contains a copy of the Source-Sink gadget; the contact
point b is identified with vertex z;, and the contact point a is identified with

vertex y?.

This completes the definition of the graph Go. We argue that G¢ is a com-
parability graph by considering the following orientation: All Source-Sink and
Source-Source gadgets are oriented as shown in Figure 2. The edges of the paths
yh,y2,y? are directed towards the middle vertices y?. In the resulting orienta-
tion, all vertices x; € X and all end vertices of paths are sources, and all middle
vertices of paths are sinks. Hence, arcs incident to these vertices can not violate
transitivity, and the remaining arcs are within the gadgets.

We claim that G¢ has a 2-subcoloring if and only if the corresponding in-
stance of SET SPLITTING has answer YES.

Assume that G¢ has a 2-subcoloring. We construct the following set splitting:
If z; is colored 1, then s; € Sy. If z; is colored 2, then s; € S3. Consider a triple

c; = (s}, s2,83) in C. If it is contained in S; or So, then the three vertices

17 %1%
that correspond to s}, s?, s3 must all have the same color, and the three vertices
y},y2,y3 on the P3 corresponding to C; must all have the opposite color. But then
this P3 would be monochromatic, and the coloring would not be a subcoloring.
Next assume that C possesses a set splitting of .S into S and S5. We construct
the following coloring: If s; € Si, then we color vertex z; by 1. If s; € Sy,
then we color vertex x; by 2. Then we extend this coloring to the Source-Sink
and Source-Source gadgets according to Figure 2. It is easily checked that the
resulting coloring is a 2-subcoloring of G¢. This completes the proof of the

theorem. 0

The NP-hardness result on 2-subcoloring for comparability graphs can easily
be generalized to r-subcolorings with r > 3.

More about Subcolorings s

Theorem 4. For any r > 2, the r-subcoloring problem on comparability graphs
is NP-hard.

Proof. We proceed by induction on r. The starting case r = 2 has been settled in
Theorem 3. So assume that we have proved the statement up to r, and that we
want to prove it for » + 1. This will be done as follows: For every comparability
graph G,, we construct in polynomial time a comparability graph G,11 such
that G, is r-subcolorable if and only if G,1; is (r + 1)-subcolorable.

Let K = K41, r41 be the complete (r + 1)-partite graph containing r + 1
classes of r 4+ 1 vertices. Recall that by Proposition 2, x..,(K) = r + 1. We
put G,11 = G, X K where the new vertex is called v. Observe that G,
is a comparability graph: G, and K are comparability graphs; we take their
transitive orientations, and we orient all edges that are incident with the new
vertex v away from v.

Assume that G,.11 is subcolorable in r+1 colors. By Proposition 2 the vertices
of the graph K must use all » 4+ 1 colors; in particular, the color ¢ of the new
vertex v is used in K. But this implies that color ¢ cannot be used for the vertices
of G, since this would yield a monochromatic P in color c¢. Hence, the graph
G, is subcolorable in r colors.

Now assume that G, is subcolorable in r colors. Take this r-subcoloring, and
color the new vertex v by a new color. Color K by r+1 colors in such a way that
every independent class of r + 1 vertices receives all r + 1 colors; in other words,
every color class induces a clique of size 7+ 1 in K. The resulting (r+ 1)-coloring
of G,41 is a subcoloring. O

5.2 Interval Graphs

In this section we design for every fixed r > 2 a polynomial time algorithm for
the r-subcoloring problem on interval graphs. Let G = (V, E) be an interval
graph with |V| = n. Without loss of generality we may assume that the left
endpoints of the intervals I, ..., I, that represent G are the integers 1,2, ..., n.
For £k = 1,...,n we denote by G} the subgraph that is induced by the first
k intervals Iy,...,I. For a clique Cl in G, we denote by inter(Cl) # () the
intersection of all intervals in CI and by union(C?) the union of all these intervals.
Note that inter(Cl) and union(Cl) are also intervals.

Consider an arbitrary color class C' in an arbitrary r-subcoloring of Gj. This
color class C'is the union of a number ¢ of disjoint cliques Cly, ..., Cl,; without
loss of generality we assume that union(Cl;) always lies completely to the left of
union(Cl;11). Now assume that we would like to extend the subcoloring to the
graph G41 by adding interval I (with left endpoint k£ + 1) to color class C.
There are only two possibilities for doing this:

(a) If the point k+1 lies to the right of union(Cl,), then interval Ij 1 may start
a new clique in C.

(b) If the point k + 1 lies within inter(Cl,), then interval I may be added to
the rightmost clique Cl, in C.

78 Hajo Broersma et al.

Note furthermore that the left endpoints of inter(Cl,) and union(Cl,) do not
exceed k. Hence, for deciding whether case (a) or case (b) holds, we only need
to know the right endpoints of inter(Cl,) and union(Cl;). These observations
suggest the following dynamic programming formulation.

Every state is specified by a (2r + 1)-tuple [k;i1,42,...,%;ug,...,u,]. Here
1 < k < n, and the variables i1, ...,%, and uy,...,u, either specify right end-
points of some of the intervals Iy,..., I, or they take the dummy value ‘x’.
Hence, altogether there are O(n?"*!) states. For every state, we compute a
Boolean value Blk;iq,...,4r;u1,...,u:]. This Boolean value is TRUE, if and
only if there exists a subcoloring of G} with color classes C,...,C, with the
following properties for j = 1,...,r: If C; is empty, then i; = u; = *. And if
C; is non-empty, then i; is the right endpoint of inter(Cl) and u; is the right
endpoint of union(CY) of the rightmost clique C! in color class C}.

The values B[k;i1,...,ir;u1,...,u,] are computed first for level k = 1, then
for level kK = 2, and so on up to level k = n. Since in any subcoloring for Gy, the
interval Ij11 can be added in at most two possible ways (a) and (b) to at most
r color classes, every TRUE value at level k£ generates at most 2r TRUE values
at level £+ 1. The graph G is r-subcolorable, if and only if there exists a TRUE
value at level n. Summarizing, we get the following theorem.

Theorem 5. For any fixed r, the r-subcoloring problem for an interval graph
with n vertices can be solved in O(r - n* 1) time.

5.3 Permutation Graphs

Theorem 6. For any fixed r, the r-subcoloring problem for a permutation graph
with n vertices can be solved in O(r - n®" 1) time.

To prove the theorem we use a dynamic programming approach that is quite
similar to the above algorithm for interval graphs. For details, see the full version
of this paper.

6 Concluding Remarks and Questions

— What is the computational complexity of r-subcoloring for cocomparability
graphs?

— What is the computational complexity of r-subcoloring for chordal graphs?

— What is the computational complexity of 2-subcoloring for AT-free graphs?
(In Section 3, we have proved that 3-subcoloring of AT-free graphs is NP-
hard).

— What is the computational complexity of r-subcoloring for interval graphs
and permutation graphs, if r is part of the input? (In Section 5, we have
proved that these problems are polynomially solvable if r is fixed and not
part of the input).

More about Subcolorings 79

Acknowledgments

We are grateful to Dieter Kratsch and Ochem Pascal for fruitful discussions on
the topic of this paper.

References
1. D. AcHLiOPTAS, The complexity of G-free colorability, Discrete Math., 165/166
(1997), pp. 21-30.
2. M. O. ALBERTSON, R. E. JAMISON, S. T. HEDETNIEMI, AND S. C. LOCKE, The
subchromatic number of a graph, Discrete Math., 74 (1989), pp. 33-49.
3. A. BRANDSTADT, V. B. LE, AND J. P. SPINRAD, Graph classes: a survey, Society

10.

11.

12.

13.

14.

15.

16.

17.

for Industrial and Applied Mathematics (STAM), Philadelphia, PA, 1999.

I. BROERE AND C. M. MYNHARDT, Generalized colorings of outerplanar and planar
graphs, in Graph theory with applications to algorithms and computer science
(Kalamazoo, Mich., 1984), Wiley, New York, 1985, pp. 151-161.

P. ERDSs, Some remarks on the theory of graphs, Bull. Amer. Math. Soc., 53
(1947), pp. 292-294.

P. ErDOS, J. GIMBEL, AND D. KRATSCH, Some eztremal results in cochromatic
and dichromatic theory, J. Graph Theory, 15 (1991), pp. 579-585.

U. FEIGE AND J. KILIAN, Zero knowledge and the chromatic number, J. Comput.
System Sci., 57 (1998), pp. 187-199. Complexity 96—The Eleventh Annual IEEE
Conference on Computational Complexity (Philadelphia, PA).

J. Fiara, K. JANSEN, V. B. Lg, AND E. SEIDEL, Graph subcoloring: Complex-
ity and algorithms, in Graph-theoretic concepts in computer science, WG 2001,
Springer, Berlin, 2001, pp. 154-165.

J. GIMBEL, D. KRATSCH, AND L. STEWART, On cocolourings and cochromatic
numbers of graphs, Discrete Appl. Math., 48 (1994), pp. 111-127.

J. GIMBEL AND J. NESETRIL, Partitions of graphs into cographs, Technical Report
2000-470, KAM-DIMATTIA, Charles University, Czech Republic, 2000.

M. C. GoLuMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
New York, 1980.

M. GROTSCHEL, L. LOVASZ, AND A. SCHRIJVER, Polynomial algorithms for perfect
graphs, in Topics on perfect graphs, North-Holland, Amsterdam, 1984, pp. 325-356.
C. T. HoANG AND V. B. LE, Pys-free colorings and Pi-bipartite graphs, Discrete
Math. Theor. Comput. Sci., 4 (2001), pp. 109-122 (electronic).

L. LovAsz, Coverings and coloring of hypergraphs, in Proceedings of the Fourth
Southeastern Conference on Combinatorics, Graph Theory, and Computing
(Florida Atlantic Univ., Boca Raton, Fla., 1973), Utilitas Math., Winnipeg, Man.,
1973, pp. 3-12.

F. MAFFRAY AND M. PREISSMANN, On the NP-completeness of the k-colorability
problem for triangle-free graphs, Discrete Math., 162 (1996), pp. 313-317.

C. M. MYNHARDT AND I. BROERE, Generalized colorings of graphs, in Graph
theory with applications to algorithms and computer science (Kalamazoo, Mich.,
1984), Wiley, New York, 1985, pp. 583-594.

K. WAGNER, Monotonic coverings of finite sets, Elektron. Informationsverarb. Ky-
bernet., 20 (1984), pp. 633-639.

Search in Indecomposable Graphs

Alain Cournier

LaRIA 5, rue du moulin neuf, 80 000 Amiens

cournier@laria.u-picardie.fr

Abstract. In this paper we will present some properties of indecom-
posable graphs, furthermore we see how a search in an indecomposable
graph can compute some of these properties. Endly we will see that using
this search, when the vertices of an indecomposable graph G are visited
in a given order O, the vertices of the complement of G (denoted G) can
also be visited in the same order O.

Keywords: Indecomposable Graphs, Prime Graphs, Search in a Graph.

1 Introduction

An undirected graph (or symmetric graph) G consists of a finite set V' of vertices
together with a prescribed collection E of unordered pairs of distinct vertices
called the set of edges of G. Such a graph will be denoted G = (V, E). With each
subset X of V, is associated the (induced) subgraph G(X) = (X, EN(X x X)) of
G. Finally given a graph G = (V, E) the complement of G is the graph G = (V, E)
defined as follow: let x # y € V, (z,y) € E if and only if (z,y) ¢ E.

A search in a graph G = (V, E) will explore all vertices and edges of G.
Some of these searches are very famous like Breadth-First Search [13], Deep-
First Search [9], Maximum Cardinality Search [15] or Lexicographic Breadth-
First Search [7].

In the following, we will use the following notations. Given a graph G =
(V,E), for a given vertex x of G, N(x) is the set of y € V such that (x,y) € E.
Finally, given unordered pairs (z,y) and (z’,y’) of distinct vertices of G, (z,y)
and (2',y’) are equivalent denoted by (z,y) ~ (2',y’) when either (z,y) € E <
(2',y") € E. Otherwise, we will denote this by (x,y) % (', y').

Let G = (V, E) be a graph, a subset X of V is an interval [6,10,16] (or an
autonomous subset [12] or a clan [5] or an homogeneous subset [8] or a module
[17] or a partitive subset [18]) whenever for all a,b € X and all z € V — X,
(a,z) ~ (b,x). For example, this notion is the classic notion of interval when
G is a linear ordering. Given a graph G = (V, E), §, V and {z}, where z € V,
are clearly intervals of G, called trivial intervals. A graph is then said to be
indecomposable [10,16] (or prime [3] or primitive [5]) whenever |V| > 3 and
all of its intervals are trivial. Otherwise, a graph G = (V, E), which admits at
least an interval X such that 2 < |X| < |V, is said to be decomposable'. An
indecomposable graph G = (V, E) is minimal for elements x1, ...,z of V when

! by convention, a graph G = (V, E) such that |V| < 2 is said to be decomposable

L. Kucera (Ed.): WG 2002, LNCS 2573, pp. 80-91, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Search in Indecomposable Graphs 81

for each Y C V (Y # V) such that {z1,...,2x} C Y and |Y] > 3, G(Y) is
decomposable. In a similar type of problem, J. H. Schmerl and W. T. Trotter
[16] examined critically indecomposable graphs which are indecomposable graphs
G = (V,E), with |V| > 4, such that for x € V, G(V — {z}) is decomposable.
Finally, we introduce the notion of quotient graph. Given a graph G = (V, E),
a partition P of V is an interval partition of G when all of the elements of
P are intervals of G. For such a partition P, we may define the quotient graph
G/P = (P,E/P) of G by P as follows: let X #Y € P,(X,Y) € E/P whenever
forze X and fory €Y, (z,y) € E.

The aim of this paper is to characterize a search in an indecomposable graph.
As a consequences, we will see that such a search in an indecomposable graph
can be useful to compute some properties.

2 The Indecomposable Graphs

2.1 General Properties

In this section, we will recall some of the properties of indecomposable graphs
which will be used in what follows. We start with a review of the properties of
the intervals of a graph as obtained in the papers concerning the decomposability
of graphs.

Proposition 1 Let G = (V, E) be a graph, the graphs G and G have the same
intervals. Moreover, these intervals satisfy the following assertions.

1.V, 0 and {z}, where x € V, are intervals of G.

2. If X and'Y are intervals of G, then X NY is an interval of G.

3. Let X,Y be intervals of G, if XNY # 0, X UY is an interval of G.

4. Let X and Y be intervals of G, if X =Y # 0, where X —Y = {z € X |
x &Y}, thenY — X is an interval of G.

5. Gwen a subset W of V', if X is an interval of G, then X "W is an interval
of G(W).

The next propositions allow for the examination of the indecomposable sub-
graphs of an indecomposable graph.

Proposition 2 ([18]) Given an indecomposable graph G = (V, E), with |V |>
3, there is a subset X of V such that | X |=4 and G(X) is indecomposable.

In order to construct indecomposable subgraphs of a larger size, we use the
following partition.

Definition 1 Given a graph G = (V, E) and a subset X of V' such that | X |> 3
and G(X) is indecomposable. For w € X, Eq(u) is the set of x € V — X such
that {u,z} is an interval of G(X U{xz}). The set of x € V — X such that X is
an interval of G(X U{x}) is denoted by [X] and the set of x € V — X such that
G(X U {z}) is indecomposable is denoted by Ext(X).

82 Alain Cournier

Lemma 1 ([5]) Given a graph G = (V,E) and a subset X of V such that
| X |> 3 and G(X) is indecomposable.

1. The family p(X) = {Ext(X), [X], Eq(u)(u € X)} is a partition of V — X.

2. Forx #y € Ext(X), G(X U{x,y}) is decomposable if and only if {z,y}
is an interval of G(X U{x,y}).

3. For x € Eq(u) and fory € V — (X UEq(u)), where u € X, G(X U{x,y})
is decomposable if and only if {x,u} is an interval of G(X U {z,y}).

4. For x € [X] and fory € V — (X U[X]), G(X U{z,y}) is decomposable if
and only if X U{y} is an interval of G(X U {z,y}).

The next result is a direct consequence of Lemma 1.

Proposition 3 ([5]) Let G = (V, E) be an indecomposable graph, if X is a
subset of V' such that G(X) is indecomposable and 3 <| X |<| V| =2, then there
are x #y € V — X such that G(X U {x,y}) is indecomposable.

Corollary 1 flows from Propositions 2 and 3.

Corollary 1 If G = (V, E) is an indecomposable graph, with | V |> 5, then
there exits X C'V such that G(X) is indecomposable and |V — X |=1 or 2.

Practically, in order to satisfy that a graph G = (V, E) is indecomposable,
we must first look for a subset X of V such that G(X) is indecomposable and
|X| = 4. We next calculate the partition p(X) and, using Lemma 1, we try to
find z,y € V — X such that G(X U {z,y}) is indecomposable. We continue this
procedure by replacing X by X U{x, y}. For more details, refer to the recognition
algorithm described in [2].

2.2 Minimal Indecomposable Graphs for Two Vertices

We first define on {1,...,k}, where k > 4, the symmetric graphs Py and Qy
(see Figures 1 and 2) in the following manner. For ¢ # j € {1,...,k}, (i,7) is
an edge of P, when | i —j |=1. Fori # j € {1,...,k}, (4,7) is an edge of Q
whenever either 4,5 € {1,...,k—2}and |[i—j|=1or k—1 € {4,j} and there
isle{l,...,k—3}U{k} such that {i,j} = {k — 1,1}.

1 2 3 —k-1—k

Fig.1. P,

Proposition 4 ([4]) Let G = (V,E) be an indecomposable symmetric graph,
with |V| > 4, and x # y be elements of V, G is minimal for x and for y if and
only if there is an isomorphism f from G or G onto Py or Qy, where k > 4,
such that f({z,y}) = {1, k}.

Search in Indecomposable Graphs 83

1 2 3 —k-3—k-2

kl—k

Fig. 2. Qs

Proposition 4 is a direct consequence of the following result.

Proposition 5 ([4]) Given an indecomposable symmetric graph G = (V, E),
with | V |> 4, for x #y €V, there is a subset X of V satisfying: x,y € X and
there is an isomorphism f from G(X) or G(X) onto Py or Q, where k > 4,

such that f({z,y}) = {1, k}.

3 An Algorithm

The next algorithm will be used as a subroutine of our next search algorithm.

3.1 Principle

The algorithm takes an undirected graph G and two vertices =,y of G as inputs
and computes the smallest interval I of G satisfying one of the two following
conditions :

1. {a} U (N(2) = N(y)) € I when (z,9) & B;

2. {z} U (N(y) — N(z)) C I when (z,y) € E.

In the same time we also compute in an array a function M. This function
associates to each vertex of I an integer. We will use M later.

3.2 The Algorithm

In order to compute this set I, we will use the following sets: Setl, Set2,
Universal, Unseen. At the end of the algorithm we want Setl = Set2 =),
u € Universal < I C N(u) and u € Unseen < I N N(u) =). Of course we also
need that I respects previous conditions.

At each iteration of the algorithm we can assume that I is the subset of the
final result already computed. In Set1 we have the vertices of G we want to insert
in I at this iteration of the algorithm. And let us suppose we maintain the two
properties u € Universal < I C N(u) and u € Unseen < I N N(u) = 0. Then
an iteration of the algorithm, put each vertices v of Setl in I. At this moment
some vertices of Universal or Unseen cannot stay anymore in their sets (with
respect of the previous properties). They will be inserted in Set2. In Fact, Set2

84 Alain Cournier

contains the vertices previously in Universal or Unseen that violate interval
property of I U Setl.

Algorithm: Computelnterval
Data: G = (V, E) an undirected graph; z,y two vertices of G
Result: T a set of vertices of G;M: array[V] of integer;
Var: Setl, Set2, Universal, Unseen: sets of vertices; d:integer;
BeginAlgo
I — {z}; Set2 — 0; d — 1; M[z] < 0;
If xy € FE then
Unseen «— V — (N(x) U{z}); Universal — N(z) N N(y);
Setl « N(z) — (N(y) U{y})
Else
Unseen «— V — (N(y) U N(x)); Universal «— N(x);
Setl — N(y) — (N(z) U {x});
Endif
While Setl # () do
While Setl # () do
Let z be a vertex of Setl; M[z] < d;
Move z from Setl to I;
Set2 «— Set2 U (Unseen N N(z)) U (Universal — N(z));
Universal < Universal N N(z); Unseen «— Unseen — N(z);
EndWhile
d «— d+ 1;Setl « Set2; Set2 « (;
EndWhile
EndAlago

3.3 Termination, Correctness and Complexity of the Algorithm
The first Invariant of the algorithm

Invariant 1 At each step of the algorithm {I,Setl, Set2, Universal, Unseen}
is a partition of V.

Proof. In fact one can notice that for any vertex v:
If the algorithm removes v from Universal, it inserts v in Set2;
If the algorithm removes v from Unseen, it inserts v in Set2;
If the algorithm removes v from Set2, it inserts v in Setl;
If the algorithm removes v from Setl, it inserts v in I.
Since we cannot lose any vertices and since at the beginning of the algorithm,
{I, Setl, Set2, Universal,Unseen} is a partition of V, the Invariant 1 is true.
The second invariant will give us the termination of the internal While loops.

Invariant 2 Fach time the algorithm executes the statment of the internal While
loop, it increases the cardinality of I and decreases the cardinality of Setl.

Search in Indecomposable Graphs 85

Corollary 2 The internal while loops stops.

Proof. Since the cardinality of Setl strictly decreases during this loop, the
internal while loops stops.

Invariant 3 Fach time the algorithm goes in the external While loop, it in-
creases the cardinality of 1.

Proof. Since the test of the internal and external while loops are identical, if
the algorithm comes in the external while loop, it comes in the internal while
loop, so using Invariant 2, |I| increases.

Proposition 6 The algorithm Computelnterval stops.

Proof. We know that 1 < |I| < |V|, using Invariant 3, we know that the
algorithm cannot enter more than |V| —1 time in the external while loop. So the
algorithm stops.

In order to verify that I is the smallest interval of G containing = and N(z)—
N(y) (respectively N(y) — N(x)) when zy ¢ E (respectively zy € E). We will
verify first: At the end of the algorithm I is an interval of G.

Invariant 4 Let t,u,v be three vertices of G, such that t,u € Visited and v €
Universal UUnseen. We can say (v,t) ~ (v,u) ~ (v, x)

Proof. This invariant is true at the beginning of the algorithm since |I| = 1.
We will suppose that it stills true when |I| = k. Let us suppose Computelnter-
val picks a new vertex z in Setl and let us denote by Universal’ (respectively
Unseen', I') the following set of vertices Universal’ = Universal N N(z) (re-
spectively Unseen’ = Unseen — N(z), Visited' = Visited U {z}).

Let ¢, u,v be three vertices of G, such that ¢,u € I' and v € Universal’. Let
us suppose, t # z # u, since Universal’ C Universal, (v,t) =~ (v,u) ~ (v,z).
In the remaining case, t = z # v, since Universal’ C Universal, (v,u) ~ (v,),
furthermore, since v € Universal’, (v,z), (v,x) € E and (v, z) ~ (v, z).

Let t,u,v be three vertices of G, such that ¢,u € Visited’ and v € Unseen/.
Let us suppose, t # z # u, since Unseen’ C Unseen, (v,t) ~ (v,u) ~ (v,z). In
the remaining case, t = z # v, since Unseen’ C Unseen, (v, u) ~ (v, z), further-
more, since v € Unseen/, (v, 2), (v,2) € E and (v, z) ~ (v, z). The property still
true for the new sets, Visited', Unseen’, Universal’ with |Visited| = k + 1.

So Invariant 4 is still true.

Corollary 3 At the end of the algorithm I is an interval of G.

Proof. Since the algorithm stops when Set1=Set2=0, {I, Universal,Unseen}
is a partition of V(Invariant 1), and I is an interval of G (Invariant 4).

The following Invariant of the internal While loop will be helpful to prove
that I is the smallest interval. It gives also a characterization of Set2.

Invariant 5 At the end of the internal while loop, we can claim
Set2 ={ueV —IFv,weland (v,u) % (w,u)}

86 Alain Cournier

Proof. When the algorithm inserts a vertex u in Set2 then either u €
Universal — N(z) or u € Unseen N N(z) in both cases, (u, z) # (u, z).

Invariant 6 At the end of the internal while loop, any interval W containing I
must contain Set2.

Proof. Let us suppose the contrary. Let W be an interval of G containing I,
and s be a vertex of Set2 — W. Using Invariant 5, there exists i1,i5 € I such
that (i1, s) % (i2,s). Since 41,42 € W and s ¢ W, W is not an interval of G. A

contradiction.

Corollary 4 At the end of the algorithm, I is the smallest interval of G con-
taining x and N(x)— N (y) (respectively N(y)— N(z)) when xy & E (respectively
zy € E).

Proof. This is a direct consequence of Invariant 6.

Proposition 7 The algorithm Computelnterval runs in O(|V |+ |E|) time com-
plexity.

Proof. In fact, we have to compute the 3 sets UniversalNN(z), Unseen— N (z),
and Set2U (Universal — N(z))U(UnseenNN(z)), in O(|N(z)|) time complexity.
So these sets can be represented as queues, and we can use some techniques like
partition refinements developed in [14,2,1,3].

3.4 Properties of the Algorithm

The first property of this algorithm claims that the result is independent from
running on a graph G or the complement of this graph.

Theorem 1 Let G be a graph, z,y be two vertices of G, I, M the results of the
algorithm Computelntervgl(g7 z,y,I,M) and I, M the results of the algorithm
Computelnterval (G, x,y,I, M). Wecan claim I = I and For eachi € I, M[i] =
M{i].

Proof. In this proof we will assume that « & Ng(y).

Let us denote by I, Setl, Set2, Universal,Unseen, M, d, the variable sets of
Computelnterval(G, z,y, I, M) and I, Setl, Set2, Universal,Unseen, M, d the
variable sets of Computelnterval(G,z,y, I, M).

One can notice that C(G, z,y) <= C(G,z,y).

At the beginning of the algorithm, we can say :

Setl = N(x) — (N(y) U{y}) = N(z) N (N(y) U{y}) = -
N(z) N Ng(y) = Ngly) — (N(2)) = Ng(y) — (Ng(z) U{z}) = Setl

I={x}=1
So using Corollary 4 and Proposition 1, we can claim I = I at the end of the
algorithm.

Let us now suppose that the algorithm after k steps in the external while
loop verify the following conditions : 3 o
Setly = Setly, Set2y, = Set2y, I, = I, dp, = dp, = k, Vo € Ik,M[Q;‘] = M[.’L‘]

Search in Indecomposable Graphs 87

Then the algorithm execute a k 4 1th time the external while loop. At the
end of this step : Iy, 1 = I, U Setly = I}, U Setly = Ij4q.

At the end of the internal While loop, using Invariant 5, Set2p,1 = Set2jy1.
So at the end of the external While loop, Setlyy; = Setlpy; and Set2pq =
Set2p1 = 0. Of course dp 1 = dpr1 =k + 1.

The remaining question is: Vo € Iy, 1, M[x] = M[z] ?

If # € I}41 then either x € I, and M[z] = MJx] or & € Setly then at the
end of this step M[z] = k+ 1, since Setl;, = Setl), x € Setly then at the end of
this step M|[x] = k + 1. In both cases, YV € I} 1, M[z] = M|[z].

Since the previous conditions are true for k = 0 Theorem 1 is true.

4 Search in an Indecomposable Graph

In a first time let us define the following condition:

Condition 1 G = (V, E) is an undirected graph and x,y are two vertices of G
such that: vy ¢ E = N(x) € N(y) and 2y € E = N(y) € N(x) U {z}

In the following we will denote by C(G, z,y) the boolean value of Condition 1,
where x,y are two vertices of a given graph G.

4.1 Principle

We will use the previous algorithm to do a search in an indecomposable graph.
This algorithm takes an indecomposable graph G with more than 2 vertices and
two distinct vertices of G as inputs and produces a set of vertices (Visited).
In the same time, we also compute in an array a function M. This function
associate to each Visited vertices an integer. We will use M later.

4.2 The Algorithm

Algorithm: SearchInIndecomposableGraph

Data: G = (V, E): an indecomposable graph;

x,y: two distinct vertices of G}

Result: Visited: a set of vertices;

Var: M: array[V] of integer;

BeginAlgo
If C(G,x,y) then Computelnterval(G,z,y, Visited, M)
Else Computelnterval(G,y, z, Visited, M)
EndIf

EndAlgo

4.3 Correctness and Complexity

This algorithm is a search in a graph if and only if at the end of the algorithm,
Visited = V. This is the aim of the following proposition.

88 Alain Cournier

Proposition 8 Let G = (V, E) be an indecomposable graph and x,y two distinct
vertices of G. The algorithm SearchInIndecomposableGraph(G,x,y, Visited,
M) stops with Visited =V

Proof. First one can notice that the Condition 1 in the particular cases of
indecomposable graphs verifies =C (G, z,y) = C(G, y, x).
Otherwise {z,y} is a non trivial interval of G.

Using Corollary 4, we know that Visited is an interval of G.

Let us assume that C(G, z,y) is true, then x € Visited, and since C(G, z,y)
is true Visited contains one of the two following nonempty sets:
N(z) — N(y) when a2y ¢ FE or N(y) — N(z) when zy € E.

Since G is an indecomposable graph Visited = V.

If C(G,z,y) is false, C(G,y,x) is true and the Proposition still true.

From proposition 7 we can claim the following Theorem.

Theorem 2 The algorithm SearchInIndecomposableGraph run in O(|V] +
|E|) time complexity.

5 Consequences

The following proposition is a direct consequence of Theorem 1

Proposition 9 For any indecomposable graph G = (V, E) and for any z,y € V
(x # y), SearchInIndecomposableGraph(G,z,y, Visited, M) and SearchIn-
IndecomposableGraph(G,x,y, Visited, M) can visit the vertices in the same or-
der. Furthermore the function M is independent from G and G.

6 Compute Minimal Indecomposable Graph
for Two Vertices

In this section we will see how to compute a minimal indecomposable graph
for two vertices. The algorithm will take an indecomposable graph G and two
distinct vertices x,y as inputs and gives as an output, a set of vertices inducing
a minimal indecomposable graph for the vertices x,y. This algorithm will use
the algorithm SearchInIndecomposableGraph as a subroutine.

6.1 Outline of the Algorithm

Algorithm: FindMinimallndecomposableGraph
Data: G = (V, E) an indecomposable graph; z,y two vertices of G;
Result: S : A set of vertices inducing a minimal indecomposable graph;
Var: M : array [V] of integer; i: integer;s, t: vertices

P ={po,p1,...}: a partition of V;

Search in Indecomposable Graphs 89

BeginAlgo
SearchInIndecomposableGraph(G,z,y, S, M); S «— ;
Compute P such that p; = {u € V|M|u] = i};
If M[x] =0 then s «— y; t — x
Else s «— x; t «— y;
EndIf
i+ Mls]; S — SU{s};
While i > 2 do
pick a vertex w in p;—1 such that (w,s) % (¢, s);
s—w; S —SU{w}li—i—-1
EndWhile
S — SU{t}h
EndAlgo

6.2 Proof of the Algorithm

First of all, we will see that the algorithm can pick a vertex w.

Proposition 10 Let G be an indecomposable graph, x,y be two vertices of G and
M the output of the algorithm SearchInIndecomposableGraph(G,xz,y,S, M).
For any vertex z of G, M|[z] > 2 there exists a vertex v such that M[v] = M[z]—1
and either M[z] =0 and (x,z) % (v,2) or M[y] =0 and (y,z) % (v,2);

Proof. This is a direct consequence of Invariant 5.

Theorem 3 There exists an isomorphism [from the subgraph G(S) onto

PraeMmz), M) +1 07 Qmaz(Mz),My)+1 O

Pmax(M[x},M[y])+1 or Qmam(M[m],M[y]H—l ’
such that f({z,y}) = {1, max(M|z], M[y]) + 1}.

Proof. Using the Theorem 1, we will assume that = € N(y). In the following we
will denote by z; the vertex of SNp; and by k the number maz (M |[x], M[y]) + 1.
Let us first prove that for any 7, 0 < j <k —3, (xj,2j+1) % (z,y).

Let us suppose the contrary, there exists j, 0 < j < k — 3 with (z;,z;41) =~
(z,y), so either j = 0 and by construction, 1 € N(xg) — N(zg) or j > 1, in this
case z;11 € N(xg), so z;41 € N(zo) N N(zx), and k = j + 2. In these two cases
we hold a contradiction.

Since x & N(y) we know (zg,x1) ~ (xp_1,2) then either (zg,x1) ~ (xk_2,
xp—1) and G(S) is a Pgy1, or (zg,x1) % (Tk—2,2x—1) and G(S) is a Qg1-

In the 2 cases the Theorem holds.

Proposition 11 When G is an indecomposable graph and x # y, the algorithm
FindMinimallndecomposableGraph runs in linear time.

Proof. The algorithm FindMinimallndecomposableGraph needs to use tech-
niques like partition refinements developed in [14,2,1,3].

90 Alain Cournier
7 Conclusion

In this paper, we saw another way to do a search in an indecomposable graph.
But one can notice that the algorithm SearchInIndecomposableGraph(G, z,y)
visits all the vertices of the graph when G = (V, E) is connected, G is connected
and V is the smallest interval containing x and y.

The search developed in this paper is close from the Breadth First Search
in a graph. In the same way one can imagine a Deep First Search, a Lexico-
graphic Breadth First search or a Maximal Cardinality Search in Indecomposable
Graphs.

On the other hand, it would be interesting to continue the examination be-
gun here by attempting to characterize the computable properties, using these
searches.

References

1. A. Cournier. Sur Quelques Algorithmes de Décomposition de Graphes. PhD thesis,
Université Montpellier II, 161 rue Ada, 34392 Montpellier Cedex 5, France, février
1993.

2. A. Cournier and M. Habib. An efficient algorithm to recognize prime undirected
graphs. In E. W. Mayr, editor, Lectures notes in Computer Science, 657.Graph-
Theoretic Concepts in Computer Science. 18th International Workshop, WG’92.
Wiesbaden-Naurod, Germany, June 1992. Proceding, pages 212-224. Springer-
Verlag, 1993.

3. A. Cournier and M. Habib. A new linear algorithm for modular decomposition.
In S. Tison, editor, Lectures notes in Computer Science, 787. Trees in Algebra and
Programming-CAAP’94, pages 68-84. Springer-Verlag, April 1994. 19th Interna-
tional Colloquium, Edinburgh, U.K., April 1994. Proceedings.

4. A. Cournier and P. Ille. Minimal indecomposable graphs. Discrete Math, (183):61—
80, 1998.

5. A. Ehrenfeucht and G. Rozenberg. Primitivity is hereditary for 2-structures (fun-
damental study). Theoretical Comp. Sci., 3(70):343-358, 1990.

6. R. Fraissé. L’intervalle en thorie des relations, ses gnralisations, filtre intervallaire
et cloture d’une relation. In M. Pouzet and D. Richard, editors, Order, Description
and Roles, pages 313-342. North-Holland, 1984.

7. M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press,
New-York, 1980.

8. M. Habib. Substitution des structures combinatoires, théorie et algorithmes. PhD
thesis, Université Pierre et Marie Curie (Paris VI), 1981.

9. J. E. Hopcroft and R. E. Tarjan. Efficient algorithms for graph manipulation.
Communication of the ACM, 16(6):372-378, 1973.

10. P. Ille. Indecomposable graphs. Discrete Math, (173):71-78, 1997.

11. B. Jamison and S. Olariu. P-components and the homogeneous decomposition of
graphs. In 18th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG’92), June 1992.

12. D. Kelly. Comparability graphs. In I. Rival, editor, Graphs and Orders, pages
3-40. D. Reidel Publishing Company, 1985.

13

14.

15.

16.

17.

18.

Search in Indecomposable Graphs 91

C. Y. Lee. An algorithme for path connection and its applications. IRE Transac-
tions on Electronic Computers, EC-10(3):346-365, 1961.

C. Paul. Parcours en largeur lexicographique : un algorithme de partitionnement,
applications aux graphes et généralisations. PhD thesis, LIRMM, Université Mont-
pellier II, 1998.

Donald J. Rose, R. Endre Tarjan, and George S. Lueker. Algorithmic aspects of
vertex elimination on graphs. SIAM Journal of computing, 5(2):266-283, June
1976.

J. H. Schmerl and W. T. Trotter. Critically indecomposable partially ordered
sets, graphs, tournaments and other binary relational structures. Discrete Math,
(113):191-205, 1994.

J. Spinrad. P4-trees and substitution decomposition. Discrete Applied Mathemat-
ics, (39):263-291, 1992.

D. P. Sumner. Graphs indecomposable with respect to the X-join. Discrete Math.,
(6):281-298, 1973.

On the Complexity
of (k,1)-Graph Sandwich Problems*

Simone Dantas', Celina M.H. de Figueiredo?, and Luerbio Faria3

! COPPE, Universidade Federal do Rio de Janeiro, Brazil
sdantas@cos.ufrj.br
2 Instituto de Mateméatica and COPPE,
Universidade Federal do Rio de Janeiro, Brazil
celina@cos.ufrj.br
3 Departamento de Matematica,
Faculdade de Formacgao de Professores, UERJ, Brazil
luerbio@cos.ufrj.br

Abstract. A graph G is (k,1) if its vertex set can be partitioned into
at most k independent sets and [cliques. The (k,l)-Graph Sandwich
Problem asks, given two graphs G' = (V, E') and G? = (V, E?), whether
there exists a graph G = (V, E) such that E' C E C E? and G is (k,1).
In this paper, we prove that the (k,)-Graph Sandwich Problem is NP-
complete for the cases k =1land [=2; k=2and [l =1;0or k =1= 2.
This completely classifies the complexity of the (k,1)-Graph Sandwich
Problem as follows: the problem is NP-complete, if k41 > 2; the problem
is polynomial otherwise. In addition, we consider the degree A constraint
subproblem and completely classifies the problem as follows: the problem
is polynomial, for k < 2 or A < 3; the problem is NP-complete otherwise.

1 Introduction

We say that a graph G' = (V, E') is a spanning subgraph of G = (V, E?) if
E' C E?; and that a graph G = (V, E) is a sandwich graph for the pair G', G? if
E' C E C E?. For notational simplicity in the sequel, we let E3 be the set of all
edges in the complete graph with vertex set V' which are not in E2. Thus every
sandwich graph for the pair G1, G? satisfies E! C E and EN E? = (). We call
E! the forced edge set, E*\ E' the optional edge set, E3 the forbidden edge set.
The GRAPH SANDWICH PROBLEM FOR PROPERTY IT is defined as follows [10]:

GRAPH SANDWICH PROBLEM FOR PROPERTY [T

Instance: Vertex set V, forced edge set E', forbidden edge set E3.

Question: Is there a graph G = (V, E) such that E' C E and ENE? =)
that satisfies property 11?7

* This research was partially supported by CNPq, MCT/FINEP PRONEX Project
107/97, CAPES (Brazil) /COFECUB (France) Project number 213/97, FAPERJ and
PROCIENCIA-UERJ Project.

L. Kucera (Ed.): WG 2002, LNCS 2573, pp. 92-101, 2002.
© Springer-Verlag Berlin Heidelberg 2002

On the Complexity of (k,1)-Graph Sandwich Problems 93

We shall use both forms (V, E', E?) and (V, E', E3) to refer to an instance
of a graph sandwich problem.

Graph sandwich problems have attracted much attention lately arising from
many applications and as a natural generalization of recognition problems [5,6,9,10,11,13,1
The recognition problem for a class of graphs C is equivalent to the graph
sandwich problem in which the forced edge set E' = E, the optional edge set
E?\ E' =0, G = (V,E) is the graph we want to recognize, and property IT is
“to belong to class C”.

Golumbic et al. [10] have considered sandwich problems with respect to sev-
eral subclasses of perfect graphs, and proved that the GRAPH SANDWICH PROB-
LEM FOR SPLIT GRAPHS remains in P. On the other hand, they proved that
the GRAPH SANDWICH PROBLEM FOR PERMUTATION GRAPHS turns out to be
NP-complete.

We are interested in graph sandwich problems for properties II related to de-
compositions arising in perfect graph theory: homogeneous set [5], join composi-
tion [6]. In this paper, we consider the decomposition of a graph into independent
sets and cliques.

Let G be an undirected, finite, simple graph. A (k,l) partition of a graph
GG is a partition of its vertex set into at most k independent sets and [cliques.
A graph is (k,l) if it admits a (k,1) partition. The complexity of (k,l) graph
recognition has been completely classified as follows: if k = 3 and [= 0 then
the corresponding problem is 3-coloring, which implies [1,2] that the recognition
of (k,l) graphs is NP-complete, whenever k > 3 or | > 3. For the remaining
values of k and [, the problem is polynomial: (1, 1) graphs are split graphs; (2,0)
graphs are the bipartite graphs; the polynomial-time recognition of (2, 1) graphs
and consequently of graphs (1,2) was established in [1,2,3]; the polynomial time
recognition of (2,2) graphs was established in [1,2] and independently in [7].

The studies on sandwich problems focus on those problems which are in-
teresting in terms of their complexity, i.e., neither trivially NP-complete nor
trivially polynomial.

Fact 1 If the recognition problem for a class of graphs C is NP-complete, then
its corresponding sandwich problem is also NP-complete.

Fact 2 If the property II is hereditary then there exists a sandwich graph for
(V, B, E?) with the property II if and only if G* = (V, E') has the property II.

Fact 3 If the property II is ancestral then there exists a sandwich graph for
(V, EY, E?) with the property II if and only if G* = (V, E?) has the property II.

Thus, Fact 1 says that the sandwich problem for (k, 1) graphs is NP-complete,
whenever £ > 3 or [> 3. In addition, Fact 2 (respectively Fact 3) says that
for each property which is hereditary (respectively ancestral), the graph sand-
wich problem reduces to the recognition problem for this property on the single
graph G (respectively G?). Therefore, the hereditary properties defining (1,0)

94 Simone Dantas, Celina M.H. de Figueiredo, and Luerbio Faria

and (2,0) graphs, and the ancestral properties defining (0,1) and (0,2) graphs
reduces these graph sandwich problems to recognition problems that are poly-
nomial. Given a property II, we define its complementary property II as follows:
for every graph G, G satisfies IT if and only if G satisfies IT.

Fact 4 There is a sandwich graph with property II for the instance (V,E', E3) if
and only if there is a sandwich graph with property II for the instance (V, E3, EY).

Thus, our proof of the NP-completeness of the sandwich problem for (2,1)
graphs implies the NP-completeness of the sandwich problem for (1,2) graphs.

This paper is organized as follows: in Section 2 we prove that the (2, 1)-Graph
Sandwich Problem is NP-complete. Section 3 contains the proof that the (2, 2)-
Graph Sandwich Problem is NP-complete. This, together with the facts above
completely classifies the complexity of the (k,1)-Graph Sandwich Problem as
follows: the problem is NP-complete, if k+ 1 > 2; and polynomial otherwise. Fi-
nally, Section 4 defines and classifies the degree constraint subproblems obtained
by bounding the maximum degree in G2.

2 (2,1)-Graph Sandwich Problem

In this section we prove that the (2,1)-GRAPH SANDWICH PROBLEM is NP-
complete by reducing the NP-complete problem 3-SATISFIABILITY to
(2,1)-GRAPH SANDWICH PROBLEM. These two decision problems are defined
as follows.

3-SATISFIABILITY (3SAT)

Instance: Set X = {x1,...,x,} of variables, collection C' = {¢1,...,cm}
of clauses over X such that each clause ¢ € C has |¢| = 3 literals.
Question: Is there a truth assignment for X such that each clause in C'

has at least one true literal?

(2,1)-GRAPH SANDWICH PROBLEM

Instance: Vertex set V, forced edge set E!, forbidden edge set E>.

Question: Is there a graph G = (V, E), such that E* C E and ENE? = (),
and G is (2,1)7

Theorem 1. The (2,1)-GRAPH SANDWICH PROBLEM is NP-complete.

Proof. In order to reduce 3SAT to (2,1)-GRAPH SANDWICH PROBLEM we need to
construct a particular instance (V, E', E3) of (2,1)-GRAPH SANDWICH PROBLEM
from a generic instance (X, C') of 3sAT, such that C is satisfiable if and only if
(V, E', E3) admits a sandwich graph G = (V, E) which is (2, 1). First we describe
the construction of a particular instance (V, E', E3) of (2,1)-GRAPH SANDWICH
PROBLEM; second we prove in Lemma 1 that every graph G = (V| E) satisfying
E' C E and EN E3 = () and such that G is (2,1), defines a truth assignment
for (X, C); third we prove in Lemma 2 that every truth assignment for (X, C)
defines a graph G = (V, E) which is (2,1) satisfying B! C F and EN E? = {).
These steps are explained in detail below. a

On the Complexity of (k,1)-Graph Sandwich Problems 95

Construction of Particular Instance of (2,1)-GRAPH SANDWICH
PROBLEM

The vertex set V contains: an auxiliary set of vertices {k1, ko, $11, S12, S21, S22};
for each variable x;, 1 < ¢ < n, two vertices x;, T;, corresponding to its literals
and a vertex p;; for each clause ¢; = (I{ VI V1), 1 < j < m, three corresponding
vertices t{, tg, té. In Figure 1, solid edges are forced E'-edges and dashed edges
are forbidden E3-edges.

The Forced Edge Set E' contains: edges between auxiliary vertices {kka,
k1811, k1512, S11512, K221, k2S22, S21822}; for each variable z;, 1 <1 < n, the set
{xis11, Tis12, Tipi, Tip;}; for each clause ¢;, 1 < j < m, the set {t]¢3, t]t], t3¢1}.

The Forbidden Edge Set E? contains: edges between auxiliary vertices {k1s21,
kisaz, kasi1, kasi2, s11521, 511522, S12521, S12522 }; for each variable z;, 1 <@ < n,
the set {z;7;, p;k2}; for each clause ¢; = (I VI V1), 1 < j <m, {t|l, t}13,
15}

(VG) | (CG)

Fig. 1. Base Graph (BG), Variable Gadget (VG) and Clause Gadget (CG).

We call (2,1) Base graph the subgraph of G? = (V, E?) induced by {k, ko,
S11, 812, S21, S22} (see Figure 1(BG@)). For each i € {1,...,n}, we call Variable
gadget the subgraph of G2 = (V, E?) induced by {x;, T, p;} (see Figure 1(VQ)).
For each j € {1,...,m}, we call Clause gadget the subgraph of G* = (V, E?)
induced by {¢],t3,t]} (see Figure 1(CG)). Lemmas 1 and 2 prove the required
equivalence for establishing Theorem 1.

Lemma 1. If the particular instance (V,E', E®) of (2,1)-GRAPH SANDWICH
PROBLEM constructed above admits a graph G = (V, E) such that E* C E and
ENE? =0 and G is (2,1), then there exists a truth assignment that satisfies
(X,0).

Proof. Suppose there exists a (2,1) sandwich graph G = (V, E) with (2,1) par-
tition (S1, S2, K) where S7, Sy are independent sets and K is a clique.
Claim 1.]411,/{}2 € K and S11, S12, S21, S22 € S U Ss.

Proof of Claim 1: Since S; U Sy induce a bipartite subgraph in G, any trian-
gle induced in G' must have at least one of its vertices in K. Hence, at least
one vertex of the triangle induced by k1, s11 and si2; and at least one vertex

96 Simone Dantas, Celina M.H. de Figueiredo, and Luerbio Faria

(a) (b)

Fig. 2. (a) - Instance (V, E', E®) obtained from the satisfiable instance of 3sAT: I =
(U,C) = {z1, 22,23}, {(Z1 VT2 VT3), (21 VT2 VT3), (x1 Va2 Vas)}) and (b) - respective
partition for the (2,1) graph G defined from the satisfying truth assignment z1 = F,
T2 = T, T3 = F.

of the triangle induced by ks, s21 and sg2 belong to K. Now, each vertex in
{s11, 512, 821, 822} is joined by E3-edges to three vertices that induce a triangle
in G. If one of the vertices of {s11, 12, 521, S22} belonged to K, then this would
force at least one triangle to have no vertices in K, a contradiction. Thus, we
must have {511,512,821,822} C 51 U85, and {k’l,k‘g} CK. O

Both {s11, 812} and {sa1, s22} induce edges in G*, which force {s11, $12}NS; #
0, {s21,822}NS; # 0,7 = 1,2. We assume with no loss of generality that s11, s21 €
S1, which implies 512, s2o0 € Sa. In case the particular instance (V, B, E3) admits
a (2,1) sandwich graph G = (V, E) any (2, 1) partition (51, Sz, K) for G satisfies
Sy, 82, K # .

Claim 2. For each i € {1,...,n}, p; € S1USy, z; € KUSy and T; € KU 5.

Proof of Claim 2: Since p;ko € E? and ko € K, we have that p; cannot be in
K. In addition, x;s11, ;512 € E' and s € Si, s12 € S, we have respectively
x; € KUSy and T; € KU Sy, i €{1,...,n}. O
Observe that since z;p; € E' and z;7; € E®, we have that if z; € K, then
T; € S1, which implies p; € Ss; if x; € So, then p; € S1, which implies 7; € K.
Therefore, for each i € {1,...,n}, exactly one vertex of {z;,Z;} belongs to K.

Claim 3. For each j € {1,...,m}, at least one of the vertices {t{,t@té} must
be in K.

Proof of Claim 3: Since S; U S induce a bipartite subgraph in G, for each
Jj € {1,...,m}, at least one of the vertices of the triangle induced in G' by
{t],t},t}} must be in K. O

On the Complexity of (k,1)-Graph Sandwich Problems 97

We now define the truth assignment for (X, C): for ¢ € {1,...,n}, variable x;
is false if and only if the vertex x; € K. Suppose that for some j € {1,...,m},
the clause ¢; = (I VI3 Vv 13) is false. By the construction of (V, E', E®), there
is an edge of E2 between the vertex assigned to the literal li and the vertex ti,
k € {1,2,3}. Hence, if the literal li is false, then its corresponding vertex is in
K which implies that t{c cannot be in K. So, all vertices of the triangle induced
in G* by {t],t},t3} must be in S; U Sy. By Claim 3, this is a contradiction to
the hypothesis that S, Se and K is a (2,1) partition of the set of vertices of G.
Hence, the above defined truth assignment satisfies (X, C). This ends the proof
of Lemma 1. O

The converse of Lemma 1 is given next by Lemma 2.

Lemma 2. If there exists a truth assignment that satisfies (X, C), then the par-
ticular instance (V, E', E3) of (2,1)-GRAPH SANDWICH PROBLEM constructed
above admits a graph G = (V, E) such that E' C E and ENE3 =0 and G is

(2,1).

Proof. Suppose there is a truth assignment that satisfies (X, C'). We shall define
a partition of V into sets S1, Se and K that in turn defines a solution G for the
particular instance (V, E', E3) of (2,1)-GRAPH SANDWICH PROBLEM associated
with the 3SAT instance (X, C).

Place vertices k1, ko € K and s11, 891 € S1 and s12, $22 € So. For i € {1,...,n}
if variable z; is false then place vertices x; in K, Z; in S; and p; in S5. Otherwise,
if variable z; is true, then place vertices x; in Sz, T; in K and p; in 5. _

For j € {1,...,m} and ¢; = (I V I} V 1}), place the corresponding vertices ¢},
t%, té as follows. For k € {1,2, 3}, if the literal lf; is false then place ti in S1USs;
otherwise, place ti in K. Since the truth assignment satisfies (X, C), for each j,
we have at most two vertices ti in S1 U Ss. In addition, in case two vertices ti
and tlj, are placed in S; U Ss, place one in S7 and the other one in Ss.

To show that (S1, Se, K) is a (2,1) partition for a sandwich graph G = (V, E)
we need to prove that there is no E' edge with both endnodes in S;, there is no
E' edge with both endnodes in Sy and there is no E? edge with both endnodes
in K. ‘

By the above placement, s11, so1 are in Sy, and T, t‘,i and p; can be in
S, 1€ {1,...,n}, j € {1,....m}, k € {1,2,3}. The only possible forced edges
between these vertices are: the edge Z;p; which does not have both endnodes
in S1, because T; € Sy if the variable x; is false and p; € Sy if z; is true; and
the edge tité which does not have both endnodes in S1, k # ¢,k,q € {1,2,3}.
Hence, there is no E' edge with both endnodes in Sj. '

In the same way, s12, S22 are in Ss, and the vertices x;, ¢, p; can be in
Sa, i € {1,...,n}, 7 € {1,....,m}, k € {1,2,3}. The only possible forced edges
between these vertices are: the edge x;p; which does not have both endnodes
in Sz, because z; € Sy if the variable x; is true and p; € S; if z; is false; and
the edge tité which does not have both endnodes in S, k # ¢, k,q € {1,2,3}.
Hence, there is no E' edge with both endnodes in S.

98 Simone Dantas, Celina M.H. de Figueiredo, and Luerbio Faria

For the set K we have that k1, ks are in K, and the vertices z;, T;, tf; can be in
K,ie{l,..,n}, je{1,..,m}, k € {1,2,3}. The only possible forbidden edges
between these vertices are: the edge T;x; which does not have both endnodes in
K, because T; € K if and only if the variable z; is true and z; € K if and only if
z; is false; and the edges z;t], T;t],, by the above placement, we never have both
vertices in K. Hence, there is no E? edge with both endnodes in K. And this
ends the proof of Lemma, 2. a

3 (2,2)-Graph Sandwich Problem

In this section we prove that the (2,2)-GRAPH SANDWICH PROBLEM is NP-
complete by reducing the NP-complete problem 3SAT to (2, 2)-GRAPH SANDWICH
PROBLEM.

(2,2)-GRAPH SANDWICH PROBLEM

Instance: Vertex set V, forced edge set E', forbidden edge set E3.

Question: Is there a graph G' = (V, E), such that E' C F and ENE3 =),
and G is (2,2)7

Theorem 2. The (2,2)-GRAPH SANDWICH PROBLEM is NP-complete.

Proof. In order to reduce 3SAT to (2,2)-GRAPH SANDWICH PROBLEM we need to
construct a particular instance (V, E1, E3) of (2,2)-GRAPH SANDWICH PROBLEM
from a generic instance (X, C') of 3sAT, such that C is satisfiable if and only if
(V, B, E3) admits a sandwich graph G = (V, E) which is (2, 2). First we describe
the construction of a particular instance (V, E', E3) of (2,2)-GRAPH SANDWICH
PROBLEM; second we prove that every graph G = (V, E) satisfying E! C F
and ENE3? = () and such that G is (2,2), defines a truth assignment for (X, C);
third we prove that every truth assignment for (X, C') defines a graph G = (V, E)
which is (2,2) satisfying E* C E and EN E3 = (). The particular instance is
explained in detail below. The required equivalence can be established following
the steps of Theorem 1 and details are omitted. a

Construction of Particular Instance of (2,2)-GRAPH SANDWICH PROBLEM

The vertex set V' contains: an auxiliary set of vertices: By = {k1, ka2, s11, S12, Sa1,
s22}; By = {ks, k4,531,832, 541, S42}; for each variable ;, 1 < i < n, two vertices
x;, T;, corresponding to its literals and a vertex p;; for each clause ¢; = (I VIV
lg), 1 < j < m, three corresponding vertices t{, té, t§ See Figure 1, where solid
edges denote forced E'-edges and dashed edges denote forbidden E3-edges.

The Forced Edge Set E' contains: edges between auxiliary vertices {k1ka,
kska, k1s11, k1812, kasa1, k2822, k3s31, k3s32, kasa1, kasa2, s11512, $21822, 831532,
s41542}; for each variable x;, 1 < i < n, the set {x;s11, T;s12, Tipi, Tipi}; for
each clause ¢;, 1 < j < m, the set {t]t], t]t}, tJt]}.

The Forbidden Edge Set E® contains: edges between auxiliary vertices {k1s21,
kisa2, kas11, kas12, S11821, S11522, S12521, 12522} U {k3s41, k3sa2, kas31, kasso,

On the Complexity of (k,1)-Graph Sandwich Problems 99

831841, S31842, 832841, S32842 U{uv : u € Byandv € Bo} U{uv : u € By andv €
V\ (B1UB,)}; for each variable z;,1 < i < n, the set {2;T;, p;k2}; for each clause
¢j, 1< g <m, {11l thly, 1313}

Fig. 3. (2,2) Base Craph - all non-represented edges are E* edges.

Call (2,2) Base graph the subgraph of G? = (V, E?) induced by {k1, k2, 511,
S12, S21, S22, k3, k4, S31, S32, S41, Sa2} (see Figure 3). As in the previous problem,
we have two kinds of gadgets: Variable gadget (Figure 1(VG)) and Clause gadget
(Figure 1(C'G)). The special instance has a property similar to Theorem 1: if the
particular instance (V, B, E3) admits a (2,2) sandwich graph G = (V, E), then
any (2,2) partition (51,55, K1, Ks) for G satisfies S1,59, K1, Ko # (. With-
out loss of generality assume ki, ks € K, k3, ky € Ko, S11, 821,831,541 € 51,
S12, S22, S32, S42 € So. This 1mphes Ky = {kg, k4}

4 (k,l)-Bounded A Graph Sandwich Problem

In this section, we consider the complexity of the (k,{)-Graph Sandwich problem
when restricted to inputs having G? with bounded maximum degree.

(k,1)-Bounded A Graph Sandwich Problem ((k,!) — BAGSP)

Instance: Vertex set V, forced edge set E!, forbidden edge set E3, where
G? is a graph with no vertex degree exceeding A.

Question: Is there a graph G = (V, E) such that E' C E and ENE3 = ()
which is a (k,) graph?

We completely classify the (k,l) — BAGSP as follows: (k,I) — BAGSP is
polynomial for k < 2 or A < 3, and NP-complete otherwise.

Lemma 3. If (k,l) — BAGSP s solvable in polynomial time then the
(k,1+1) — BAGSP is solvable in polynomial time.

Proof. Let (V, E*, E3) be an instance for (k,[+1) — BAGSP. Suppose that there
exists a polynomial time algorithm A to solve the (k,1) — BAGSP. We observe
that if there exists a sandwich graph for (V, E', E®) which is (k,l + 1) then a
clique in G is also a clique in G2. Thus, in order to define a polynomial time
algorithm for (k,1+ 1) — BAGSP we proceed as follows: for each subset S with

100 Simone Dantas, Celina M.H. de Figueiredo, and Luerbio Faria

less than or equal to A 4 1 vertices we verify if S induces a clique in G?. In the
affirmative case we apply the algorithm A to test if there exists a sandwich graph
for the instance (V' \ S, B, E3) of (k,1) — BAGSP. Hence, we have designed an
algorithm for (k,l + 1) — BAGSP which runs in time O(n“+!P), where P is
the order of the algorithm A. ad

Lemma 4. If k <2, then (k,1) — BAGSP is solvable in polynomial time.

Proof. We argue by induction on I. As we said in the Introduction the (1,0)
and (2,0)-Graph Sandwich Problems are solvable in polynomial time, so are
the corresponding problems BAGSP. Suppose that for ¥ < 2 and [> 0 the
(k,l) — BAGSP is solvable in polynomial time. By Lemma 3 we have that the
corresponding (k,l + 1) — BAGSP is a polynomial time problem. a

Now, consider k& > 3. Note that, as a consequence of Brook’s Theorem [4],
(k,0) graph recognition is polynomial when restricted to inputs having A < 3.
This implies by Fact 2 that (k,0) — B3GSSP is solvable in polynomial time, and
by Lemma 3, (k,l) — B3GSP is also polynomial. However, by [8], (k,0) graph
recognition is NP-complete, even when restricted to inputs having A < 4, which
implies by Fact 1 that (k,0) — BAGSP is NP-complete, and as remarked in
[1,2], (k,l) — BAGSP is NP-complete, for A > 4.

5 Conclusion

We proved that the (k,1)-Graph Sandwich Problem is NP-complete for the cases
k=1landl=2;k=2and! = 1;or k =1=2. We note that the basic idea of the
construction of the particular instance of these problems is a simple necessary
condition: if a graph is (k,[) then it does not contain [+ 1 independent cliques of
size k + 1. Recently, this condition was established sufficient for the class of the
Chordal graphs, as proved by Hell, Klein, Protti and Tito [12]. In addition, we
considered the degree A constraint subproblem (k,1) — BAGSP and completely
classified the problem as follows: (k,!) — BAGSP is a polynomial problem for
k <2or A< 3; and NP-complete otherwise.

References

1. A. Brandstadt. Partitions of Graphs into One or Two Independent Sets and
Cliques. Report 105 (1991), Informatik Berichte, Fern Universitiat, Hagen, Ger-
many.

2. A. B%]randstédt. Partitions of Graphs into One or Two Independent Sets and
Cliques. Discrete Math., 152 (1996), 47-54. See also Corrigendum, 186 (1998),
295.

3. A. Brandstadt, V. B. Le and T. Szymczak. The Complezity of some Problems
Related to Graph 3-Colorability. Discrete Appl. Math., 89 (1998), 59-73.

4. R. L. Brooks. On Coloring the Nodes of a Network. In Proc. Cambridge Philos.
Soc., 37 (1941) 194-197.

5. M. Cerioli, H. Everett, C. M. H. de Figueiredo, and S. Klein. The homogeneous set
sandwich problem. Inform. Process. Lett., 67 (1998), 31-35.

10.

11.

12.

13.

14.

On the Complexity of (k,1)-Graph Sandwich Problems 101

C. M. H. de Figueiredo, S. Klein and K. Vuskovi¢. The Graph Sandwich Problem
for 1-Join Composition is NP-complete. Discrete Appl. Math., 121 (2002) 73-82.
T. Feder, P. Hell, S. Klein, and R. Motwani. Complexity of graph partition problems.
In Proc. of the 31st Annual ACM Symp. on Theory of Computing - STOC’99,
(1999) 464-472.

M.R. Garey, D.S. Johnson and L.Stockmeyer. Some Simplified NP-complete Graph
Problems. Theor. Comput. Sci., 1 (1976) 237-267.

. M. C. Golumbic. Matriz sandwich problems. Linear Algebra Appl., 277 (1998),

239-251.

M. C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems. J. Algo-
rithms, 19 (1995), 449-473.

M. C. Golumbic and A. Wassermann. Complezity and algorithms for graph and
hypergraph sandwich problems. Graphs Combin., 14 (1998), 223-239.

P. Hell, S. Klein, F. Protti and L. Tito. On Generalized Split Graphs. In Brazilian
Symp. on Graphs, Algorithms and Combinatorics, Electronic Notes in Discrete
Math. 7 (2001).

H. Kaplan and R. Shamir. Pathwidth, bandwidth, and completion problems to
proper interval graphs with small cliqgues. SIAM J. Comput., 25 (1996), 540-561.

H. Kaplan and R. Shamir. Bounded degree interval sandwich problems. Algorith-
mica, 24 (1999), 96-104.

Algorithms and Models
for the On-Line Vertex-Covering
(Extended Abstract)

Marc Demange! and Vangelis Th. Paschos?

! ESSEC, France
demange@essec.fr
2 LAMSADE, Université Paris-Dauphine, Paris, France

paschos@lamsade.dauphine.fr

Abstract. In on-line computation, the instance of a problem is revealed
step-by-step and one has, at the end of each step, to irrevocably decide
on the part of the final solution dealing with this step. We first study
the minimum vertex-covering problem under two on-line models corre-
sponding to two different ways vertices are revealed. The former one
implies that the input-graph is revealed vertex-by-vertex. The second
model implies that the input-graph is revealed per clusters, i.e., per in-
duced subgraphs of the final graph. Under the cluster-model, we then
relax the constraint that the choice of the part of the final solution deal-
ing with each cluster has to be irrevocable, by allowing backtracking.
We assume that one can change decisions upon a vertex membership of
the final solution, this change implying, however, some cost depending
on the number of the vertices changed. Finally we study simple model
where instance is revealed edge-by-edge. Most of the results we present
are tight and optimal, or asymptotically optimal.

1 Introduction

On-line computation is very natural in real world applications since there exist
situations modeled as problems for which the final data-set is not a priori known.
In other words, data are revealed step-by-step. Frequently, when one tries to
solve problems modeling such situations, many types of constraints (for example,
deadlines on the final solution delivery, deadlines on the implementation of the
solution computed) force her/him to start problem’s solution before the whole
set of data is completely revealed. On the other hand, these constraints may be
strict enough forcing so the problem solver to irrevocably decide on the part of
the final solution dealing with each part of data revealed, or may be relatively
weak, allowing her/him to go back over decisions previously taken about the
partial solution computed at each step.

Let IT be an NP optimization graph-problem. The on-line version of IT will
be denoted by LII. An on-line algorithm A decides at each step which of the data
(vertices or edges) revealed during this step will belong to the final solution. Its
performance is measured in terms of the so-called competitive ratio ¢, defined,

L. Kucera (Ed.): WG 2002, LNCS 2573, pp. 102-113, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Algorithms and Models for the On-Line Vertex-Covering 103

for an instance G, as the ratio of the value of the solution computed by it when
running on G to the value of a solution computed off-line, i.e., by an algorithm
running once the final graph is completely known. In this paper we deal with
deterministic on-line algorithms. On-line graph problems studied until now are,
to our knowledge, the traveling salesman ([1]), the graph-coloring ([2,3,4]) and
the independent set ([5]).

In this paper we study an almost paradigmatic computer science problem,
the minimum vertex-covering problem, denoted by VC in the sequel, and defined
as follows: given a graph G(V, E), compute the minimum-cardinality set V' C'V
such that, Vv;v; € E, at least one of the v;,v; belongs to V'. We consider that G
(we set n = |V| and suppose n known at the beginning of the game) is revealed
per non-empty clusters, i.e., per induced subgraphs G;(V1, E1), G2(Va, Ea), ...
of G (we denote by n; the order of G;, i = 1,2,...). Every time a new cluster G;
is revealed, the edges linking the vertices of G; with the vertices of G, j < i, are
also revealed. We denote by t the number of clusters needed so that the whole
graph is completely revealed.

We first focus ourselves on the case where graph is revealed by means of its
vertices and consider ¢ = n, i.e., that G is revealed vertex-by-vertex. We establish
the competitive ratio of a very simple but very natural on-line algorithm and
show that its competitive ratio is asymptotically optimal..

Next, we generalize our study assuming ¢t < n and study the competitive
ratio of (more complicated) on-line algorithms for LVC against an optimal off-
line algorithm. Here we distinguish and analyze two cases: 2 <t < n and t = 2
and we provide analyses shown to be optimal or asymptotically optimal.

We then assume non-irrevocability in the construction of the on-line solution,
i.e., by allowing backtracking. This means that the algorithm can interchange a
number of vertices in the solution computed by a number of vertices not included
in it. But we consider that changes performed imply a cost on the vertices
changed. We study the competitiveness (against an optimal off-line algorithm)
of two algorithms under two cost models. The former implies that the cost paid
for any change is fixed, while the latter implies that for any vertex changed one
has to pay a cost equal to the total number of vertices changed. Our analyses
are, here also, asymptotically optimal.

Finally, we study a slightly different on-line model, where we assume that the
input-graph is revealed edge-by-edge. Together with the arrival of a new edge,
are revealed the links of its endpoints with the ones of the edges already revealed.
Here also we devise an on-line algorithm and study its competitive ratio against
an optimal off-line one. Let us note that for this part of the paper also results
are quasi-optimal.

Of course, the study of on-line vertex-covering is interesting per se. However,
as we show in [6], LVC is not simply a toy-problem since real production planning
problems (described in [6]) are modeled as instances of LVC. Furthermore, all
the cases of LVC studied here correspond to natural versions of these problems.

For reasons of length of the paper, basic notions used in the sequel as match-
ing, exposed vertex, augmenting path, independent set are not defined here. Their

104 Marc Demange and Vangelis Th. Paschos

respective definitions can be found in [7]. Finally, a set will be called minimal
(resp., maximal) with respect to a property 7 if it satisfies 7, while deletion
(resp., insertion) of an element from (resp., in) S results in a set not satisfy-
ing .

In what follows, we denote by A the maximum degree of G(V, E), by 7(G)
the cardinality of a minimum vertex cover of G, by M (resp., M;) a maximum
matching of G (resp., G;), by m (resp., m;) the cardinality of M (resp., M;),
and by P (resp., P;) the set of the exposed vertices of G (resp., G;) with respect
to M (resp., M;). Denote also by X (M) (resp., X (M;)) the set of the endpoints
of M (resp., M;). Given V' C V', we denote by G[V'] the subgraph of G induced
by V'. Finally, for v € V, we denote by I'(v) the set of neighbors of v, i.e.,
I'v)={u:uv e E}, A=max{|I'(v)|:v e V}.

Note 1. Consider a graph G(V, E), fix a maximal matching M of G and let P =
V' \ X(M). Then, any (maximal) independent set of G is the complement, with
respect to V, of a (minimal) vertex-cover of G. Moreover, (i) P is independent
for G and (ii) X (M) is a vertex-cover of G with | X (M)| = 2m.

2 On-Line Vertex-Covering with t = n

We first consider that G is revealed into ¢ = n clusters, i.e., vertex-by-vertex.
Before specifying an on-line algorithm for this case, we establish a general result
for any algorithm (on-line or off-line) computing a minimal vertex-cover, i.e., a
vertex-cover that cannot be reduced by elimination of some of its vertices.

We denote by MAX_MATCHING an algorithm computing a maximum match-
ing M of G (the problem of finding a maximum matching of a graph is polyno-
mial ([8])). By (ii) of note 1, X (M) = {v;,v; : vjv; € M} is a vertex-cover of
size 2| M| for G. Denote by m the size of M. Finally, set p = |P| = |V \ X(M)].
The following lemma will be used in theorem 1, just below, and later.

Lemma 1. For any graph without isolated vertices, p < m(A — 1). If, in addi-
tion, the graph contains v isolated vertices, then p — ¢ < m(A —1).

Proof (Sketch). Fix an edge v;v; € M such that at least one of v;, v; has neigh-
bors in P. Let P, = PN I'(v;) = {piy,Piss--- Pip, }; Pj 18 defined similarly.
Suppose |P;| > |P;|. Then, if P; # (), the following holds ([6]): P; C P; and
[Py = 1.

Consider now the following graph B(N, Eg) constructed as follows: for every
edge of M we draw a vertex (let Njs be the set of vertices so drawn); we also
consider vertices of P as vertices of N; in other words, N = Ny U P; let ny;
be the vertex of Nj; associated with v;v; € M if there exists an edge linking
either v; or v; with a vertex pi, € P, then n;;p, € Ep.

By the discussion above, any n;; € Njs is linked with at most A — 1 vertices
of P (the maximum degree of G is A and one edge — the matching one — links v;
with v;). This remains true if P; = (). Consequently, p < m(A —1).

On the other hand, if G contains a set I of ¢ isolated vertices, then the
argument developed above remains valid on the graph G'(V \ I, E), q.e.d. O

Algorithms and Models for the On-Line Vertex-Covering 105

(A—1) (resp.,, p—t < m(A—1)), one

Since n = 2m +p and, by lemma 1, p < m
t < m(A+ 1)) and reaches the following

easily gets n < m(A + 1) (resp., n —
lemma.

Lemma 2. In any graph with no isolated vertices, m > n/(A+1). If the graph
has ¢ isolated vertices, then m = (n —)/(A+1).

Theorem 1. For any graph G, the ratio of the size of any minimal vertex-cover
to the size of the vertex-cover induced by MAX_MATCHING(G) is bounded above
by A/2.

Proof (Sketch). Assume first that G has no isolated vertices, denote by C a
minimal vertex cover of G and by s the size of the independent set associated
with C, i.e., |V'\ C| = s. Denote by m the size of a maximum matching M of G.
By (ii) of note 1, algorithm MAX_MATCHING induces a vertex-cover of size 2m.
Recall finally that, by (i) of note 1, P =V \ X (M) is independent.

Since C is supposed minimal, the independent set V'\ C' is maximal. Conse-
quently, using s > n/(A+1) ([7]), we get |C] < As.

We now distinguish the following two cases depending on the values of s
and m: (i) s < m, (ii) s > m. For case (i), using the expression for |C/|, we get:
|C|/2m < A/2. For case (ii), using lemma 1, we also get: |C|/2m < A/2.

Consider now that G contains a set I of isolated vertices. Then, C' being min-
imal, it does not contain any isolated vertex. Furthermore, MAX_MATCHING(G[V \
I]) = MAX_MATCHING(G). Hence, the analysis performed just above remains valid.

O

It is well-known ([7]) that, for any graph G and for any maximal matching M
(of cardinality m) of G,
(G)=m (1)

Corollary 1. For any graph, the ratio of the size of any minimal vertez-cover
to the size of an optimal one is bounded above by A.

We now analyze the competitiveness of a natural on-line algorithm, denoted
by OLVC. It works as follows: suppose that vertices are numbered in the order
they arrive; in step 4, vertex v; is revealed; OLVC puts it in the solution C, if
there exists v;, j < ¢, not included in C, linked to v;. Obviously, the cover C' so
constructed is minimal.

Proposition 1. The competitive ratio of algorithm OLVC against an optimal off-
line algorithm for VC is bounded above by A and this bound is tight.

Proof (Sketch). The ratio claimed is deduced by application of corollary 1 and
of theorem 1.

Fix now a A € N, consider a star Sa;; on A + 1 vertices. Obviously,
T7(Sa+1) = 1. Suppose that its center is the first vertex revealed; the rest of
vertices can be revealed in any order. Then, algorithm OLVC will not include the
star-center in C, while it will include all the remaining vertices of Sa41. There-
fore, the competitive ratio achieved in this case is equal to A. a

106 Marc Demange and Vangelis Th. Paschos

In the rest of the section, we will provide lower bounds on the competitiveness
of any algorithm for the case t = n. Recall that vertices are numbered in the
order they arrive; in step i, vertex v; is revealed. Also consider that, in step i,
{vi,...,v;} = C; US;, where C; draws the vertex-set included in the vertex
cover under construction and S; = {vy,...,v;} \ C;. The final graph is denoted,
as usually, by G(V, E) and its maximum degree by A. Our purpose is to provide
limits in the competitiveness (against an optimal off-line algorithm) of any on-
line algorithm solving LVC with ¢ = n (over all the ways the input-graph is
revealed). Let us consider the solution of LVC as a two-players game, where the
first one (player 1) reveals the instance and the second one (player 2) constructs
the solution. Then, we prove the following theorem.

Theorem 2. 1. No algorithm can achieve competitive ratio better than A, even
if an isomorphic of G is known in advance. 2. No algorithm can achieve com-
petitive ratio strictly better than A — 2, even if G is a tree and n is known in
advance.

Proof (Sketch). We first sketch the proof of 1. The isomorphic of G revealed in
advance consists of a disjoint collection of p stars, each of order A + 1 and of
A — 1 isolated vertices, where A and p are fixed integers. Obviously, the degree
of G is A and its order n = p(A+ 1) + A — 1. Assume that player 1 reveals the
graph with respect to the following rules: [i] if C; contains A isolated vertices
(for the graph already revealed), then v;y; is linked to all these vertices; [ii] if
v; € S; (in other words, v; has not been taken in the solution) and v; is not
linked to any vertex vj;, j <1, and if ¢ < n — A, then vertices vy, Vit1,...,Viya
form a star rooted in v;; [iii] if p stars have been revealed, the rest of the vertices
revealed are isolated; [iv] if rules [i] and [ii] cannot be applied and if i < n — 1,
then vertex v;4; is isolated with respect to the graph already revealed.

Applications of rules [i] to [iv] above implies that player 2 cannot do better
than covering edges of any star by its leaves, while optimal off-line solution
consists of the star-centers. Therefore a ratio of A is achieved at best.

We now sketch the proof of 2. Let A be an integer greater than, or equal to, 3
and set n = A(A + 1) + 1. Consider that player 1 reveals the graph according
to the following rules: (i) if C; contains A isolated vertices (with respect to
the graph already revealed) and if ¢ < n — 2, then v;41 is linked to all these
isolated vertices; (ii) if v; € S; (in other words, v; has not been taken in the
solution) and if v; is not linked to any vertex v;, j < 4, and if i < n— A — 1,
then vertices v;, V11, ..., v+ form a star rooted in v;; (iii) consider v; € S;, v;
isolated with respect to the graph already revealed, and n —2 > i > n — A; set
A={v; : j <iv; € C;,Vk < i,v;u, ¢ E} (ie., A is the set of the isolated
vertices, at instant i, taken in C;) and B = {v;12,...,0,_1}; then: (iiia) v;11 is
linked to v; and to any element of set A and (iiib) the elements of B form an
independent set and are linked to v;; (iv) if rules (i) and (ii) do not apply and
if i <n— A, then vertex v;41 is isolated with the graph already revealed; (v) vy,
is linked to A vertices of degree 1 picked in the several connected components
of the graph revealed until step n — 1.

Algorithms and Models for the On-Line Vertex-Covering 107

If rule (iii) is not applied, then in step n — 1, the graph contains A stars,
their vertices of degree 1 making part of the solution constructed by player 2. In
this case, 7(G) = A+1 (the roots of the stars plus vertex v,,), while the solution
constructed is of size A(A+1). The competitive ratio is in this case A. Suppose
now that rule (iii) is applied. Then in step 4, the graph consists of k stars (their
leaves making part of the solution constructed by player 2) plus the vertices of
AU {i}. Then, as we prove in [6], 7(G) = A — 14+ 3 = A + 2, while the solution
finally constructed by player 2 has at least (A — 1)A + A = A? vertices. The
competitive ratio implied is then at least A — 2. a

3 On-Line Vertex Covering with n >t > 2

We assume in this section that G is revealed by non-empty clusters G;, ¢ =
1,...,t, with 2 <t < n. We assume first n > ¢ > 2. For this case, we propose
the following algorithm denoted by t_OLVC: when (7 arrives, t_OLVC puts in the
cover C the endpoints of a maximum matching on Gy; then for ¢ = 2,...,¢ it
includes in C' the endpoints of a maximum matching M; on G; as well as exposed
vertices of V; with respect to M; if they are linked to vertices of Uj¢;<;—1V; not
included in C (the inclusion of these latter vertices is performed greedily).

Obviously, the set C' finally computed by t_0LVC is a vertex-cover, although
not necessarily minimal. So, proposition 1 does not represent the worst case for
its competitive ratio. Note that for the case where clusters are assumed without
any restriction, setting |C| < n—|I| (where I denotes the set of isolated vertices,
if any) and using lemma 2, competitive ratio A + 1 is immediately deduced.

In theorem 3 just below, we suppose that for i = 1,...,¢, cluster G; can
eventually contain isolated vertices (with respect to G;) when it arrives. The
fact that the final graph G contains or does not contain isolated vertices does
not change neither the result nor its proof.

Theorem 3. Let \; be the number of the isolated vertices of G; introduced in C
and set A = 22:1 Ai. Denote by A;, i = 2,...,t, the sets of the exposed vertices,
with respect to M;, introduced in C by algorithm t_OLVC and set A = Ul_,A;
and p = M/|A|. Then, the competitive ratio of algorithm t_OLVC against an opti-
mal VC algorithm is bounded above by 2 + (A —2)/(2 — p).

Proof (Sketch). Observe that vertex-set A is exposed with respect to the (non-
maximum) matching U!_; M;; moreover, it does not contain any isolated vertex.
Observe also that any isolate vertex is exposed with respect to any matching
of G; hence, p < 1. Denote by M;, i = 1,...,¢, a maximum matching of G;, set
m; = |M;|, i =2,...,t. Let E' be the set of edges that have entailed introduction
of the vertices of A in C' and denote by B(A U (Vi \ X(My)), E’) the partial
subgraph of G induced by AU (V4 \ X(M;)) and by E’. Also, denote by Mp a
maximum matching of B and by mp the cardinality of Mp. Then, the cardinality
of the on-line solution C' computed by t_OLVC is |C] = 22221 m; + |A|, while
7(GQ) > (Zle m;) + mp. Consequently, ¢;_orve < 2+ (J4] — 2mB)/(Zf:1 m; +
mp). Using lemma 2, we get mp > |A|/A. Also, we prove in [6] that >3/, m; >
(JA] = N)/(A=1). So, ¢t ove <24+ (A —2)/(2—p). O

108 Marc Demange and Vangelis Th. Paschos

Since p < 1 and the competitive ratio obtained is increasing with p, setting p = 1
the following result is immediately obtained.

Corollary 2. The competitive ratio of algorithm t_OLVC against an optimal VC
algorithm is bounded above by A.

Note that the solution C' computed by algorithm t_0LVC is not necessarily min-
imal. Consequently, the result of corollary 2 cannot be derived by direct appli-
cation of corollary 1. On the other hand, consider that clusters arrive without
isolated vertices. In this case, for any ¢ = 1,...,¢t, A; = 0, so, p = 0 and the
following holds.

Corollary 3. Whenever clusters arrive without isolated vertices, the competitive
ratio of algorithm t_OLVC against an optimal VC' algorithm is bounded above
by (A+2)/2.

We show in [6] that the bound of the corollary 3 can be slightly improved by
(A+1)/2.

Consider now case t = 2 and suppose that the input graph is revealed within
two clusters G1(V1, E1) and Ga(Va, Es). Assume also that n, the order of the
final graph, is known at the beginning of the game. We recall that, following
our assumptions, one has to decide which vertices of the first cluster will belong
to the final solution before the arrival of the second cluster. We distinguish two
sub-cases for ¢t = 2 depending on whether G has or has not isolated vertices.

We first deal with the latter one and suppose that no additional hypotheses
are admitted on the forms of the clusters. We analyze the competitive ratio of
the following algorithm, denoted by 2_0LVC: if |V;| < n/2, then the solution C
returned by 2_0LVC is the union of V; together with the endpoints of a maximum
matching M, of Gs; otherwise, the solution returned by 2_0LVC is the union of
the endpoints of a maximum matching M; of G; together with V5.

Theorem 4. If G has no isolated vertices, then the competitive ratio of algo-
rithm 2_0LVC against an optimal VC algorithm verifies co_grye < (A+5)/2. This
ratio is asymptotically tight.

Proof (Sketch). Denote by m; the size of M;, i = 1,2 and suppose that C =
V1 U X(Ma); |C| € n/2 + 2mg. Combining expression for C' with expression (1)
and taking into account lemma 2 and the fact that ms < m, then cy_grye <
(A + 5)/2. Suppose instead that |Va| < n/2; then C = X(M;) U V5. In this
case also, the arguments previously developed hold and the competitive ratio
achieved is always (A +5)/2.

Let us show that the analysis above is asymptotically tight. Consider a
graph G(V, E), collection of R stars Say1. Consider the subgraph G; of G con-
sisting of a set of n/2 exposed vertices with respect to a maximum matching M
of G. Remark that M contains one edge per star and that V(Gy) is a set of
isolated vertices of size not larger than n/2. Set Go = G[V \ V(G1)] and assume
that G is revealed per clusters G; and Go. Then, |C| = (n/2) + 2n/(A + 1),
7(G) = n/(A+ 1) and, consequently, |C|/7(G) = (A +5)/2. O

Algorithms and Models for the On-Line Vertex-Covering 109

Assume now that clusters G; arrive with no isolated vertices. Let n; be the
order of G;. Denote by M;, i = 1,2, a maximum matching of G;, by P; the set
of the exposed vertices with respect to M;, by p; its cardinality. The algorithm
proposed, denoted by C2_0LVC(n,¢) for a fixed € > 1 works as follows: when G,
arrives, it firstly computes M; and, if n1 < n/e, then it sets C' = Vi, else it sets
C = X(M); when G5 arrives, it computes My and adds X (Ms) in C; it finally
completes C' with vertices of V2 \ X (Mz) (i.e., vertices of Va2 exposed with respect
to Ms) linked to vertices of V; that have not been included in C' (this last set
of vertices added in C' is denoted by As; we assume that its vertices are chosen
greedily).

Theorem 5. Under the hypothesis that clusters arrive with no isolated vertices,
there exists €q, the largest among the roots of the polynomial € — 3¢ + 1, such
that the competitive ratio of algorithm C2_0LVC(n,ey) against an optimal VC
algorithm is bounded above by 2 + ((A+1)/eo).

Proof (Sketch). Set, for i = 1,2, m; = |M;|. If ny < n/e, then Ay =); therefore,
the final covering C' satisfies C = V3 U X (M3). In this case, using expression (1)
and lemma 2, we get:
|C| < A+1
7(G)

Let us now suppose that n; > n/e instead. Then, the set C finally computed in
by algorithm C2_0LVC verifies: |C| = 2(my + mg) + | As].

Denote by Q1 C Vi \ X (M) the set of vertices of V; that has entailed the
introduction of set A5 in C, and by B(Q1, Az, E), the subgraph of G induced by
Q1 UAs. Since they are both independent (subsets of P; and Ps, respectively), B
is bipartite. Denote also by Mp a maximum matching of B and set mp = |Mp|.
Since My U My U Mp is a matching for G, 7(G) = m1 + ma + mp.

Consider the set X (Mp) N Q1; obviously, | X (Mg) N Q1] = mp. Since G is
supposed without isolated vertices, any vertex of X (Mp)NQ; has at most A—1
neighbors in As. On the other hand, Mg being maximum for B, any vertex of A
receives edges from at least one vertex of X (Mp) N Q1. So, |[Az] < mp(A —1).
Also, since G; and G5 are both assumed without isolated vertices, application
of lemma 2 gives: my 2> n1/(A+1) and mg > na/(A+1).

The discussion above together with some easy algebra gives

+2 2)

C 2 A Ayl —2 a=3 14
O 20mtm) tldal _, | el —2ms Gl
T(G) mi +mg +mp m1 +mo +mp AL—H + lA—ll

Recall that we are currently considering the case n; > n/e, i.e., ng < n(e—1)/e.
Then, |As| < p2 = na — 2my < n(A —1)(e — 1)/((A + 1)e). Remark also that
expression (3) is increasing with |As|; hence,

(A-3)(e—1)
arne " A—3)(e—1
T A+1 + e(A+1) €

110 Marc Demange and Vangelis Th. Paschos

Note that, for a fixed e, (A—3)(e—1)/(2e—1) < (A+1)(e—1)/(2¢—1) and that
expression (2) is decreasing with ¢, while expression (4) is increasing. These two
expressions asymptotically coincide when (A +1)/e = (A+1)(e —1)/(2¢ — 1),
i.e., when €2 —3e+1 = 0. Since, € > 1, the admissible root of the above equation
is €p = 2.62.

Setting €9 = 2.62, we get cea_orve < (A + 6.24)/2.62. This, for large values
of A, is asymptotically equal to A/2.62. O

We provide in the next theorem upper bounds for the case where the number of
clusters needed for the revealing of the whole graph is O(logny/n) and for the
case t = 2. As before, we bring to the fore graphs and strategies for revealing it in
either t = O(log ny/n) steps (point 1), or in ¢ = 2 steps (point 2), such that any
on-line VC-algorithm cannot achieve competitive ratios better than the bounds
claimed. The proofs for both cases, being quite technical and lengthy, are not
given here. They can be found in [6]. In any case, the bounds presented in theo-
rem 6 show that the results presented in theorems 3, 4 and 5 are asymptotically
optimal.

Theorem 6. 1. Whent = O(logn+/n) and any cluster is non-empty, no on-line
algorithm for LVC can achieve competitive ratio smaller than A — 2 against an
optimal off-line algorithm, even if the input-graph is a tree and n is known in
advance. 2. For t = 2 and for all A > 2, no algorithm can achieve competitive
ratio strictly better than (A + 1)/2 for a graph of mazimum degree A, even if
it is bipartite with no isolated vertices, both clusters have the same size and an
isomorphic of the input-graph is known in advance.

4 Allowing Backtracking

In this section we somewhat change the working hypotheses adopted and suppose
that one can go back over the solution constructed during previous steps. We
assume that one can change this solution but she/he has to pay some cost for
doing it.

Our on-line algorithm for the case of the backtracking is basically algo-
rithm t_OLVC. The spirit of our thought process can be outlined as follows.
The best approximation ratio known for VC is bounded above by 2. On the
other hand, LVC being computationally harder, it is a priori worse approxi-
mated than VC. So, one can “restrain” her/himself in searching for competitive
ratios as near as possible to 2. The maximum matching performed on each clus-
ter of G by algorithm t_0LVC obviously guarantees approximation ratio 2 on any
cluster. The fact that the whole competitive ratio is finally “deteriorated” is due
to the vertices of the graph B that have to be taken into account in order to cover
cross-edges, i.e., edges between clusters. We so analyze the following algorithm,
denoted by Bt_OLVC: the solution-set C' is initially assigned with the endpoints
of maximum matchings M; of G;, i = 1,...,t; next the graph B induced by
the union of the vertex-sets V; \ X (M;), i = 1,...,t, is constructed and C is
completed by the endpoints of a maximum matching Mpg of B.

Algorithms and Models for the On-Line Vertex-Covering 111

Let us denote by k > 1 the cost due to the change of the status of a non-
covering vertex to a covering one. Also, as previously, we denote by m; the
cardinality of M;, i =1,...,t and by mp the cardinality of Mp.

Theorem 7. The competitive ratio of algorithm Bt_OLVC against an optimal
off-line algorithm for VC' is bounded above by 2k.

Proof (Sketch). The vertices changed are the ones of the set Ul_; (V; \ X (M;)).
Among these vertices, exactly [X(Mp)| = 2mp vertices pass from non-covering
to covering ones. Suppose that for each of them a cost k has to be paid. Then,
cpeove = (2225 ma) + 26mp) /(i mi) + mp) < 2. g

Theorem 7 draws the general case where no further specification of the type
of the cost is given. We now assume two cost-models: (i) x is a fixed constant,
and (ii) is at most equal to the total number of vertices changed. For the first
cost-model, using directly theorem 7, the following result is directly proved.

Corollary 4. If a fixed cost has to be paid for any vertex-status modification,
then the competitive ratio of algorithm Bt_OLVC against an optimal off-line VC-
algorithm is constant.

Let us now focus ourselves on the second of the cost-models specified above.
For this case, we assume n known in advance and deal with the following al-
gorithm, denoted by Mt_OLVC: (1) once GGy arrives, the solution-set C' receives
the endpoints of a maximum matching M; of Gy; (2) for i = 2,...,¢, compute
a maximum matching M; of G;, construct the subgraph B of G induced by
the set Ui_, (V; \ X(M;)) and compute a maximum matching Mp of B: (2a) if
mp < +/n, then add to C the endpoints of M;; (2b) on the other hand, if
mp > \/n, then add to C the whole set V;; (3) let 49 be the last i € {2,...,t}
for which step (2a) has been executed; construct the subgraph B’ of G induced
by the vertex-set U§i1(‘/} \ X (M;)) and add to C the endpoints of a maximum
matching Mp/ of B’

Theorem 8. If for any vertex changed, the cost of the change equals the to-
tal number of vertices changed, then the competitive ratio of algorithm Mt_OLVC
against an optimal off-line VC-algorithm is bounded above by 3+/n.

Proof (Sketch). Remark first that the only vertex-changes performed by al-
gorithm Mt_OLVC are on X(Mp/) and, furthermore, that mp: always satisfies
mpg < \/ﬁ

If step (2b) is not executed at all, i.e., if ip = ¢, then mp: < y/n. Consequently,
using theorem 7 and the expression for mp:, we get cys_orve < 2mp < 2¢/n. On
the other hand, suppose that step (2b) is executed at least once. Then, mp > /n.

Using for mps the expression given above, setting k = mps and denoting
by v(C) the value of the set C' (in v(C') any vertex non changed counts 1 and
any vertex changed counts k), we get: v(C) < n — 2mp + 2kmp < n+ 2m%,.
Denote by m the cardinality of a maximum matching of G. Then, ¢y _givc =
v(C)/7(G) < (n+2m%,)/m < (n/mp) + 2mp < 3/n. O

112 Marc Demange and Vangelis Th. Paschos

We now show that the result of theorem 8 is quite tight, since no on-line al-
gorithm can achieve competitive ratio (against an optimal off-line one) better

than O(y/n).

Theorem 9. Under the hypotheses of theorem 8, no on-line algorithm for VC
can achieve, against an optimal off-line algorithm, competitive ratio v/2n, even if
the input-graph is bipartite without isolated vertices and n is known in advance.

Proof (Sketch). Let (A,n1) € NxN and set n = (1+ A)ny. At the first step, V4
is an independent set of size ny. If player 2 selects some vertices of V7, then the
whole instance is a graph without any edge. In this case, the optimal value 7*(G)
is 0, whereas the on-line value is positive. The resulting ratio equals co and the
theorem holds.

Consequently, we can focus ourselves on the case where player 2 selects no
vertices during the first step. In this case, the instance graph consists of n; stars
of size (1 4+ A) rooted in V7, one star per vertex in V;. Then, the optimal value
satisfies (recall that n = (14 A)ny) 7%(G) =n/(A+1) =n,.

Denote by V7 the set of vertices of V; that are changed in order to be included
in the final solution (i.e., the vertices introduced in the solution after the back-
tracking). Then, solution C can be written as C = VUV, \ I'(VY) for a total cost
of v(C) = |V{|2+A(n1—|V{]). Therefore, player 2 chooses, at best, a set V{ of car-
dinality §* € Argminyc(g,/a+1{6° — AB+ ((An)/(A+1))}. Define A = 2n;.
One can easily show that the expression for §* implies * = n;. So, combining
the expression for 7*(G) with the one for v(C) (with 8* = ny), we get (after
some easy functional analysis) v(C)/7*(G) = ny; = (—1 + /1 +8n)/4 > /2n.

O

5 A Simple On-Line Model Based Upon Edges

We consider in this section an on-line model supposing that the input-graph is
revealed by means of its edges. They arrive one at a time. For every new edge,
the links of its endpoints with the endpoints of the edges already present are also
revealed. We suppose that |E| is known in advance, we set £ = {e1,...,e g},
where e; are numbered in order of their arrival, and devise the following algo-
rithm, dented by E_OLVC: for any edge arriving, if no endpoint of it is already in
the solution-set C', then put in C' both of its endpoints.

As one can see from the algorithm above the irrevocability in the construction
of the on-line solution deals with the endpoints of an edge as a whole. With
respect to a model based upon arrival of vertices it is as one allows, for every
edge arriving, a backtracking of level one.

Proposition 2. The competitive ratio of algorithm E_OLVC against an optimal
off-line algorithm is bounded above by 2. This bound is tight.

Proof (Sketch). In order to prove the competitive ratio claimed, just remark that
the FOR-loop of algorithm E_OLVC computes a maximal matching of G.

Algorithms and Models for the On-Line Vertex-Covering 113

Consider a star revealed edge-by-edge. Algorithm E_OLVC will introduce in C
the endpoints of the first edge revealed and no new vertex will be introduced
in C later. The optimal vertex-cover for any star consists of its center. So here,
the bound 2 is attained. ad

It is easy to see that the on-line model just described is equivalent to the one
where all vertices are present from the beginning of the game and edges are
presented one-by-one. Here, whenever an edge arrives none of the endpoints of
which are in C, then both of its endpoints enter C.

Observe that in the model considered in this section, the competitiveness of
the on-line algorithm proposed matches the approximation of the best known
heuristic for the off-line version of VC.

6 Conclusions

The vertex-covering problem dealt in this paper is one of the central problems
in combinatorial optimization in its off-line version. It remains very natural even
in its on-line version. We have studied algorithms for several on-line models
of LVC. The positive results obtained combined with the negative ones show
that the analyses presented are “quasi-optimal” in the sense that no spectacular
improvements are to be expected for the models dealt here. A further generaliza-
tion of the vertex-covering is the one where we consider weights on the vertices
of the input-graph and we search for a minimum total-weight vertex cover. Anal-
ysis of on-line algorithms for this weighted version of LVC seems to us a very
interesting open problem.

References

1. Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for
the on-line traveling salesman problem. Algorithmica 29 (2001) 560-581

2. Gyérféas, A., Lehel, J.: Online and first-fit colorings of graphs. J. Graph Theo. 12
(1988) 217227

3. Halldérsson, M.M., Szegedy, M.: Lower bounds for on-line graph coloring. Theoret.
Comput. Sci. 130 (1994) 163-174

4. Lovasz, L., Saks, M., Trotter, W.: An on-line graph coloring algorithm with sublinear
performance ratio. Discrete Math. 75 (1989) 319-325

5. Demange, M., Paradon, X., Paschos, V.T.: On-line maximum-order induced hered-
itary subgraph problems. In Hlavag, V., Jeffery, K.G., Wiedermann, J., eds.: SOF-
SEM 2000—Theory and Practice of Informatics. Volume 1963 of Lecture Notes in
Computer Science., Springer-Verlag (2000) 326-334

6. Demange, M., Paschos, V.T.: On-line vertex-covering. Technical Report 183,
LAMSADE, Universit Paris-Dauphine (2001) Available on www_address: http:
//www.lamsade.dauphine.fr/cahdoc.html#cahiers

7. Berge, C.: Graphs and hypergraphs. North Holland, Amsterdam (1973)

8. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and
complexity. Prentice Hall, New Jersey (1981)

Weighted Node Coloring:
When Stable Sets Are Expensive
(Extended Abstract)

Marc Demange!, D. de Werra?, J. Monnot?, and Vangelis Th. Paschos®

! ESSEC, France
demange@essec.fr
2 Ecole Polytechnique Fédérale de Lausanne, Switzerland
dewerra@dma.epfl.ch
3 LAMSADE, Université Paris-Dauphine, Paris, France
{monnot ,paschos}@lamsade.dauphine.fr

Abstract. A version of weighted coloring of a graph is introduced:
each node v of a graph G = (V, E) is provided with a positive integer
weight w(v) and the weight of a stable set S of G is w(S) = max{w(v) :
v € VNS} A k-coloring § = (S1,...,Sk) of G is a partition of V
into k stable sets S1, ..., Sk and the weight of § is w(S1) + ...+ w(Sk).
The objective then is to find a coloring S = (S1, ..., Sk) of G such that
w(S1) + ...+ w(Sk) is minimized. Weighted node coloring is NP-hard
for general graphs (as generalization of the node coloring problem). We
prove here that the associated decision problems are NP-complete for
bipartite graphs, for line-graphs of bipartite graphs and for split graphs.
We present approximation results for general graphs. For the other fam-
ilies of graphs dealt, properties of optimal solutions are discussed and
complexity and approximability results are presented.

1 Introduction

A k-coloring of G = (V, E) is a partition S = (S1,...,Sk) of the node set V
of G into stable sets S;. The objective is here to determine a node coloring
minimizing k. A natural generalization of the problem, denoted by WC in what
follows, is the one where a strictly positive integer weight w(v) is considered for
any node v € V, and where the weight of stable set S of G is w(S) = max{w(v) :
v € S}. Then, the objective is to determine S = (Si,...,S5%) a node coloring
of G minimizing the quantity Zle w(S;). This problem is easily shown NP-
hard; it suffices to consider w(v) = 1, Vo € V and WC becomes the classical
node coloring problem.

In [1] we show that WC is not a toy problem. In terms of scheduling, a
weighted node coloring amounts to assigning each job v to a time-slot (or pe-
riod) 7 in such a way that no two jobs u,v assigned to the some time slot i
are incompatible. In our situation, the lengths of the time slots 1,2,...,k are
not given in advance; assuming that the jobs scheduled in time slot ¢ may be
processed simultaneously, the amount of time needed will be given by w(S;) =

L. Kucera (Ed.): WG 2002, LNCS 2573, pp. 114-125, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Weighted Node Coloring: When Stable Sets Are Expensive 115

max{w(v) : v € 5;}. As a consequence, the total amount of time needed to
complete all jobs will be val(S) = Zle w(S;). where § = (S1,...,Sk). The
problem then amounts to finding for a weighted graph G,, = (V, E,w) a color-
ing § = (51,...,5%) such that val(S) is minimum. This problem is related to
the batch scheduling problem which has been studied by several authors (see for
instance [2] for a survey, or [3] for a special case). In the papers on batch schedul-
ing, there are usually incompatibility constraints between operations belonging
to a same job, or precedence constraints. The general case of incompatibility
requirements represented by an arbitrary graph is formulated in [4], where they
consider the complement of our graph: edges indicate compatibilities and they
partition the node set into cliques. On the other hand, several types of require-
ments are introduced, like sequencing constraints or limitations in the size of a
batch.

After establishing approximation results for the weighted coloring problem
in general graphs, we examine some special cases, dealing with bipartite graphs,
split graphs and cographs. We also study the weighted edge coloring problem in
bipartite graphs. For all these cases, complexity issues as well as approximability
will be discussed. For graph theoretical terms not defined here, the reader is
referred to [5].

2 General Properties

The following proposition describes a general property which will be needed
later.

Proposition 1. Consider an instance of WC' given by a weighted graph G =
(V,E,w) and a coloring S8'. We can always construct in polynomial time a k-
coloring § = (S1,...,Sk) verifying val(S) < val(§’) and k < A(G) + 1.

Proof (Sketch). Set S" = (S51,5%,...) and rank the S!’s in decreasing weight
order. Take S; (the ith component of the coloring S) such that S; O S; is a
maximal stable set in G\ S7 \ ...\ S;_;. O

In particular, this result holds for an optimal weighted node coloring of G. If H
is the line-graph of G, denoted by L(G), we have the following.

Corollary 1. If G = L(H), then the solution S of Proposition 1 verifies k <
2A(H) — 1.

We can easily show that in Corollary 1 we have k < p(w(G) —1)+ 1 where w(G)
is the maximum cardinality of a clique in G and p is the maximum number of
(maximal) cliques in which one node of G is contained. If G is a line-graph L(H)
then p = 2 and w(G) = A(G), so Corollary 1 follows. Also, it follows from
Proposition 1 that the number k of colors in an optimal k-coloring val(S) can
be bounded above by any bound on the chromatic number which is derived by
a sequential coloring algorithm which gives maximal stable sets in the subgraph
generated by the colored nodes. In particular the bounds of Welsh-Powell and
of Matula are valid for k (see, for instance, [6]).

116 Marc Demange et al.

We can also establish the following property of optimal k-colorings S in a
weighted graph G = (V, E,w) for w(v) € {t1,...,t,} with ¢; > ... > t, for each
node v.

Proposition 2. Let G = (V, E,w) be a r-valued weighted graph and let ¢ =
X(G) be its chromatic number. Then every optimal k-coloring S* = (S5,...,S})
satisfies: w(S}) > w(Sf,,_1), for any i <k —q. In particular, k <1+1r(qg—1).
This bound is tight.

Proof (Sketch). Assume that there exists an index i < k — ¢ such that w(S}) =
c=w(Sf,1); 7 U...USE induces a subgraph G verifying x(G") < x(G).
Thus, we can change sets S}, ..., S} by g other sets to obtain a g+ ¢ — 1-coloring

with a lower cost, a contradiction. a

3 Approximating Weighted Coloring in General Graphs

In this section, we establish approximability results for the weighted coloring
problem defined in section 1. We use two approximation-quality criteria called
in what follows standard approximation ratio and differential approximation ra-
tio, respectively. Consider an instance I of an NP-hard optimization problem IT
and a polynomial time approximation algorithm A solving II; we will denote
by worst(I), valy(I) and opt(I) the values of the worst solution of I, of the
approximated one (provided by A when running on I), and the optimal one
for I, respectively. If IT is a maximization (resp., minimization) problem, the
value worst(I) is in fact the optimal solution of a minimization (resp., maximiza-
tion) problem IT’ having the same objective function and the same constraint set
as IT. Let us note that computation of the solution realizing worst(I) can be easy
for some NP-hard problems (this is the case of graph coloring) but for other
ones (for example, for traveling salesman, or for optimum satisfiability, or for
minimum maximal independent set) this computation is NP-hard. Commonly,
the quality of an approximation algorithm for IT is expressed by the ratio (called
standard in what follows) ps(I) = valy(I)/opt(I). On the other hand, the differ-
ential approximation ratio measures how the value of an approximate solution is
placed in the interval between worst([) and opt(I). More formally, it is defined as
0a(I) = |worst(I) — valy(I)|/|worst(I) — opt(I)|. A very optimistic configuration
for both standard and differential approximations is the one where an algorithm
achieves ratios bounded below by 1 —e€ (1 + ¢ for the standard approximation for
minimization problems), for any € > 0. We call such algorithms polynomial time
approzimation schemes. The complexities of such schemes may be polynomial
or exponential in 1/e (they are always polynomial in the sizes of the instances).
When they are polynomial in 1/¢ the schemes are called fully polynomial time
approrimation scheme.

The standard approximation result presented in this section is based upon
the so-called master-slave approrimation strategy. Consider an NP-hard mini-
mization covering graph-problem consisting in covering the nodes of the input
graph G, of order n, by subgraphs G’ verifying a certain property 7. Most of these

Weighted Node Coloring: When Stable Sets Are Expensive 117

problems can be approximated by the following strategy: (a) find a maximum
subgraph G’ of G verifying m; (b) delete V(G’) from V; repeat steps (a) and (b)
in the remaining graph until V' = (). The maximization problem solved at step (a)
is called the slave, while the original minimization problem is called the master.
These terms are due to [7] who points out the fact that if the slave problem is
polynomial then the master problem is approximable within O(logn). A classi-
cal example of master-slave approximation for graph coloring, using maximum
stable set as slave problem, is given in [§].

Proposition 3. ([9]) In the master-slave approzimation game for weighted
problems, if the weighted slave problem is approzimable within ratio p(n), then the
weighted master problem is approzimable within standard ratio O(logn/p(n)).

For our problem, the (maximization) slave problem, denoted by SLAVE_WC,
consists of determining a stable S* mazimizing quantity |S|/w(S), over any
stable set S, where w(S) = max{w(v) : v € S}. Consequently, the overall al-
gorithm W_COLOR we devise for weighted coloring can be outlined as follows:
(1) solve SLAVE_WC in G; let S be the solution obtained; set V = V' \ S,
G = G[V]; (2) color the nodes of S with a new color; repeat steps (1) and (2)
until all the nodes of the input graph are colored.

Lemma 1. SLAVE_WC is approximable in polynomial time within standard ra-
tio O(log? n/n).

Proof (Sketch). Consider the following algorithm, called SLAVE_WC in the sequel:
(1) rank the nodes of V in nonincreasing weight-order; let L the list obtained;
(2) for any v € L do: (2a) set V,, = {u € L : w(u) > w)}, V=V \(V, U
({v} U I'(v))), G=G[V]; (2b) run the maximum stable algorithm of [10] on G;
let S, be the stable set computed; store set S¥ = S, U{v} as candidate solution
for SLAVE_WC; (2¢) return to the original graph G; (3) among the sets stored
in step (2b), choose one, denoted by S, maximizing quantity |S|/w(v). We
prove in [1] that algorithm SLAVE_WC achieves, for problem SLAVE_WC the same
ratio, O(log® n/n), as the algorithm of [10], called in step (2b) for stable set, this
ratio being the best known, in terms of n for the latter problem. a

Using Proposition 3 and Lemma 1, the following holds for algorithm W_COLOR.

Proposition 4. The weighted coloring problem can be approrimately solved in
polynomial time within standard approzimation ratio O(n/logn).

We now deal with differential approximation and present a polynomial time ap-
proximation algorithm guaranteeing a differential approximation ratio bounded
below by a fixed constant. Consider a graph G = (V, E, w), where w is the vector
of the node-weights of G. Then, our algorithm, denoted by DW_COLOR works as
follows: [a] construct an edge-weighted graph G = (V, E’,w') where G is the
complement of G and for any e = [v,u] € E’, w'(e) = min{w(u), w(v)}; [b] com-
pute a maximum-weight matching M* of G; [c] color the endpoints of any edge
of M* with a new color; [d] color every exposed node of V' (with respect to M*)
with a new color. The solution computed DW_COLOR is a collection of stable sets
of size 2 and of singletons.

118 Marc Demange et al.

Proposition 5. The differential approzimation ratio achieved by DW_COLOR is
bounded below by 1/2. This bound is tight.

Proof (Sketch). Denote by §* = (S7,...,S;) an optimal weighted coloring and
by valg (M) the value of any maximum weight matching M of G. For any G[S}],
consider a maximum weight matching M/, set M’ = UY_; M/ and apply steps [b]
to [d] of DW_COLOR starting from M’; denote by S’ the coloring so obtained.
Then, val(§’) = worst(G) — valgz(M') < (worst(G) + opt(G))/2. Finally, since
valg(M*) > valg(M'), the result claimed is easily deduced. The tightness of
the ratio is proved in [1] by considering an 1-valued graph G, induced by a
matching of size m. ad

Note that algorithm DW_COLOR computes an optimal solution when a(G) < 2.

We finish this section by two inapproximability results. Consider any class G’
of graphs and a node-weighted graph G € G’ and suppose that WC is NP-
complete for any G € G’. Then, the following holds.

Proposition 6. For any class G’ of node-weighted graphs: if WC(G') is NP-
complete, then, unless P = NP, for any ¢ € N, ¢ > 1, no polynomial time
algorithm can compute a solution of WC in any class of graphs such that the
difference between its value and the optimal value is bounded above by c; fur-
thermore, if WC(G') is strongly NP-complete, then, unless P = NP, WC(G')
cannot be solved neither by a standard nor by a differential fully polynomial time
approximation scheme.

4 The Bipartite Case and Some Related Cases

4.1 The Bipartite Graphs

In this section G = (V, E, w) will be a weighted bipartite graph where L (resp. R)
is the “left set” (resp. “right set”) of nodes and each edge has one endpoint in L
and the other in R. An instance of WC is given by a bipartite weighted graph G
with a positive integer ¢q. Let WC(G, ¢q) be the following problem: does there
exist a coloring S of G with val(S) < ¢?

Proposition 7. WC(G,q) is NP-complete in the strong sense even if G is a
bipartite graph of maximum degree at most 14.

Proof (Sketch). We use a reduction from 1-PrExt ([11]): “given a bipartite graph
G = (V, E) with |V| > 3 and three nodes vy, v2, v3, does there exist a 3-coloring
(S1, S2,53) of (the nodes of) G such that v; € S; for i = 1,2,37” Consider an
instance of 1-PrExt given by a bipartite graph and specific nodes vy, vy, v3. It
is immediate to see that we may assume {v1,v2,v3} C L. We introduce three
new nodes uq,ug, u3 in R and edges [v;,u;] for i # j and 1 < 4,5 < 3. In the
new bipartite graph G’ we associate weights w(u;) = w(v;) = 237" fori = 1,2, 3
and w(v) = 1 for every other node v in G’. Then we set ¢ = 7 and we consider
problem WC(G’, 7). There exists a coloring S of G’ with val(S’) < 7 if and only
if there exists a 3-coloring (S1, S2,S3) of G with v; € S;, i =1,2,3. O

Weighted Node Coloring: When Stable Sets Are Expensive 119

As a consequence of Proposition 7, WC is also NP-complete if G is a compa-
rability graph (i.e., a graph whose edges can be transitively oriented, see [5]).

Proposition 8. If G = (V,E,w) is a bipartite weighted graph with bivalued
weights, then one can construct an optimal k-coloring S in polynomial time.

Proof (Sketch). By Proposition 2, an optimal solution is either a 2- or a 3-
coloring. In the former case we can construct it by a greedy algorithm. For the
latter case, if any optimal solution is a 3-coloring, then the set Vi,.x of the
maximum-weight nodes is stable (if not, there exists an optimal 2-coloring) and
S = (Vmaxa L \ Vma)u R \ Vmax)~ a

We now propose a polynomial time approximation algorithm achieving a con-
stant standard approximation ratio for WC in bipartite graphs. This algorithm,
denoted by BIP_WCOLOR works as follows: (1) sort the nodes of G in nonincreasing
weight order; let L = (vy,vs,...,v,) be the list obtained; (2) starting from v;
color the nodes of L with color ¢ whenever it is possible; (3) optimally color the
remaining uncolored nodes with at most two new colors b and ¢ following the
bipartition of G store the solution obtained during steps (2) and (3); (4) com-
pute a minimum-weight 2-coloring; store the solution obtained; (5) output the
smallest between the solutions stored in steps (3) and (4).

As the bicoloring of a of a connected bipartite graph is unique, a minimum-
weight 2-coloring is simply the unique bipartition of V. If the graph is not con-
nected, then a minimum-weight 2-coloring can be easily computed by taking
care of assigning the same color to all the heaviest color-classes of the connected
components of G. In what follows, we denote by wmax (resp., wmin) the largest
(resp., smallest) node weight.

Proposition 9. BIP_WCOLOR polynomially solves WC' in bipartite graphs within
standard approximation ratio bounded above by 4r.,/(3r, + 2), where r, =
Wmax/Wmin- This bound is tight.

Proof (Sketch). Obviously, the weight of color ¢ equals wyax. Suppose now that
step (2) stops while a node of weight wyax/t, for some ¢ > 1, has been encoun-
tered. Then, opt(G) > Wmax + (Wmax/t) + Wmin (otherwise, the optimal solution
for WC on G would be a 2-coloring). On the other hand, valgrp_ycoror(G) <
Wmax(t + 2)/t if the final solution is the one of step (3) and valgre_ycoLor(G) <
2Wmax if the final solution is the one of step (4). Combination of the expres-
sions above and some algebra show that the common value for both ratios is
4r,,/(3rw + 2) < 4/3. Tightness is shown in [1]. O

In the proof of Proposition 7, one can see that WC is NP-complete when wy.x =
4 and wpin = 1. Here, algorithm BIP_WCOLOR yields ratio 7/8 and this ratio is
the best possible. So the following holds.

Proposition 10. Unless P = NP, for any ¢ > 0 no polynomial time algorithm
achieves a standard approzimation ratio bounded above by (8/7) — e for WC in
bipartite graphs.

120 Marc Demange et al.

We now deal with the differential approximation of WC in bipartite graphs.
Consider the following algorithm, called C_SCHEME in what follows and run it
with parameters G and a fixed constant ¢ > 0: (a) rank the nodes of G in
non-increasing weight and set w; = w(v;), i = 1,...,n; (b) set n = [1/e]; set
St = {vants, ..., v} N L; set Sg = {vanys,...,vn} N R; (c) set S the best
partition into stable sets of the nodes v1, ..., vay42; (d) output S=5S,USrUS.

Since 7 is a fixed constant, the whole complexity of C_SCHEME is linear in n.
Denote now by G’ the subgraph of G induced by the node-set {vq,...,van42}
and recall that S is optimal for G'.

Proposition 11. For any fixed ¢ > 0, the differential approzimation ratio of
C_SCHEME when called with inputs G and €, is bounded below by 1 — e.

Proof (Sketch). We can easily see that |S| < 21+ 2 and val(S) = opt(G’) <
opt(G) (the relative proof is given in [1]). Then, e(worst(G") —opt(G’)) > 2way12.
Moreover, opt(G’) < opt(G). Hence, vale_screme(G) < opt(G’) + 2wap42 < (1 —
€)opt(G’) + eworst(G') < (1 — €)opt(G) + eworst(G). O

4.2 The Split Graphs

To conclude the study of the bipartite case, we have to examine the situation of
split graphs, i.e., graphs G in which the node set V(G) can be partitioned into
a stable set S and a clique K. These graphs can be considered as intermedi-
ate between bipartite graphs and complements of bipartite graphs. In this last
case, WC is polynomial (a(G) < 2, cf., Proposition 5).

Proposition 12. WC(C' is NP-complete in the strong sense if G is a split graph.

Proof (Sketch). The reduction is from the Min-Set-Cover: given a collection C =
(C; i €1) of subsets C; of a set S and a positive integer ¢ (¢ < |I|) does there
exist a sub-collection C' = (C, : j € J) with |J| < g and U;e,C; = S?

Let us construct a split graph G as follows. Each element 7 of S becomes
a node v of a stable set S; each subset C; in C corresponds to a node ¢; of
the clique K of G. The set N(c¢;) of neighbors of node ¢; is given by: N(¢;) =
{v:v€ S}\{v:v e C;}. The weights are given by w(c;) = |I|, i € I, and
w(v) = |I| + 1,v € S. Now there exists a cover C' = (C; : j € J) C C with
UjesC; = S and |C'] = |J| < ¢ if and only if there exists in G a k-coloring
S = (S1,...,8k) with val(S) < |I|> + q. O

The proof of Proposition 12 shows that the problem is NP-complete even if the
weights can take only two values. It also follows from this proof that WC(G, q) is
NP-complete if G is a chordal graph, since a split graph is a chordal graph ([5]).

5 An Edge Coloring Model

If the weighted graph G = (V, E, w) is a line-graph L(H), then our node coloring
problem becomes an edge coloring problem in a graph H where the edges e have
weights w(e).

Weighted Node Coloring: When Stable Sets Are Expensive 121

Proposition 13. WC is NP-complete in the strong sense if G is the line-
graph L(H) of a regular bipartite multigraph H with A(H) = 3.

Proof (Sketch). We shall start from the following NP-complete problem called 2-
SIM ([12]): given a bipartite regular multigraph H = (V| E) and two disjoint
(partial) matchings M7, M3, does there exist an edge 3-coloring (M7, My, Ms3)
of H such that M C M; for i =1,27

Replace any edge e = [u, v] in M3 by edges [u, ve], [Ve, Ue1, [Ve, Ue]2 and [ue, v]
where u, and v, are new nodes and introduce [u, v.] and [ue, v] in My and [ve, ue]1
in M7. The resulting graph is still regular bipartite with degree 3. Let us give
weights w(e) = 2377 to all edges e € M for i = 1,2 and weights w(e) = 1 to all
remaining edges of H. Let H be the resulting weighted graph. Then, by defining
the weight w(M;) of a matching M; as the maximum of the weights of the edges

in M;, we have the following: H has an edge k-coloring M= (M\l, . ,M\k) with
valM) = w(My) + ...+ w(My) < 7 if and only if H has an edge 3-coloring
M:(Ml,...,Mg) WlthM;{ng (Z:1,2) O

In what follows, we denote by EWC(Gy, q) the edge coloring version of WC in
k-regular bipartite graphs G = (L, R, E).

Proposition 14. EWC is strongly NP-complete in k-reqular bipartite graphs
with k > 3.

Proof (Sketch). The proof is by induction. For k = 3, we use Proposition 13
and the gadget of figure 1 showing how one can transform a cubic bipartite
multigraph G to a simple cubic bipartite graph B. Note that in any feasible
edge coloring of B, {color(a), color(b)} = {color(a’), color(d’)}.

Suppose that strong NP-completeness is true for k£ — 1. We use the following
reduction from EWC(G_1, q) to EWC(Gy, 3¢q). Consider a (k—1)-regular bipar-
tite graph Gx—1 = (L, R, E) and denote by wy_1 is edge-weight vector. Remark
that |L| = |R| and let r; and I; be for ¢ = 1,...,|L| the nodes of R and L, respec-
tively. Construct a copy G),_, = (L',R',E') of Gy_1 (L=L",R=R',E=F')
and denote by r; and [} the nodes of R’ and L', respectively. For i = 1,...,|L|
link r; with I} and I; with r}. Set wi(e) = wi_1(e) for e € FUE’ and wy(e) = 2¢q
for e € {[r;, U], [l;, 7] : ¢ = 1,...,|L|}. Obviously, Gy, is k-regular. Then, there
exists an edge coloring of weight ¢ in Gj_1, iff there exists an edge coloring of
weight 3¢ in G. a

We now study the special case where edge weights are bivalued.

Proposition 15. WC(L(H),q) can be solved in polynomial time if H is bipar-
tite with weights w(e) € {a,b} on the edges.

Proof (Sketch). In order to simplify the sketch, suppose a = 1 and b = ¢. Starting
from H, we construct a network N and solve a particular flow problem. Let E(s)
be the set of edges e with weight w(e) = s for s = 1,¢. Let A(s) be the maximum
degree of the partial graph H(s) generated by the edges in E(s) for s = 1,t.
Clearly if A(t) = A(H), then any edge A(H)-coloring of H is optimal. Construct

122 Marc Demange et al.

(a)

(0)

Fig. 1. Transformation of a cubic bipartite multigraph G into a simple cubic bipartite
graph B.

a network N(r) as follows: remove from H all edges in E(t) and replace each
edge [u,v] in E(1) by an arc € = (u,v) with capacity ¢(€) = 1 and lower bound
of flow [(€) = 0; here r is a nonnegative integer. Introduce a source sy with
arc (so,u) for each v € L which is adjacent in H to at least one edge of E(1); set
I(s0,u) = dg1y(u)—rand c(so, u) = A(t)—d) (u). In the same way, introduce a
sink to with arc (v, tg) from each node v of R which is adjacent in H to at least one
edge of E(1); set I(v,to) = dp(1)(v) —r and c(v,t9) = A(t) — dg) (v). We have
to find the smallest possible r for which N (r) contains a feasible flow. Such an r
will give us an edge (A(H (t))+r)-coloring M such that val(M) = A(H (¢))t+r.
But such a coloring M may not be of minimum cost. We have to examine also
edge k-colorings M = (M, ..., My) where w(M;) =t for the first A(H(t)) + ¢
matchings and minimize the number r of matchings M; with w(M;) = 1. This
can be done by the network flow algorithm described above by increasing the
capacity of all arcs (sg, u) and (v,tg) by £ units. We will have to do this for £ =0
to A(H) — A(H(t)). O

In [13] it is shown that WC is NP-complete if G is the line graph L(H) of
a complete bipartite graph K, ,; the nodes of L(H) have degree 2n — 2. The
interest of the above proof is to deal with the case of fixed degrees, for any fixed
constant. In addition [13] states Proposition 15 for the special case of the line
graph of K, ;.

We now deal with the approximation of EWC. Remark first that, by Konig’s
theorem ([14]), the optimal solution of the (unweighted) edge covering achieves
standard approximation ratio A for EWC, for any A > 3, where A is the maxi-
mum degree of the input graph G.

In what follows in this section, we restrict ourselves to bipartite graphs
of maximum degree A = 3. We are given a bipartite graph G; denote by w
the edge-weight vector and, for E' C F, by G[E'] the partial subgraph of G
induced by E’, and consider the following algorithm EW_COLOR, when we as-

sume that the set £/ = {ej,ez,..., e} of edges of G is ranked in decreasing
weight order and, for any j € {1,...,|E|}, we set E; = {e1,...,e;}: (1) set
M} = M} :"':M|1E| = (); (2) for i = 1 to |E| do: set jo = min{j =1,...|E|:

M} U {e;} is a matching}; set M) = M, U{e;}; (3) set S = (M],..., M})
the list of the non-empty matchings of (Mi, M3, .. .,M|1E‘); set kg = max{j :
G[E;] has maximum degree at most 2}; (4) for £ = 2 to ko do: (4a) compute

Weighted Node Coloring: When Stable Sets Are Expensive 123

an optimal 2-coloring (M}, M%) for G[E,]; (4b) complete (M}, M%) by running
steps (1) to (2) in G\ G[E]; (4c) set Sp = (M{, M, ..., M{,) the edge coloring
computed in steps (4a) and (4b); (5) output S = argmin{val(S;) : £ = 1,...,ko}.

Any set Sy computed by algorithm EW_COLOR verify Corollary 1; hence, ry < 5.

Proposition 16. EW_COLOR achieves standard approzimation ratio 5/3 in poly-
nomial time. This ratio is tight.

Proof (Sketch). Following the remark just above on the value of ¢, one can set
Se = (M{,..., M), (some of the M{,i = 1,...,5may be empty). Fix an optimal
solution §* and denote by M;, My, M3 the three largest matchings of S*. Set
i3 = min{j : e; € M3}. By construction, G[E;; ;] has maximum degree at
most 2 and hence w(Mfg_l) + w(Mgg_l) < w(M{) + w(Ms) and w(Mgg_l) +
w(MPE™YY + wME™) < 3w(M3). We so finally obtain valgw_coLor(S) <
val(S;; 1) < 50pt(G)/3. The proof of the tightness is shown in [1]. O

The same analysis as the one in the proof of Proposition 16 concludes that EWC
is approximable within standard approximation ratio bounded above by (2A —
1)/3, for any A > 3.

Proposition 17. Unless P = NP, for any € > 0 no polynomial time algorithm
achieves approzimation ratio bounded above by (28 /(2% —1))—e, even in k-regular
bipartite graphs.

Proof (Sketch). From the proofs of Propositions 13 and 14, where, in the latter,
we change cost wg(e) to 2max{wg_1(e)} (this case remains NP-complete), one
can see that EWC in regular bipartite graphs of degree at least k is NP-complete
whenever the optimal value of the instance is at most 2% — 1. a

We now give a differential approximation result for EWC. As previously we
first assume G = (L, R, E) is a bipartite graph of maximum degree A = 3 and
with edge-weight vector w, and consider the following algorithm, denoted by
EC_SCHEME in what follows: set k = [1/¢€]; rank the edges in E in decreasing-
weight order; set F = {e1,...,ep}; set B/ = {e1,e,...,e3r45}; optimally
color G[E'] and greedily complete the edge coloring of step obtained in order to
color F with at most three colors (in other words, omit weights and color the
unweighted version of G).

Proposition 18. Algorithm EC_SCHEME is a polynomial time differential approz-
imation scheme for EWC.

Proof (Sketch). Let (M, ..., M) be an optimal solution of G[E’]. By Corol-
lary 1, we can suppose r < 5. So, worst(G[E']) — opt(G[E']) > 3kw(esk+s) =
3w(esk+s)/€, and valge_screne(G) < opt(GE']) +w(esp+6) +w(esk+7) +w(espts)-
After some algebra and taking into account that edges in E are ranked in de-
creasing weight order, valge_scumue(G) < (1 — €)opt(G) + eworst(G). m|

One can easily see that the result of Proposition 18 holds also for any fixed
A > 3 and for any graph (not necessarily bipartite).

124 Marc Demange et al.
6 Cographs

The case of cographs (or equivalently graphs containing no induced chain P, on
four nodes) has to be mentioned. These graphs, also called P,-free graphs, are
a subclass of the perfectly ordered graphs introduced in [15]; for the perfectly
ordered graphs, an order 6 on the node set V can be defined in such a way
that for any induced subgraph G’ of the original graph G the greedy sequential
algorithm (GSC) based on the order 8’ induced by 6 on the nodes of G’ gives a
minimum coloring of G’. Here the GSC algorithm based on an order € consists
in examining consecutively the nodes as they occur in # and coloring them with
the smallest possible color. As observed in [6], a graph G is a cograph if and
only if for all induced subgraphs G’ of G the GSC based upon any order 6 gives
a coloring of G’ in x(G’) colors.

Lemma 2. If G = (V,E,w) is a weighted cograph, then all optimal colorings
S =(51,...,8k) satisfy k = x(G).

Proof (Sketch). Assume there exists an optimal k’-coloring &' = (S7,...,5})
with & > x(G). We can order the nodes of G by taking consecutively the nodes
of S7, those of S} and so on. Using the resulting order 6 we can apply the GSC
algorithm which will produce a k-coloring S = (S1,...,Sk) with k = x(G) (we
have ordered S and &’ by non-increasing costs). Each node v € S’ will satisfy
v € S; with 7 < j after applying GSC. Thus, we have w(S] U {v}) = w(S}) and
Sk+1 = 0, a contradiction. a

We can now show that there is a polynomial algorithm which constructs an
optimal k-coloring S; such a result can be expected from graphs like cographs
for which several generally difficult coloring problems are easier ([16]).

Proposition 19. Let G = (V,E,w) be a a weighted cograph. Then, the k-
coloring S, constructed by the GSC algorithm based upon any order 6 where
u < v (u before v in) implies w(u) > w(v), is optimal.

Proof (Sketch). Let t1 >ty > ... > t, be the values taken by the weights w(v)
in G. Every k-coloring & = (51,...,S5;) of G with k = x(G) and w(S;) >
w(S2) = ... = w(Sk) satisfies: w(S;) = max {ts : w(G(s)) =i} where w(H)
denotes the maximum size of a clique in a graph H and G(s) is the subgraph
generated by all nodes v with w(v) > ts. Indeed any such k-coloring will have
the first w(G(1)) sets S; with w(S;) = t1; also the first w(G(2)) sets S; will have
w(S;) > t2 and generally the first w(G(s)) sets S; will have w(S;) > ts.

Now consider the k-coloring S = (S1,...,S%) obtained by applying the GSC
algorithm based on any order § with nonincreasing weights. Let p(s) be the
largest color given to a node v with w(v) = ts; let vg be such a node. Since
cographs are perfectly ordered graphs, it follows by considering the subgraph G’
of G generated by vy and all its predecessors in 6 that there is in G’ a clique
K 2 vg with KN S; # 0 fori =1,...,p(s). So, S satisfies w(S;) = max{t; :
w(G(s)) > i} and thus S is an optimal coloring. O

Weighted Node Coloring: When Stable Sets Are Expensive 125

The above proof shows in fact that if we are given a perfectly ordered graph G
and if the order 6 of nonincreasing weights in such that the GSC algorithm gives
a minimum coloring (i.e., a k-coloring with & = x(G)), then one can find an
optimal k-coloring S which minimizes val(S). For cographs, this condition was
satisfied since any order 6 could be chosen to construct a minimum coloring.

Proposition 19 is best possible in the following sense. If G is simply a Pj,

then we may have no optimal k-coloring S with k = x(G).

References

10.

11.

12.

13.

14.

15.

16.

Demange, M., de Werra, D., Monnot, J., Paschos, V.T.: Time slot scheduling
of compatible jobs. Cahier du LAMSADE 182, LAMSADE, Universit Paris-
Dauphine (2001) Available on www_address: http://www.lamsade.dauphine.fr/
cahdoc.html#cahiers.

. Potts, C.N., Kovalyov, M.Y.: Scheduling with batching: a review. FEuropean

J. Oper. Res. 120 (2000) 228-249

Potts, C.N., Strusevich, V.A., Tautenhahn, T.: Scheduling batches with simulta-
neous job processing for two-machine shop problems. J. of Scheduling 4 (2001)
25-51

Boudhar, M., Finke, G.: Scheduling on a batch machine with job compatibilities.
JORBEL (2001) To appear.

Berge, C.: Graphs and hypergraphs. North Holland, Amsterdam (1973)

de Werra, D.: Heuristics for graph coloring. Computing 7 (1990) 191-208

Simon, H.U.: On approximate solutions for combinatorial optimization problems.
SIAM J. Disc. Math. 3 (1990) 294-310

Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
System Sci. 9 (1974) 256278

Alfandari, L., Paschos, V.T.: Master-slave strategy and polynomial approximation.
Comput. Opti. Appl. 16 (2000) 231-245

Boppana, B.B., Halld6rsson, M.M.: Approximating maximum independent sets by
excluding subgraphs. BIT 32 (1992) 180-196

Bodlaender, H.L., Jansen, K., Woeginger, G.J.: Scheduling with incompatible jobs.
Discrete Appl. Math. 55 (1994) 219-232

de Werra, D., Erschler, J.: Open shop scheduling with some additional constraints.
Graphs and Combinatorics 12 (1996) 81-93

Rendl, F.: On the complexity of decomposing matrices arising in satellite commu-
nication. Oper. Res. Lett. 4 (1985) 5-8

Konig, D.: ber graphen und iher anwendung auf determinantentheorie und men-
genlehre. Math. Ann. 77 (1916) 453-465

Chvtal, V.: Perfectly ordered graphs. In Berge, C., Chvtal, V., eds.: Topics on
Perfect Graphs. (Volume 21 of Annals of Discrete Math.) 253-277

Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Discrete Appl.
Math. 75 (1997) 135-155

The Complexity of Restrictive H-Coloring*

Josep Diaz, Maria Serna, and Dimitrios M. Thilikos

Dept. Llenguatges i Sistemes, Universitat Politecnica de Catalunya,
Jordi Girona Salgado 1-3, 08034 Barcelona, Spain
{diaz,mjserna,sedthilk}@lsi.upc.es

Abstract. We define a variant of the H-coloring problem where the
number of preimages of certain vertices is predetermined as part of the
problem input. We consider the decision and the counting version of
the problem; namely the restrictive H-coloring and the restrictive #H -
coloring problems. We provide a dichotomy theorem characterizing the
H’s for which the restrictive H-coloring problem is either NP-complete
or polynomially solvable. Moreover, we prove that the same criterion
discriminates the #P-complete and the polynomially solvable cases of
the restrictive # H -coloring problem. Finally, we prove that both results
apply also to the list versions of the above problems.

1 Introduction

Let us consider the following processing setting, we have a host network H of
processors with communication links between them, and a set of jobs with com-
munication demands between them, these jobs and their restrictions in their
concurrent execution are modeled by a graph G. The goal is to make a suitable
assignment of jobs to processors satisfying all the communication constrains.
Historically, one good model to simulate these problems of assignation of in-
terrelated jobs to interconnected processors has been through the H-coloring
problem [9].

Formally, given two graphs G and H, a homomorphism from G to H is a
function o : V(G) — V(H) where for any edge {v,u} € E(G), {o(v),o(u)} is
also an edge of H. For fixed H we say that o is an H-coloring of G. The graphs
in this paper are finite, undirected, and cannot have multiple edges but can have
loops. For a fixed graph H, the H-coloring problem asks for the existence of an H-
coloring of the input graph G, while the #H -coloring asks for the number of the
H-colorings of the input graph G. The complexity of these two problems depends
on the choice of the particular graph H. It is known that the H-coloring problem
is polynomially time solvable if H is bipartite or it contains a loop; otherwise it is
NP-complete [12]. Moreover, the # H-coloring problem is polynomially solvable
if all the connected components of H are either complete reflexive graphs or

* The work of all the authors was supported by the FET Program of the EU under
contract number IST-99-14186 (ALCOM-FT) and by the Spanish CYCIT project
TIC-2000-1970-CE. The work of the last author was partially supported by the
Ministry of Education and Culture of Spain (Resolucin 31/7/00 - BOE 16/8/00).

L. Kucera (Ed.): WG 2002, LNCS 2573, pp. 126-137, 2002.
© Springer-Verlag Berlin Heidelberg 2002

The Complexity of Restrictive H-Coloring 127

complete irreflexive bipartite graphs [7]. Recall that a reflexive graph has all its
vertices looped, and that if none of the vertices of a graph is looped then it is
irreflezive.

The processing may have further restrictions, in many practical cases, several
qualitative restrictions are imposed by the guest network concerning the types
of processors that are able to carry out each of the jobs. For this reason, each
job may be accompanied with a list of the processors that can perform the task.
More formally, for a fixed graph H, and given a graph G, a list of preferences is
a function L : V/(G) — 2V). Given the pair (G, L) a list H-coloring of (G, L)
is a homomorphism ¢ from G to H such that for any v € V(G), o(v) € L(v).
For a fixed graph H, the list H-coloring problem asks for the existence of a
list H-coloring of the input, formed by a graph G and an associated list of
preferences L, while the list # H -coloring asks for the number of list H-colorings
of the input. It is known that the list H-coloring problem is polynomially time
solvable if H is a bi-arc graph [8,9,10]. Moreover, the list # H-coloring problem is
polynomially solvable if all the connected components of H are either complete
reflexive graphs or complete irreflexive bipartite graphs [13,5].

In real systems the host network wants to keep bounded (or fixed) the load
of some processors. Thus, some processors may carry an additional quantitative
restriction the number of jobs that can be assigned to them. The goal is to make a
suitable assignment of jobs to processors satisfying all the communication, load
and preference constrains. A variant of the H-coloring problem, the so called
(H,C, K)-coloring problem and variations whose complexity was studied in [6,5],
considers the case in which the quantitative restriction is fixed independently of
the graph G. See also [4] and [2] for more results on parameterized version of H-
colorings. In this paper we consider the case in which the additional restriction
may depend on the graph G, and thus form part of the input.

For a fixed graph H, given a graph G with n vertices, a weighting function
is a function, w : V(H) — {0,...,n,00}. Given the pair (G,w) a restrictive
H-coloring of (G,w) is an H-coloring o of G such that for all « € V(H) with
w(a) # oo, {u € V(G) | o(u) = a}| = w(a), when w(a) = oo this set can have
any number of vertices. Given a graph G, a list L, S C V(H) and a weight
function w on S a restrictive list H-coloring of G is a list H-coloring o of (G, L)
such that o is also a (G, w) restrictive H-coloring. We introduce the following
problems:

Restrictive H-coloring problem: Given a graph G and a weighting function w on
H. Does (G,w) have a restrictive H-coloring?

Restrictive list H-coloring problem: Given a graph G, a list L on G, and a weighting
function w on H. Does (G, L,w) have a restrictive list H-coloring?

The counting versions of both problems, the restrictive # H-coloring and the
restrictive list # H-coloring are defined as usual.

We prove that all these problems are polynomial time solvable if all the con-
nected components of the host graph H are either complete reflexive graphs
or complete irreflexive bipartite graphs. Moreover, we prove that in any other
case the decision problems are NP-complete and the counting problems are

128 Josep Diaz, Maria Serna, and Dimitrios M. Thilikos

a b

o Ve

Fig. 1. The four forbidden subgraphs of Lemma 1

#P-complete. Observe that, in contrast to the non restrictive problems, the
dichotomy result attained for this problem is the same for both list and non list
problems as well as for counting an decision problems.

We use standard notation for graphs and we set n = |V(G)| and h = |V (H)|.
For a given graph G and a vertex subset S C V(G), the subgraph induced by S
is the graph G[S] = (S, E(G)N S x S).

2 NP-Completeness Results

Notice that, for any given graph G, by setting w(a) = oo for all a € V(H), the
restrictive H-coloring problems solves the corresponding H-coloring problem,
therefore we can translate all the hardness results to the restrictive problem
versions. In particular, the #P-hardness results in [7,13,5] translate as shown in
the following result.

Theorem 1. If H has a connected component that is neither a complete ir-
reflexive bipartite graph nor a complete reflexive clique, then the restrictive #H -
coloring and the restrictive list # H -coloring problems are #P-hard.

In this section we will show that when H has a connected component that
is not a complete irreflexive bipartite graph or a complete reflexive clique the
restrictive H-coloring problem, and therefore the restrictive list H-coloring prob-
lem, are NP-complete. As both problems are clearly in NP, we provide the hard-
ness proofs.

It is well known that the four forbidden subgraphs given in Figure 1 charac-
terize the following property [14]:

Lemma 1. All the connected components of a graph H are either a complete
reflexive graph or a complete irreflexive bipartite graph iff H does not contain as
induced subgraphs any of the graphs given in Figure 1.

Now we can state the result in this section.

Theorem 2. If H contains any of the graphs in Figure 1 as induced subgraph
then, the restrictive H-coloring problem is NP-complete.

Proof. We will distinguish four cases depending on which of the graphs in Fig-
ure 1 appears as an induced subgraph of H. Observe that we can select a partic-
ular induced subgraph of H by setting to 0 the number of tasks that a processor
can perform.

The Complexity of Restrictive H-Coloring 129

Case 1. If {a,b} is an edge in H where a is looped and b is unlooped, we define

o~ ifv=a,
w(v) =< k if v="0,
0 otherwise.

Then (G,w) has a restrictive H-coloring iff G has an independent set of size at
least k.
Case 2. If {a,b, ¢} form a triangle in H, we set

~ foo ifve{a,b,cl,
w(v) = {0 otherwise.
Then (G, w) has a restrictive H-coloring iff G is 3-colorable.
Case 3. Let now {a,b,c} be an induced reflexive path in H. We will reduce the
following problem to the restrictive H-coloring problem.

Balanced Separator: Given a graph G and positive integer k& < n. Is there a
partition of V(@) in three sets A, B, C, such that |C| = k, that removing C' leaves
a graph with no edges between A and B, and such that max{|A|, |B|} < |V]/2.

The above problem can be shown NP-complete by a slight variation of the
NP-hardness proof given in [1] for the minimum B-vertex separator problem.

Let G be an input of the above problem, we construct a new graph G with
k + 1 new vertices, V(G) = V(G) U {ug, ..., ur}, and with edge set E(G) =
B(G) U{{up,x} | v € V(G)} U {{u,ui} |1 <7 < k}.

For any v € V(H), we set

n/2 if v =a,

w(v) = k+1 ifv=0,
Y= n/2 if v =r¢,
0 otherwise.

and we can show that G has a balanced separator iff (G, w) has a restrictive
H-coloring (see [3] for a detailed proof).
Case 4. Let now {a,b, ¢, d} be an induced irreflexive path in H. We consider the
following NP-complete problem, see [11]:

Balanced Complete Bipartite Subgraph: Given a bipartite connected graph G =
(Vi, Vs, E) and positive integer k, such that & < |V1|+|V2|. Does G contain Ky, j
as an induced subgraph?

Let (G, k) be an input of the above problem. Assume that V; and V5 is the
partition of V(G), observe that as G is connected and bipartite this partition is
unique. Let uy, ug be two new vertices not belonging in V(G). We construct a new
bipartite graph G = (W, F) with bipartition W7 = Vi U{u;} and Wy = VaU{us},
and with edge set F' = {{uy, 2} | © € Va}U{{x, uz} | € V1 }JU{{u1, u2 }U{{x, y} |
z€Vi,y€ Vs, and {x,y} ¢ E(G)}. Notice that G is the bipartite complement
of G with two new adjacent vertices u; and wuso, such that u; is connected with
all the vertices in one part and us with all the vertices in the other.

130 Josep Diaz, Maria Serna, and Dimitrios M. Thilikos

030
@) HD 6

A w, B, wp C,w. D,wy E,w. F,wy

Fig. 2. The six basic cases for counting H-colorings

For all v € V(H), we set

k if v = a,
o ifv =0,
w(v) =< o0 ifv=c,
k if v=d,
0 otherwise.

Then G contains Ky i, as a subgraph iff G has a restrictive H-coloring (see [3]
for a detailed proof).

Using the fact that the restrictive list H coloring problem can be used to
solve the restrictive H-coloring problem we get,

Theorem 3. If H has a connected component that is neither a complete irrefiex-
we bipartite graph nor a complete reflexive clique then the restrictive H -coloring
and the restrictive list H-coloring problems are NP-hard.

3 H-Coloring: The Connected Case

In this section we solve in polynomial time the counting version of the restrictive
H-coloring problem in the case that H does not contain as subgraph any of the
forbidden subgraphs in Figure 1 and furthermore G is connected.

Let us first show that for any of the different graphs and weighting functions
in Figure 2 the number of restrictive H-colorings of a graph G can be computed
in polynomial time.

Given two graphs G, H and a weighting function w on V(H), let H(G, H, w)
denote the number of restrictive H-colorings of (G,w). We set n = |V (G)|, and
for a connected bipartite graph G, we set ny, ny to be the sizes of the two
partitions. It is easy to check that, for the graphs and weighting functions given
in Figure 2, the following algorithms compute correctly the number of restrictive
colorings.

algorithm H(G, A, w,)
begin

if n = k then ret 1 else ret 0 end if
end

The Complexity of Restrictive H-Coloring 131

algorithm H(G, B, w;)
begin

if n <k then ret (}) else ret 0 end if
end

algorithm H(G,C,w.)
begin
if G is not bipartite
then ret 0
elseif (n1 # k1 and n1 # k2) or (n2 # k1 and n2 # k2) then ret 0
elseif (n1 = k1 and n1 # k2 and ne = k2) then ret 1
elseif (n1 # k1 and n1 = k2 and n2 = k1) then ret 1
else ret 2
end if
end

algorithm H(G, D,wg)
begin
if G is not bipartite
then ret 0
elseif (n1 < k1 and n1 < k2) or (n2 < k1 and n2 < k2) then ret 0
elseif (n1 > k1 and n1 < k2 and na > k) then ret (Zi)(:i)
elseif (n1 < k1 and n1 > k and na > k1) then ret (72)(}})

1/ \k2
else ret (1) (72) + () (1)
end if
end

algorithm H(G, E, w.)

begin

if GG has no edges and k£ = 1 then ret lelse ret 0 end if
end

algorithm H(G, F,wy)
begin

if G has no edges then ret 1 else ret 0 end if
end

Lemma 2. Let H be a reflexive clique, given a connected graph G and a weight-
ing function w on H, then H(G, H,w) can be computed in polynomial time.

Proof. Let C = {a € V(H) | w(a) # oo}, let k = > -w(a), and let o =
|V(H) — C|. We will consider two cases.

Case 1. C = V(H). In this case, “collapsing” all the vertices in H into a single
vertex and assigning weight k£ to it, we get a type A graph with a weighting
function w,. Observe, that any restrictive A-coloring of (G, w,) can be extended
in k! ways to obtain a valid restrictive H-coloring of (G,w), and any valid H-

132 Josep Diaz, Maria Serna, and Dimitrios M. Thilikos

coloring of (G,w) can be contracted to provide a valid restrictive A-coloring of
(G, wyg)-
Case 2. C' # V(H). In this case, “collapsing” all the vertices in C' to a vertex
with weight k& and all the remaining vertices to a vertex with weight oo, we
obtain a type B graph with weighting function wy. Observe that any restrictive
B-coloring of (G, wy) can be extended in k!a™ % ways to obtain a valid restrictive
H-coloring of (G,w), and any valid H-coloring of (G,w) can be contracted to
provide a valid restrictive B-coloring of (G, wy).

Therefore the following algorithm, which takes polynomial time, computes
H(G, H,w).

algorithm H(G, H,w)
begin
Compute n, k and «;
if a=0
then if n = k£ then output k! else ret 0 end if
elseif n <k
then ret kla™* (Z)
else ret 0
end if
end

Lemma 3. Let H be a complete irreflexive bipartite graph with more than one
verter. Given a connected graph G and a weighting function w on H, H(G, H, w)
can be computed in polynomial time.

Proof. Let H = (V1,V2, E). For i = 1,2, let C; = {a € V; | w(a) # oo}, let
k; = ZaGCi w(a), and let a; = |V; — C;|. We will consider two cases.

Case 1. C; = V7 and Cy = V5. In this case collapsing all the vertices in V; to
a vertex with weight k; and collapsing all the vertices in V5 to a vertex with
weight ko we obtain a type C graph and a weighting function w.. Observe that
any restrictive C-coloring of (G, w,) can be extended in k;!ks! ways to obtain a
valid restrictive H-coloring of (G, w), and any valid H-coloring of (G, w) can be
contracted to provide a valid restrictive C-coloring of (G, w.).

Case 2. C # Vj or Cy # Vs. In this case by collapsing all the vertices in C; to
a vertex with weight k; and all the remaining vertices in V; to an unbounded
vertex, we obtain a type D graph with a weighting function wy. Observe that any
restrictive D-coloring of (G,wg) can be extended in ki!ky! a5 a2 7F2 ways
to obtain a valid restrictive H-coloring of (G, w), and that any valid H-coloring
of (G,w) can be contracted to provide a valid restrictive D-coloring of (G, wg).

Therefore, the following algorithm computes H(G, H, w) in polynomial time.

algorithm H(G, H,w)
begin
if GG is not bipartite

The Complexity of Restrictive H-Coloring 133

then ret 0
else
Compute ni1,ne, k1, k2, a1 and as;
if a1 = Qg = 0
then
if (n1 # k1 and n1 # k2) or (n2 # k1 and na # k)
then ret 0
elseif (n1 = k1 and n1 # k2 and na = k2) then ret ki!ko!
elseif (n1 # k1 and n1 = k2 and ne = k1) then ret ki!ko!
else ret 2 k1! ko!;
end if
elseif (n1 < k1 and n1 < k2) or (n2 < k1 and na < k2)
then ret 0
elseif (n1 > k1 and n1 < k2 and na > k2)
then ret k! k! a;”*kl a§27k2 (Zi) (Z;)
elseif (n1 < k1 and n1 > k2 and na > k1)

then ret ki!ko! a?l_kl agz_kz (Zf) (Z;)

else ret kilkslat " ag2 e (1) (2) + (12) (1))
end if
end if
end if

end
In the case that H is an isolated vertex, G must also be an isolated vertex

and we can compute, in polynomial time, H(G, E,w.) or H(G, F,wy).

Now we can show the main result in this section.
Theorem 4. If all the connected components of H are either a complete irrefiex-
we bipartite graph or a complete reflexive clique, then the restrictive # H -coloring
problem can be solved in polynomial time.

Proof. Assume that H has [connected components. Given a weighting function
w on H, let w; denote the restriction of w to the vertices in H;. As the given
graph G is connected, it can be mapped only to one connected component of H,
therefore we only have to count the number of restrictive H; colorings of (G, w;)
that fulfill the weight bounds, with an empty assignment of vertices in G to the
remaining components.

We classify the connected components of H as follows; H; is free if w(H;) =
{o0}, Hj is forbidden if w(H;) = {0}, otherwise H; is restricted. Therefore, we
have

0 H has two restricted components,
H(G, H,w) = $ 37 <, H(G, Hj,w;) if all the c.c. are free or forbidden,
H(G, Hj,wj) if H; is the unique restricted c.c.

By Lemmas 2 and 3 the last formula can be evaluated in polynomial time.
As counting in polynomial time implies deciding in polynomial time we have,
Corollary 1. If all the connected components of H are either a complete ir-

reflexive bipartite graph or a complete reflexive clique, then the restrictive H -
coloring problem can be solved in polynomial time.

134 Josep Diaz, Maria Serna, and Dimitrios M. Thilikos

4 H-Coloring: The General Case

Now we show how to compute the number of restrictive H-colorings in the
general case in which the graph G may not be connected. Observe that differ-
ent components of G can fill partially the weighted vertices of H, therefore we
are forced to consider H-colorings of components of G that are not restrictive
H-colorings, for the given pair (G,w), but that all together provide one such
restrictive H-coloring.

Theorem 5. If all the connected components of H are either a complete irreflex-
we bipartite graph or a complete reflexive clique then the restrictive #H -coloring
problem can be solved in polynomial time.

Proof. Given (G,w) and assuming, as usual, that & < oo holds for any integer
k, let E(w) be the set

Ew)={f:V(H)—{0,...,n}| f(a) <w(a) for all a € V(H)}.

Given two functions wy and we from V(H) to {0,...,n}, for any a € V(H), its
sum is defined as usual: (w; + wz)(a) = wy(a) + wa(a).

To keep uniform notation, we will assume that all the weighting functions
are defined over V' (H). To fullfil this goal, any weighting function of a connected
component H; is extended to H by assigning the weight 0 to all the vertices
outside V(H;). We say that a weighting function w defined over H is proper for
H;, if for all w € V(H) — V(H;), w(u) = 0. For any component i, 1 <1 <, let
P(i) be the set of proper functions for component 4.

Assume that G has m connected components Gy, ..., Gy, G* denotes the
graph formed by the disjoint union of Gy, ..., G;. For given G and w, H(G, H, w),
we compute initially a table T'[i, j, m], such that for any 1 <i <m, 1 < j <1
and f € E(w))

0 otherwise.

Tti, j, f] ={

For each f, T(i,j, f) can be computed in polynomial time using Theorem 4.
Asj|[V(H)| = h and |V(G)| = n, the size of E(w) is at most n", therefore poly-
nomial because H is fixed, so the whole table can be computed in polynomial
time.

Using dynamic programming techniques, we can compute a table S|i, f], for
1 <i<mand f € E(w), such that S[i, f] counts the number of restrictive
H-colorings of (G?, f). To get the formula we take into account that a connected

component of G must be mapped entirely to a unique connected component of
H. Therefore, for any f € E(w)

S[Lf= Y T4 fl,
1<5<1
and, for any 1 < j < m,

S[]7f]: Z S[.]_Lfl]*T[%Jva]

1<5<l, fi+fo=f

The Complexity of Restrictive H-Coloring 135

As the size of E(w) is polynomial, table S can be computed in polynomial time.
To finish, let A(w) = {f € E(w) | w(a) = f(a) for all a € H with w(a) # oo}
be the set of weighting bounded functions fullfiling the restrictions, then

HG Hw) = Y S[m, f],
{feAw)}

which again can be computed in polynomial time.
Putting together Theorems 1, 3 and 5, we get the dichotomy result.

Theorem 6. If all the connected components of H are either a complete irreflex-
we bipartite graph or a complete reflexive clique then the restrictive H -coloring
and the restrictive # H -coloring problems can be solved in polynomial time, oth-
erwise they are NP-complete, #P-complete, respectively.

5 The Restrictive List H-Coloring Problem

In his section we extend the previous result to the problem of counting restrictive
list H-colorings. The main difficulty here is that the vertices in a connected
component of H cannot be “collapsed” to a single vertex, as this may place
together vertices that are not in the same vertex list. Once we have solved the
connected case, the second step is identical to the general case for the restrictive
H-coloring.

We will consider the two main types of connected components and show that
a dynamic programming approach allow us to compute the number of restrictive
list H-colorings. Making an abuse of notation we will represent by H(G, H,w, L)
the number of restrictive list H-colorings of a triple (G,w, L).

Lemma 4. Let H be a reflexive clique. Given a connected graph G, a weighting
function w on H and a list selection for G, then H(G, H,w, L) can be computed
in polynomial time.

Proof. As H is a reflexive clique we can assign a vertex of G to any vertex in H,
provided that the additional restrictions are fulfilled. Let V(G) = {uq, ..., un},
and let E(w) = {f : V(H) — {0,...,n} | foralla € V(H) f(a) < w(a)}. For
any a € H define f, by
1 ifb=a,
fa(b) = {

0 otherwise.

We want to compute a table R[i, f], 1 < i < n, f € E(w), which counts
the number of restrictive list H-colorings for (G[{u1,...,u;}], f, L). For any f €
E(w), consider the following recurrence

R[1, f] =1if f = f, for some a € L(u;) then 1 else 0,

Rli, f] = > R[j —1.fi], for 1<j <m.
f1+f2:f7

fa = fo for some a € L(u;)

136 Josep Diaz, Maria Serna, and Dimitrios M. Thilikos

As the size of E(w) is polynomial, we can fill the table R in polynomial time.
Setting A(w) = {f € E(w) | w(a) = f(a) for all a € H with w(a) # oo} we
have

H(G, H,w,L) = > f € A(W)R[n, f].

Lemma 5. Let H be a complete irreflexive bipartite graph with more than one
vertex, given a connected graph G, a weighting function w on H, and a list
selection L for G, H(G, H,w) can be computed in polynomial time.

Proof. If H is bipartite, then G must be bipartite. In this case, we can work
separately with the two possible assignments of partitions of G with partitions
of H. Notice that once the global assignment is set, any vertex can be mapped
to any one in the assigned partition, thus working as in the previous lemma we
can compute H(G, H,w) in polynomial time.

Using the same technique of Section 4, we can obtain the polynomial time result.
This, together with Theorems 1 and 3, give the dichotomy for the list version of
the problem.

Theorem 7. If all the connected components of H are either a complete ir-
reflexive bipartite graph or a complete reflexive clique, then the restrictive list
H-coloring and the restrictive list #H -coloring problems can be solved in poly-
nomial time, otherwise they are NP-complete and #P-complete, respectively.

6 Further Variations and Conclusions

We can consider a generalized version of the restrictive H-coloring problem in
which each processor gets a list of desired ranges. Then, a valid restrictive H-
coloring is an H-coloring o of G, such that, for any a € H, |0~!(a)| falls inside
one of a prescribed ranges.

Observe that in this generalized version, we can arrange the list to keep
a unique value or keep all possible values, so this generalized version contains
as a subproblem the restrictive H-coloring. Using Theorem 5 we can compute
H(G, H, f) for any function f € E(u). Starting from this information, we can
compute in polynomial time the number of restrictive H-colorings satisfying any
given list of desired ranks.

We can add to all the above a list of preferences and attain the same di-
chotomy result for the generalized list problem.

We have dealt through the paper in H-colorings that correspond to embed-
dings with dilation one. As far as H remains fixed we can solve the restrictive
embedding problem for any prefixed maximum dilation d. To do so we just en-
hance H with edges joining vertices at distance d or less.

References

1. T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is
NP-hard. Information Processing Letters, 42(3):153-159, 1992.

10.

11.

12.

13.

14

The Complexity of Restrictive H-Coloring 137

J. Diaz. H-colorings of graphs. Bulletin of the European Association for Theoretical
Computer Science, (75):82-92, 2001.

J. Diaz, M. Serna, and D. M. Thilikos. The complexity of restrictive H-coloring.
TR LSI-02-22-R, Software Dept., Universitat Politcnica de Catalunya, 2002.

J. Diaz, M. Serna, and D. M. Thilikos. Recent results on parameterized H-
colorings. In J. Nesetiil and P. Winkler, editors, Graphs, Morphisms and Statistical
Physics, DIMACS series in Discrete Mathematics and Theoretical Computer Sci-
ence. American Mathematical Society, 2002. To appear.

J. Diaz, M. Serna, and D. M. Thilikos. Counting list H-colorings and variants. TR
LSI-01-27-R, Software Dept., Universitat Politcnica de Catalunya, 2001.

J. Dfaz, M. Serna, and D. M. Thilikos. (H,C, K)-colorings: Fast, easy and hard
cases. In Mathematical Foundations of Computer Science 2001, MFCS-2001, vol-
ume 2136 of LNCS, pages 304-315. Springer-Verlag, 2001.

M. Dyer and C. Greenhill. The complexity of counting graph homomorphisms.
Random Structures Algorithms, 17:260-289, 2000.

T. Feder and P. Hell. List homomorphisms to reflexive graphs. Journal of Combi-
natorial Theory (series B), 72(2):236-250, 1998.

T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc graphs.
Combinatorica, 19:487-505, 1999.

T. Feder, P. Hell, and J. Huang. Bi-arc graphs and the complexity of list homo-
morphism. Manuscript, 2001.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

P. Hell and J. Negetfil. On the complexity of H-coloring. Journal of Combinatorial
Theory (series B), 48:92-110, 1990.

P. Hell and J. Nesetfil. Counting list homomorphisms and graphs with bounded
degrees. In J. Nesetiil and P. Winkler, editors, Graphs, Morphisms and Statisti-
cal Physics, DIMACS series in Discrete Mathematics and Theoretical Computer
Science. American Mathematical Society, 2002. To appear.

J. Nesetiil, 2001. personal communication.

A New 3-Color Criterion for Planar Graphs
(Extended Abstract)

Krzysztof Diks, Lukasz Kowalik, and Maciej Kurowski

Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warsaw, Poland
{diks,kowalik,kuros}@mimuw.edu.pl

Abstract. We present a new general 3-color criterion for planar graphs.
Applying this criterion we characterize a broad class of 3-colorable planar
graphs and provide a corresponding linear time 3-coloring algorithm. We
also characterize fully infinite 3-colorable planar triangulations.

1 Introduction

The problem of vertex coloring of a graph using few colors has given rise to one of
the most intensively studied areas of the graph theory. A frequently encountered
special case is that in which the graph to be colored is planar. Computing a
coloring that uses the smallest possible number of colors is known to be an NP-
complete problem, even when restricted to the class of planar graphs and 3 colors.
More precisely it is an NP-complete problem to decide whether a given planar
graph is 3-colorable [GJS]. On the other hand the famous “4-color theorem” says
that every planar graph is 4-colorable. Hence it is natural to characterize those
planar graphs which are 3-colorable. The first 3-color criterion was formulated
by Heawood in 1898 and it is known as the Three Color Theorem [Hea,Stel:
A mazximal planar graph is vertex colorable in three colors if and only if all
its vertices have even degrees. Obviously this theorem implies a very simple
algorithm for checking 3-colorability of maximal planar graphs. As the problem
of 3-colorability of planar graphs is NP-complete one cannot rather expect any
“effective” 3-color criterion for general planar graphs. On the other hand there
is a “simple”, general 3-color criterion which does not lead to an efficient 3-
coloring algorithms: A planar graph is vertex colorable in three colors if and
only if it is a subgraph of a mazimal planar graph in which all vertices have
even degrees. This theorem was already known to Heawood as well as it was
discovered independently by several authors — see the comprehensive survey
written by Steinberg [Ste].

In this paper we introduce a new general 3-color criterion which can be
efficiently checked for a broad class of planar graphs. Our criterion generalizes
the Heawood’s Three Color Theorem. In order to get this result we define a new
class of planar graph colorings, so called edge-side colorings, and prove that the
new type of coloring is equivalent to the ordinary vertex 3-coloring. The criterion
allows to characterize 3-colorable triangulations with holes, i.e. plane graphs in

L. Kucera (Ed.): WG 2002, LNCS 2573, pp. 138-149, 2002.
© Springer-Verlag Berlin Heidelberg 2002

A New 3-Color Criterion for Planar Graphs 139

which each vertex touches at most one non-triangular face. We provide a linear
time algorithm for 3-coloring such graphs. Our criterion allows also to formulate
sufficient and necessary conditions for 3-coloring infinite planar triangulations.

2 Basic Definitions and Notation

It is known that a graph is 3-colorable iff all its biconnected components are
3-colorable. In the sequel, if it is not stated explicitly, saying a graph we mean
a biconnected, finite multigraph of at least three vertices but without selfloops.

A plane graph is a graph whose vertex set is a point set in the plane and the
edges are Jordan curves such that two different edges have at most end points
in common. A graph is called planar if it can be embedded in the plane, i.e. if
it is isomorphic to a plane graph.

Let C be a simple cycle in a plane graph G. The cycle C' divides the plane
into two disjoint open domains — the interior C-domain (homeomorphic to an
open disc) and the exterior C-domain. The set consisting of all vertices of G
belonging to the interior C'-domain and of all edges crossing this domain is
denoted by Int C. If v is a vertex on C then the number of the graph neighbors
of v lying in the interior C-domain is called the internal degree of v with respect
to C and it is denoted by din(C,v) = [{(v,w) € E(G) : w € Int C}|. We define
the internal degree of the cycle C as the sum of the internal degrees of all its
vertices. This sum is denoted by din(C) = .. dIn(C,v).

A face in a plane graph G is a C-domain (interior or exterior), for some cycle
C, without any vertices and edges inside. Only one face is unbounded and it is
called the outer face. Similarly, its boundary cycle is called the outer one.

A triangulation is a plane graph in which the boundary cycle of every face is
a triangle (3-cycle). A biconnected plane graph in which all the boundary cycles,
except at most one, are triangles is called a near-triangulation. W.l.o.g. we will
consider this boundary cycle to be the outer one.

A graph is even if all its vertices have even degrees. A near-triangulation is
internally even if all its vertices different from those on the outer cycle have even
degrees.

3 A New 3-Color Criterion

In 1898 Heawood [Hea] proved a theorem characterizing (finite) 3-colorable tri-
angulations:

Theorem 1 (Three Color Theorem). A (finite) triangulation is 3-colorable
if and only if it is even.

This criterion applies only to the maximal planar graphs which are isomor-
phic to triangulations. It allows to check in a very simple manner whether a
given maximal planar graph is 3-colorable. One can ask a natural question: can
the criterion be generalized to all planar graphs? Unfortunately, since checking

140 Krzysztof Diks, Lukasz Kowalik, and Maciej Kurowski

3-colorability is an NP-complete problem even in the planar case, we cannot
rather expect any polynomially checkable criterion for general planar graphs.
However there are general criteria which allow checking 3-colorability of a given
planar graph in some special cases. As stated in [Ste] such a general criterion
was already known to Heawood [Hea]. Nevertheless it was not widely known and
has been independently discovered and proved several times, e.g. in [Krl], [Kr2],
[Mar]. The criterion follows:

Theorem 2 (Heawood’s 3-Color Criterion). Let G be a plane graph. The
following two conditions are equivalent:

(i) G is 3-colorable.
(i) There exists an even triangulation H such that G is a subgraph of H, i.e.
HDG.

Moreover, every 3-coloring of a plane graph G can be extended to a 3-coloring
of some even triangulation H 2 G.

As we can see the 3-color criterion stated above tells us nothing about the
structure of the graph under consideration. In this section we provide a new type
of graph coloring, called edge-side coloring, which is equivalent to the vertex 3-
coloring but additionally reflects some structural properties of a given graph.
This new feature will allow us to characterize a new, broad class of 3-colorable
planar graphs which are recognizable and 3-colorable in a linear time.

We start from a few indispensable definitions.

Let G be a plane graph, f a face in G and e an edge on the boundary cycle
of f. The pair s = (e, f) is called a side of edge e in face f (or shortly a side).
We say also that side s touches face f. If vertex v is an end point of e then side
s is said to be incident with v. Observe that in a biconnected graph every edge
has exactly two sides.

Let G be a plane graph and S be the set of all sides in G. Edge-side coloring
of G is an arbitrary function

m : S — {black, white}.

Edges with one side black and the other side white are called b-w edges. The
other edges are called one-color edges and can be of type b-b or w-w depending
on the colors of their sides, black or white respectively.

We say that an edge-side coloring of a plane graph G is proper if and only if
the following two conditions are satisfied:

(i) for each face f in G the numbers of white and black sides touching f are
congruent (equal) mod 3;
(ii) each vertex v in G is incident with an even number of one-color edges.

We say that a plane graph G is edge-side colorable if its edge-sides can be properly
colored.
Now we can state the main theorem of the paper.

A New 3-Color Criterion for Planar Graphs 141

Fig. 1. A proper edge-side coloring. Light (dark) lines indicate white (black) sides

Theorem 3 (3-Color Criteria). Let G be a (biconnected) plane graph. The
following three conditions are equivalent:

(i) G is 3-colorable.
(i) There exists an even triangulation H 2 G.
(ii3) G is edge-side colorable.

The equivalence of conditions (i) and (ii) was proved by Heawood (see The-
orem 2). The proof of the equivalence of (ii) and (iii) is our main contribu-
tion to this paper. We start from a few observations on internally even near-
triangulations.

Lemma 1. FEvery internally even near-triangulation is 3-colorable.

Proof. Let C be the outer cycle of a near-triangulation G. Let us take a separate
embedding G’ of G in which the cycle C’ corresponding to C is not longer the
outer one. Now we build a new plane graph H from G’ placing the entire graph
G in the interior C’-domain and identifying the corresponding vertices and edges
of the cycles C' and C’ as shown in Fig. 2. One can easily check that the graph
H is an even plane triangulation and hence it is 3-colorable by the Heawood’s
Three Color Theorem. Since G C H it is also 3-colorable. O

Lemma 2. Let G be an even near-triangulation with the outer cycle C. Then

|C]=0 (mod 3).

Proof. By Lemma 1, G is 3-colorable. Let C' = vgv; ... v|¢|—1v0 and let K be an
arbitrary 3-coloring of G. We will show that one can rename the colors in K in
such a way that C(v;) = (i mod 3) + 1, for every ¢ =0...|C| — 1.

Let v be an arbitrary vertex in C and let x and y be its neighbors such
that x, y and v are incident with the same internal (not unbounded) triangular
face in G. Vertices z, y, and v have different colors. Now one can observe that
every two successive neighbors of v, in a sequence of all neighbors listed in the
clockwise order, have different colors. Since the degree of v is even its neighbors

142 Krzysztof Diks, Lukasz Kowalik, and Maciej Kurowski

Fig. 2. Proof of lemma 1

on C have different colors. As a result we get K(v;) = (i mod 3) + 1 (possibly
after renaming the colors) what implies |[C| =0 (mod 3). O

Lemma 3. For every i > 3 such that i =0 (mod 3) there exists a finite even
near-triangulation with the outer cycle of length i.

Proof. The proof is by induction on i. For ¢ = 3 it suffices to take Kj.
Inductive step: by the induction hypothesis there exists a finite, even near-
triangulation G with the outer cycle of length ¢ — 3. Let v1, v be arbitrary
adjacent vertices in the outer cycle of Gg. Then G = Gy U {vs3, v4,v5}U{ve —vs,
U3 — U4,V4 — Us, U5 — U1,V — U4, V] — U4} IS an even near-triangulation and its
outer cycle has length 3. O

Let C be a simple cycle and let m¢ be an arbitrary edge 2-coloring of C,
me : E(C) — {black, white}. We say that coloring m¢ is balanced if and only
if [mg' (black)| = |mg' (white)| (mod 3).

Let G be a graph and let C' be a simple cycle in G. We say that a balanced
coloring m¢ of C' corresponds with G if the following holds: for every vertex v
in C the edges of E(C) incident with v have different colors if and only if the
degree dg(v) of v in G is odd.

Lemma 4 (Key Lemma).

(i) For every internally even near-triangulation G with the outer cycle C there
exists a balanced 2-coloring m¢o of C corresponding with G.

(i) For every balanced 2-coloring me of a cycle C there exists an internally
even near-triangulation G with the outer cycle C' and such that me corre-
sponds with G.

Proof (i). Since G is internally even, the number of vertices of C with odd
degrees is even. Let v1,vs,...,v2k_1, 02, be a list of all such vertices given in

A New 3-Color Criterion for Planar Graphs 143

the clockwise order. For each i = 1,2,...,k, we color black edges on C between
vg;—1 and vg;. The remaining edges are colored white (see Fig. 3). Observe that
vertices in C' are incident with edges of different colors if and only if they have
odd degrees.

Fig. 3. Constructing a balanced 2-coloring

Let b be the number of black edges on C and let w be the number of white
edges on C'. After extending G by triangles formed in the outer (unbounded) face
and with the black edges as the triangle bases (as shown in Fig. 3) we get an even
near-triangulation. By Lemma 2 the outer cycle of this triangulation has length
=0 (mod 3). Hence 2b+w =0 (mod 3) and finally b=w (mod 3). O

Proof (ii). Denote the number of black and white edges of C by b and w re-
spectively. We form a triangle on each black edge e in the interior C-domain as
shown in Fig. 4. As the result we get a graph H. Observe that vertex v of H has
odd degree if and only if it is incident on C' with edges of different colors.

Fig. 4. The graph H with the outer cycle C' — constructing a near-triangulation

Let f be the only face of H different from the added triangles and placed
in the interior C-domain. The length of the f’s boundary cycle is 2b + w =
0 (mod 3). By Lemma 3, one can triangulate this face and obtain a required
internally even near-triangulation G. ad

Lemma 5. Let G be a finite, biconnected plane graph. Let H be an even trian-
gulation (possibly infinite but locally finite) such that G C H. If for every face

144 Krzysztof Diks, Lukasz Kowalik, and Maciej Kurowski

f of G with facial cycle Cy there exists a balanced edge 2-coloring corresponding
with Cy UInty Cy, the graph G is edge-side colorable.

Proof. For every face f of G with the facial cycle Cy let m¢, be a balanced edge
2-coloring corresponding with Cy U Inty Cy. Let us take an edge-side coloring
assigning each side (f, e) the color mc, (e). Obviously this coloring satisfies the
first condition of the definition of the proper edge-side coloring. In order to prove
the other one let us consider an arbitrary vertex v in G. Let f’ be an arbitrary
face in G with v on its facial cycle. Denote this cycle by C’. Let e1, ez be the
edges of C’ incident with v. Since me,, corresponds with C'y UInt g C'yr the sides
of e1, e5 in f’ have the same color if and only if the degree ding(C’,v) is even.
Let B(v) denote the number of black sides incident with v. If dg(v) is odd then
there is an odd number of faces f’ incident with v and such that dIng(C’,v) is
odd. On the other hand if dg(v) is even the number of faces f’ incident with v
and such that ding(C’,v) is odd is even. It follows that dg(v) + B(v) is always
even which is equivalent to the statement that the number of one-color edges
incident with v is even.

We have just showed that the second condition in the definition of proper
edge-side coloring is satisfied, which completes the proof. ad

Now we are ready to prove the part (ii)«(iii) of our main theorem.

Proof.

(if) — (i)

Assume that there exists an even triangulation H O G. Observe that since G
is biconnected, every face is bounded by a simple cycle. For each face f with
the facial cycle C'y we can apply lemma 4 to get a balanced edge 2-coloring m¢
of E(C) corresponding with the near-triangulation Cy U Intg Cy. Now we can
apply lemma 5 to obtain a proper edge-side coloring of GG, what completes the
proof of (ii)—(iii).

(i) «—(iii)
Assume that G is properly edge-side colored. By Lemma 4 one can triangulate
(i.e. divide into triangles) each face into an internally even near-triangulation
getting a triangulation H O G. Let v be an arbitrary vertex of GG. Denote by
F(v) the number of faces incident with v for which the odd number of edges
ending in v was added during the process of triangulation. Similarly as in the
proof of lemma 5 one can show that dg(v) 4+ F(v) is even. It implies finally that
for every vertex v, dy(v) is even, what means that H is an even triangulation.
O

As the result we get a new 3-color criterion for general planar graphs. In fact,
using this criterion for checking whether an arbitrary plane graph is 3-colorable
is equally hard as trying to find a proper 3-coloring of a given graph. However
we can apply our theorem to show a few classes of planar graphs for which the
new criterion can be effectively checked.

A New 3-Color Criterion for Planar Graphs 145

4 Applications

One can expect that the criterion formulated in section 3 can be effectively
checked for graphs that are ”highly triangulated”, i. e. when a lot of faces are
triangles. Moreover, if such a graph has a special structure it can be colored using
a greedy algorithm. We define formally a class of graphs for which the greedy
algorithm works well. A plane graph G is called triangle connected if each vertex
of G is incident with a triangular face and the subgraph of the graph dual to G
induced by the triangular faces is connected.

In the following subsections we present the greedy algorithm and three classes
of graphs for which effective 3-color criteria can be formulated. Our general
criterion can be also used to show that plane graphs with face lengths of multiple
of three are 3-colorable.

4.1 The Greedy Algorithm

Given a planar, triangle connected graph (without its planar embedding) the
algorithm below computes its 3-coloring or reports that such a coloring doesn’t
exist. The algorithm runs in a linear time. For each vertex v set PossibleColors(v)
contains colors which are still admissible for v; S represents the set of vertices
for which set PossibleColor contains at most one color. Algorithm uses operation
RESTRICT (v) which restricts the set of admissible colors for neighbors of v.

OPERATION RESTRICT(v)::
for each v in Neighbors(v) do
if Col(u) = -1 then
begin
PossibleColors(u).Remove(Col(v))
if |PossibleColors(u)| < 1 then S.Add(u)
end

ALGORITHM GREEDY::

for each v in V(G) do

begin
PossibleColors(v) := {1, 2, 3}
Col(v) := -1 {undefined}

end

S:=10

(p, ¢) := an arbitrary edge of an arbitrary triangle in G
Col(p) :=1

Col(q) := 2

RESTRICT(p)

RESTRICT(q)

while not S.Empty do

146 Krzysztof Diks, Lukasz Kowalik, and Maciej Kurowski

begin
v := S.Remove
if |PossibleColors(v)| # 1 then
Exit{G is not 3-colorable}
else
begin
Col(v) := PossibleColors(v).Get
RESTRICT(v)
end
end while

Finding a triangle in a planar graph without its embedding in the plane
can be easily done in a linear time, see [Chr]. During each iteration algorithm
chooses a triangle with two vertices already colored and colors the third vertex.
It can be easily shown that in every embedding one of edges of the initial triangle
bounds a triangular face. As graph is triangle connected algorithms stops when
all vertices are properly colored.

4.2 Triangulations with Holes

A biconnected plane graph is called a triangulation with holes if every of its
vertices is incident with at most one non-triangular face, i.e. a face of length at
least 4.

Proposition 1. Fvery triangulation with holes is triangle connected.

Proof. Let G be a triangulation with holes. Consider two triangular faces f, h
sharing a common vertex v. Vertex v is incident with at most one non-triangular
face and subsequently f and h can be connected by a sequence formed of trian-
gular faces, where each two successive faces share a common edge.

Now let f and h be two arbitrary triangular faces of G. Since G is connected,
f and h can be connected by a path ey, es, ..., ex, where e; are edges of G. Each
edge belongs to at least one triangular face. Denote such face for e; by t;. Every
two successive faces t;, t;11 share a vertex. Additionally ¢; shares a vertex with
f and tj shares a vertex with h. Hence we conclude that f and h are connected
by a path formed of triangular faces, where each two successive faces share a
common edge. a

Triangulations with holes have the following interesting property. Let G a
triangulation with holes and let f be a face in G. Let Cy be the facial cycle of
f. Then for every vertex v in C'y and an arbitrary even triangulation H 2 G the
parity of dIng(Cy,v) is the same. It follows that there is exactly one edge-side
coloring for every triangulation with holes (if not to consider isomorphic ones).
This implies a very simple 3-color criterion for triangulations with holes.

We say that a triangulation with holes is internally even when the degree of
every vertex incident with triangular faces only is even.

A New 3-Color Criterion for Planar Graphs 147

Theorem 4. A triangulation with holes G is 3-colorable if and only if

(i) it is internally even,
(i1) for every non-triangular face f with the facial cycle Cy there exists a bal-
anced edge 2-coloring mc, of Cy corresponding with G.

Proof. The proof follows easily from Theorem 3. Let G be a triangulation with
holes satisfying conditions (i) and (ii). We shall show that G is 3-colorable. For
each triangular face f, we color all its sides (e, f) black. For each non-triangular
face f with facial cycle Cy we color every side (e, f) with color mc,(e). The
constructed edge-side coloring is balanced for each face and it is easy to check
that every vertex is incident with an even number of one-color edges. Now it
suffices to use theorem 3.

Now we will show the other implication. Let G be a 3-colorable triangulation
with holes. Using theorem 3 we can obtain its proper edge-side coloring m. We
recolor black all sides of all triangular faces obtaining a new edge-side coloring
m’. One can see that m’ is also proper. Now all vertices touching only triangular
faces are ends of only one-color (black) edges. Hence they have even degrees.
Moreover one can verify that for every non-triangular face f with the facial
cycle Cy the coloring mc;, (e) = m'(f,e) corresponds with G. O

4.3 Near-Triangulations and Outerplanar Graphs

Obviously near-triangulations are triangulations with holes. Informally speaking
a near-triangulation is a triangulation with only one hole. It gives a very simple
3-color criterion for near-triangulations:

Theorem 5. A near-triangulation is 3-colorable if and only if it is internally
even.

Proof. Lemma 4 implies that the second condition of the Theorem 4 is always
satisfied for near-triangulations. ad

As every outerplanar graph is a subgraph of a certain internally even near-
triangulation we immediately get the following known result:

Corollary 1. Outerplanar graphs are 3-colorable.

4.4 Plane Graphs with Faces Which Lengths Are of Multiple of 3
The following theorem ([Ore], [Ste]) easily follows from our criterion:

Theorem 6. Let G be a graph embedded in the plane in such a way that the
number of edges in the boundary of each face is a multiple of 3. If G is even then
G is 3-colorable.

Proof. It suffices to color all edge-sides in GG black and to apply Theorem 3. O

148 Krzysztof Diks, Lukasz Kowalik, and Maciej Kurowski

4.5 Infinite Triangulations

It is surprising that we can apply our criterion to infinite plane graphs. An
infinite triangulation is an infinite plane graph with all faces being triangles. We
will consider only locally finite triangulation where degrees of all vertices are
finite. An edge accumulation point (shortly EAP) of an infinite plane graph G
is a point P such that for every positive real number € there are infinitely many
edges of G with Euclidean distance from P less than e. We will show that the
Three Color Theorem holds also for EAP-free infinite triangulations.

Theorem 7. An EAP-free infinite triangulation is 3-colorable if and only it is
even.

Proof. Assume that EAP-free infinite triangulation G is 3-colorable. Let v be
a vertex of odd degree. Since arbitrary two successive neighbors (in clockwise
order) of v are adjacent they have different colors. As there is an odd number
of neighbors of v we need 3 colors to color them and there is no color left for v.
We have just proved implication (—).

Assume that G is even. Let vy be an arbitrary vertex of G. We define a
sequence of graphs

GoCc Gy CGy CGgy...

Let V(Go) = {vo} and E(Gyp) = 0. Let W; be the set of vertices with the graph
distance at most ¢ from v. Since graph G(W;) is finite, it has the outer face f;
with the facial cycle C;. Obviously there are no cut vertices in G(W;). Therefore
C; is a simple cycle. We define G; as C; U Intg C;. Since G is EAP-free for
every natural ¢, G; is a finite graph. Moreover G; is an internally even near-
triangulation. It follows from Theorem 5 that graphs G; are 3-colorable. Since
G;—1 C G;, for i > 1, and 3-colorings of G; and G;_; are unique (i. e. they define
the unique partition of the vertices into 3 independent subsets) we can construct
3-colorings K; for graphs Gy, i = 0,1,2,..., such that K;g,_, = K;—1. Now we
can define a 3-coloring of G' as K(u) = Kq(v,,u)(u), where d(vo,u) denotes the
graph distance from vg to u. a

It is easy to show examples of infinite even triangulations with EAP that
are even, but not 3-colorable. The construction of such triangulation is shown
in Fig. 5. One can see that even first graph in this sequence is not 3-colorable.

In the sequel we use the following well-known fact.

Fact. Let G be an infinite graph. If every finite subgraph of G is k-colorable
then G is k-colorable.

Theorem 8. Let G be an infinite but locally finite triangulation (not necessarily
EAP-free). G is 3-colorable if and only if

(i) G is even,
(i) for every simple cycle C in G there exists a balanced edge 2-coloring of C
corresponding with C U Intg C.

A New 3-Color Criterion for Planar Graphs 149

Fig. 5. A construction of not 3-colorable even infinite triangulation

Proof. Assume that G is 3-colorable. Then obviously G must be even. Now let
us consider an arbitrary cycle C' in G. Let Vg C V be a set of vertices defined
as follows: v € Vpy if and only if v has a neighbor in V(C) and v € C U Intg C.
Let H = G(Vy). As H C G, H is 3-colorable. It is easy to see that H is a
biconnected graph. Therefore we can apply Theorem 3 and get a required edge
2-coloring m¢ corresponding with C' U Intg C.

Now we prove that if (i) and (ii) hold then G is 3-colorable. It suffices to prove
that if G satisfies (i) and (ii) then every finite subgraph of G is 3-colorable. Let
F be a finite subgraph of G. W.l.o.g. one can assume that F' is biconnected. If
not, F is a subgraph of a certain biconnected graph G(W;) defined in the proof
of the previous theorem. Now we can use Lemma 5 to get a proper edge-side
coloring of F' and finish the proof using Theorem 3. a

References

GJS. M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified NP-complete
graph problems, Theoret. Comput. Sci., 1 (1976), pp. 237-267.

Hea. P. J. Heawood, On the four-color map theorem, Quart. J. Pure Math. 29 (1898)
270-285

Ore. O. Ore, The Four-Color Problem, Academic Press, New York, Chapter 13 (1967).

Ste. R. Steinberg, The state of the three color problem [in:], Quo Vadis, Graph Theory?
Annals of Discrete Mathematics, 55 (1993) 211-248

Krl. H. Krél, On a sufficient and necessary condition of 3-colorableness for the planar
graphs. I, Prace Naukowe Inst. Mat. i Fiz. Teoret. P. Wr., Seria Studia i Materialy,
No. 6 Grafy i hypergrafy, (1972) 37-40

Kr2. H. Krél, On a sufficient and necessary condition of 3-colorableness for the planar
graphs. I, Prace Naukowe Inst. Mat. i Fiz. Teoret. P. Wr., Seria Studia i Materialy,
No. 9 Grafy i hypergrafy, (1973) 49-54

Mar. N. I. Martinov, 3-colorable planar graphs, Serdica, 3, (1977) 11-16

Chr. M. Chrobak, D. Eppstein, Planar orientations with low out-degree and com-
pactions of adjacency matrices Theoretical Computer Science, 86, (1991) 243-266

An Additive Stretched Routing Scheme
for Chordal Graphs

Yon Dourisboure

LaBRI, Université Bordeaux
Yon.Dourisboure@labri.fr

Abstract. This paper concerns routing with succinct tables in chordal
graphs. We show how to construct in polynomial time, for every n-
node chordal graph of maximum clique size k, a routing scheme
using routing tables of O(klogn) bits per node and O(logn) bit
addresses such that the length of the route between any two nodes
is at most the distance between the nodes in the graph plus two.
This is complemented by a recent lower bound that shows that if
the shortest paths and O(logn) bit addresses are required, every
routing strategy for this class needs §2(2" log(n/2%)) bits per node.

Keywords: Chordal graph, compact routing tables, tree-decomposition

1 Introduction

Delivering messages between pairs of processors is a basic activity of any dis-
tributed communication network. This task is performed using a routing scheme,
which is a mechanism for routing messages in the network. The routing mecha-
nism can be invoked at any origin node and be required to deliver a message to
some destination node.

It is naturally desirable to route messages along paths that are as short as
possible. The efficiency of a routing scheme is measured in terms of its multi-
plicative stretch (or additive stretch), namely, the maximum ratio (or surplus)
between the length of a route produced by the scheme for some pair of nodes,
and their distance. A straightforward approach to achieving the goal of guar-
antees optimal routes is to store a complete routing table in each node v in the
network, specifying for each destination u the first edge (or an identifier of that
edge, indicating the output port) along some shortest path from v to u. However,
this approach may be too expensive for large systems since it requires O(nlogd)
memory bits for a node of degree d in an n-node network. Thus, an important
problem in large scale communication networks is the design of routing schemes
that produce efficient routes and have relatively low memory requirements.

The routing problem can be presented as requiring to assign two kinds of
labels to every node of a graph. The first is the address of the node, whereas
the second label is a data structure called the local routing table. The labels are
assigned in such a way that at every source node v and given the address of
any destination node u, one can decide the output port of an edge outgoing of

L. Kucera (Ed.): WG 2002, LNCS 2573, pp. 150-163, 2002.
© Springer-Verlag Berlin Heidelberg 2002

An Additive Stretched Routing Scheme for Chordal Graphs 151

v that leads to u. The decision must be taken locally in v, based solely on the
two labels of v and with the address label of u, the latter label being forwarded
with the message allowing each intermediate node to proceed similarly.

There are several strategies to decrease the size of the routing tables while
keeping route lengths close to the shortest paths. One of the most popular (be-
cause quite efficient on tree networks) is called interval routing scheme, IRS for
short, introduced by [SK85,vLT87]. The addresses range in [1,n] with n the
number of nodes. At each edge e outgoing of a node w is assigned one or more
sub-intervals of [1, n], corresponding to the set of destinations whose the routes
from v traverse e (the destination sets assigned to distinct outgoing edges of v
must be disjoint). For a tree, using a depth-first search traversal for assigning
the addresses, each destination set consists in exactly one sub-interval of [1, n]
(modulo n), so that each node of degree d has to maintain a table of O(dlogn)
bits storing the boundaries of the intervals. This size has to be compared with
the O(nlogd) bound for the complete routing table approach. (An overview of
the IRS technique is developed in [Gav00].) Actually, the IRS strategy can be
improved for trees if addresses on slightly more than [logn] bits are used. More
precisely, it is constructed in [FGO01la] a routing scheme using routing tables and
addresses on clogn bits, for a small constant ¢ > 1, even for arbitrary large
degree node. Actually, [TZ01] showed that the factor ¢ can be even reduced to
1+ o(1) for n large enough.

Unfortunately, such schemes do not hold for general graphs. In [PU89] it is
shown that every routing strategy that guarantees a multiplicative s stretched
routing scheme for every n-node graph requires £2(n'*+/(2s+4)) bits in total, so
2(n'/(2s+4) for local routing tables, for some worst-case graphs. For the case
of optimal stretch (multiplicative 1 or additive 0 stretch), it is shown in [GP96]
that for every shortest path routing strategy and for all d and fixed ¢ > 0
such that 3 < d < (1 — €)n, there exists a graph of degree bounded by d for
which 2(nlogd) bit routing tables are required simultaneously on @ (n) nodes,
matching with the memory requirements of complete routing tables. Both lower
bounds assume that routes and O(logn) bit addresses can be computed and
optimized by the routing strategy in order to decrease the memory requirement.

These lower bounds are motivations for the design of routing strategies with
compact tables on more specific class of graphs. Here we non exhaustively list
some of them. Regular topologies (as hypercubes, tori, cycles, complete graphs,
etc.) have specific routing schemes (cf. [Lei92]), but one can design also for
them an IRS with few intervals as shown for instance in [vLT87]. For non-
regular topologies, several trade-offs between the stretch and the size of the
routing tables have been achieved, in particular for c-decomposable graphs [FJ90)
(including bounded tree-width graphs), planar graphs [FJ89], and bounded genus
graphs [GH99]. More recently, a multiplicative 1 + € stretched routing scheme
for every planar graph, for every € > 0, with logo(l) n bit addresses and routing
tables has been announced in [Tho01]. For more detailed presentation of these
schemes and an overview of the other strategies and techniques, see [Gav01]
and [Pel00].

152 Yon Dourisboure

In this paper we investigate chordal graphs, namely the class of graphs con-
taining no induced cycles of length greater than 3. Two such graphs are depicted
on Fig. 1. Based on the construction of a multiplicative 3-spanner [PS89] with
O(nlogn) edges (namely, a spanning subgraph whose the distance between any
two nodes does not exceed 3 times the original distance in the graph), [PU89]
have constructed a multiplicative 3 stretched routing strategy for chordal graphs
using O(nlog®n) bits in total for tables and O(log®n) bit addresses. However
the scheme does not produce balanced routing tables and §2(nlogn) bits might
be required at some nodes. If we insist on shortest path (i.e., optimal stretch),
no strategy better than complete routing tables is known. Nevertheless, every
chordal graph whose all its maximal cliques are of size k+1 exactly, namely every
k-tree, supports an IRS using at most 251 intervals per outgoing edge [NN9S].
Actually, as we will show in Section 2, the result can be easily extended to every
chordal graph of maximum clique of size at most k + 1. Derived from the result
of [NNO98], every chordal graph with maximal clique k + 1 has shortest path
routing tables of O((2* + d)logn) bits per node of degree d, and using addresses
€ [1,n].

In this paper we show that, while keeping addresses on O(logn) bits (more
precisely on (2+0(1)) log n bits), we construct a routing scheme for every chordal
graph of maximum clique k+ 1 with O(klogn) bits for local routing tables. This
is performed under the ”designer-port model”, that is the designer of the scheme
can permute, during the preprocessing of the graph and the construction of the
scheme, the port numbers of all the links attached to the nodes (this assumption
is also done in [FG01b,TZ01]). This result is achieved by the use of two main
ingredients: 1) the well known tree-decomposition in maximal cliques of chordal
graphs; and 2) the recent compact and distributed data structures for trees, in
particular answering efficiently routing queries and ancestor queries with small
labels [AR01,KM01,KMS02,FG01a,TZ01]. At this step, it is worth to observe
that additive r stretched routing scheme on chordal graphs cannot be reduced
to the problem of routing in a suitable spanning tree of the graph. Indeed, as
mentioned in [Pri97,BCD99], for every fixed integer r there is a chordal graph
without tree r-spanners (additive as well as multiplicative).

The paper is organized as follows. In Section 2, we show how to reformulate
the result of [NN98] on k-trees to work on chordal graph of maximum clique k.
In Section 3, we describe our routing strategy. We propose some open problems
in Conclusion.

2 The Extended Scheme of k-Trees

We study at first the strategy presented in [NN9S8] for k-trees, and show how
to adapt it for chordal graphs. The results of [NN98] is based on the following
definition of k-trees.

Definition 1. For integral k > 0, the set of k-trees is the smallest set of graphs
satisfying: 1) A clique of size k is a k-tree; and 2) let G be a k-tree on n nodes
and K be a clique of size k in G. Then the graph on n+1 nodes formed by taking
G and introducing a new node u adjacent to all of K is a k-tree.

An Additive Stretched Routing Scheme for Chordal Graphs 153

In this definition, the clique K is named attachment clique of the node u, and
all the nodes of K the parents of u. The node u is a child of each nodes of K. The
notions of ancestors and descendants are analogously defined. For each node w,
the depth of u is either one greater than the maximum depth of any parent of w,
or 0 if w has no parents. Fig. 1(a) depicts a k-tree with depth represented at
each node. Finally, using the notion of cluster of a node, [NN98] proposed for all
k-trees a node-labeling from 1 to n supporting a shortest path IRS with at most
2F+1 gub-intervals of [1,n] per outgoing edge. Formally, cluster(u) is the set of
descendants of u, equidistant from all of the parents of . This non trivial bound
results of a long series of lemmas in [NN98] that cannot be presented here. But,
roughly speaking, labels of the nodes in cluster(u) form a single interval, and
[NN98] were able to bound the number of clusters needed at each outgoing edge
in order to route along shortest path.

In this paper, we are interested in chordal graphs (a superset of k-trees). Let
Cr denote the family of chordal graphs of maximum clique at most k& + 1. The
result of [NN98] can be naturally extended to C, with the following adaptations.

Definition 2. (cf. [BLS99]) Let G be a graph. The node v € V(G) is simplicial
in G if the set of neighbors of v induced a clique in G. An ordering (v1,va2,...,vp)
of the nodes of G is a perfect elimination ordering if for every i € {1,...,n},
the node v; is simplicial in the subgraph of G induced by {v;,...,v,}.

Proposition 1. (cf. [BLS99]) A graph G is chordal if and only if it has a
perfect elimination ordering.

Proposition 2. For integral k > 0, Ci is the smallest set of graphs satisfying:
1) A clique of size at most k is in Ci; and 2) Let G € Cy, with n nodes and K be
a clique of size at most k in G. Then the graph on n+ 1 nodes formed by taking
G and introducing a new node adjacent to all of K is a graph of Ck.

Proof. Every graph G satisfying points 1) and 2) are in Cy. Conversely, if G € Cy,
by Proposition 1, G has a perfect elimination ordering (v1,...,v,). {v,} is a
clique of size at most k > 0, and using successively v,_1,...,;,...,v1 We can
reconstruct G by connecting v; to a clique of G, a clique induced by {v;,...,v,}
say K. As the biggest clique in G is of size k + 1, the size of the neighborhood
of v;, the size of K, is at most k. O

Using the constructive definition of Cj, (Proposition 2), we can extend all
notions introduced in [NN98] for k-trees. Namely, the parents of u are the nodes
of the clique K used to introduce u. From that, we can define naturally, the
children, ancestors and descendants of u. The notions of depth and of cluster
of u are defined as previously for k-trees. Note that the only difference with
k-trees is that the number of parents of any node is at most k& and not exactly k.

Fig. 1(b) represents a graph in Cj constructed with the same node ordering
to the k-tree depicted in (a). Thanks to these extensions, we can check that all
lemmas in [NN98] can be rewritten for Cy. So, every G € Cj, supports a shortest

154 Yon Dourisboure

vy vz Un O depth = 0
A depth =1
(] depth =2
@® depth =3
A depth =4
M depth =5

Fig. 1. A 3-tree and a graph in C3 with same ordering on nodes.

path IRS with at most 2**1 intervals per edge. Actually [NN98] have shown
a stronger result: the total number of intervals assigned at the outgoing edges
of a node of degree d is at most S = d — k + >+, 25+2. Tt is known that
a such interval routing scheme can be implemented at each node by a table of
O(Slogn) bits allowing a routing queries of O(log S) time per node [Gav00].
Therefore we have:

Theorem 1. For every n-node graph G € Cy, there exists a shortest path routing
scheme using labels of logn bits and O((2% +d)logn) bits of information in each
node of degree d. Moreover, this scheme is polynomial-time constructible and the
routing function is computable in O(k + logd) time.

3 Additive Stretched Routing Scheme

3.1 Preliminaries

We need the notion of tree-decomposition used by Robertson and Seymour in
their work on graphs minors [RS86].

Definition 3. A tree-decomposition of a graph G is a tree T whose nodes are
subsets of V(G), such that (see an example on Fig. 2):

1. UXeV(T)X =V(G);
2. for all {u,v} € E(Q), there exists X € V(T) such that u,v € X; and
3. forall XY, Z € V(T), if Y is on the path from X to Z inT then XNZ CY.

Proposition 3. (cf. [Die00]) A graph G is a chordal graph if and only if there
exists a tree-decomposition of G (polynomial-time constructible) such that for all
X e V(T), X induced a mazimal clique in G.

From now we consider an arbitrary connected graph G € Cp with n nodes.
According to Proposition 3, let 7 be a tree-decomposition of G such each one of

An Additive Stretched Routing Scheme for Chordal Graphs 155

Fig. 2. From left-to-right: a chordal graph G, its set of maximal cliques, and a tree-
decomposition of G satisfying Proposition 3.

its nodes induced a maximal clique in G. We assume that 7 is rooted. Finally,
let S be an arbitrary shortest path spanning tree of G rooted some node taken
from the root of 7. (see Fig. 3).

Thanks to the trees S and 7, we will show how to construct compact routing
tables for G. To prove this fact we need some notations. We will use the standard
notions of children, parent, ancestors, descendants and depth in rooted trees. For
simplicity we assume that a node is an ancestor of itself. For every node u of G,
the ball of u, denoted by B(u), is a node X of T of minimum depth such v € X.
Observe that, once 7 has been fixed, B(u) is unique for each u by Rule 3 of
Definition 3.

The two following Propositions are very important to understand why the
routing scheme we will describe in Paragraph 3.3 is correct.

Proposition 4. Let u,v be two adjacent nodes of G. One of these statements is
true:

1. B(u) is an ancestor of B(v) in T and then u € B(v).
2. B(v) is an ancestor of B(u) in T and then v € B(u).

156 Yon Dourisboure

Fig. 3. The tree-decomposition 7 and a spanning tree S of G (directed edges) rooted
at a.

Proof. Let u,v be two adjacent nodes of G. If B(u) = B(v) then the two state-
ments are trivially trues (recall that we consider that a node is an ancestor of
itself).

So, assume that B(u) # B(v). By minimality of the depth of the balls and
by definition of 7, every ball X containing a node z is a descendant of B(z) in
7. Moreover by Rule 2 of Definition 3, there exists a ball Y containing u and v.
Thus Y is a descendant of B(u) and of B(v). Thus either B(u) is an ancestor
of B(v) or the reverse. If B(u) is an ancestor of B(v) then B(v) is on the path
from B(u) to Y in 7, by Rule 3 of Definition 3, v € B(v). Similarly if B(v) is
an ancestor of B(u) then v € B(u). O

Proposition 5. Let u,v be two nodes of G such that B(u) is an ancestor of
B(v) in T. There exists at least one node w € B(u), and at most two, such that
w s an ancestor of v in S.

Proof. As T is a tree-decomposition of G, every path in G from any node of the
root of 7 to v, has to use some nodes of B(u). So at least one node of B(u) is
ancestor of v in S.

Assume that there exists wy,wq, w3 in B(u) such that they are ancestors of
v in S. We can suppose w.l.o.g. that in S: w; is an ancestor of wy, and ws is
an ancestor of ws. Say in other words, the path of S traversing wi,ws,ws is a
shortest path from w; to ws in S and thus in G (by construction of S). There is
a contradiction because B(u) is a clique so {wy, w3} is an edge. a

3.2 The Routing Scheme

Our scheme associate to every node u of G two labels: its address denoted by
address(u), and a local routing table denoted by table(u). The length of a label

An Additive Stretched Routing Scheme for Chordal Graphs 157

(address or table) is the length in bits of its binary representation. A port-labeling
of G is a labeling of each directed edge (u,v) of G by an output port number, an
integer denoted by port(u,v), such that port(u,v) € [1,deg(u)] and is distinct
for every neighbor v of w.

The address of u in G is defined by address(u) = (ancestor(B(u)), route(u)),
where:

— ancestor(X), defined for every ball X € V(7), is a binary label such that X
is an ancestor of Y in 7 if and only if f;(ancestor(X), ancestor(Y)) = true,
for a suitable computable function f;.

— route(u), defined for every node u of G, is a binary label such that fa(route(u),
route(v)), for every v # u, returns the output port number of the first edge
of the path from u to v in S, for a suitable computable function f; and a
suitable port-labeling of S. Moreover, fa(route(u), route(v)) = 1 if and only
if v is a not a descendant of u.

Proposition 6. There is a suitable port-labeling of S such that the length of
address(u) is (2 + o(1)) logn bits for all u. Moreover, the addresses are polyno-
mial-time constructible.

Proof. The number of maximal cliques in G is at most n, thus |V(7)| < n. By
the result of [ARO1], the length of ancestor(B(u)) is at most logn + O(y/logn)
bits for every w. In [TZ01], it is shown that the length of route(u) is logn +
O(logn/loglogn) bits for a suitable port-labeling of S. Both labelings are
polynomial-time constructible. O

We construct for G a port-labeling as follows: for every edge (u,v) of S,
port(u,v) is determined by Proposition 6, and for all edges (u,w) not in S,
port(u, w) are distinct integers ranging in [k + 1, deg(u)] where k is the degree
of uin S.

Each node u of G has a finite set of algorithms (including the functions f; and
f2) representing a constant number of bits, and its table label. More precisely,
table(u) containing the address of every node v € B(u) and the port number of
the edge (u,v). More precisely,

table(u) = {(address(v), port(u,v))|v € B(u)} .

W.lo.g. entries of table(u) are sorted such that the i-th entry (address(v;),
port(u,v;)) is such that in 7, depth(B(v;)) > depth(B(vit+1)).

Proposition 7. The length of table(u) is O(klogn) bits, for every u € V(G).

Proof. The length of address(v) is O(logn), port(u,v) can be represented on
O(logn) bits, and as |B(u)| < k + 1, the length of table(u) is O(klogn) bits. O

Moreover propositions 3 and 6 implies that:

Proposition 8. The routing scheme is polynomial-time constructible.

158 Yon Dourisboure

3.3 The Routing Algorithm

Consider u,v two nodes of G, u the sender and v the receiver. We define the
procedure SEND(u,v) that returns port(u,v), the port number of the edge on
which the message has to be sent. For that we define two subsets of B(u):

I ={w € B(u)| wis an ancestor of v in S}
J={w € B(u)| B(w) is an ancestor of B(v) in 7}

Recall that we assume that a node is ancestor of itself. Note that for every
v € B(u), the labels route(v) and ancestor(B(v)) are contained in table(u).
Thus, thanks to functions f; and fs, u is able to construct I and J.

Procedure SEND(u,v): (the four cases are evaluated sequentially)

1. If w is ancestor of v in S then route to v in S.

2. If I # @ then route to w such that w € I and w is of maximum depth in S.

3. If J # & then route to w such that w € J and B(w) is of maximum depth
in 7.

4. Otherwise route to w such that w € B(u) and B(w) is of minimum depth in
7.

We now give the correctness of the routing algorithm. Let p(u,v) denote the
length of the route produced by SEND from u to v. We want to show that p(u,v)
is bounded by d(u,v) + 2, where d(u,v) denotes the distance between u and v

in G.
Lemma 1. If u is an ancestor of v in S, then p(u,v) = d(u,v).

Proof. In this case, SEND routes through the tree S and this produced a shortest
path. O

Lemma 2. Let u,v be two nodes of G such that [# &.

1. If there exists a shortest path u,vi,...,v; = v in G from u to v and with
vy € B(u), then p(u,v) < d(u,v) + 1;
2. otherwise p(u,v) < d(u,v) + 2.

Proof. Let u,v be two nodes of G such that I # @ and w be the node of B(u)
chosen by the algorithm SEND. w is an ancestor of v in S. So, by Lemma 1,
p(w,v) = d(w, v). This clearly implies that p(u,v) < d(u,v) + 2.

Suppose now that there exists v1,...,v; such that vy € B(u) and u,vy,...,
v; = v is a shortest path in G from u to v. As w and v; are both in B(u) there
is an edge between w and vy. Thus d(w,v) < d(v1,v) + 1 = d(u,v) and then
plu,v) < d(u,v) + 1. m|

Statement 1 of Lemma 2 occurs for instance in Fig. 3, when computing
SEND(e, 1). The route is e,c,i,] whereas e,f,] is a shortest path. Statement 2 occurs
for instance for SEND(g, k) that produces the route g,d,h,k whereas {g,k} is an
edge.

An Additive Stretched Routing Scheme for Chordal Graphs 159

Lemma 3. Let u,v two nodes of G such that I = & but J # &, then p(u,v) <
d(u,v) +2.

Proof. Let u,v be two nodes of G such that I = @ but J # &, let w be the node
of B(u) chosen by the algorithm SEND and let w,v1,...,v; = v be a shortest
path in G from u to v.

Note that by the choice of w, B(w) is an ancestor of B(v) in 7. Thus Propo-
sition 5 shows that in w we can apply Lemma 2. Moreover by Proposition 4,
B(w) is an ancestor of B(u) in 7. Applying Proposition 4 between u and vy,
either B(u) is an ancestor of B(v1) in 7 or the reverse. Thus there are only two
different cases:

— B(v1) is an ancestor of B(w) in 7 and v; € B(u).
In this case, Rule 3 of Definition 3 shows that v; € B(w) and then w, vy,
vg,...,U; = v is a path in G from w to v. If it is not a shortest path then
d(w,v) = d(u,v) — 1, and by Statement 2 of Lemma 2: p(w,v) < d(w,v) + 2
thus p(u,v) < d(u,v)+2. Otherwise d(w, v) = d(u,v), but by Statement 1 of
Lemma 2: p(w,v) < d(w,v)+ 1 and here again we have p(u,v) < d(u,v)+2.

— B(w) is a strict ancestor of B(v1) in 7.
As I = @ and thanks to Proposition 5, B(u) is not an ancestor of B(v) in
7. Let X be the nearest common ancestor in 7 of B(u) and B(v). As w is
the node of J of maximum depth in 7, v; ¢ J, thus v; ¢ X. As 7 is a tree-
decomposition of G, there exists ¢ € {2,...,1} such that v; € X. Moreover, as
w € J, B(w) is an ancestor of X in 7. By Rule 3 of Definition 3, w € X. X is
a clique so there is an edge between w and v;. Therefore u, w,v;,...,v; = v is
a shortest path from u to v, thus d(w,v) = d(u,v) — 1. Finally by Lemma 2,
we have p(w,v) < d(w,v) + 2 and thus p(u,v) < d(u,v) + 2. O

Lemma 4. Let u,v be two nodes of G such that I = & and J = &, then p(u,v) <
d(u,v) + 2.

Proof. Let u,v be two nodes of G such that I = @ and J = &, let w be the node
chosen by the algorithm SEND (w is the node of B(u) such B(w) is of minimum
depth in 7), and let u,vy,...,v;,v be a shortest path in G from u to v.

By Proposition 4, B(w) is an ancestor of B(u). Moreover, B(w) is an ancestor
of B(v1). Indeed, applying Proposition 4 between u and vy, either B(u) is an
ancestor of B(v1) and thus B(w) is an ancestor of B(v1), or B(v;) is an ancestor
of B(u) and v; € B(u) and by choice of w, B(w) is an ancestor of B(v;) as well.

Now there exists ¢ € {2,...,1} such that B(v;) is an ancestor of B(w) because
B(w) is not an ancestor of B(v). W.Lo.g. assume that ¢ is minimum (i.e., B(w)
is an ancestor of B(v;—1)). Applying Proposition 4 between v;_; and v;, we have
v; € B(v;—1). It follows that v; € B(w), and that u,w,v;,...v; = v is a shortest
path from u to v. So d(w,v) = d(u,v) — 1.

Step by step we find a sequence w = wy, wa, ws, . .. each one closer to v (i.e.,
with d(w;,v) = d(w;11,v) + 1), or we get a node w; that falls in Case 1, 2 or 3
of Procedure SEND. So, p(u,v) =i+ p(w;,v) < i+ d(w;,v) +2 = d(u,v) + 2 as
claimed.]

160 Yon Dourisboure

Proposition 9. For all u,v, the port returned by SEND(u,v) is computable in
O(k) time. Moreover, adding a data structure of O(klogn) bits to u, SEND(u, v)
can be performed in O(log? k).

Proof. Let u be a node of G and address(v) the address of a node v of G.

The address of w is the first entry in table(u) (recall that entries are sorted),
so the label route(u) and route(v) can be extracted in O(1) time. Then testing
if u is ancestor of v in S and routing if it is necessary is done in O(1) time using
p = fo(route(u), route(v)).

If p = 1, we need to construct I. For that we can test function fo on route(v)
and route(w) for every node w € B(u) (i.e., each entries in table(u)). It takes
O(k) time. If I # @, we find w in O(1) time since I is of size at most 2 (Propo-
sition 5).

In Case 3 of Procedure SEND does not need to construct the whole set J. Just
the node of maximum depth in J is required. As table(u) is sorted by depth in
7 and observing that if depth(B(v;)) > depth(B(v;1+1)) and B(v;) € J then
B(vi+1) € J, we only need to make O(log k) tests to find w if it exists. Thus this
step needs of O(log k) time.

In Case 4, w is the last entry in table(u). So, it takes O(1) time to find it.

Actually, the time for searching w in I can be improved as follows. We build
a search tree M spanning all the nodes of B(u). The root of M is a node of S
whose removal consists of a forest whose each tree contains at most k/2 nodes
of B(u). (We check that this is doable by assigning to each node of S a 0-1
weight: the weight of z is 1 if and only if x is in B(u).) We apply recursively
such a decomposition in each tree of the forest, and at each step we label the
port number of the nodes of M with the original port numbers in S. The number
of nodes in M is O(k) (because the degree of each internal node of M is at least
two) and its depth is h = O(log k). So storing in u the whole tree M with all the
labels costs O(klogn) bits. Using the sublabel route(v) in address(v) one can
"route” in M from its root (this is done virtually in the node w), and find (if it
exists) an ancestor of v in B(u). More precisely, at the current node x visited in
M we compute p = fo(route(x), route(v)), and test in this order: (1) if p is the
port label of an incident edge (x,y) in M, then continue the test in the node y;
(2) otherwise (no incident edge of x has label p), then either x ¢ B(u) (we test
its weight) and then I = @, or € B(u) and then we have found w = u. The
number of tests to perform is at most h, and each test costs O(log k) time. O

Propositions 6, 7, 8, 9 and Lemmas 1, 2, 3, 4, can be gathered in the following
theorem.

Theorem 2. For every chordal graph of mazimum clique of size k+1 there exist
an additive 2 stretched routing scheme using addresses of size (2 + o(1))logn
bits and O(klogn) bits of information in each node, under the assumption that
output port numbers can be permuted. Moreover, this scheme is polynomial-time
constructible and the routing function is computable in O(log2 k) time.

In the model proposed in this paper (headers cannot be modified), any
routing scheme on chordal graphs (stretched or not) must route along short-

An Additive Stretched Routing Scheme for Chordal Graphs 161

est path in trees. And trees are chordal graphs of maximal clique size 2, thus
our scheme routes optimally in trees. Observe that if output port numbers can-
not be permuted, the size of the tables and of the addresses must be at least
2(log® n/ loglogn), by the recent lower bound of [?] on trees. Therefore, for ev-
ery k = O(logn/loglogn), every routing scheme on Cj (stretched or not) that
provides better memory requirements than Theorem 2 (tables and addresses)
must permute the output port numbers.

4 Conclusion and Discussions

In this paper we have constructed a routing scheme on chordal graphs generating
routes close to the shortest paths up to an additive factor two. Our scheme uses
pre-computed addresses of O(logn) bits and routing tables of O(klogn) bits per
node, where k + 1 is the size of the maximum clique of the graph. The time to
route a message in a node is O(log k).

We note that our scheme is under the ”designer-port model”, that is the
designer of the scheme can permute, during the preprocessing of the graph and
the construction of the scheme, the port numbers of all the links attached to
the nodes. However, this assumption can be easily relaxed according to scheme
based on trees (see [TZ01,FGO0la]). Our scheme can be adapted to the fixed-
port model (port numbers are fixed in advance and cannot be permuted) with
an increasing on the addresses and routing tables size by a O(logn/loglogn)
factor, the length of the routes remaining the same.

Another direction for improvement is the length of the routes vs. the size
of the routing tables. A natural problem would be to find for each integral
parameter r, an additive r stretched scheme using, say, logo(l) n bit addresses
and O(f,(n, k)) bit routing tables for a function f,. Derived from [NN98], we have
that fo(n,k) < 2Flogn. Our contribution in that paper is a proof for fa(n,k) <
klogn. These results are complemented with the lower bounds of [Gav02] that
shows that fo(n,k) > 2¥log(n/2%) and that fi(n,k) > 2%/k. The question of
determining a tight bound for fo(n, k) is open, and more fundamentally we are
wondering if there is a constant r such that f.(n,k) = logo(l) n, meaning that
chordal graphs support additive constant stretched routing scheme with logo(l) n
bit addresses and tables.

Acknowledgments

The author is thankful to Cyril Gavoille for fruitful discussions.

References

ARO1. Stephen Alstrup and Theis Rauhe. Improved labeling scheme for ancestor
queries. In 13" Symposium on Discrete Algorithms (SODA). ACM-SIAM,
January 2001. To appear.

BCD99. Andreas Brandstadt, Victor Chepoi, and Feodor Dragan. Distance approxi-
mating trees for chordal and dually chordal graphs. Journal of Algorithms,
30:166—184, 1999.

162

BLS99.

Die00.

FGO1la.

FGO1b.

FJ89.

FJ90.

Gav00.

Gav01.

Gav02.

GH99.

GP96.

KMO1.

KMS02.

Lei92.

NNO9S.

Pel00.

Prio7.

PS89.

Yon Dourisboure

Andreas Brandstadt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes
— A survey. STAM Monographs on Discrete Mathematics and Applications,
Philadelphia, 1999.

Reinhard Diestel. Graph Theory (second edition), volume 173 of Graduate
Texts in Mathematics. Springer, February 2000.

Pierre Fraigniaud and Cyril Gavoille. Routing in trees. In Fernando Orejas,
Paul G. Spirakis, and Jan van Leeuwen, editors, 28" International Collo-
quium on Automata, Languages and Programming (ICALP), volume 2076 of
Lecture Notes in Computer Science, pages 757—772. Springer, July 2001.
Pierre Fraigniaud and Cyril Gavoille. Routing in trees. Research Report
RR-1252-01, LaBRI, University of Bordeaux, 351, cours de la Libération,
33405 Talence Cedex, France, January 2001. Sumitted.

Greg N. Frederickson and Ravi Janardan. Efficient message routing in planar
networks. SIAM Journal on Computing, 18(4):843-857, August 1989.

Greg N. Frederickson and Ravi Janardan. Space-efficient message routing
in c-decomposable networks. SIAM Journal on Computing, 19(1):164-181,
February 1990.

Cyril Gavoille. A survey on interval routing. Theoretical Computer Science,
245(2):217-253, 2000.

Cyril Gavoille. Routing in distributed networks: Overview and open prob-
lems. ACM SIGACT News - Distributed Computing Column, 32(1), March
2001. To appear.

Cyril Gavoille. Space lower bounds for routing in chordal graphs with addi-
tive stretch, 2002. In preparation.

Cyril Gavoille and Nicolas Hanusse. Compact routing tables for graphs of
bounded genus. In Jifi Wiedermann, Peter van Emde Boas, and Mogens
Nielsen, editors, 26" International Colloquium on Automata, Languages and
Programming (ICALP), volume 1644 of Lecture Notes in Computer Science,
pages 351-360. Springer, July 1999.

Cyril Gavoille and Stéphane Pérennes. Lower bounds for interval routing on
3-regular networks. In Nicola Santoro and Paul Spirakis, editors, 3"¢ Interna-
tional Colloguium on Structural Information & Communication Complezity
(SIROCCO), pages 88-103. Carleton University Press, June 1996.

Haim Kaplan and Tova Milo. Short and simple labels for small distances
and other functions. In 7'" International Workshop on Algorithms and Data
Structures (WADS), volume 2125 of Lecture Notes in Computer Science,
pages 32—-40. Springer, August 2001.

Haim Kaplan, Tova Milo, and Ronen Shabo. A comparison of labeling
schemes for ancestor queries. In 14" Symposium on Discrete Algorithms
(SODA). ACM-SIAM, January 2002.

Frank Thomson Leighton. Introduction to Parallel Algorithms and Architec-
tures: Arrays - Trees - Hypercubes. Morgan Kaufmann, 1992.

Lata Narayanan and Naomi Nishimura. Interval routing on k-trees. Journal
of Algorithms, 26(2):325-369, February 1998.

David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM
Monographs on Discrete Mathematics and Applications, 2000.

Erich Prisner. Distance approximating spanning trees. In 14" Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS), volume 1200
of Lecture Notes in Computer Science, pages 499-510. Springer, 1997.
David Peleg and Alejandro A. Schéffer. Graph spanners. Journal of Graph
Theory, 13(1):99-116, 1989.

PU89.

RS86.

SK85.

ThoO1.

TZ01.

vLT87.

An Additive Stretched Routing Scheme for Chordal Graphs 163

David Peleg and Eli Upfal. A trade-off between space and efficiency for
routing tables. Journal of the ACM, 36(3):510-530, July 1989.

Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects
of tree-width. Journal of Algorithms, 7:309-322, 1986.

Nicola Santoro and Ramez Khatib. Labelling and implicit routing in net-
works. The Computer Journal, 28(1):5-8, February 1985.

Mikkel Thorup. Compact oracles for reachability and approximate distances
in planar digraphs. In 42" Annual IEEE Symposium on Foundations of
Computer Science (FOCS). IEEE Computer Society Press, October 2001.
Mikkel Thorup and Uri Zwick. Compact routing schemes. In 13" Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA), pages
1-10, Hersonissos, Crete, Greece, July 2001. ACM PRESS.

Jan van Leeuwen and Richard B. Tan. Interval routing. The Computer
Journal, 30(4):298-307, 1987.

Complexity of Pattern Coloring
of Cycle Systems™*

Zdenék Dvorak, Jan Kara, Daniel Krdl’, and Ondfej Pangrac

Department of Applied Mathematics and
Institute for Theoretical Computer Science**
Charles University
Malostranské nam. 25, 118 00 Prague, Czech Republic
{rakdver,kara,kral,pangrac}@kam.ms.mff.cuni.cz

Abstract. A k-cycle system is a system of cyclically ordered k—tuples
of a finite set. A pattern is a sequence of letters. A coloring of a k—cycle
system with respect to a set of patterns of length k is proper iff each cycle
is colored consistently with one of the patterns, i.e. the same/distinct
letters correspond to the same/distinct color(s). We prove a dichotomy
result on the complexity of coloring a given cycle system with a fixed set
of patterns P by at most [colors and discuss possible generalizations.

1 Introduction

Coloring problems for different combinatorial objects are among intensively stud-
ied problems. Problems dealing with colorings of graphs have been generalized to
hypergraphs and the original notion of proper colorings of hypergraphs, demand-
ing that no edge of a hypergraph is monochromatic, has been generalized to lots
of other structures: Steiner triple and quadruple systems ([1,3,9,10]), mixed hy-
pergraphs ([4]), mixed hypertrees ([5,6]), mixed multigraphs ([7]), block—pattern
cycle systems and designs ([11]).

A k-cycle system is a pair C = (V¢, C¢) where V¢ is a finite set and C¢ is set
of cyclically ordered k—tuples of V. The members of Vi are called vertices and
the members of C¢ are called cycles. A k—cycle system is a k—cycle design if for
each pair of vertices u and v there is exactly one cycle containing uv or vu. Some
of the properties of k—cycle systems, especially of k—cycle designs, can be found
in [8], e.g. the 4—cycle designs on n vertices exist precisely for n mod 8 = 1.

A pattern of length k is a sequence of letters of length k. The coloring ¢ of
vertices of a k—cycle system C with the set of patterns P of length k is proper ift
for each cycle C' of C there is a pattern p € P which satisfies the following: There
is a rotation of C such that the vertices on the positions with the same letters of
p are colored by the same color and the vertices on the positions with mutually
different letters of p are colored by mutually different colors. This notion of

* The research was done as a part of DIMACS/DIMATIA REU 2001 programme. The
REU programme was supported by KONTAKT ME 337.
** Supported by Ministry of Education of Czech Republic as project LNO0A056.

L. Kucera (Ed.): WG 2002, LNCS 2573, pp. 164-175, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Complexity of Pattern Coloring of Cycle Systems 165

pattern coloring was introduced in [11] and is actually generalization of several
previously introduced notions. Coloring of 2-cycle systems with the pattern AB
is just graph coloring: The pattern forces the vertices in the same cycle to be
colored by different colors and thus the cycles correspond to the edges of a graph.
Coloring of 3—cycle systems with the pattern AAB is just bicoloring of (Steiner)
triple systems considered in [1,9,10]. The pattern forces each triple to be colored
by exactly two colors. Coloring k—cycle systems with suitable set of patterns also
correspond to coloring uniform mixed bihypergraphs of [4].

We address the following complexity problem in this paper: “What is the
complexity of decision whether a given cycle system C with the pattern set P can
be colored by at most I colors (P and [are fixed)?” We describe all the pattern
sets P and the numbers [for which this problem can be solved in polynomial
time and we prove NP—completeness for the remaining cases.

The problem is trivial for [= 1. We study the problem for [> 3 in Section 2.
It is, not very surprisingly, NP—complete for any [> 3 and any set P of pat-
terns omitting the monochromatic pattern — see Theorem 1. We deal with the
remaining case [= 2 in Section 3. It is enough to consider only the pattern sets
‘P containing only patterns consisting of at most two letters. It is not hard to see
that if we get an affine subspace over GIF(2) through replacing the letters in the
patterns of P by ones and zeroes and taking all the rotations of the patterns of
P, the problem of finding a coloring of the given cycle system is reduced to the
problem of finding a solution of a system of linear equations (see the beginning
of the Section 3 and Lemma 2 for more details). Lemma 5 states that all the
remaining cases are NP—complete (except for P containing the monochromatic
pattern). The results are summarized in Theorem 2.

Theorem 2 is general and it does not provide any examples of patterns for
which the problem can be solved in polynomial time. We address the following
question in Section 4: “For which patterns p consisting of [distinct letters, the
decision problem whether a given cycle system with the pattern set {p} can
be colored by at most [colors is solvable in polynomial time?” The results of
Section 2 and 3 imply that this is possible only for the pattern consisting of one
or two letters. In the former case, the problem is actually trivial. In the latter
case, these are exactly the patterns whose rotations induce affine subspaces over
GF(2). We list all such patterns in Theorem 3 of Section 4; these patterns are
exactly the following ones: A¥, (AB)*, (AABB)* and (AAAB)* for all k’s (we
write X% for the concatenation of k copies of X). We would like to point the
attention of the reader to a quite interesting linear algebra Lemma 6 in Section 4.

We relate our results to previous results in the last section, Section 5. Namely,
another proof of one of our main theorems, Theorem 2, is sketched and a more
general notion of coloring systems of k-tuples is introduced and counterparts of
Theorem 1 and Theorem 2 are stated. Detailed proofs of these two theorems are
omitted due to space limitations.

We introduce additional notation: A pattern is called an [—pattern if it con-
sists of at most [different letters. The monochromatic pattern of length k is A*
(we write throughout the paper for shortness A* instead of the sequence consist-

166 Zdenék Dvordk et al.

ing of k A’s), the alternating pattern of length k is (AB)*/2 (for k even) and the
multichromatic pattern of length k is a pattern consisting of k£ mutually different
letters, e.g. the multichromatic pattern of length 3 is ABC. We say that the
pattern p is periodic if it is a concatenation of two or more copies of another
pattern. We say that the pattern is aperiodic if it is not periodic.

2 NP-Completeness of Coloring of Cycle-Systems

We first prove that it is enough to deal with multichromatic patterns:

Lemma 1. Let P be any fized set of l—patterns of length k > 2 omitting the
monochromatic pattern of length k and m > 1 a fixed integer. Then there exists a
k—cycle system C with m special vertices v1, ..., vy, such that any proper coloring
of C with at most m colors with respect to the pattern set P assigns the vertices
V1, ..., Uy distinct colors.

Proof. We create the k-cycle system C on km? vertices v} for 1 < i < m and
1 < j < km. We add to C all the k—cycles such that the coloring ¢o(v]) := i colors
them properly with respect to the set of patterns P. Let V; = {v{|1 <j <km}.

Let ¢ be any proper coloring of C using at most m colors. Each V; contains at
least k vertices U; C V; colored by ¢ with the same color 7; due to the pigeonhole
principle. Assume that there is a vertex v € Vj» such that c¢(v) = 4, for i # 4.
Let p; be a pattern of P which contains the greatest number of occurrences
of the same letter and let Ay be this number. Let C' be a cycle containing \;
vertices of U; and the vertex v of V;; — there is certainly such a cycle colored
properly by the coloring ¢y with respect to the (non—monochromatic) pattern
p1 for any Aj—tuple of vertices of V; and any single vertex of V;,. But the cycle
C contains at least A; 4+ 1 vertices colored by ¢ with the same color v; which is
impossible due to the choice of p;. Hence the vertices colored by ¢ with the color
v; are only in V;. Since ¢ uses at most m colors, all the vertices of V; have to be
colored by ¢ with the color 7; and thus c¢g is upto renaming the colors the only
proper coloring of C. Choosing vertices vi, ..., vl to be the special vertices of C
completes the proof.

It is quite easy to prove the NP—completeness result of this section using
Lemma 1.

Theorem 1. Let P be any fixed set of l-patterns of length k > 2 omitting the
monochromatic pattern of length k and let I’ > max{3,1} be a fized integer. Then
the decision problem whether a given k—cycle system with the pattern set P can
be colored by at most I’ colors is NP—complete.

On the other hand, if P contains the monochromatic pattern, any cycle sys-
tem with P can be colored by one color and the problem is trivial.

Proof. We may w.l.o.g. assume that k = [= [’ > 3 and P contains only the
multichromatic pattern of length & due to Lemma 1. We present the reduction

Complexity of Pattern Coloring of Cycle Systems 167

from the well-known NP-complete problem (see [2]) whether a given graph
can be colored by at most k colors. Let G be a graph with vertices vy,...,v,
and edges eq,...,e,. We create a k—cycle system C. C contains m(k — 2) +n
vertices v1,...,v, and wg forl <i<mand1<j <k-—2 We add a cycle
U, v, W ,wf*2 for each edge ¢; = wv, 1 < i < m. It is easy to see that G can

be colored by at most k colors iff C can be colored by at most k colors.

The condition that I’ > [in the statement of the theorem is not restrictive
because the patterns containing more than I’ letters can be removed from the
set P without changing the complexity of the problem.

3 Complexity of Two—Coloring of Cycle Systems

We develop a connection between colorings using two colors and linear algebra.
The calculations are done over the field GF(2) and the elements of GF(2) repre-
sent the colors. Let P be the set of 2-patterns of length k. Let A(P) be the set
of all the vectors over GIF(2) of length & such that they are consistent with the
set of patterns P, i.e., there is a cyclic rotation p of a pattern of P such that the
vector contains zeroes exactly in those positions where p has A’s and ones where
p has B’s (or vice versa). We say that P can be described by a system of linear
equations iff A(P) forms an affine subspace of GF(2)*, i.e., there exists a matrix
A of size k' x k and a vector b of size k' such that A(P) = {z|Az = b}. We say
that the matrix A and the vector b describe the set of patterns P in such case.

Lemma 2. The decision problem, whether a given k—cycle system with the 2—
pattern set P of length k > 2 can be colored by at most 2 colors, can be solved
in polynomial time if P can be described by a system of linear equations.

Proof. Let A be the matrix of size k' x k and let b the vector of size k&’ which
describe P. A(P) forms an affine subspace of GF(2)*. Let C be a given k—cycle
system with the pattern set P, let vq,...,v, be the vertices of C and let m be
the number of cycles of C. We form a system of mk’ equations with n variables

Z1,...,%Tn. We add for each cycle v;,,...,v;, of C the following &k’ equations:

!L‘il

Ly,
The solutions 1, ..., z, of these equations one—to—one correspond to proper 2—
colorings ¢ of C through equalities ¢(v;) = x; for 1 < i < n. Hence the decision
problem from the statement of the lemma can be solved in polynomial time.

Lemma 3. The decision problem whether a given 3—cycle system with the pat-
tern AAB can be colored by at most 2 colors, is NP—complete.

168 Zdenék Dvordk et al.

Proof. We present an easy reduction from the well-known NP—complete prob-
lem of not—all-equal satisfiability (NAE-SAT) (cf. [2]). The problem is to de-
cide whether for a given formula there exists a variable assignment such that
each clause contains both a positive and a negative literal. The problem is NP—
complete even for formulas with all the clauses consisting of exactly three literals.

Let @ be a given formula with clauses of sizes exactly three. Let x1,...,x,
be the variables of @. Let C be a 3—cycle system with the pattern AAB with two
vertices which are forced to be colored by different colors described in Lemma 1.
We take n copies of C with special vertices vy, ...,v, and v{,...,v] (the vertices
v; and v} belong to the same copy of C). We add for each clause of the formula
@ a 3—cycle which contains v; iff the clause contains z; and v iff the clause
contains the negation of x;. The constructed 3—cycle system can be 2—colored
iff the formula & can be NAE-satisfied: Let ¢ be a proper 2-coloring and let
the colors used by ¢ be 0 and 1. We set x; to false if ¢(v;) = 0 and to true
otherwise (¢(v;) = 1). The obtained truth assignment NAE-satisfies the formula
&: Coloring of a vertex v; (v}) by 0/1 represents that the value of (the negation of)
x; is false/true. The same correspondence also works in the opposite direction,
i.e. when constructing a proper coloring from a NAE-satisfying assignment.

Lemma 4. Let P be a set of 2—patterns of length k > 2 without the monochro-
matic pattern. If there is a k—cycle system C with P with vertices u, v and w
such that there are exactly 3 (up to renaming the colors) ways in which proper
2—-colorings color u, v and w, then the decision problem whether a given k—cycle
system can be colored by at most 2 colors with respect to P is NP—complete.

Proof. The possible ways of coloring u, v and w with colors A and B are either
AAB, ABA, BAA, ABB, BAB, BBA or AAA, BBB, AAB, BBA, ABA,
BAB. In the first case, C forces the vertices to be colored consistently with the
pattern AAB and the problem is NP—complete due to Lemma 3. In the latter
case, we use Lemma 1 which provides a k—cycle system C4p with two special
vertices v’ and u” which are forced to be colored by different colors. We create
a cycle system C’ from a copy of C and a copy of C4p by identifying the vertices
u” and u. The possible ways of coloring its vertices v/, v and w are BAA, ABB,
BAB, ABA, BBA, AAB and we reduced the latter case to the former one.

We prove that Lemma 2 actually describes all the polynomial cases:

Lemma 5. If a set P of 2—patterns of length k > 2 omitting the monochromatic
pattern cannot be described by a system of linear equations, the decision problem,
whether there is 2—coloring of a given k—cycle system with the pattern set P, is
NP-complete.

On the other hand, if P can be described by a system of linear equations, and
the dimension of A(P) is k', then there exists f1,..., B +1 € GF(2) such that
the following system of k equations describes P:

k41

> Bitis(ri-nmear =1 for 1<j<k
i=1

Complexity of Pattern Coloring of Cycle Systems 169

Proof. We find a system of equations describing P or we prove that the decision
problem from the statement of the lemma is NP—complete for the given set P.

Let A(P) be the set of zero—one vectors defined in the beginning of this
section. We understand the vectors of A(P) as sequences of length k. We say
that aq,...,q, uniquely determines the (k + 1)-th coordinate iff the (k + 1)-
th coordinate of each vector of A(P), whose first x coordinates are equal to
a1, ...,Q, 18 uniquely determined. If both ay,...,q, and aq,...,;—1,0; +
1,41, .., 0, uniquely determine the (k + 1)-th coordinate, we say that «; is
essential (1 < ¢ < k) iff the (k + 1)-th coordinate differs for «ay,...,a, and
A1y ey 1,0 + 1y, ..., 0. We say that o is non—essential otherwise.

Let k be the smallest number such that there exists a sequence aq, ..., qy,
such that it uniquely determines the (x 4 1)-th coordinate; if it does not exist,
A(P) contains all the vectors of length k. For each sequence aof,...,al there
exists a vector of A(P) whose first s coordinates are equal to o, ..., al: Other-
wise, let o], ..., al. be the sequence such that there is not a vector of A(P) whose
first x coordinates are equal to af,...,a. Let £’ be the largest number such
that there is a vector of A(P) whose first s’ coordinates are equal to o, ..., al;
such a number exists because A(P) is closed under negations. Hence 1 < v’ < k.
The sequence o, ..., o/, determines the (k' + 1)-th coordinate (it forces it to
be), + 1) and this contradicts the choice of ay, ..., o, and k.

We prove: Each sequence o, ..., a/, uniquely determines the (k + 1)-th co-
ordinate (unless the problem is NP—complete). Assume the opposite and let
of,...,al be the sequence with the longest initial subsequence common with
a1, - .., a, which does not uniquely determine the (x + 1)-th coordinate. Let x’
be the smallest number such that «,s # ol,; &' > 2 since A(P) contains to-
gether with each vector also its negation. Due to Lemma 1 there exists a k—cycle
system C4p which forces two of its vertices to have different colors. Thus we can
force two vertices to have different colors and (since we work with 2—colorings)
we can also force two vertices to have the same color by using C4p twice. We
create a k—cycle system C with vertices vy, ..., v as follows: We add for each
1< i< K, # k' either one copy of Cap or two copies of Cap as follows:

— If oy = o} = a1 = o, we force the colors of v; and v to be the same.

— If o; = o # a1 = of, we force the colors of v; and v; to be different.

- If oy # @}, o = a,y and o = o, we force the colors of v; and v, to be the
same.

- If o # o}, oy = o, and o} = a,, we force the colors of v; and v, to be
different.

Next, we add a cycle vq,...,v;. The vertices v1,...,v, are colored consistently
with either ay,...,q, or of,...,al by any proper coloring using at most two
colors. In the first case, the colors of v; and v, uniquely determine the color
of ve41, in the second case the color of v,y1 can be arbitrary. C is a k—cycle
system such that the vertices vy, v, and v,41 can be colored in 3 different ways
(upto permutation of the colors). Thus the decision problem of 2—colorability of
k—cycle systems with the pattern set P is NP—complete due to Lemma 4.

170 Zdenék Dvordk et al.

We summarize: Unless the problem is NP—complete, there exists
such that each sequence ag,...,a, uniquely determines the (x + 1)-th
coordinate.

The preceding immediately implies, since A(P) is closed under rotations, that
A(P) contains exactly 2" vectors — the first £ coordinates uniquely determines
the rest of the vector. We prove that «; is either essential for the (x + 1)-th

coordinate for all the choices of aq,...,a, or non—essential for all the choices
(unless the problem is NP-complete). Let us assume the opposite: Let aq, ...,
be the sequence where «; is essential for a1 and o, ...,) be the sequence

where o is non-essential for aj, ;. Assume that a; = o, because A(P) contains
together with each vector also its negation, and assume also that the (k + 1)-th
coordinates determined by oy, ..., a, and by o, ..., ol are the same (otherwise
we could change «; in the first sequence to a; + 1 and o in the second one to
o) + 1—note that this preserves oy = o} if ¢ = 1); let a1 be this value. Let &/
be the smallest number different from ¢ such that o, # ;. We create a k—cycle
system C with vertices vy, ..., v, similarly to the above paragraph. We add for
each 1 < j<k+1,j¢{k',i} either one or two copies of C4p as follows:

—Ifa; = a;. = a1 = o}, we force the colors of v; and v to be the same.

— If aj =), # a1 = o}, we force the colors of v; and v; to be different.
/ — !/ !
- If oy # o, = and o = ay,, we force the colors of v; and v, to be
the same.
- If a; # o}, aj = o), and o) = a,s, we force the colors of v; and v, to be
different.

Next, we add a cycle vy, . .., v. Each proper coloring of C with at most two colors
colors the vertices vy, ..., vy, V41 consistently with either aj,..., ax, ax41 or
4 !/ / / !/ / 4 / / / /
with af,...,0;_1, 0, afq,...,), a)y or with a,...,0]_ 1, 1, a5 ,..., 0,

a; 4 (recall that a,q1 = aj ;). Thus C is a k-—cycle system with the pattern
set P such that the vertices v;, v; and v, can be colored by colorings using
at most two colors only in three different ways upto renaming the colors. Thus
the problem of 2—colorability of k—cycle systems with the pattern set P is NP—
complete due to Lemma 4.

We can summarize: Unless the problem is NP—complete, there exists
k such that each sequence «g, ..., o, uniquely determines the (x+1)-th
coordinates and «; is either essential or non—essential for the (k+1)-th
coordinate regardless the choice of ag, ..., a.

Let I be the set of all i’s for which «; is essential for the (x+1)-th coordinate
and let v be the value of the (k+1)-th coordinate determined by the sequence of
K zeroes. Let aq,...,q, be any sequence of length x, then this sequence forces
the (k+1)-th coordinate to be v+, a, since each change of a; for i € I from
0 to 1 changes the value of the (x + 1)-th coordinate and the change of «; for
i & I from 0 to 1 does not affect the (k + 1)-th coordinate. Let I’ = I U {x + 1}.
The previous can be restated (A(P) is closed under rotation) as follows:

Z@H(iﬂ;z) modk =7 foralll<j<k
icl’

Complexity of Pattern Coloring of Cycle Systems 171

The first £k — k equations above, for 1 < j < k — k, are linearly independent
and since A(P) contains 2% vectors these equations describe A(P). Since the
all-zero vector does not belong to A(P), the constant v has to be one (otherwise
the all-zero vector would belong to A(P)). The above system of equations can
be clearly rewritten to the form from the statement of the lemma by setting
kK=k,B;=1foriel’and ;=0 fori¢& I’

Lemma 2 and Lemma 5 immediately imply the following theorem:

Theorem 2. Let P be a set of 2—patterns of length k > 2. The decision problem
whether a given k—cycle system with the pattern set P can be colored by at most
2 colors is solvable in polynomial time if and only if at least one of the following
two conditions holds (unless P=NP):

— P contains the monochromatic pattern of length k.
— P can be described by a system of linear equations.

Otherwise, the problem is NP—complete.

4 Single Polynomial Patterns

We answer the question for which single 2—patterns there is a polynomial-time
algorithm for deciding whether a given cycle system can be 2—colored. We first
state and prove an interesting linear algebra lemma:

Lemma 6. Let A be a power of two and let aq,...,a) be any sequence of 0’s
and 1’s which contains at least one 1. Then the following system of equations
has a solution over GF(2):

Q1 Qg T-0x—1 Q)

T 1
Q) Q1 - Qa2 Q1 T2 1
. Tx—1 1
as aq - a1«
3 Q4 1 2 s 1
a a3 ooan @

Proof. The proof proceeds by induction on A. The statement is trivial for A = 1;
let A > 2. Let A be the matrix consisting of «;’s from the statement of the
lemma. Let A; and Az be the A\/2 x \/2 matrices forming the matrix A:

(A Ay
A= (i)

We construct the solution recursively. We distinguish two cases:

— A; + Ay is a non—zero matrix (A; # Aj). Then the matrix A; + As is
the matrix for the sequence aq + ay/o41,..-,az/2 +ax. Let x1,...,25/2 be
the solution for the sequence oy + /241, .- ., x/2 +ax. Setting z(y /241 =
T1,...,Tx = Ty/2 yields a solution of the original system of linear equations.

172 Zdenék Dvordk et al.

— A1+ Ay is a zero matrix (A; = Az). Then a; = a5/ forall 1 <i < A/2.
The matrix A; = Aj is the matrix obtained for the sequence a1, ..., a) /2. Let
x1,...,%y/2 be the solution for the sequence ai,...,ay/z. Setting zy /211 =
... =z = 0 yields a solution of the original system of linear equations.

We prove that aperiodic patterns for which the above stated problem can be
solved