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118 00 Prague, Czech Republic
E-mail: ludek@kam.mff.cuni.cz

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress.
Bibliographic information published by Die Deutsche Bibliothek

Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): F.2, G.1.2, G.1.6, G.2, G.3, E.1, I.3.5

ISSN 0302-9743
ISBN 3-540-00331-2 Springer-Verlag Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg NewYork
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 10872302 06/3142 5 4 3 2 1 0



Preface

The 28th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2002) was held in Český Krumlov, a beautiful small town in the
southern part of the Czech Republic on the river Vltava (Moldau), June 13–15,
2002. The workshop was organized by the Department of Applied Mathematics
of the Faculty of Mathematics and Physics of Charles University in Prague.

Since 1975, WG has taken place in Germany 20 times, twice in Austria and
The Netherlands, and once in Italy, Slovakia, and Switzerland. As in previous
years, the workshop aimed at uniting theory and practice by demonstrating how
graph-theoretic concepts can be applied to various areas in Computer Science,
or by extracting new problems from applications.The workshop was devoted to
the theoretical and practical aspects of graph concepts in computer science, and
its contributed talks showed how recent research results from algorithmic graph
theory can be used in computer science and which graph-theoretic questions
arise from new developments in computer science.

Altogether 61 research papers were submitted and reviewed by the program
committee. The program committee represented the wide scientific spectrum,
and in a careful reviewing process with four reports per submission it selected
36 papers for presentation at the workshop. The referees’ comments as well as the
numerous fruitful discussions during the workshop have been taken into account
by the authors of these conference proceedings.

The participants of WG 2002 came from universities and research institutes in
various countries such as Australia, Belgium, Brazil, Canada (2), Czech Republic
(6), France (7), Germany (13), Great Britain, Greece (2), Hong Kong, Ireland,
Israel (2), Italy (2), Japan (2), New Zeeland, Norway (6), Poland (3), Russia,
Slovakia, Spain, The Netherlands (2), U.S.A. The unusually small number of
participants from the U.S.A. and Canada was most likely due to the short space
of time between 11th of September, 2001 and the workshop deadline.

It is our pleasure to thank all those who contributed to the scientific success
of WG 2001: all the authors of submitted and of presented papers, and in partic-
ular the speakers, the referees, and the subreferees. The organizational work of
Lucie Štěpánová, Viliam Holub, and Štěpán Kučera during the workshop and the
historical ambience, technical facilities, and helpful personnel of the Hotel Růže
in Český Krumlov greatly contributed to the succeess of the workshop. A concert
given by Olga Štěpánová (mezzosoprano), Lucie Štěpánová (violloncello), and
Alexandr Zlobin (piano) in Castle Kratochv́ıle was a beautiful counterpart to
the exhausting scientific program of the workshop.

November 2002 Luděk Kučera
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Maximum Cardinality Search

for Computing Minimal Triangulations

Anne Berry1, Jean R. S. Blair2, and Pinar Heggernes3

1 LIMOS, Universite Clermont-Ferrand II, F-63177 Aubiere, France, berry@isima.fr
2 US Military Academy, West Point, NY, USA, Jean-Blair@usma.edu

3 Informatics, University of Bergen, N-5020 Bergen, Norway, pinar@ii.uib.no

Abstract. We present a new algorithm, called MCS-M, for comput-
ing minimal triangulations of graphs. Lex-BFS, a seminal algorithm for
recognizing chordal graphs, was the genesis for two other classical algo-
rithms: Lex-M and MCS. Lex-M extends the fundamental concept used
in Lex-BFS, resulting in an algorithm that also computes a minimal tri-
angulation of an arbitrary graph. MCS simplified the fundamental con-
cept used in Lex-BFS, resulting in a simpler algorithm for recognizing
chordal graphs. The new simpler algorithm MCS-M combines the exten-
sion of Lex-M with the simplification of MCS, achieving all the results
of Lex-M in the same time complexity.

1 Introduction

Many important problems in graph theory rely on the computation of a chordal
completion or, equivalently, a triangulation of a graph. Typically the goal is
to compute a minimum triangulation, that is, a triangulation with the fewest
number of edges. Computing a minimum triangulation is NP-hard [11]. In this
extended abstract, we study the problem of finding a minimal triangulation. A
minimal triangulation H of a given graph G is a triangulation such that no
subgraph of H is a triangulation of G.

Several practical algorithms exist for finding minimal triangulations [1], [2],
[3], [5], [8], [9]. One such classical algorithm, called Lex-M [9], is derived from
the Lex-BFS (lexicographic breadth first search) algorithm [9] for recognizing
chordal graphs. Both Lex-BFS and Lex-M use lexicographic labels of the un-
processed vertices. As processing continues, the remaining labels grow, each po-
tentially reaching a length proportional to the number of vertices in the graph.
Lex-BFS adds to the labels of the neighbors of the vertex being processed, while
Lex-M adds to the labels of vertices that can be reached along special kinds of
paths. Interestingly, the simple extension of adding to labels based on reachabil-
ity along special kinds of paths, rather than only along single edges, results in
an algorithm that produces minimal triangulations.

The adjacency-labeling concepts developed for the Lex-BFS algorithm have
proved to be central in the understanding of chordal graphs and triangulations.
Tarjan and Yannakakis later came up with the surprising result that for the

L. Kučera (Ed.): WG 2002, LNCS 2573, pp. 1–12, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



2 Anne Berry, Jean R.S. Blair, and Pinar Heggernes

case of recognizing chordality, knowing the specific processed neighbors (i.e., la-
bels) is not necessary; one need only maintain and compare the cardinality of
processed neighbors [10]. This was a major breakthrough, resulting in a signifi-
cantly simplified implementation of Lex-BFS which has come to be known as the
MCS (maximum cardinality search) algorithm. A natural question that arises is
whether or not cardinality comparisons are also sufficient for the case of minimal
triangulations. That is, is there a significantly simplified implementation of Lex-
M that uses only the cardinality of processed vertices that can be reached along
special kinds of paths? Or, equivalently, can MCS be extended from neighbors
to paths in order to yield a minimal triangulation algorithm, imaging the exten-
sion from Lex-BFS to Lex-M? In this paper, we introduce an algorithm called
MCS-M to fill exactly this gap.

The relationships between the four algorithms discussed thus far are sum-
marized in Figure 1. In the figure, the algorithms on the left recognize chordal
graphs while those on the right produce provably minimal triangulations of arbi-
trary graphs, as well as recognizing chordality. Both algorithms on the left have
time complexity O(n + m); both algorithms on the right have time complexity
O(nm).

o f  n e i g h b o r s )

L e x − B F S
( l e x i c o g r a p h i c  l a b e l l i n g

L e x − M
( l e x i c o g r a p h i c  l a b e l l i n g

a l o n g  p a t h s )

M C S
( c a r d i n a l i t y  l a b e l l i n g

o f  n e i g h b o r s )

M C S − M
( c a r d i n a l i t y  l a b e l l i n g

a l o n g  p a t h s )

Fig. 1. Relationships between algorithms. Solid arrows represent previous evolution.
Dashed arrows represent the natural evolution to a new MCS-M algorithm.

This paper is organized as follows. In the next section we assume that the
reader is familiar with standard graph terminology, and briefly review only a few
key definitions before presenting background material. Included in that section is
a classical characterization of minimal triangulations that forms the basis for our
proofs of correctness. The three algorithms that lead to the results in this paper
are presented in Section 3. In Section 4 we present the new minimal triangulation
algorithm MCS-M, and prove its correctness.

2 Background

All graphs in this work are undirected and finite. A graph is denoted by G =
(V,E), with n ≡ |V |, and m ≡ |E|. The neighborhood of a vertex x in G is
NG(x) = {y �= x | xy ∈ E}. The neighborhood of a set of vertices A is NG(A) =
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∪x∈ANG(x)−A, and we define NG[A] = NG(A)∪A. When the graph G is clear
from the context, we will omit the subscript G.

A clique is a set of pairwise adjacent vertices. A vertex x is simplicial if N(x)
is a clique. A chord of a cycle is an edge connecting two non-consecutive vertices
of the cycle. A graph is chordal, or equivalently triangulated, if it contains no
chordless cycle of length ≥ 4. A triangulation of a graph G is a chordal graph
G+ = (V,E ∪ F ) that results from the addition of a set F of fill edges.

Given any graph G = (V,E), an elimination ordering α on G is simply a
numbering of the vertices of G with integers from 1 to n. The algorithm shown

Algorithm EliminationGame
Input: A general graph G, and an elimination ordering α of the vertices in G.
Output: The filled graph G+

α .
begin

G0 = G;
for i = 1 to n do

Let v be the vertex for which α(v) = i;
Add edges to Gi−1 so that NGi−1 (v) becomes a clique;
Gi = Gi−1 − v;

G+
α = ∪n−1

i=0 Gi;
end

Fig. 2. The elimination game.

in Figure 2, called the elimination game, was first introduced by Parter [7]. For
any graph G and any ordering α of G, we will denote by Gk

α the transitory graph
after step k of the elimination game on G. The resulting filled graph G+

α is a
triangulation of G [4]. The ordering α is a perfect elimination ordering if no fill
edges are added during the elimination game i.e. G+

α = G. Note that this is
equivalent to choosing a simplicial vertex at each step of the elimination game.
Fulkerson and Gross [4] showed that the class of chordal graphs is exactly the
class of graphs having perfect elimination orderings.

The following theorem characterizes the edges of the filled graph.

Theorem 1. (Rose, Tarjan, and Lueker [9]) Given a graph G = (V,E) and an
elimination ordering α of G, yz is an edge in G+

α if and only if yz ∈ E or
there exists a path y, x1, x2, ..., xk, z in G where α(xi) < min{α(y), α(z)}, for
1 ≤ i ≤ k.

Ohtsuki, Cheung, and Fujisawa [6] define α to be a minimal elimination or-
dering if G+

α is a minimal triangulation of G and further characterize a sufficient
condition for a vertex to be numbered one in a minimal elimination ordering.
Below we define an OCF-vertex (OCF representing the initials of the authors of
[6]) as a vertex that satisfies their condition and summarize in a theorem their
results that are key in proving the correctness of our algorithm.

Definition 1. A vertex x in G = (V,E) is an OCF-vertex if, for each pair of
non-adjacent vertices y, z ∈ N(x), there is a path y, x1, x2, ..., xk, z in G where
xi ∈ G−N [x], for 1 ≤ i ≤ k.
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Theorem 2. (Ohtsuki, Cheung, and Fujisawa [6]) A minimal elimination or-
dering α is computed by choosing an OCF-vertex x in Gi−1 for elimination so
that α(x) = i, at each step i of the elimination game.

3 Lex-BFS, Lex-M, and MCS Algorithms

The MCS algorithm, which is shown in Figure 3, is a simple linear time algorithm
that processes first the vertex x for which α(x) = n and continues generating an
elimination ordering in reverse. The MCS algorithm maintains, for each vertex v,
an integer weight w(v) that is the cardinality of the already processed neighbors
of v. When given a chordal graph as input, MCS produces a perfect elimination
ordering.

Algorithm MaximumCardinalitySearch - MCS
Input: A graph G.
Output: An elimination ordering α of G.
begin

for all vertices v in G do w(v) = 0;
for i = n downto 1 do

Choose an unnumbered vertex z of maximum weight; α(z) = i;
for all unnumbered vertices y ∈ N(z) do w(y) = w(y) + 1;

end
Fig. 3. Maximum Cardinality Search.

Lex-BFS has the exact same description as MCS, but uses labels that are
lists of the names of the already processed neighbors instead of using weights. In
the beginning l(v) = ∅ for all vertices. At step n− i + 1, an unnumbered vertex
v of lexicographically highest label is chosen to receive number i, and i is added
to the end of the label lists of all unnumbered neighbors of v.

Lex-M is an extension of Lex-BFS that computes a minimal triangulation in
the following way. When v receives number i at step n− i + 1, it adds i to the
end of the label lists of all unnumbered vertices x for which there exists a path
between v and x consisting only of unnumbered vertices with lexicographically
lower labels than those of v and x.

The fact that using weights rather than the labels of Lex-BFS is sufficient for
computing a perfect elimination ordering was a major breakthrough, resulting in
the substantially simpler implementation of MCS. In the next section we show
that using weights rather than the labels of Lex-M is also sufficient for computing
a minimal triangulation. This results in a substantially simpler implementation
of Lex-M which we call MCS-M.

Throughout the remainder of this paper, while speaking about MCS or MCS-
M, the following phrases are considered to be equivalent: u is numbered higher
than v and u is processed earlier than v. The symbols v− and v+ are used as time
stamps, denoting the time right before and right after v receives its number. For
any two vertices u and v, where v is numbered higher than u during an execution
of MCS or MCS-M, wv−(u) is the weight of u at time v−, and wv+(u) is the
weight of u at time v+. Analogously, hv−(A) and hv+(A) denote the highest
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weight of a vertex among the unnumbered vertices of A ⊆ V , at times v− and
v+, respectively.

4 The New MCS-M Algorithm

The new algorithm MCS-M is an extension of MCS in the same way that Lex-
M is an extension of Lex-BFS. That is, in MCS-M when v receives number i at
step n− i + 1, it increments the weight of all unnumbered vertices x for which
there exists a path between v and x consisting only of unnumbered vertices with
weight strictly less than wv−(v) and wv−(x). The details of this O(nm) time
algorithm are given in Figure 4. An example of an MCS-M ordering on a given
graph is shown in Figure 5(a).

Algorithm MCS-M
Input: A general graph G = (V, E).
Output: A minimal elimination ordering α of G and the corresponding filled graph H .
begin

F = ∅; for all vertices v in G do w(v) = 0;
for i = n downto 1 do

Choose an unnumbered vertex z of maximum weight; α(z) = i;
for all unnumbered vertices y ∈ G do

if there is a path y, x1, x2, ..., xk, z in G through unnumbered vertices
such that wz−(xi) < wz−(y) for 1 ≤ i ≤ k then

w(y) = w(y) + 1;
F = F ∪ {yz};

H = (V, E ∪ F );
end

Fig. 4. The MCS-M algorithm.
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Fig. 5. (a) An MCS-M numbering. (b) A Lex-M numbering. Numbers in bold represent
the produced ordering α. The weight/label of each vertex at the time it receives its
number is given in parentheses.

We will show that MCS-M simulates a process of choosing an OCF vertex at
each step of the elimination game, thereby producing a minimal triangulation.
We begin by proving a property about paths with lower weight intermediary
vertices, after which we prove that MCS-M produces exactly the same graph as
the one that would be produced by the elimination game using the ordering α
produced by MCS-M.
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Lemma 1. Let α be an elimination ordering produced by an execution of MCS-
M on G. For any step of MCS-M, let v be the vertex chosen to receive its number.
Among the unnumbered vertices, if

wv−(xi) < wv−(y) ≤ wv−(z)
for all xi on a path y, x1, x2, ..., xr , z in G, then

α(xi) < min{α(y), α(z)}.
Proof. Suppose there is a path for which wv−(xi) < wv−(y) ≤ wv−(z) as in
the premise of the lemma. Note that for any u such that α(v) > α(u) >
min{α(xi), α(y), α(z)}, wu−(u) ≥ max{wu−(y), wu−(z)}. Thus, if wu−(xi) <
min{wu−(y), wu−(z)} then any lower weight path from u to some xi that causes
wu+(xi) = wu−(xi) +1, can be extended as a lower weight path through xi to y
and z causing wu+(y) = wu−(y)+1 and wu+(z) = wu−(z)+1. Since MCS-M al-
ways chooses next a vertex with highest weight to receive the highest remaining
number, the result follows by induction.

Theorem 3. Let H and α be the graph and ordering produced by an execution
of MCS-M on G. Then H = G+

α .

Proof. Given an input graph G, let α be the elimination ordering and H be
the supergraph computed by an execution of MCS-M. In order to prove that
H = G+

α , we will prove that a fill edge yz with α(y) < α(z) is added by MCS-
M if and only if there is a path y, x1, x2, ..., xr , z in G with α(xi) < α(y) for
1 ≤ i ≤ r. The result will then follow from Theorem 1. (⇒) Since yz is added,
there is a path y, x1, x2, ..., xr, z in G where xi is unnumbered with wz−(xi) <
wz−(y) ≤ wz−(z) for 1 ≤ i ≤ r. Then by Lemma 1 α(xi) < α(y), for 1 ≤ i ≤ r.
(⇐) Let X = {x1, x2, ..., xr}. Since z is the first to receive its number among all
mentioned vertices, wz−(z) ≥ wz−(y) and wz−(z) ≥ hz−(X). We want to prove
that hz−(X) < wz−(y), which means that w(y) is incremented and yz is added
when z receives its number. Assume on the contrary that hz−(X) ≥ wz−(y) and
that yz is not added. Then hz+(X) > wz+(y). Let j be the index such that
xj ∈ X is the closest to y among vertices of X with wz+(xj) > wz+(y). When
a vertex q receives its number and increments w(y) for the first time after the
numbering of z, it will also increment w(xj) since y is on the path between xj and
q and has lower weight. Thus we cannot increment w(y) without incrementing
w(xj), which contradicts that α(y) > α(xj).

We have shown that the filled graph produced by MCS-M is equivalent to
the graph produced by the elimination game using the same ordering. In proving
our main lemma (Lemma 4), we will use this to infer the existence of fill edges
added during MCS-M, which in turn implies the existence of paths in G through
lower numbered vertices. First we prove two other necessary results.

Lemma 2. Let α be an elimination ordering produced by an execution of MCS-
M on G. For any step of MCS-M, let v be the vertex chosen to receive its number.
Among the unnumbered vertices, if

wv−(xi) < wv−(y) ≤ wv−(z)
for all xi on a path y, x1, x2, ..., xr , z in G, then for all u with α(u) > α(v),

wu−(xi) ≤ min{wu−(y), wu−(z)}.
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Proof. Let v and the path y, x1, x2, ..., xr, z in G be as stated in the premise and
suppose to the contrary that for some vertex u with α(u) > α(v), there exists a
vertex xi on the path for which wu−(xi) > min{wu−(y), wu−(z)}. Without loss
of generality assume wu−(y) ≤ wu−(z) and let u and xi be such that xi is the the
closest vertex to y on the path that has wu−(xi) > wu−(y) at some time before v
is numbered. Let px be the portion of the path between y and xi. Thus, we have
wu−(xi) > wu−(y) ≥ wu−(xj) for all xj on px. Since wv−(y) > wv−(xi) for the
later (lower) numbered vertex v, there must be a vertex q, α(u) > α(q) > α(v),
such that wq−(xj) ≤ wq−(y) < wq−(xi) and wq+(y) = wq+(xi). But this cannot
happen for the following reasons. The fact that q is the next to be numbered
vertex means that wq−(q) ≥ wq−(xi). The increase of y when q is numbered
means there is a path (possibly a single edge), say p1, between q and y that
allowed the weight of y to be increased. The path q − p1 − y − px − xi then is a
lower weight path between q and xi that would result in the weight of xi being
incremented as well, contradicting the assumption that the weight of y and not
xi is increased when q is numbered.

Lemma 3. Let α be an elimination ordering produced by an execution of MCS-
M and consider the vertices u and v1, α(u) < α(v1), such that MCS-M incre-
ments w(u) through a path (or single edge) pv = v1, v2, · · · , vr, u of lower weight
intermediate vertices when processing v1. Let x be any vertex with α(x) < α(u)
and define k = α(x). If wv1−(x) = wv1−(u) and vix is an edge in Gk−1

α for some
1 ≤ i ≤ r then MCS-M also increments w(x) when processing v1.

Proof. Assume wv1−(x) = wv1−(u) and vix is an edge in Gk−1
α . Either xvi is

an edge in G or it is a fill edge introduced when vi is numbered by MCS-M. In
either case, there is a path psmall (or single edge) connecting x and vi in G such
that hvi−(psmall) < wvi−(x) ≤ wvi−(vi). Applying Lemma 2 we see that

hv1−(psmall) ≤ min{wv1−(x), wv1−(v1)}
≤ wv1−(v1)
< wv1−(u) (by the definition of pv)
= wv1−(x)

It follows that v2, · · · , vi − psmall is a lower weight path through unnumbered
vertices connecting v1 and x just before v1 is processed by MCS-M. Thus,
wu+(x) = wu−(x) + 1.

Lemma 4. Let α be an elimination ordering produced by an execution of MCS-
M. For 1 ≤ k ≤ n, if α(y) = k then y is an OCF vertex in Gk−1

α .

Proof. Let α be an elimination ordering produced by an execution of MCS-M,
and consider a vertex y0 with α(y0) = k. Let y1 and y2 be any two vertices
in NGk−1

α
(y0) with y1y2 �∈ E(Gk−1

α ). We will show that there exists a path ph

between y1 and y2 in Gk−1
α with all intermediate vertices belonging to Gk−1

α −
NGk−1

α
[y0], thereby proving that y0 is an OCF vertex in Gk−1

α .
Without loss of generality, assume α(y1) < α(y2) and hence that α(y0) <

α(y1) < α(y2). Since y0y1 is an edge in Gk−1
α , either y0y1 is in G or it is intro-

duced by MCS-M when y1 is processed. In either case, at time y1− there is a
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path (or possibly an edge) py0y1 in G through unnumbered vertices such that
hy1−(py0y1) < wy1−(y0) ≤ wy1−(y1). Likewise at time y2− there is a path py0y2

through unnumbered vertices such that hy2−(py0y2) < wy2−(y0) ≤ wy2−(y2).
The fill edge y1y2 ∈ G+

α because it is introduced during the elimination game
by y0. It follows then from Theorem 3 that the edge y1y2 is introduced by MCS-
M when y2 is numbered. Hence there is a path y1, v1, v2, · · · , vr, y2, r ≥ 1, such
that wy2−(vi) < wy2−(y1) ≤ wy2−(y2), for all 1 ≤ i ≤ r. If wy2−(y0) < wy2−(y1),
then the path py0y1−y0−py0y2 provides such a path. We consider first, however,
the case where wy2−(y0) ≥ wy2−(y1).

Observe that since y1y2 �∈ Gk−1
α , there is at least one vertex on palt =

v1, v2, · · · vr that is higher numbered then y0. We will show that the vertices
on palt that are higher numbered than y0 form the desired path ph in Gk−1

α . By
Theorem 1 the vertices on palt that are higher numbered than y0 induce a path
in Gk−1

α between y1 and y2. Thus, we need only show that no vertex on palt is
adjacent to y0 in Gk−1

α .
Assume to the contrary that there is a vertex vi on palt that is adjacent to

y0 in Gk−1
α . Either y0vi is an edge in G or it is a fill edge introduced when vi is

numbered by MCS-M. In either case, there is a path (or edge) psmall connecting
y0 and vi in G such that hvi−(psmall) < wvi−(y0) ≤ wvi−(vi). Applying Lemma 2
we see that hy2−(psmall) ≤ min{wy2−(y0), wy2−(vi)} ≤ wy2−(vi). We further
know that wy2−(vi) < wy2−(y1) ≤ wy2−(y0), since palt is the path through
which MCS-M added the edge y1y2. Therefore hy2−(psmall) < wy2−(y0). This
gives us two paths in G:

y0 − psmall − vi, vi−1, ..., v1, y1

and y0 − psmall − vi, vi+1, ..., vr, y2

that, just before y2 is numbered by MCS-M, satisfy the premise to Lemma 1.
Combined the two paths contain all of the vertices of palt as internal vertices.
Thus, by Lemma 1 we can conclude that every vertex vi on palt is such that
α(vi) < α(y0), contradicting the fact that at least one vertex on palt is numbered
higher than y0. It follows that our assumption that vi is adjacent to y0 in Gk−1

α

was wrong, and therefore that the path ph of vertices on palt that are higher
numbered than y0 is a path in Gk−1

α from y1 to y2 through vertices that are not
adjacent to y0.

We are left then with the case where the path py0y1 − y0 − py0y2 is a path of
lower weight vertices between y2 and y1 just before y2 is numbered, and hence
wy2−(y0) < wy2−(y1). In this case we know that there is some vertex, say y3

that first (earliest in MCS-M) increases the weight of y1 to a value greater than
the weight of y0.

The path ph will be constructed iteratively from its two endpoints, y1 and
y2, towards its center, through y3 and vertices like it. That is, we will be growing
two subpaths, podd from y1 and peven from y2, that will eventually meet to form
ph. Simultaneously we will show by induction that the vertices on podd and peven

are not adjacent to y0 in Gk−1
α . In order to prove this, we will utilize properties

of another path that goes through y0 and overlaps with portions of podd and
peven.
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At odd steps of the induction the subpath podd is extended from its endpoint
that is furtherest away from y1; at even steps of the induction the subpath peven

is extended from its endpoint that is furtherest away from y2. If yi−2 is the
current to-be-extended endpoint, then the corresponding subpath is extended
through a particular path to a vertex yi. These extensions are defined as follows.
Let yi be the first vertex for which wyi+(yi−2) > wyi+(yi−3). Note then that
wyi−(yi−2) = wyi−(yi−3), and wyi+(yi−2) = wyi−(yi−2) + 1. Define pyiyi−2 to
be the path of lower weight unnumbered vertices at time yi− through which
MCS-M increments the weight of yi−2. The partial path of ph is then defined
recursively as follows.

pi
h =

{∅ if i = 2
pi−1

h extended to include pyiyi−2 and yi if i > 2

The overlapping path that goes through y0 is defined recursively as follows.

pi
0 =

{
py0y1 − y0 − py0y2 if i = 2
pi−1
0 extended to include pyiyi−2 and yi−2 if i > 2

The path p5
0 and the corresponding p5

h are shown in Figure 6. Note that for
i > 2 the path pi

0 contains all of the partial path pi
h except for its two internal

endpoints.

p 5

0
T h e p a t h

0y

y 1

y 3

y 2

p y  y
0  1

p y  y
0  2

p y  y
2  4

p y  y
1  3

p y  y
3  5

y 3

y 5

y 4

p y  y
2  4

p y  y
1  3

p y  y
3  5

5

h
pT h e p a r t i a l  p a t h

Fig. 6. The path p5
0 and the partial path p5

h.

There are four properties, shown in the induction hypothesis below, that we
will maintain throughout the induction. The second and third are properties of
the p0 path and the last is the desired property of the ph subpaths.
Induction hypotheses: For all l, 2 ≤ l < i, the following properties hold:

α-order: α(yl−1) < α(yl) < α(yl+1).
same-weight: wt(y0) = wt(yj) for 1 ≤ j ≤ l − 1 at times t = yl+1− and earlier.

p0-weight: ht(pl
0) = wt(y0) ≤ min{wt(yl), wt(yl−1)} at times t = yl− and earlier.

no-y0-adj: No vertex on pl
h is adjacent to y0 in Gk−1

α .

Base case (i = 2): Here we begin with the fact that α(y0) < α(y1) < α(y2) and
observe that α(y3) > α(y2), since at the time that y2 is processed by MCS-M the
weight of y1 is already higher than the weight of y0. Thus, the α-order property
holds for the base case.

The same-weight property trivially holds since, by definition of y3, wt(y0) =
wt(y1) at all times t = y3− and earlier.
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For the p0-weight property recall that when py0y1 and py0y2 were defined
above we saw that hy1−(py0y1) < wy1−(y0) ≤ wy1−(y1) and hy2−(py0y2) <
wy2−(y0) ≤ wy2−(y2). Combining these two facts with the fact that wy2−(y0) <
wy2−(y1) ≤ wy2−(y2) and applying Lemma 2, we see that ht(py0y1−y0−py0y2) ≤
min{wt(y1), wt(y2)} at all times t = y2− and earlier, giving the base case p0-

weight property.
The no-y0-adj property holds since at this first step in the iteration the path

p2
h is empty, and hence has no adjacency to y0 in Gk−1

α .
Induction step (i > 2): Assume the induction hypotheses hold. We must
either close the path ph at this step, or prove the four properties hold for the ith

iteration. We begin by establishing that wyi−(yi−2) ≤ wyi−(yi−1). By definition
of yi,

wyi−(yi−2) = wyi−(yi−3)
≤ hyi−(pi−1

0 ) (because yi−3 ∈ pi
0)

≤ min{wyi−(yi−1), wyi−(yi−2)} (by the induction hypothesis)

Thus, wyi−(yi−2) ≤ wyi−(yi−1), and we have two cases.
Case 1 (wyi−(yi−2 ) = wyi−(yi−1 )): In this case yi must also increment the
weight of yi−1 through a path palt not containing y0. To see this, observe first that
it cannot increment the weight of yi−1 using a path containing y0 since, by the
same-weight induction hypothesis, wyi−(y0) = wyi−(yi−2) = wyi−(yi−1) and
thus y0 cannot be on a lower weight path between yi and yi−1. Furthermore, if the
weight of yi−1 were not incremented when yi was processed, then wyi+(yi−2) >
wyi+(yi−1). Since the MCS-M processing time yi+ is no later than yi−1−, we
know also from the p0-weight induction hypothesis that

hyi+(pi−1
0 ) ≤ min{wyi+(yi−2), wyi+(yi−1)}

≤ wyi+(yi−1)
< wyi+(yi−2)

Therefore, at any time after yi+ that the weight of yi−1 is incremented, the
lower weight path (or edge) that was used to increment the weight of yi−1 can
be extended through pi−1

0 as a lower weight path to increment the weight of yi−2.
But then the weight of yi−2 will always exceed the weight of yi−1, contradicting
the α-order induction hypothesis.

Now consider this path palt of lower weight vertices connecting yi and yi−1

at the time that yi is processed. By Lemma 3 (x = y0, u = yi−1, v1 = yi and
v2, · · · vr = palt) the vertices on palt are not adjacent to y0 in Gk−1

α . Combining
this with the no-y0-adj induction hypothesis, we see that the vertices on the
pi−1

h connected together through pyiyi−2 − yi − palt that are higher numbered
than y0 form the desired path ph in Gk−1

α that is not adjacent to y0 in Gk−1
α .

Case 2 (wyi−(yi−2 ) < wyi−(yi−1 )): For this case we prove that the four proper-
ties hold for the next iteration in constructing ph. We begin with the p0-weight

property and observe that by definition, hyi−(pyiyi−2) < wyi−(yi−2). Also, by
the p0-weight induction hypothesis, hyi−(pi−1

0 ) ≤ wyi−(yi−2). Thus, since
wyi−(yi−2) < wyi−(yi−1), we have hyi−(pyiyi−2 − yi−2 − pi−1

0 ) < wyi−(yi−1) ≤
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wyi−(yi). And then by Lemma 2 ht(pyiyi−2−yi−2−pi−1
0 ) ≤ min{wt(yi), wt(yi−1)}

at all times t = yi− and earlier, proving the p0-weight property.
Note that since wyi−(yi−2) < wyi−(yi−1) there exists a vertex yi+1 that in-

creases the weight of yi−1 beyond the weight of yi−2 for the first time. Further-
more, α(yi) < α(yi+1) since at time yi− the vertex yi+1 had already increased
the weight of yi−1 past the weight of yi−2. This proves the next α-order prop-
erty.

The next no-y0-adj property comes from Lemma 3 where x = y0, u = yi−2,
v1 = yi and v2, · · · vr = pyiyi−2 .

By the definition and existence of yi+1 we know that wt(yi−1) = wt(yi−2) at
times t = yi+1− and earlier. This, together with the same-weight induction
hypothesis, gives us the same-weight property for the next iteration.

We have proven by induction that at each step in the iterative process either
the path ph is completed or there exists an extension to one of the subpaths of
ph that is being constructed. Since there are a finite number of vertices in the
graph G, the iteration process must eventually not be able to extend a subpath
of ph and hence, the path ph must be completed. It follows then, that the vertex
y0 is an OCF-vertex in Gk−1

α .

Theorem 4. MCS-M computes a minimal triangulation.

Proof. Follows from Lemma 4 and Theorem 2.

5 Conclusion

We have described a new algorithm MCS-M that computes a minimal elimination
ordering and a minimal triangulation of a graph. MCS-M can be viewed as a
simplification of the Lex-M algorithm for computing a minimal triangulation. In
fact, in [9] a clever implementation of Lex-M is described that uses label numbers,
rather than lists of vertices as labels. The storage used and comparisons made in
that implementation are similar to those required with the use of weights in MCS-
M. However, in order for the label numbers to properly implement the relative
lexicographic labels in Lex-M, their implementation must sort and normalize
all unprocessed label numbers after each vertex is processed. This effectively
adds a (lower-order) term to their time complexity, requiring O(nm + n2) =
O(nm) time. Our MCS-M implementation does not require this extra sorting
step, thereby avoiding the extra term in the time complexity.

As can be seen in the example of Figure 5, Lex-M and MCS-M are not
equivalent; the MCS-M ordering shown in Figure 5(a) cannot be produced by
Lex-M, and the Lex-M ordering shown in Figure 5(b) cannot be produced by
MCS-M.

The impetus for generating minimal triangulations is the desire to approxi-
mate minimum triangulations, since in general finding minimum triangulations
is NP-hard. It is well know that minimal triangulations can have substantially
more fill edges than minimum triangulations. In many cases, MCS-M can pro-
duce triangulations with less than half the fill of other minimal triangulations.
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But like Lex-M, MCS-M cannot always do so well. For example, for the graph
representing an n×n square grid, MCS-M produces exactly the same fill as Lex-
M does, and as pointed out in [9], the minimum fill for such graphs is O(n2 logn)
whereas the fill produced by Lex-M (and hence MCS-M) is O(n3).
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and the Exact Perfect Matching Problem
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Abstract. We investigate the computational complexity of a combina-
torial problem that arises in DNA sequencing by hybridization: The input
consists of an integer � together with a set S of words of length k over
the four symbols A, C, G, T . The problem is to decide whether there
exists a word of length � that contains every word in S at least once as
a subword, and does not contain any other subword of length k.
The computational complexity of this problem has been open for some
time, and it remains open. What we prove is that this problem is polyno-
mial time equivalent to the exact perfect matching problem in bipartite
graphs, which is another infamous combinatorial optimization problem
of unknown computational complexity.

Keywords: graph theory, computational complexity, computational bi-
ology, DNA computing, DNA sequencing.

1 Introduction

This paper is centered around two algorithmic problems. The first problem is the
Exact Perfect Matching problem that asks whether a given edge weighted graph
possesses a perfect matching with weight exactly equal to a given bound. This
problem is of great practical importance, and it has applications in bus-driver
scheduling, in biomedical image analysis, and in the Ising model in theoretical
physics; see Leclerc [10]. In 1982, Papadimitriou & Yannakakis [14] observed that
this problem is NP-complete when the weights are encoded in binary, and they
asked about its complexity when the weights are encoded in unary. Barahona &
Pulleyblank [2] and Leclerc [11] show that some special cases (like the case of
planar graphs) are polynomially solvable for unary encoded weights. Mulmuley,
Vazirani & Vazirani [13] show that the Exact Perfect Matching problem with
unary encoded weightd lies in the complexity class RP, and consequently has a
randomized polynomial time solution algorithm. However, determining the exact
deterministic complexity of this problem still remains unsettled after twenty
years, and by now is recognized as an outstanding open problem. A slightly
simpler looking, but equally open variant is the following restriction of the exact
perfect matching problem to bipartite graphs:
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Problem: Exact bipartite matching (Ex-Match)
Input: A bipartite multigraph (X ∪ Y,E) where E is a multi-subset of
X × Y . Non-negative integer weights w(e) on the edges e ∈ E that are
encoded in unary. An integer α.
Question: Is there a perfect matching of weight exactly α?

This bipartite variant is also discussed by Barahona & Pulleyblank [2]. Karzanov
[9] gives a polynomial time algorithm for the special case where the input graph
is a complete bipartite graph, and where the edge weights are restricted to 0
and 1.

Now let us turn to the second main problem that will be investigated in this
paper. Deoxyribonucleic acid (DNA, for short) exists in the form of a double
helix that consists of two twisted strings of nucleotides. These nucleotides only
differ in their nitrogenous bases adenine (A), cytosine (C), guanine (G), and
thymine (T). Their order codes genetic information that is symbolically written
as a sequence over the four letters A, C, G, and T. The first stage of discovering
genetic information is to analyze and to determine this sequence of bases for
a given DNA sequence (see for instance Bains & Smith [1]). The length of the
sequence can be determined by so-called gel electrophoresis. One method of
sequence structure analysis is based on hybridization experiments that compare
a DNA chain against a library of all possible single-stranded DNA fragments of
length k. The outcome of the hybridization is the k-spectrum of the sequence,
i.e., the set of all fragments of length k of this sequence.

In the ideal case no errors occur in the hybridization experiment, and the
k-spectrum of a DNA sequence of length � consists of exactly �− k + 1 pairwise
distinct words of length k. This ideal case with a complete k-spectrum is well-
understood (see Theorem 1), but never occurs in the real world. In the real world,
the hybridization experiments suffer from negative errors (if the measured spec-
trum is incomplete) and from positive errors (if the measured spectrum contains
additional elements that do not show up in the sequence). Especially, a fragment
of length k may appear many times in the sequence, whereas the experiments
only detect that it occurs at least once. DNA sequencing under negative and
positive errors is discussed by B�lażewicz, Formanowicz, Kasprzak, Markiewicz
& Wȩglarz [4]. In a follow-up paper, B�lażewicz & Kasprzak [6] investigate the
computational complexity of several variants of DNA sequencing under negative
and positive errors; all these variants turn out to be unary NP-hard in their
search versions. However, the complexity of the following fairly innocent looking
variant remained open.

Problem: DNA sequencing with unknown multiplicities (DNA-SEQ)
Input: Integers � and k. A set S of words of length k over the alphabet
{A,C,G, T}.
Question: Is there a word of length � with k-spectrum equal S?

In this paper we will prove that the two problems Ex-Match and DNA-

SEQ are polynomially reducible to each other and hence are polynomial time
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equivalent. If one of them is polynomially solvable, then the other one is poly-
nomially solvable, too. If one of them is NP-complete, then the other one is
NP-complete, too. More generally, if one of these two problems is complete for
some complexity class under polynomial time reductions, then so is the other
problem.

Organization of this paper. The paper is a long (cyclic!) chain of polynomial time
reductions that traverses a number of intermediate problems. In Section 2 we re-
duce problem DNA-SEQ to the problem of deciding the existence of certain Eu-
lerian multigraphs. Then in Section 3, this Eulerian problem Ex-EulerCycle

is reduced to problem Ex-Match. Next, in Section 4 problem Ex-Match is re-
duced to a highly restricted special case of Ex-Match that we call Ex-Match

−.
Finally, in Section 5 this highly restricted special case Ex-Match

− will be re-
duced to problem DNA-SEQ. By doing this, we return to our starting point,
and the chain of reductions is closed to a cycle.

Notation and definitions. Throughout the paper, we stick to the standard graph
terminology as given in the book of Berge [3]. However, we want to clarify the
usage of the following terms: A graph G = (V,E) is cubic, if each vertex in V
is incident to exactly three edges. For a multigraph G = (V,E), its underlying
simple graph G′ = (V,E′) is the (unique) simple graph that results from G by
keeping exactly one edge from every bundle of multiple edges. A multigraph G
is a super-multigraph of a simple graph G′, if G′ is the underlying simple graph
of G. In other words, a super-multigraph of the simple graph G′ contains every
edge in G′ at least once, and does not contain any other edges.

A path is an alternating sequence v0, e1, v1, . . . , en, vn of vertices and edges
such that edge ei always connects vertex vi−1 to vi. A path is called simple if
its vertices are pairwise distinct (except possibly the pair v0 and vn). A cycle is
a path with v0 = vn. The length of a path (cycle) is the number of edges in this
path (cycle). A Eulerian path (Eulerian cycle) in a graph G = (V,E) is a path
(cycle) in G that uses every edge in E exactly once. It is known that a directed
multigraph possesses a Eulerian cycle if and only if all vertices have in-degree
equal to their out-degree and if its underlying undirected graph is connected.

2 From DNA Sequencing to Exact Eulerian Cycles

In this section we recapitulate the relationship between DNA sequencing and the
existence of Eulerian paths in certain directed graphs. This relationship has been
observed by Pevzner [15], and lateron has been discussed in detail by B�lażewicz,
Hertz, Kobler & de Werra [5]. The underlying combinatorial ideas go (at least)
back to De Bruijn [7].

For a word u of length k over the alphabet {A,C,G, T}, we denote by
prefixk−1(u) the word that consists of the first k − 1 letters in u, and by
suffixk−1(u) the word that consists of the last k − 1 letters in u. For a set S
of words of length k over the alphabet {A,C,G, T}, we introduce the following
directed graph GS = (VS , AS): The vertex set is defined by
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VS = {prefixk−1(u), suffixk−1(u) : u ∈ S}.
The arc set AS contains |S| arcs that are defined as follows: For every word u ∈ S,
there is a corresponding arc a(u) in AS that goes from the vertex prefixk−1(u)
to the vertex suffixk−1(u).
Theorem 1 (Pevzner [15])
Let S be a set of words of length k over the alphabet {A,C,G, T}, and let GS =
(VS , AS) be the corresponding directed graph. Then there exists a word w of length
|S| + k − 1 with k-spectrum equal to S, if and only if GS possesses a Eulerian
path.

The statement of this theorem is actually quite easy to see: For i = 1, . . . , |S|
let wi denote the subword of w of length k that starts with the ith letter
and ends with the (i + k − 1)th letter. Then S = {w1, . . . , w|S|} and the arcs
a(w1), . . . , a(w|S|) in this ordering form a Eulerian path for GS . Vice versa, every
Eulerian path in GS gives a sequence w1, . . . , w|S| of words of length k that can
be combined into a word of length |S|+ k− 1. To summarize, Theorem 1 yields
a polynomial time algorithm for the special case of problem DNA-SEQ where
every word in S occurs exactly once as a subword in the word w. By consider-
ing the exact number of occurrences of every subword from S, the statement in
Theorem 1 can be generalized to our sequencing problem DNA-SEQ.
Theorem 2 Let S be a set of words of length k over the alphabet {A,C,G, T},
let GS = (VS , AS) be the corresponding directed graph, and let � ≥ |S|+ k− 1 be
an integer.

Then there exists a word w of length � with k-spectrum equal to S, if and
only if there exists a super-multigraph of GS that contains exactly �− k + 1 arcs
and that possesses a Eulerian path.

As an immediate consequence of Theorem 2, problem DNA-SEQ is polyno-
mial time reducible to the problem Ex-EulerPath defined below. Indeed, by
trying all possibilities for a start vertex s and an end vertex t in the graph GS

and by setting β = �−k+1, one may solve an instance of DNA-SEQ by solving
O(|VS |2) = O(|S|2) instances of Ex-EulerPath.

Problem: Exact Eulerian path (Ex-EulerPath)
Input: A simple directed graph G = (V,A). Two vertices s, t ∈ V . An
integer β.
Question: Does there exist a super-multigraph of G that contains ex-
actly β arcs and that possesses a Eulerian path that starts in s and ends
in t?

In the special case of problem Ex-EulerPath where s = t holds, we are
looking for an exact Eulerian cycle in some super-multigraph of G (Ex-

EulerCycle). The general problem Ex-EulerPath is polynomial time re-
ducible to Ex-EulerCycle: Take an instance G of Ex-EulerPath, and cre-
ate a new directed path with β arcs that goes from t to s. Consider this new
graph G+ together with the value γ = 2β as an instance of Ex-EulerCycle.
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It can be easily verified that the original graph G has a super-multigraph with
a Eulerian path of length β going from s to t, if and only if the new graph G+

has a super-multigraph with a Eulerian cycle of length γ = 2β.

Problem: Exact Eulerian cycle (Ex-EulerCycle)
Input: A simple directed graph G = (V,A). An integer γ.
Question: Does there exist a super-multigraph of G that contains ex-
actly γ arcs and that possesses a Eulerian cycle?

To summarize, in this section we have shown that DNA-SEQ is polynomial time
reducible to Ex-EulerPath, and that Ex-EulerPath in turn is polynomial
time reducible to Ex-EulerCycle.

3 From Exact Eulerian Cycles
to Exact Bipartite Matchings

In this section we will show that problem Ex-EulerCycle is polynomial time
reducible to the exact bipartite matching problem Ex-Match. Hence, consider
an arbitrary instance (G; γ) of problem Ex-EulerCycle. We denote by deg+(v)
and deg−(v) the in-degree and the out-degree of the vertex v ∈ V . A vertex v is
called positive if deg+(v) > deg−(v), neutral if deg+(v) = deg−(v), and negative
if deg+(v) < deg−(v). Furthermore, we denote by Δ the sum of deg+(v)−deg−(v)
taken over all positive vertices v. Clearly, this value Δ also equals the sum of
deg−(v) − deg+(v) taken over all negative vertices v. Note furthermore that
|Δ| ≤ |V |2.

For vertices x, y ∈ V and for integers k with 1 ≤ k ≤ |V |, we introduce
the Boolean predicate P [x, y; k] that is true if and only if in the graph G there
exists a (not necessarily simple) directed path of length k that goes from x to y.
Moreover, for integers k with 1 ≤ k ≤ |V | we introduce the Boolean predicate
C[k] that is true if and only if in the graph G there exists a (not necessarily
simple) directed cycle of length k. The truth values of all these predicates can be
determined in polynomial time by standard dynamic programming approaches.

Now assume that the instance (G; γ) of Ex-EulerCycle has answer YES,
and let G∗ = (V,A∗) be a super-multigraph of G with γ arcs that certifies this
answer. That means that the graph G∗ is strongly connected (or equivalently:
that the graph G is strongly connected), and that in G∗ every vertex v ∈ V has
its in-degree equal to its out-degree.

Lemma 3 The arc set A∗ of the graph G∗ can be partitioned as follows:

(A1) The set A of arcs in the underlying simple graph G.
(A2) A set of Δ (not necessarily simple) directed paths of length less or

equal to |V |. Each such path starts in a positive vertex and ends
in a negative vertex. In every positive vertex v, there start exactly
deg+(v) − deg−(v) of these paths. In every positive vertex v, there
end exactly deg−(v)− deg+(v) of these paths.

(A3) A set of (not necessarily simple) directed cycles of length less or equal
to |V |.
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We denote by m(A1), m(A2), m(A3) the number of arcs of type (A1), (A2),
(A3) in such a partition. Now if we want to solve Ex-EulerCycle, we must
determine whether there exist arc sets of type (A1), (A2), (A3) with m(A1) +
m(A2) + m(A3) = γ. Trivially, m(A1) = |A|. Moreover, since |Δ| ≤ |V |2 we get
m(A2) ≤ |V |3. But what are the exact candidate values that m(A2) and m(A3)
can take?

The candidate values for m(A2) can be determined via the exact bipartite
matching problem (see the introductory section for an exact definition of this
problem). This is done as follows. For every positive vertex x in G, we introduce
deg+(x)−deg−(x) independent copies in the set X of the bipartition. For every
negative vertex y in G, we introduce deg−(y) − deg+(y) independent copies in
the set Y of the bipartition. Whenever the predicate P [x, y; k] is true for some
positive vertex x, some negative vertex y, and some integer k with 1 ≤ k ≤ |V |,
we introduce an edge of weight k in E from every copy of x to every copy of y.
Since the edge weights are polynomially bounded by |V |, we may as well encode
them in unary. It is easily verified that α2 is a possible value for m(A2) if and
only if the resulting bipartite graph has a perfect matching of weight exactly α2.
Hence, by solving a polynomial number of exact bipartite matching instances we
can determine for every α2 with 1 ≤ α2 ≤ |V |3 whether it is a candidate value
for m(A2).

The candidate values for m(A3) can be expressed in terms of the predicates
C[k] with 1 ≤ k ≤ |V |. We define C = {k : C[k], 1 ≤ k ≤ |V |} as the set of
possible cycle lengths. In determining whether an integer α3 is a candidate for
m(A3) we distinguish the two cases α3 ≤ |V |2 and α3 > |V |2. The first case
α3 ≤ |V |2 boils down to an unbounded subset sum problem in which the item
sizes in C and the goal value α3 all are polynomially bounded in |V |. It is well-
known that such a polynomially bounded special case of the subset sum problem
is polynomially solvable by dynamic programming (see for instance the book by
Martello & Toth [12]). For the second case α3 > |V |2 we apply a famous result
on the Frobenius problem.

Theorem 4 (Erdős & Graham [8])
Let 0 < z1 < z2 < · · · < zn ≤ Z be integers with gcd(z1, z2, . . . , zn) = 1.
Then every integer above 2Z2/n can be expressed in the form

∑n
i=1 xizi with

non-negative integers x1, . . . , xn.

In our case, all the values in the set C are bounded by |V |; therefore we have
Z = |V | and n = |C|. If |C| ≥ 2 and the greatest common divisor of the numbers
in C is one, then every α3 > |V |2 is a candidate for m(A3). If |C| ≥ 2 and the
greatest common divisor of the numbers in C equals d, then α3 > |V |2 is a
candidate for m(A3) if and only if it is divisible by d. The case |C| = 0 is
straightforward. In the case |C| = 1, a number α3 > |V |2 is a candidate value
for m(A3) if and only if it is divisible by the unique element d in C.

Now let us put everything together. In order to solve an instance of Ex-

EulerCycle, we first determine the candidate values for m(A2) (by solving a
polynomial number of exact bipartite matching instances) and for m(A3) (by
solving a polynomially bounded subset sum instance). The instance has a solu-
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tion if and only if G is strongly connected and γ = m(A1)+m(A2)+m(A3) has
a solution over the candidate values for m(A1), m(A2), m(A3). We know that
m(A1) = |A| and that all candidate values for m(A2) are between 1 and |V |3.
Therefore, we can simply search through all O(|V |3) possibilities for m(A2) and
check whether γ − |A| −m(A2) is a feasible candidate for m(A3). Summarizing,
this yields that problem Ex-EulerCycle indeed is polynomial time reducible
to problem Ex-Match.

4 From Exact Matching to Restricted Exact Matching

In this section we will prove that the exact bipartite matching problem Ex-

Match is polynomial time reducible to the following highly restricted special
case of it.

Problem: Restricted exact bipartite matching (Ex-Match
−)

Input: A bipartite graph B = (X ∪ Y,E) with E ⊆ X × Y that is
connected and cubic. For every edge e ∈ E a weight w(e) ∈ {0, 1, α+ 1}
where α is a given integer.
Question: Does this bipartite graph have a perfect matching of weight
exactly α?

The reduction to Ex-Match
− is done in four steps: The first step is a simple

preprocessing step that makes the graph connected, and that also gets rid of
vertices of degree one. In the second step, we get rid of the vertices of degree
four and more; simultaneously, the graph becomes simple. In the third step, we
bring the edge weights down to 0-1. Finally in the fourth step, we make the
graph cubic. All details of these four steps are omitted in this extended abstract.

Corollary 5 Problem Ex-Match is polynomial time equivalent to its special
case where the bipartite input graph is simple and connected, and has only vertices
of degree two and three, and has only edge weights zero and one.

5 From Restricted Exact Matching Back
to DNA Sequencing

In this section we will prove that the restricted exact bipartite matching problem
Ex-Match

− is polynomial time reducible to problem DNA-SEQ. This will be
done by moving through an auxiliary instance of problem Ex-EulerCycle (see
Section 2 for the definition of this problem).

Indeed, consider a connected, cubic, bipartite graph B = (X ∪ Y,E) as in-
stance for Ex-Match

−. If |X| �= |Y | holds, then the graph B does not possess
any perfect matching, and the answer to Ex-Match

− is trivially NO. Therefore,
we will assume that |X| = |Y | = q holds. Without loss of generality, we assume
furthermore that q is sufficiently large to satisfy 2q ≥ 100q3. Note that any per-
fect matching in B has weight at most q (in case it does not use edges of weight
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α + 1) or weight at least α + 1 (in any other case). Therefore, we will assume
from now on that α ≤ q. We denote by m0, m1, and mα+1 the number of edges
of weight 0, 1, and α + 1, respectively. Note that m0 + m1 + mα+1 = |E| = 3q.
Finally, let f be an arbitrary bijection between the two sets X and Y , and let
Q = 2q + 8.

From the bipartite graph B we will now construct a directed graph G = (V,A)
as an instance of Ex-EulerCycle. This directed graph G consists of 2q primary
vertices and of many secondary vertices. The primary vertices are grouped into
the two sets X ′ = {x′|x ∈ X} and Y ′ = {y′|y ∈ Y }. The arcs in G are defined
as follows.

(P1) For every edge e = [x, y] in B with x ∈ X and y ∈ Y , there is a
corresponding directed path P (e) in G that goes from x′ to y′. If the
edge e has weight w(e), then this path has length (w(e) + 1)Q.

(P2) For every y ∈ Y and x = f(y) in B, there are four directed paths of
length 8(q2 + q)Q in G that all connect y′ to x′.

All these introduced directed paths are internally pairwise vertex-disjoint. Their
internal vertices (that all have in-degree and out-degree one) form the secondary
vertices of the graph G. Every vertex in X ′ has in-degree four and out-degree
three. Every vertex in Y ′ has in-degree three and out-degree four. Since the
bipartite graph B is connected, also the constructed graph G is connected. A
crude estimation shows that G has less than 50q3Q vertices.

Lemma 6 The instance B of Ex-Match
− has a perfect matching of weight

exactly α, if and only if the constructed instance G of Ex-EulerCycle has a
super-multigraph with a Eulerian cycle of length exactly

γ = (m0 Q + m1 2Q + mα+1 (α + 2)Q) + 32q (q2 + q)Q + (α + q)Q.

Proof. (Only if). Assume that B has a perfect matching M of weight α. We
construct a super-multigraph G∗ of G, in which all vertices in X ′ ∪ Y ′ have in-
degree and out-degree four. We take all arcs from G into G∗. Moreover, for each
of the q edges e ∈M , we take one additional copy of the directed path P (e) into
G∗. This completes the description of G∗. It is easily verified that in G∗ every
vertex has in-degree equal to out-degree. Since the graph G∗ is also connected,
it has Eulerian cycle.

Now let us determine the number of arcs in G∗. First, G∗ contains all paths
of type (P1). There are m0 of those paths that have length Q, m1 of length
2Q, and mα+1 of length (α+ 2)Q. Secondly, G∗ contains all paths of type (P2).
There are 4q of them, and each has length 8(q2 + q)Q. Thirdly, there are the
arcs in the additional q paths P (e) with e ∈M . These paths contribute∑

e∈M

(w(e) + 1)Q = Q
∑
e∈M

w(e) + Q |M | = (α + q)Q.

arcs. Altogether, this yields exactly γ arcs in G∗.



DNA Sequencing, Eulerian Graphs 21

(If). Assume that G has a super-multigraph G∗ with a Eulerian cycle of
length γ. It can be seen that this multigraph G∗ must consist of one or more
copies of every path introduced in (P1) and (P2). We claim that G∗ cannot
contain two copies of any path of type (P2). Otherwise, the total number of arcs
in the copies of paths of type (P2) is at least

(4q + 1) · 8(q2 + q)Q = 6(q2 + q)Q + 32q (q2 + q)Q + 2(q2 + q)Q > γ.

Since G∗ has only γ arcs, we have arrived at the desired contradiction. We
conclude that every path of type (P2) shows up exactly once in G∗, and hence
these paths altogether contribute 32q (q2 + q)Q arcs. As a consequence, in G∗

every vertex in X ′ has in-degree four, and every vertex in Y ′ has out-degree four.
Since G∗ has a Eulerian cycle, every vertex in X ′ must have out-degree four,

and every vertex in Y ′ must have in-degree four. These degrees can only result
from copies of paths of type (P1). Each path P (e) with e ∈ E must show up at
least once in G∗. This yields (m0 Q+m1 2Q+mα+1 (α+ 2)Q) arcs, out-degrees
three for vertices in X ′, and in-degrees three for vertices in Y ′. The remaining
(α + q)Q arcs in G∗ must come from a system of q paths of type (P1) that
connect every vertex in X ′ to exactly one vertex in Y ′. In the bipartite graph
B, the edge set M that contains those edges e for which P (e) is in this system
of paths forms a perfect matching of weight α.

Our next goal is to establish that for an appropriate value k, there exists
a k-spectrum S of words over the alphabet {A,C,G, T} such that the above
constructed directed graph G = (V,A) equals GS = (VS , AS); see Section 2 for
definitions. The technical main difficulty is to ensure that distinct vertices in V
are associated with distinct DNA words of length k − 1.

We partition the vertices in V into a set C of so-called crucial and a set V −C
of non-crucial vertices. Every vertex in the set X ′∪Y ′ is crucial. Moreover, every
vertex on the paths of type (P1) and (P2) whose distance to X ′ ∪Y ′ is divisible
by Q is a crucial vertex. Note that the length of every path of type (P1) and (P2)
is a multiple of Q, and that the crucial vertices divide these paths into connected
chunks of Q arcs and Q − 1 non-crucial vertices. If there is a directed path of
length Q from a crucial vertex u to another crucial vertex v in G, then we say
that u is a predecessor of v, and that v is a successor of u. It can be seen that
every vertex in X ′ has four predecessors and three successors, that every vertex
in Y ′ has three predecessors and four successor, and that all remaining crucial
vertices have one predecessor and one successor. Moreover, it can be checked
that |C| ≤ 50q3 holds.

For every crucial vertex v ∈ C, we fix two labels LLabel(v) and RLabel(v).
These labels are 2|C| pairwise distinct words of length q over the alphabet
{A,G}. We need 2|C| ≤ 100q3 distinct labels that we can choose from 2q words.
Since we assumed 100q3 ≤ 2q, such pairwise distinct labels indeed exist and can
be found easily. With the help of these labels, we will now define for every vertex
z ∈ V a corresponding word Word(z) of length Q = 2q + 8.
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– If z is a crucial vertex, then Word(z) starts with one of the letters A,C,G, T ,
followed by the label LLabel(z), followed by a string of six T ’s, then followed
by the label RLabel(z), and ending with one of the letters A,C,G, T . For
crucial vertices, these words fulfill the following conditions: (W1) If v1 and
v2 are successors of the same vertex u, then Word(v1) and Word(v2) end
with different letters. (W2) If u1 and u2 are predecessors of the same vertex
v, then Word(u1) and Word(u2) start with different letters. Since every
crucial vertex has at most four successors and at most four predecessors,
these conditions can indeed be met with the alphabet {A,C,G, T} of size
four.

– If z is a non-crucial vertex, then it lies on a uniquely defined directed path
of length Q that connects some crucial vertex u to another crucial vertex v.
Let u = z0, z1, . . . , zQ = v denote the sequence of vertices along such a path.
Then Word(zi) consists of the last Q − i letters of Word(u) followed by
the first i letters of Word(v).

Lemma 7 For u, v ∈ V with u �= v, we always have Word(u) �= Word(v).

Proof. Consider a word Word(z) of length 2q + 8 over {A,C,G, T}. We show
that from Word(z), we can uniquely localize the corresponding vertex z in G.

By our construction, Word(z) either contains a subword of six consecutive
T ’s, or it starts with i consecutive T ’s and ends with 6 − i consecutive T ’s for
some 1 ≤ i ≤ 5. In either case, the q letters preceding or succeeding these T ’s in
Word(z) will form one of the labels LLabel(v) or RLabel(v) for some crucial
vertex v. If vertex v is not contained in X ′∪Y ′, then the relative position of this
label in Word(z) uniquely determines the vertex z. If v is contained in X ′∪Y ′,
then either (i) Word(z) contains the first letter of the word of a successor of v, or
(ii) it contains the last letter of the word of a predecessor of v, or (iii) it contains
none of these letters. In the cases (i) and (ii), by conditions (W1) and (W2)
these letters uniquely identify the corresponding successor or predecessor. Then
we can again use the relative position of the label LLabel(v) or RLabel(v) in
Word(z) to uniquely determine the vertex z. Finally, in case (iii) the vertex z
must coincide with v.

Now we are almost done: We choose k = Q + 1 = 2q + 9 as the word length
for the k-spectrum S. Every vertex v ∈ V is labeled by the word Word(v) of
length k− 1, and thus becomes a member of VS . By Lemma 7, different vertices
are labeled by different words. For every arc a = (u, v) ∈ A, the last k−2 letters
in Word(u) agree with the first k−2 letters in Word(v). Hence, this arc a can
be correctly encoded by the word Word(a) of length k that starts with the first
letter of Word(u), followed by these k− 2 agreeing letters, and ending with the
last letter of Word(v). We define S = {Word(a)|a ∈ A} as our k-spectrum,
and we thus derive GS = G. By the above discussion and by Lemma 6, the graph
GS has a super-multigraph with a Eulerian cycle of length γ, if and only if the
bipartite graph B has a perfect matching of weight α.
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In the final step, we move from problem Ex-EulerCycle to problem Ex-

EulerPath: Let a = (u, v) be an arc on one of the paths of type (P2) such that
u and v both are non-crucial vertices. We remove this arc a from the graph G,
and we simultaneously define Sfinal = S − {Word(a)}. This leads to a vertex
u of out-degree 0 and to a vertex v of in-degree 0. It can be verified that the
resulting graph has a super-multigraph with a Eulerian path of length γ−1 (that
of course starts in vertex v and ends in vertex u), if and only if the bipartite
graph B has a perfect matching of weight α. Finally, we get from Theorem 2
that there exists a word of length γ−1 with k-spectrum Sfinal, if and only if the
bipartite graph B has a perfect matching of weight α. This means that problem
Ex-Match

− is polynomially reducible to problem DNA-SEQ.
By combining the reductions from Sections 2 through 5, we arrive at the

main result of this paper.

Theorem 8 The two problems Ex-Match and DNA-SEQ are polynomial time
reducible to each other.
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On the Minimum Size
of a Contraction-Universal Tree

Olivier Bodini
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46 Allée d’Italie, 69364 Lyon Cedex 05, France

Abstract. A tree Tuni is m-universal for the class of trees if for
every tree T of size m, T can be obtained from Tuni by successive
contractions of edges. We prove that a m-universal tree for the class
of trees has at least m ln(m)+(γ−1)m+O(1) edges where γ is the
Euler’s constant and we build such a tree with less than mc edges
for a fixed constant c = 1.984 . . .

1 Introduction

What is the minimum size of an object in which every object of size m embeds?
Issued from the category theory, questions of this kind appeared in graph theory.
For instance, R. Rado [1] proved the existence of an “initial countable graph”.
Recently, Z. Füredi and P. Komjàth [2] studied a connected question.

We use here the following definition: given a sub-class C of graphs (trees,
planar graphs, etc.), a graph Guni is m-universal for C if for every graph G of
size m in C,G is a minor of Guni, i.e. it can be obtained from Guni by successive
contractions or deletions of edges.

Inspired by the Robertson and Seymour work [3] on graph minors, P. Duchet
asked whether a polynomial bound in m could be found for the size of a m-
universal tree for the class of trees. We give here a positive sub-quadratic answer.

From an applied point of view, such an object would possibly allows us to
define a tree from the representation of its contraction.

The main results of this paper are the following theorems which give bounds
for the minimum size of a m-universal tree for the class of trees:

Theorem 1. A m-universal tree for the class of trees has at least m ln(m) +
(γ − 1)m + O(1) edges where γ is the Euler’s constant.

Theorem 2. There exists a m-universal tree Tuni for the class of trees with less
than mc edges for a fixed constant c = 1.984...

Our proof follows a recursive construction where large trees are obtained by some
amalgamation process involving simpler trees. With this method, the constant
c could be reduced to 1.88... but it seems difficult to improve this value.

We conclude the paper with related open questions.

L. Kučera (Ed.): WG 2002, LNCS 2573, pp. 25–34, 2002.
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2 Terminology

Our graphs are undirected and simple (with neither loops nor multiple edges).
We denote by G(V,E) a graph (its vertex set is V (G) and its edge set is E(G)
(a subset of the family of all the V (G)-subsets of cardinality 2)). Referring to C.
Thomassen [4], we recall some basic definitions that are useful for our purpose:

We denote by Pn the path of size n.
If x is a vertex then d(x), the degree of x, is the number of edges incident

to x.
Let e be an edge of E(G), the graph denoted by G − e is the graph on the

vertex set of G, whose edge set is the edge set of G without e. We call classically
this operation deletion.

Let e = {a, b} be an edge of G(V,E), we name contraction of G along e, the
graph denoted by G/e = H(V ′, E′), with V ′ = (V/ {a, b})∪{c} where c is a new
vertex and E′ the edge set which contains all the edges of the sub-graph G1 on
V/e and all the edges of the form {c, x} for {a, x} or {b, x} belonging to E.

We say that H is a minor of G if and only if we can obtain it from G by
successively deleting and /or contracting edges, in an other way, we can define
the set M(G) of minors of G by the recursive formula:

M (G) = G ∪
⎛⎝ ⋃

e∈E(G)

M (G/e)

⎞⎠ ∪
⎛⎝ ⋃

e∈E(G)

M (G− e)

⎞⎠
The notion of minor induces a partial order on graphs. We write A � B to

mean “A is a minor of B”.
For technical reasons, we prefer to use the size of a tree (edge number) rather

than its order (vertex number).
Finally, let us recall that, a graph Guni is m-universal for a sub-class C of

graphs if for every element G of C with m edges, G is a minor of Guni.

3 A Lower Bound

In this section, we prove that a m-universal tree Tuni for the trees has asymp-
totically at least m ln(m) edges. We use the fact that Tuni has to contain all
spiders of size m as minors. A spider S on a vertex w is a tree such that
∀v ∈ V (S) \ {w} , d(v) ≤ 2. We denote the spider constituted by paths of lengths
1 ≤ m1 ≤ ... ≤ mk by Sp(m1, ...,mk) (Fig. 1).

Fig. 1. Sp(2, 2, 2, 3, 3)
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Definition 1. Let T be a tree, we denote by ∂T the subtree of T with V (∂T ) =
V (T )\A, where A is the set of the leaves of T . Also, we denote by ∂k the k-th
iteration of ∂.

Lemma 1. Sp(m1, ...,mk) � T involves that ∂Sp(m1, ...,mk) � ∂T . Moreover,
if for all i, mi = 1 then ∂Sp(m1, ...,mk) is a vertex. Otherwise, put a the first
value such that ma > 1, we have ∂Sp(m1, ...,mk) = Sp(ma − 1, ...,mk − 1)
excepted for k = 1, in this last case we have ∂Sp(m1) = Sp(m1 − 2).

Proof. This just follows from an observation. 
�

Lemma 2. For every tree T , Sp(m1, ...,mk) � T ⇒ T has at least k leaves.

Proof. Trivial. 
�

Theorem 3. A m-universal tree Tuni for the class of trees has at least
m∑

i=1,i �=2

⌊
m
i

⌋
edges.

Proof. A m-universal tree Tuni for the class of trees has to contain as minors all
spiders of size m. So, for all p it contains as minors the spiders Sp(p, ..., p) where
we have

⌊
m
p

⌋
times the letter p. By the lemma 1, for all p ≤ m

2 , Sp(1, ..., 1) �
∂p−1Tuni and if m is odd, Sp(1) � ∂m

2 �−1Tuni. Moreover, it is clear that the
terminal edges of the ∂pTuni constitute a partition of Tuni. By the lemma 2,

this involves that Tuni has at least
m

2 �∑
i=1

⌊
m
i

⌋
edges if m is even and 1 +

m
2 �∑

i=1

⌊
m
i

⌋
edges if m is odd. An easy calculation proves that these values are always equal

to
m∑

i=1,i �=2

⌊
m
i

⌋
. 
�

Proof. (of the theorem 1) it follows from the usual estimate
n∑

i=1

1
i ∼ ln (n) + γ +

O
(

1
n

)
and the inequality

m∑
i=1,i �=2

⌊
m
i

⌋ ≥ 1 +
m−1∑

i=1,i �=2

(
m
i − 1

)
. 
�

What the above proof shows, in fact, is the following:

Corollary 1. A minimum m-universal spider for the class of spiders has
m∑

i=1,i �=2

⌊
m
i

⌋
edges.

Proof. The spider Sp
(⌊

m
m

⌋
,
⌊

m
m−1

⌋
, ...,
⌊

m
2

⌋
,
⌈

m
2

⌉)
is clearly a m-universal spi-

der of size
m∑

i=1,i �=2

⌊
m
i

⌋
for the class of spiders, and by theorem 3 it is a minimum

value. 
�
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4 The Main Stem

In the sequel, we deal with rooted graph, i.e. graph G where we can distinguish a
special vertex denoted by r(G), called the root. Conventionally, any contracted
graph G′ of same rooted graph G will be rooted at the unique vertex which is
the image of the root under the contraction mapping, we say in this case that
the rooted graph G′ is a rooted contraction of G. Note that, the contraction
operator suffices to obtain all minor trees of a tree. So, we can now define the
following new notion for sub-classes of rooted trees: a rooted tree Tuni is strongly
m-universal for a sub-classes C of rooted trees if for every rooted tree T in C
of size m,T is a rooted contraction of Tuni. The concept of root is introduced to
avoid problems with graph isomorphisms that, otherwise would greatly impede
our inductive proof.

For every edge e of a tree T , the forest T\e has two connected components.
We call e-branch, denoted by Be, the connected component of T ′ which does not
contain r (T ), we define the root of Be as e ∩ V (Be) .

A main stem of a rooted tree of size m is defined as a path P which is issued
from the root and such that for all e-branches Be with e /∈ E (C), we have
|E (Be)| <

⌊
m
2

⌋
(Fig. 2).

Fig. 2. A main stem in bold

The following lemma suggests the procedure which will be used to find a sub-
quadratic upper bound for universal trees. Roughly speaking, it endows every
tree with some recursive structure constructed with the help of main stems.

Lemma 3. Every rooted tree has a main stem.

Proof. By induction on the size of the rooted tree. Let T be a rooted tree, if
T has one or two edges, it is trivial. Otherwise let us consider the sub-graph
T\r (T ), which is a forest. We choose a connected component T1 with maximum
size and we denote by b1 the unique vertex of T1 which is adjacent to r(T ). Tree
T1, rooted in b1, has, by the induction hypothesis, a main stem B. Then the
path (V (B) ∪ {r (T )} , E (B) ∪ {{r (T ) , b1}}) is a main stem of T . 
�

Remark 1. A tree may possess in general several main stems. Let us notice also
that a main stem is not necessarily one of the longest paths which contain the
root.
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Fig. 3. A rooted brush Fig. 4. A rooted comb

5 The Upper Bound

We need some new definitions. A rooted brush (Fig. 3) is a rooted tree such that
the vertices of degree greater than 2 are on a same path P issued from the root.

A rooted comb X (Fig.4) is a rooted brush with d (r (X)) ≤ 2 and ∀v ∈ V (X),
d (v) ≤ 3.

The length of a rooted comb corresponds to the length of the longest path P
issued from the root which contains all vertices of degree greater than 2.

To obtain an upper bound, we consider two building processes: the first one,
a brushing MB , maps rooted trees with a main stem into rooted brushes, the
second one, a ramifying MT , consists in obtaining a sequence of rooted trees,
assuming that we have an increasing sequence of rooted combs. We note Mk

T the
k-th element of the sequence. These building processes will possess the following
fundamental property:

Property 1. Let (T, σ) a rooted tree with a main stem σ and (Xn)n∈N
a sequence

of rooted combs:(∀T ′ � T,MB (T ′, σ) � X|E(T ′)|
)⇒ T �M

|E(T )|
T

(
(Xn)n∈N

)
.

Lemma 4. If building processes verify the property 1 and if for all i, the rooted
comb Xi is strongly i-universal for the class of rooted brushes then the rooted
tree Mm

T

(
(Xn)n∈N

)
is strongly m-universal for the class of rooted trees.

Proof. It is just an interpretation of the property. 
�

We now establish the existence of building processes which satisfy property 1.

Brushing MB (Fig. 5). Let T be a rooted tree with a main stem σ. We are
going to associate a rooted brush B with it, denoted MB (T, σ) of the same size
built from the same main stem σ with the following process: every e-branch Be

connected to the main stem by edge e is replaced by a path of length |E (Be)|
connected by the same edge.

Ramifying Mk
T . For the second building process we work in two steps:



30 Olivier Bodini

Fig. 5.

Fig. 6. A rooted comb [T1, T2, T3]

First step. Given rooted trees T1, ..., Tk with disjoint vertex sets, we build
another rooted tree T , denoted [T1, ..., Tk], in the following way:

V (T ) =
k⋃

i=1

V (Ti) ∪ {v1, ..., vk+1} ,

E(T ) =
k⋃

i=1

E (Ti) ∪ {{v1, r (T1)} , ..., {vk, r (Tk)}} ∪ {{v1, v2} , ..., {vk, vk+1}} ,

and r(T ) = v1.
If Ti = ∅, conventionally {vi, r (Ti)} = ∅.
Prosaically, from a path Pk = [v1, ..., vk+1] of size k and from k rooted trees

T1, ..., Tk, we build a rooted tree joining a branch Ti to the vertex vi of P (Fig. 6).
Second step. By convention, P−1 = ∅.

We are going to construct rooted trees Tk in the following way:
T−1 = ∅, T0 = X0, and ∀i, 1 ≤ i ≤ k, Ti =

[
Tmin(u1,i−1), ..., Tmin(uni

,i−1)
]

if

Xi =
[
Pu1 , ..., Puni

]
.

We can now define Mk
T :

Mk
T

(
(Xn)n∈N

)
= Tk.

Lemma 5. The building processes described above verify the property 1.

Proof. First, note that MT

(
(Xn)n∈N

)
is an increasing sequence. We prove the

lemma by recurrence on the size m of T . When m = 0 or m = 1, this is
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trivial. We suppose the property is verified for T with size m < m0. Let T be
a rooted tree of size m0 with a stem σ, we note e1, ..., ek the edges of T issued
from σ which do not belong to σ. To each e-branch of T with e ∈ {e1, ..., ek}
corresponds by MB a e-branch (it is a path of same size) in MB (T, σ). So
there exists k distinct e-branches R1, ..., Rk in Xm0 that we can respectively
contract to obtain each e-branch with e = e1, ..., ek in MB (T, σ). By recurrence

hypothesis, we have for 1 ≤ i ≤ k,Bei
�M

|E(Bei)|
T

(
(Xn)n∈N

)
and we have also

M
|E(Bei)|
T

(
(Xn)n∈N

) � M
|E(Ri)|
T

(
(Xn)n∈N

)
. So each e-branch of T is a minor

contraction of M |E(Ri)|
T

(
(Xn)n∈N

)
. By associativity of contraction map, we have

T �M
|E(T )|
T

(
(Xn)n∈N

)
. 
�

In this phase, we determine a sequence of rooted combs (Xi)i∈N
such that

the rooted combs Xi are strongly i-universal for the rooted brushes.
In order to achieve this result, we define Fp as the set of functions f :

{1, ..., p} → {1, ..., ⌊p
2

⌋}
satisfying the following property:

(∀n ∈ {1, ..., p})
(
∀i ≤

⌊n
2

⌋)
(∃k ∈ N) (n− i + 1 ≤ k ≤ n and f(k) ≥ i)

Lemma 6. Fp is not empty, it contains the following function ϕp, defined for
1 ≤ i ≤ p by:

ϕp (i) = min
(
2υ2(i)+1 − 1,

⌊p
2

⌋
, i− 1

)
where υ2 (k) is the 2-valuation of k (i.e. the greatest power of 2 dividing k).

Proof. The verification is obvious. 
�

Lemma 7. For every sequence F = (f1, f2, ...) of functions such that fi ∈ Fi for
i ≥ 1 and fi (k) ≤ fi+1 (k) for all i ≥ 1 and 1 ≤ k ≤ i, the rooted comb defined by
CombF

m = [Pfm
1 , ..., Pfm

m ] where Pfm
i designs the path of size fm(m+1− i)−1,

for 1 ≤ i ≤ m is strongly m-universal for the rooted brushes.

Proof. By induction on m : CombF
1 is strongly 1-universal for the rooted brushes.

Suppose that CombF
i has all rooted brushes with i− 1 edges as rooted con-

tractions.
We consider two cases depending on the shape of a rooted brush B of size i:

case 1 case 2
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Brushes of case 1 are clearly rooted contractions of the rooted comb CombF
i

(B′ � CombF
i−1, so B � [P0, Pf i−1

1 , ..., Pf i−1
i−1

] � CombF
i ). Let us study case 2:

B′ is by induction hypothesis a rooted contraction of the rooted comb CombF
i−j ,

moreover CombF
i−j �

[
Pf i

j+1, ..., Pf i
i

]
. Finally, by the property of fi, there

exists 1 ≤ α ≤ j, such that Pf i
α has more than j edges. Linking these two

points, we can conclude that the rooted brush B is always a rooted contraction
of the rooted comb CombF

i . 
�
The rooted comb built as in lemma 7 will be said to be associated to the

sequence F and denoted by CombF
m.

Theorem 4. A minimum strongly m-universal rooted brush for the rooted
brushes has O(m ln(m)) edges.

Proof. Proceeding as for theorem 1, we obtain, mutatis mutandis, that a m-
universal brush for the brushes has at least m ln(m)+O(m) edges. This order of
magnitude is precisely the size of the strongly m-universal rooted comb CombF

m

for the class of rooted brushes. 
�
We have this immediate corollary:

Corollary 2. A minimum m-universal brush for the brushes has O(m ln(m))
edges.

By convention, we put CombF
0 = P0 (tree reduced in a vertex)

We define TreeF
m = Mm

T

((
CombF

n

)
n∈N

)
.

As before, we will say that the tree built in such a way is recursively associated
to the sequence F and denoted by TreeF

m.
Thus, we have:

Theorem 5. The rooted tree TreeF
m is strongly m-universal for the class of

rooted trees.

We now analyze the size of TreeF
m.

Proposition 1. Let F = (f1, f2, ...) be a sequence of functions such that fi ∈ Fi

for i ≥ 1. The size of a m-universal tree constructed from the sequence is given
by the following recursive formula:

u−1 = −1, u0 = 0 and uk = 2k − 1 +
k∑

i=1

ufk(i)−1

Proof. It derives from the following observation:
m edges constitute the main stem, we have to add m− 1 edges to link branches

to the main stem and
k∑

i=1

ufk(i)−1 edges for the branches. 
�

Theorem 6. There is a sequence of functions G = (g1, g2, ...) such that gi ∈ Fi

and
∣∣E (TreeG

m

)∣∣ < (2m)c where c = 1.984... is the unique positive solution of
the equation 1

2c + 1
22c + 1

2(c−1)−1
− 1

2c−1 = 1.
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Proof. We take the following sequence of functions:
gm (i) = min

(
2υ2(i)+1, i

)
if i < m and i even, gm (i) = 1 if i odd and gm (m) =⌊

m
4

⌋
. It is clear that, if m is a power of 2, the comb CombG

m is strongly m-
universal for the brushes.

In fact, the function gm takes the value 2υ2(i)+1 when i is not a power of 2,

otherwise it is equal to i. Thanks to this remark and with um < m +
m∑

i=1

ufm(i),

(the sequence of sizes is increasing), we obtain u2n < 2n + 2n−1 +
n−1∑
i=2

2n−iu2i −
n−1∑
i=2

u2i +u2n−1 +u2n−2 . Thus, in evaluating the sums and reorganizing the terms,

we obtain:
u2n < αn + 2ncβ

with

αn = 2n−1 + 1 + 2c +
1

2c − 1
−
(

2n

2(c−1) − 1
+ 2n(c−1)

)
β =

1
2c

+
1

22c
+

1
2(c−1) − 1

− 1
2c − 1

Now αn < 0 when m > 1 and β ≤ 1 by definition of c.
So u2n < 2nc, hence um < (2m)c. 
�

Remark 2. We observe that c = ln(x)
ln(2) , where x is the positive root of X4−5X3+

4X2 + X − 2 = 0.

Theorem 2 then follows since any rooted tree which is strongly m-universal
for the rooted trees is also clearly m-universal for the class of trees.

6 Conclusion and Related Questions

When using the sequence Φ = (ϕ1, ϕ2, ...) of lemma 7, the induction step leads to
involved expressions that do not allow us to find the asymptotic behavior of the
corresponding term um. A computer simulation gives that such a m-universal
tree for the trees has less than m1.88 edges. In any case, the constructive approach
we proposed here, seems to be hopeless to reach the asymptotic best size of a
m-universal tree for the trees.

Conjecture 1. The minimal size of a m-universal tree for the trees is m1+o(1).

As a possible way to prove such a conjecture, it would be interesting to obtain
an explicit effective coding of a tree of size m using a list of contracted edges
taken in a m-universal tree for the trees.

A variant of our problem consists in determining a minimum tree which
contains as a subtree every tree of size m. This is closely related to a well known
still open conjecture due to Erdös and Sös (see [5]).



34 Olivier Bodini

References

1. R. Rado, Universal graphs and universal functions, Acta Arith., 9 (1964), 331-340.
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Abstract. We present a linear time algorithm based on Schnyder trees
that produces planar polyline drawings. These drawings have the optimal
area ( 4(n−1)2

9
) and width (� 2(n−1)

3
�), and have at most n−2 bends, where

n is the number of vertices of the graph. Moreover, at most one bend per
edge is needed.

1 Introduction

The subject of graph drawing has received intense attention due to a large variety
of applications. We focus on planar graph drawings. Such graphs can be drawn
without any edge crossing. So, several classes of drawings [1, 2, 9, 11, 17, 19] are
needed. Common objectives include small area, few bends and good angular res-
olution. In this paper, we deal with polyline drawings [3, 4, 7, 14–16]. A polyline
drawing is a drawing of a graph in which each edge is represented by a polygonal
chain. In this paper, we focus on the grid size with a small number of bends.

In general, three kinds of criteria are used for polyline drawings: the grid
size, the angular resolution and the number of bends. Clearly, it is difficult to
optimize simultaneously all of them. In [14], a tradeoff is proposed. Precisely,
a linear-time algorithm has been given to construct a polyline drawing of any
plane graph with n vertices and maximum degree d on a (2n − 5) × ( 3n

2 − 7
2 )

grid with at most 5n− 15 bends and minimum angle > 2
d where each edge has

at most three bends. In [7], polyline drawings with one bend per edge and an
angular resolution of Θ(1/d(v)) on a grid of size 30n× 15n are given where d(v)
is the degree of a vertex v and n the number of vertices of the graph.

Our goal is to have a tradeoff between the grid size and the number of bends.
It is known from [20] that any plane graph can be drawn in a (n−2)×(n−2) grid
without bends; i.e. straight-line segments between vertices (for n ≥ 3). However,
no grid smaller than ( 2(n−1)

3 �) × ( 2(n−1)
3 �) can be used for such a drawing

[12, 18].
We present an algorithm that produces polyline drawings with a grid (n −

p
2�−1)×(p+1) where p ≤ 2n−5

3 , the number of bends is at most n−2 and each
edge has at most one bend. If we consider optimal width polyline drawings, we
� This work has been supported by the TMR Research Network GETGRATS.
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can obtain drawings of height at most (n−2). The width and the area of the grid
are optimal. Since these drawings are obtained in linear-time, our contribution
has both a theoretical interest and a practical application to graph drawing.

With a maximal plane graph G, is associated a realizer R [20], which is a
partition of the set of internal edges into three particular trees. This partition
can be computed in linear-time. Realizers are useful for many graph algorithms
[6, 10, 13, 16], and particularly for graph drawing [8, 21]. We use the realizer of a
plane graph to obtain a polyline drawing. The algorithm consists of mainly two
steps. The first step is to compute a function, called weak-stratification, which
associates to each vertex a horizontal layer corresponding to its ordinate. The
second step is to compute the vertex abscissas and the bend coordinates. The
weak-stratification verifies a set of conditions which guarantees that it is possible
to compute such vertex abscissas and the bend coordinates so that the resulting
polyline drawing is planar.

The paper is organized as follows. In Section 2, we recall a few definitions and
we present realizers. In Section 3, the weak-stratification is defined and is used
to obtain a polyline drawing algorithm of a plane graph. We give an algorithm
that builds a weak-stratification associated with a realizer in Section 4.

2 Realizers of Plane Graphs

We assume that the reader is familiar with graph theory, and we use definitions
from [2]. The graphs, we deal with, are simple and undirected. A plane graph
is a planar graph with a given planar embedding, represented combinatorially
by cyclic orderings of edges incident to all vertices, and by the choice of the
external face. The vertices of the external face are also called external and the
other vertices are called inner vertices.

Definition 1 (Schnyder [20]) A realizer of a maximal plane graph G is a par-
tition of the interior edges of G in three sets T0, T1, T2 of directed edges such
that for each interior vertex u there hold:

1. u has out-degree exactly one in each of T0, T1, T2.
2. The counter-clockwise order of the edges incident on u is: leaving in T0,

entering in T2, leaving in T1, entering in T0, leaving in T2 and entering in
T1 (see Fig. 1).

Fig. 1. Edge coloration and orientation around a vertex.
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Schnyder showed that, T0, T1 and T2 are three ordered rooted trees where their
edges are oriented toward their roots, which are the external vertices v0, v1, v2.
An example of a maximal plane graph, and one of its realizer is given in Fig. 2.

Fig. 2. An example of a realizer (a graph on the left side, and one of its realizers on
the right side).

In the sequel, the edges of the tree Ti are colored with color i, where i ∈
{0, 1, 2}. Pi(u) denotes the parent of u in the tree Ti. Chi(u) denotes the set
of children of u in the tree Ti. u is a descendant of v in T if u is a child of v
or u is a child of a descendant of v. If u is a descendant of v, v is an ancestor
of u. If v is an ancestor of u, u i−→ v denotes the path colored i from u to v.
Moreover, v i←− u denotes also u i−→ v. If Chi(u) = ∅ u is a leaf of Ti otherwise,
u is an inner vertex of Ti. We write u1 >i

ccw u2 (resp. u1 >i
cw u2) if u1 is

after u2 in the counterclockwise preordering (resp. clockwise preordering) of the
tree Ti. Counterclockwise (resp. clockwise) preordering of a tree means visiting
the root, then recursively the subtrees in the counterclockwise (resp. clockwise)
order. Similarly, counterclockwise postordering (resp. clockwise postordering) of
a tree Ti means recursively visiting the subtrees in the counterclockwise (resp.
clockwise) order and then visiting the root.

Theorem 1 [20] Let G be a maximal plane graph. A realizer R of G can be
computed in linear-time.

3 Polyline Drawing

In this section, we show how to compute a planar polyline drawing of a graph
such that a weak-stratification is given. We recall first a few definitions and
results related to polyline drawings.

A polyline drawing of a graph G is a drawing of G where the vertices are
represented by points having integer coordinates and where edges are represented
by polylines whose bends have integer coordinates. A planar polyline drawing is a
polyline drawing without edge crossings. The width of a given polyline drawing is
defined as the difference between the x-coordinates of the leftmost vertex or bend
and the rightmost vertex or bend. Similarly, the height of a polyline drawing is
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H 3

H 6

Fig. 3. Construction of the graph H6.

given by the difference between the y-coordinates of the highest vertex or bend
and the lowest vertex or bend.

Property 1 For each n ≥ 3, there is an n-vertex plane graph Hn such that the
width and the height of each polyline drawing of Hn is at least  2(n−1)

3 � and the
grid area is at least  2(n−1)

3 � ×  2(n−1)
3 �

Proof. The result has been proved for straight-line drawings [12], using nested
triangles (see Fig. 3). Using the same construction, the result can be directly gen-
eralized to polyline drawings: a drawing of Hn needs at least two more columns
and at least two more rows than a drawing of Hn−3

3.1 Outline of the Polyline Drawing of a Realizer

Given a plane graph G and one of its realizers R = (T0, T1, T2) we compute a
planar polyline drawing of G.

After choosing a tree of R, say T0, a column is allocated to each leaf u of T0

in clockwise prefix order. We denote by x(u) this column. Each inner vertex u
of T0 is placed on a column of a particular leaf of its subtree.

It remains to compute the ordinate y(u) of each vertex u of G. In order to
compute these ordinates, we first set some rules for the edge bend positions:

– If a bend is needed for an edge (u, P0(u)), it will be located at (x(u),
y(P0(u)) + 1).

– If a bend is needed for an edge (u,P1(u)), it will be located at (x(last leaf(u)),
y(u)), where last leaf(u) denotes the last leaf of the subtree of u.

– Similarly, if a bend is needed for an edge (u, P2(u)), it will be located at
(x(first leaf(u)), y(u)), where first leaf(u) denotes the first leaf of the
subtree of u.

Fig. 4 illustrates the way the different kinds of edges are drawn.
For a planar polyline drawing, partial overlapping of edges are also forbidden.

Therefore, other rules are needed. Fig. 5 illustrates an overlapping configuration.
We propose a new set of rules on vertex abscissas: if v = P2(u) and y(v) = y(u)
then x(v) = x(last leaf(v)) else x(v) = x(first leaf(v)).

Finally, we will consider the external edges (v1, v0) and (v2, v0) as if they
were in T0 and the edge (v1, v2) as is it was in T2.
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Fig. 4. Edge Drawings.

Fig. 5. Edge overlapping configuration and its corrected configuration.

Having defined the drawing design of the realizer (and so the graph), we pro-
pose a set of constraints on vertex ordinates which ensures that such a drawing
is possible. In the sequel, ordinates satisfying these constraints will be computed
in linear-time for any realizer. Moreover, we will show that the obtained drawing
grid size is optimal.

3.2 Weak-Stratification of a Realizer

A Layering of a graph G is an application from the set of vertices of G to the
set of non-negative integers. As we will show, a layering will define the layers of
the plane on which the vertices will be positioned. In order to obtain a planar
polyline drawing, a particular layering, defined as follows, will be considered.

Definition 2 Let G be a maximal plane graph, R = (T0, T1, T2) be a realizer of
G, and L be a Layering of G. Assume that Lmax1(u) and Lmax2(u) are defined as
follows: Lmax1(u) = max(L(u′), u′ ∈ Ch1(u)) and Lmax2(u) = max(L(u′), u′ ∈
Ch2(u)). L is a weak-stratification of R if for every inner vertex u of G, we
have:

1. L(v0) = 0
2. L(P0(u)) < L(u)
3. L(u) ≤ L(P1(u))
4. L(u) ≤ L(P2(u))
5. Lmax2(u) < L(P1(u))
6. Lmax1(u) < L(P2(u))
7. min(Lmax1(u), Lmax2(u)) < L(u)
8. L(v1) ≥ Lmax2(v2)



40 Nicolas Bonichon, Bertrand Le Saëc, and Mohamed Mosbah

L(v) is called the layer of the vertex v. The height of a layering is max(L(v), v ∈
V (G)).

Conditions 2, 3 and 4 set the ordinate of a vertex relatively of the ordinates
of its parents in T0, T1 and T2.

Condition 5 ensures that all the children of u in T2 are placed on a lower
layer than L(P1(u)) − 1. Since they are also children of u in T2 they are on a
lower layer than L(u) (see condition 4).

Moreover, all the descendant of u in T2 are also on lower layers than L(u) and
L(P1(u))− 1). So the edge (u, P1(u)) can be drawn without crossing. Similarly,
condition 6 ensures that the edge (u, P2(u)) can also be drawn without crossing.

Condition 7 ensures that any vertex u cannot have on its layer one of its
children in T1 and one of its children in T2.

The last condition guarantees that we can draw the external edges.
In [5] a more restrictive definition of layering, called stratification, was de-

fined. This definition has been used to compute orthogonal drawing of plane
graph. The weak-stratification is less restrictive and then allows more compact
drawing.

3.3 Polyline Drawing Algorithm of a Weak-Stratification

For each vertex v, we denote by xL(v) (resp. xR(v)) the abscissa of the leftmost
(resp. rightmost) leaf of the subtree of v.

The following algorithm computes the abscissas of inner vertices and the
coordinates of edge bends of a realizer’s weak-stratification. The resulting vertex
and bend coordinates give a planar polyline drawing.

Algorithm 1 Polyline drawing.
for each vertex u of G, y(u)← L(u)
Associate with each leaf of T0 a column from left to right
for each inner vertex u of T0 do

if L(u) = Lmax2(u) then
x(u)← xR(u)

else
x(u)← xL(u)

end if
for each child v of u in T0 do

add the bend (x(v), y(u) + 1) on the edge (u, v) if needed.
end for
add the bend (xL(u), y(u)) on the edge (v, P2(u)) if needed
add the bend (xR(u), y(u)) on the edge (v, P1(u)) if needed

end for
add the bend xL(v0), y(v0) + 1 on the edge (v0, v1)

Lemma 1 Let G be a maximal plane graph with n vertices. Let L be a weak-
stratification of a realizer R = (T0, T1, T2) of G. Let p be the number of leaves
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of T0 and k the height of L. Algorithm 1 computes a planar polyline drawing of
G in linear-time, on a grid (p+ 1)× (k). Moreover, the obtained drawing has at
most n− 2 bends and at most one bend per edge.

Proof. Conditions 5 and 6 of the definition 2 ensure that for each vertex u we
can draw the edges toward P1(u) and P2(u).

Condition 7 ensures that we cannot have the 2 children of u, one in T1 and
one in T2, on its layer. So, if a vertex u has a child in T2 on its layer, the abscissa
of u is set to xR(u). This avoids any overlapping with the edge (u, P1(u)) (see
Fig. 5). Otherwise, the abscissa of u is set to xL(u) (even if u has no child in
T1). This avoids any overlapping of with the edge (u, P2(u)) (see Fig. 4).

Condition 8 ensures that the edge (v1, v2) can be drawn with a straight-line.
Since v0 has no child in T2, x(v0) = xL(v0). So the edge (v0, v2) can be drawn
with a straight-line.

Let us see when the edges are drawn with straight lines.

– If u is a leaf of T0, then the edges (u, P1(u)) and (u, P2(u)) are drawn with
straight-lines.

– If x(u) = xL(u) (resp. x(u) = xR(u)) then the edge (u, P2(u)) (resp. the
edge (u, P1(u))) and the edge from u toward its first child (resp. last child)
in T0 are drawn with straight-lines.

All the other edges are bended once. As shown in the previous subsection, the
chosen coordinates for the bends ensure that the polyline drawing contains nei-
ther overlapping nor edge crossing.

The number of bended edges from a vertex u toward its children in T0 or
toward P1(u) and P2(u) is bounded by the number of its children in T0 (at least
two of these edges are straight-lines). Hence the number of bends on internal
edges is bounded by number of edges in T0: n− 3. Moreover, the edges (v0, v1)
and (v1, v2) can be drawn with a straight-line. So, the number of bends is at
most n− 2.

4 An Algorithm for Computing a Weak-Stratification
of a Realizer

We present in this section an algorithm that builds a weak-stratification of a
realizer. First, all the vertices of G are placed on layer 0. The children of v0 in
T0 are placed on layer 1. Then, the algorithm treats each inner vertex of G with
respect to the counter-clockwise postordering of T2. The treatment of a vertex
v consists of applying several rules on L(v) (1, 2, 3.a, 3.b, 4.a and 4.b.). These
rules can only increase the layers of vertices. Let us recall, as stated in Section 2,
that v0, v1 and v2 are respectively the roots of T0, T1 and T2. When rules 1 and
2 are applied on a vertex v, the value L(v) will no longer change. This vertex
becomes fixed.

Property 2 Let R be a realizer. If u is a descendant of v in Ti, then u cannot
be a descendant nor an ancestor of v in Tj where i �= j.
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Algorithm 2 Weak-stratification construction.
for each vertex u of G do

L(u)← 0
end for
for each inner vertex u of G in the counter-clockwise postordering of T2 do

1. L(u)← max(L(u), L(P0(u)) + 1)
2. L(u)← max(L(u), min(Lmax1(u), Lmax2(u)) + 1)
3.a L(P2(u))← max(L(P2(u)), L(u))
3.b L(P1(u))← max(L(P1(u)), L(u))
4.a L(P2(u))← max(L(P2(u)), Lmax1(u) + 1)
4.b L(P1(u))← max(L(P1(u)), Lmax2(u) + 1)

end for
5. L(v1)← max(L(v1), Lmax2(v2) + 1)

Property 3 Let R = (T0, T1, T2) be a realizer of a maximal plane graph G. Let
(u, v) be an edge of R. If u = P1(v) or u = P2(v) or u ∈ Ch0(v) then u is after
v in the counter-clockwise postordering of T2.

Lemma 2 Let G be a maximal plane graph. Let R = (T0, T1, T2) be a realizer
of G. Algorithm 2 computes a weak-stratification of R in linear-time.

Proof. v0 is fixed on layer 0 and condition 1 of definition 2 is verified. The vertices
are fixed in the counter-clockwise postordering of T2, so a vertex u is treated, its
children in T1 and T2 and its parent in T0 have already been fixed (see property
3). Since the first vertex u treated in the main loop is a child of v0, and a leaf
of T1 and a leaf of T2, conditions 2− 7 of the definition 2 are verified for u.

Assume now that these conditions are verified for the m first fixed vertices
and let us show that it is also true after the treatment of the next vertex u.

Rule 1 ensures that vertex u is on a higher layer than its parent in T0. So
after applying the rule 1, condition 2 is verified for u.

Rule 2 says that if u has 2 children, one in T1 and the other in T2 on its layer,
then L(u) is incremented. So after applying the rule 2, condition 7 is true for u.

Rules 3.a (resp. 3.b) ensures that vertex P2(u) (resp. P1(u)) is on a higher
layer than u. This corresponds to condition 3 (resp. 4) of definition 2.

Similarly, rules 4.a and 4.b ensure that conditions 5 and 6 are satisfied for
vertex u.

During the treatment of u, L(u), L(P1(u)) and L(P2(u)) are not decreased,
so conditions 2− 7 remain true for the mth first vertices.

So at the end of the main loop, conditions 2 − 7 are verified for all inner
vertices of G. Moreover, the last step of the algorithm ensures that condition
8 is true. Hence, at the end of the execution, L is a weak-stratification of the
realizer R. Obviously the algorithm is linear-time.

Fact 1 At each step of Algorithm 2, for all i < max{L(u), u ∈ V (G)}, there
exists a fixed vertex v such that L(v) = i.
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Lemma 3 Let L be a weak-stratification of R generated by Algorithm 2. If v is
a leaf of T0, then there exists u �= v such that L(v) = L(u). Moreover, it is also
true for v2.

Proof. Since v2 is neither in T0 nor in T1, the only rules that can change its layer
are 3.a and 4.a. When applying rule 5, either L(v2) = Lmax2(v2) and then v2 is
on the same layer than one of its children, or L(v2) = Lmax2(v2)+1 then v2 and
v1 are on the same layer.

Let v be a leaf of T0. When v becomes fixed, two configurations could have
occur:

– Case 1: there was already a vertex u such that L(u) > L(v). Since at each
step of the algorithm, each layer lower than L(u) contains at least one fixed
vertex, it is also the case for the layer L(v) before v was fixed (see fact 1).

– Case 2: vertex v was the highest vertex of L. Consider u the first vertex set
on L(v)+1. This vertex was set on this layer after that v became fixed. Such
a vertex always exists since at the end of the algorithm, v1 is the highest
vertex of L.
Let us consider the rule that has set u on L(v) + 1.
• Case 2.1: if it is rule 1, then L(P0(u)) = L(v). Since v is a leaf of T0,

P0(u) �= v.
• Case 2.2: if it is rule 2. This means that there are at least 2 fixed vertices

on layer L(v), one child of u in T1 and one child of u in T2.
• Case 2.3: if it is rule 3.a (resp. 3.b). This implies that u has a fixed child

w in T2 (resp. in T1) such that L(w) = L(v)+1. This is in contradiction
with the fact that u was the first one to appear in L(v) + 1.

• Case 2.4: if it is rule 4.a (resp. 4.b). Then if u = P1(v) (resp. u = P2(v)),
we have L(v) = Lmax2(v) (resp. L(v) = Lmax1(v)). So, v has a fixed
child w in T2 (resp. T1) such that L(v) = L(w).

• Case 2.5: if it is rule 5, then u = v1 and L(v2) = Lmax2(v2). So L(v) =
L(v2).

Lemma 4 Algorithm 2 computes, in O(n) time, a weak-stratification of a real-
izer R = (T0, T1, T2), with height at most n− p

2� − 1 where p is the number of
leaves of T0.

Proof. We know that there is at least one vertex per layer; moreover a leaf of T0

is never alone on its layer. So in the worst case, the highest layer contains only
v1, and each other layer contains either an inner vertex of T0, two leaves of T0

or one leaf of T0 and v2.
So we have n − 2 − p layers with one inner vertex of T0, p+1

2 � layers for
the leaves and v2 and one other layer for v1. Hence, the height of the computed
weak-stratification by the previous algorithm is at most n− p

2� − 1.

Theorem 2 [8] Let R = (T0, T1, T2) be a realizer. At least one of the trees of R
has at most  2n−5

3 � leaves.
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Theorem 3 Let G be a plane graph with n vertices. G has a planar polyline
drawing with at most 4(n−1)2

9 as area and at most  2(n−1)
3 � as width. Such a

drawing can be obtained in linear-time. Moreover, each edge has at most one
bend and the drawing has at most n− 2 bends.

Proof. Let G′ be a triangulation of G. G′ can be obtained in linear-time. Let
R = (T0, T1, T2) be a realizer of the maximal plane graph G′.

Let Ti be a tree with at most  2n−5
3 � leaves. Let R′ = (T ′

0 = Ti, T
′
1 =

Ti+1, T
′
2 = Ti+2) be the realizer of G′ obtained by circular permutation on the

trees of R. Let p be the number of leaves of T ′
0.

Algorithm 2 computes in linear-time a weak-stratification with p leaves and
height n−p

2�−1. Using this weak-stratification, Algorithm 1 computes a planar
polyline drawing of G on a grid of (p + 1) × (n − p

2� − 1) with at most n − 2
bends. Since p ≤  2n−5

3 �, the width of the drawing is at most  2(n−1)
3 �. Since

the area is an increasing function in p, its value is at most 4(n−1)2

9 . Property 1
states that the width and the area of the drawing obtained by Algorithm 1 are
optimal.

Here is an example of a drawing of a graph with 50 vertices on a grid of 22× 20:

Fig. 6. Example of a polyline drawing.
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Appendix

Proof. (Property 2)
Assume that u is a descendant of v in T0 and u is an ancestor of v in T1. Since
vertex v satisfies condition 2 of the realizer’s definition, P0(u) is in the region
delimited by the cycle C = u 0−→v, v 1←−u (see Fig. 7). Let t be the common vertex
of C and the path u 1−→v1. Assume that t is on the path u 0−→v. This is impossible
because this contradicts condition 2 on vertex t. So t can only be on the path
u 1−→ v. But in this case we have a cycle colored 1:t 1←− u, u : 1←− t. This is also
impossible since T1 is a tree. So, if u is a descendant of v in T0, then u cannot
be an ancestor of v in T1. A similar reasonning can be made to show that if u is
a descendant of v in T0, then u cannot be an descendant of v in T1.

u

v
t

Fig. 7. Impossible configuration where u is a descendant of v in T0 and u is an ancestor
of v in T1.

Proof. (Property 3) Let us consider the three following cases:

– u = P2(v): obvious.
– u = P1(v): Assume that u is before v in the counter-clockwise postordering

of T2. Let w be the nearest common ancestor of u and v in T2. The cycle
C = ((v, u), u 2−→ w,w 2←− v) determines a region of the plan (see Fig. 8 a.).
In order to respect condition 2 of the realizer’s definition for vertex u, P0(u)
must be in this region. Let us consider the vertex t that belongs to u 0−→ v0

and to the cycle C. Condition 2 implies that t is on the path u 2−→w. So t is
an ancestor of u in T2 and t is an ancestor of u in T1. This is a contradiction
with Property 2.

– u ∈ Ch0(v): Let w be the nearest common ancestor of P1(v) and v in T2. Ver-
tex u must be in the region delimited by the cycle C = ((v, P1(v)), P1(v) 2−→w,

w 2←−v) (see Fig. 8 b.). In this region, all the vertices are after v in the counter-
clockwise postordering of T2. So u is after v in this order.

Fig. 8. a. An impossible configuration where P1(v) is before v in the counter-clockwise
postordering of T2. b. A region delimited by C = ((v, P1(v)), P1(v) →2 w, w ←2 v).
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Abstract. Generalized networks specify two parameters for each arc, a
cost and a gain. If x units enter an arc a, then x · g(a) exit. Arcs may
generate or consume flow, i.e., they are gainy or lossy. The objective is a
cheapest path of a unit flow from the source (SGSP) and the single-pair
cheapest path (SPGSP).
There are several types of negative cycles. A lossy cycles decreases the
gain. Then even a negative cost cycle has only bounded cost. A gainy
cycle increases the flow. Then even a positive cost cycle may induce a
total cost of minus infinity.
We solve SGSP by an extension of the Bellman-Ford algorithm. At the
heart of the algorithm is a new and effective cycle detection strategy.
The algorithm solves SGSP in O(nm log n), which improves to O(nm)
in lossless networks and to O(n log n + m) in a monotone setting. Our
algorithm is simpler and at least a factor of O(n) faster than the previ-
ous algorithms using linear programming or complex parametric search
and scaling techniques. This improvement is a big step for such a well-
investigated problem.
To the contrary, the single-pair generalized shortest path problem SPGSP
is NP-hard, even with nonnegative costs and uniformly lossy arcs.

1 Introduction

What is the cheapest way to send data through a communication network when
links are charged per unit and each link expands or compresses the data, e.g., by
attaching or erasing routing information? How much does it cost transporting a
unit commodity in a generalized network? In generalized networks each arc has
a gain g(a) which might expand or consume the flow. If x units enter an arc,
then x · g(a) units exit. An arc may be gainy or lossy, and accordingly there are
gainy and lossy cycles. The cost may be positive or negative and is charged per
unit. The objective is a cheapest path of a unit flow from the source.

Generalized network flow problems have been studied intensively in the liter-
ature from the early days of production planning and combinatorial optimization
[8, 10, 14, 16, 18] to recent research [2, 9, 12, 21, 22, 25]. They arise in several appli-
cation contexts and can be used to model many situations which are impossible
to express as standard network flow problems [2, 8, 10, 14].

Examples of generalized network flow problems usually deal with the loss of a
commodity. Examples are the conversion of currencies, the evaporation of liquids
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and gas or the loss due to damage, theft, or toll. The use of an arc is charged
per unit. It is paid by a fraction of the transported commodity. As a particular
example, suppose there is radioactive waste, waste oil, or rubbish and there is a
toll for the transportation and a fee at a waste disposal site. What are the least
costs to dispose the waste, if you do not hazard the consequences. Radioactive
material dissociates over time, waste oil disposes by an ocean dumping, and you
can put your rubbish into your neighbor’s trash bin or litter it on highways. It
may be cheaper to wait or drive around and get rid of your waste than paying
for the ordinary disposal! The general scenario has losses and gains, such as
stocks, data communication or behavioral sciences, with an increase due to better
quotations, the attachment of routing information or junk to each data package,
or breeding.

The generalized shortest path problem is a special case of the min-cost gen-
eralized network flow problem, where some flow is transported on a single path
without capacities. The amount of flow is the product of the gains of the arcs,
and all nodes except the ends are flow conserving. Most approaches towards a
solution use linear programming techniques (LPs) and exploit the specific prop-
erties of the dual problem as a two-variables-per-inequality problem, which can
be solved by specialized techniques in O(n2m log n) [1, 6, 13].

Our focus is on combinatorial algorithms. Goldberg et al. [12] stated in 1991
that no polynomial-time bounds were known for combinatorial algorithms of gen-
eralized maximal flow problems. Ahuja et al. [2] could not bound the number of
iterations of their generalized network simplex algorithm for the generalized min-
cost flow problem. Recently, Oldham [21, 22] investigated the generalized short-
est path problem and presented fully polynomial-time approximation schemes.
Oldham’s algorithm combines a comparison subroutine with a good guess of
the cost of a cheapest path with a scaling technique and has a running time of
O(n2m log n). Restricted instances with nonnegative costs and flow multipliers
at most one can be solved more efficiently by a variant of Dijkstra’s algorithm,
as discovered by Charnes and Raike [5] and stated as a combinatorial algorithm
by Wayne and Fleischer [9, 25], if the objective is a unit at the target. All these
approaches to the generalized shortest path problem attempt to use the classical
shortest path algorithms by of Dijkstra and Bellman-Ford from the source.

Our approach is ”backwards”. We solve the from-the-source generalized short-
est path problem SGSP from the target. Proceeding backwards has been pro-
posed by Vladimir Batagelj and Patrice Ossona de Mendez at the Dagstuhl
Seminar 98301 ”Graph Algorithms and Applications”, 1998, where the general-
ized shortest path problem has been discussed in an open problem session. By
the backwards approach, an extension of the classical Bellman-Ford algorithm
applies and solves SGSP in O(nm log n). Our algorithm is even more powerful
and solves SGSP from all nodes.

At the heart of our algorithm is an advanced cycle detection strategy, which
combines Tarjan’s subtree disassembly [3, 19, 24] with a direct subtree test. The
direct subtree test costs a factor of O(logn), which is an improvement over the
O(n) factor for the ”walk-to-the-root” and ”subtree-traversal” strategies of [3].
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In standard networks the cycle detections can be done in O(1) amortized time,
since the detected cycles are deleted.

There are well-founded specializations of generalized networks. It can be
checked in O(nm) whether or not it has lossy cycles; otherwise it is lossless. In
lossless networks SGSP can be solved in O(nm). If the costs are nonnegative and
all arcs are gainy then SGSP can be solved by a variant of Dijkstra’s algorithm in
O(n log n+n). For the symmetric to-the-target problem this has been discovered
by Charnes and Raike [5] and has been stated explicitly by Fleischer and Wayne
[9, 25]. Hence, generalized shortest path problems are not much harder than
standard shortest path problems.

To the contrary, if cycles are excluded, then the generalized shortest path
problem is NP-hard by a reduction of the Hamilton path problem. Hence, the
single-pair shortest path problem SPGSP is NP-hard. The NP-hardness result
also holds for SPGSP instances with nonnegative costs and lossy arcs with uni-
form gains g < 1 and with negative costs and purely gainy arcs or purely lossy
arcs.

Our NP results increase the list of known infeasible instances of generaliza-
tions of shortest paths and maximum flow problems, such as the longest simple
path [11], the exact path length problem [20], the constraint shortest path prob-
lem [2] and the integer generalized flow problem [2].

2 Generalized Shortest Paths

Let G = (V,A) be a directed graph with n nodes and m arcs. There are two
weighting functions for the arcs, a cost function c : A → R into the reals and a
gain function g : A→ R+ into the positive reals. The cost of a path is the sum
of the cost of its arcs. The cost of each arc is c(a) per unit of flow. The gain g(a)
of each arc increments or decrements the flow by a certain percentage. If x units
of flow enter an arc a, then x · g(a) units exit. An arc is lossy, if g(a) < 1, and
gainy, if g(a) > 1.

The cost of a path τ with the arcs (a1, . . . , ar) is c(τ) =
∑r

i=1 c(ai)(Πj<i

g(aj)), and an initial flow of k units costs k·c(τ). The objective is a cheapest path
with minimal cost. Various applications and solutions of generalized network
problems are described in Chapter 15 in [2].

The generalized shortest paths problem is commonly known as the restricted
generalized uncapacitated transshipment problem. A solution partitions the set
of nodes into feasible and infeasible nodes. A node is infeasible, if it is unreachable
or if it has minus infinite cost. The feasible nodes have bounded cost, and the
cheapest path from a feasible node either reaches the target or ends in a lossy
cycle. These four cases are detected by our algorithm.

3 Lossy and Negative Cycles

At the heart of our algorithm is a cycle detection strategy for cost decreasing
cycles. For efficiency reasons we use an extension of Tarjan’s subtree disassem-
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bly together with a direct subtree test [19, 24]. Other negative cycle detection
strategies are discussed in [3]. With unrestricted costs and gains there are cy-
cles with minus infinite cost. These negative cycles are detected and, as usual,
the nodes of such cycles and beyond are eliminated from further shortest path
computations at O(1) amortized time. As a particularity, there are cheap lossy
cycles. These are the Type III paths of Theorem 2.6 in [12]. If a lossy cycle is
traversed infinitely often it absorbes the flow and operates as a sink.

The cycle detection needs a test whether or not a node is in a particular
subtree of the cheapest path tree. In Tarjan’s subtree disassembly this costs
O(1) amortized time, since the subtree can be destroyed while being traversed.
Here we must preserve the subtree for efficient lossy cycle detections, which
costs a factor of O(logn). This is an improvement over the O(n) factor of the
walk-to-the-root and subtree-traversal strategies of [3].

Before we come to the main algorithm we develop some formulas for the
computation of generalized shortest paths and characterize lossy and negative
cycles.

Let G be a generalized network with the cost and gain functions c and g.
Suppose that a path τ = τ1 ◦ τ2 is the concatenation of two subpaths τ1 and τ2.
Then g(τ) = g(τ1) · g(τ2) and c(τ) = c(τ1) + g(τ1)c(τ2).

These equations are used for the analysis of negative cycles and for the solu-
tion of the generalized path problem by our Reverse-Generalized-Bellman-Ford
algorithm. They define a left-distributive closed semi-ring, which is not right-
distributive, as stated by Oldham [21, 22]. Since the gains are positive, we can
conclude that the suffix of a cheapest path is a cheapest path. This does not
necessarily hold for prefixes.

Consider bad cycles which decrease the cost or the gain. A cycle is lossy, if
its gain is less than one. It is a negative cycle, if the cost is negative.

Let γ be a cycle at some node v with cost c(γ) and suppose that the target
t is reachable from v by a path τ with cost c(τ) and gain g(τ). γ decreases the
cost of a unit flow from v, if c(γ ◦ τ) < c(τ). Since c(γ ◦ τ) = c(γ)+g(γ)c(τ), this
is equivalent to c(γ) < c(τ)(1 − g(γ)). This formula gives raise to cycles with
bounded and unbounded costs.

First consider the case with bounded cost. A lossy cycle γ at v with 0 <
g(γ) < 1 operates as a flow absorbing sink. Its cost is

∑∞
i=1 c(γ)g(γ)i = c(γ)/(1−

g(γ)). Running through γ decreases the cost of transporting one unit from v to
the target t if and only if c(γ) < c(τ)(1− g(γ)). Then the path τ from v to t is
replaced by the infinite cycle γ at v and the cost c(τ) of v is replaced by the limit
c(γ)/(1− g(γ)). Hence, it may be cheaper to absorb the flow than transporting
it to the destination. The algorithm detects this situation and settles it by a new
arc (v, t) with the label lossy and the cost c(γ)/(1− g(γ)). A cheapest path is a
path of Type I or Type III according to [12].

Lemma 1. If τ is the cheapest path with a minimal set of arcs from a feasible
node v, then τ is a simple path from v to the target t or τ = σ ◦ γ, where σ is
a simple path from v to some node x, γ is a lossy cycle at x and x is the only
common node of σ ◦ γ.
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Proof. Assume the contrary, and let x be the first node that repeats on τ and
has two distinct successors. Then τ = (v1, . . . , vp, . . . , vq, . . .), where v = v1,
x = vp = vq and vp+1 �= vq+1. The subpath from vp to vq is a cycle γ at x with
cost c(γ) and gain g(γ). For each node vi of τ let c(vi) be the cost of the suffix of
τ from vi. c(vi) is minimal, since the suffix of a cheapest path is a cheapest path.
Then c(vq) = c(γ)/(1− g(γ)); otherwise the deletion of γ or using γ twice yields
a cheaper path. Then the deletion of γ yields a shorter path (v1, . . . , vp−1, vq, . . .)
with the same cost and a subset of the set of arcs of τ , and the number of nodes
with two distinct successors is decreased by one. By induction all nodes with two
distinct successors are deleted from τ . Then τ is a simple path or τ is a simple
path and a lossy cycle.

Next, we investigate cycles with minus infinite cost. Such nodes define an
infeasible instance and are deleted immediately.

Lemma 2. Let γ be a cycle at some node v and let τ be a path from v. γ induces
minus infinite cost at v if and only if

(i) g(γ) ≥ 1, c(γ) < 0 and c(τ)(g(γ)− 1) < |c(γ)|
(ii) or g(γ) > 1, c(τ) < 0 and c(γ) < |c(τ)|(g(γ)− 1).

Proof. After i rounds of γ the cost at v is c(γi ◦ τ) =
∑i

j=0 c(γ)g(γ)j +
c(τ)g(γ)i+1. Then c(γi ◦ τ) → −∞ if and only if (i) or (ii) hold true.

In the first case, the cycle itself decreases the cost and this decrease is not
consumed by the path τ transporting g(γ)i+1 units. In the second case, the path
τ has negative cost and the cycle increases the gain faster than its cost. Observe,
that a positive cost cycle may give raise to minus infinite total cost.

4 The Reverse-Generalized-Bellman-Ford Algorithm

Our algorithm for SGSP is the Reverse-Generalized-Bellman-Ford algorithm.
The algorithm runs twice. In the first run it computes the cheapest paths tree of
simple paths to the target and detects the cheapest lossy cycles. This detection
costs an extra factor of O(logn) for a direct subtree test. The output are the
unreachable nodes and cost estimates for the other nodes, which are translated
into new arcs directly to the target. In O(nm) the second run completes the
computation of a cheapest path from each node and its cost.

For efficiency reasons we use an extension of Tarjan’s subtree disassembly [24]
as an immediate cycle detection strategy. Tarjan’s variant has been described
in detail in [19], Section 7.5.9. It performs very well in experimental evaluations
[3, 4, 19]. However, the subtree disassembly destroys subtrees at O(1) amortized
cost. Subtree disassembly is inadaequate for lossy cycles, since the nodes of such
cycles must be reused, if they belong to a cheaper lossy cycle. A deletion and
a reconstruction would cause an O(n) delay. This situation is illustrated by a
graph with a node v such that the cheapest path tree T looks like a palm tree.
T has a path of length n/4 from v to some node x, and x branches to n/4 nodes
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w1, . . . , wn/4 such that for 1 ≤ i ≤ n/4, wi has a back-arc to v and the cycle
from v through wi is a lossy cycle with lower cost than the lossy cycle through
wi−1. Our algorithm performs an explicit cycle test in O(logn) time and tests
whether or not a node w is in a subtree rooted at another node v.

The input of the Reverse-Generalized-Bellman-Ford algorithm is a directed
graph G = (V,A), a target t, and for each arc a cost c(a) and a gain g(a).

The nodes of G are stored in a node array and are accessed directly in O(1).
Each node has its list of incoming arcs of G, which is scanned sequentially, and a
pointer to its copy in T , and reverse. The computed costs and gains are recorded
by c(v), g(v), and ccycle(v).

The main data structure is a cheapest path tree T consisting of the nodes v
of G. The arcs of T are defined by the successor relation while relaxing arcs of
G. T is an in-tree rooted at the target t. Moreover, T is traversed in preorder
and in postorder, and the pre- and postorder numbers pre(v) and post(v) of
the nodes v of T are stored in balanced trees with O(logn) for the operations
search, insert, and delete-subtree. Delete-subtree deletes the preorder (postorder)
numbers of all nodes of a subtree of T . These are consecutive. A 2-3-4 tree
guarantees O(logn) time for all operations using split and join operations for
delete-subtree, see [7].

The pre- and postorder numbers are used for subtree tests w ∈ T (v), where
T (v) is the subtree of T rooted at v. For nodes v, w ∈ T , w ∈ T (v) if and only
if pre(v) < pre(w) and post(v) > post(w). All other operations can be done in
O(1) time. Recall that in Tarjan’s subtree disassembly w ∈ T (v) is checked in a
straight-forward manner in O(|T (v)|) while traversing and deleting T (v). This
amortizes to O(1), since T (v) is destroyed.

The Reverse-Generalized-Bellman-Ford algorithm operates in phases. In the
k-th phase it visits the nodes of G at distance k to the target. The distance is the
number of arcs of a simple path and is used in the correctness proof. The nodes
in the k-th phase are the current leaves of T . They are stored in a FIFO-queue
Q, as described in [19]. The algorithm inspects the incoming arcs of these nodes
for a relaxation and an improvement of the cost of the other endnode. It starts
with the target t in the 0-th phase.

Reverse-Generalized-Bellman-Ford(G, t, c, g)
Input: a generalized graph G = (V,A, c, g) and a target t
Output: the cheapest path tree T , and parameters for the nodes.
1 for each v ∈ V do
2 v = nil; ccycle(v) ←∞
3 T ← t;Q← t
4 c(t) ← 0; g(t) ← 1
5 while Q �= ∅ do
6 w ← extract-first(Q)
7 for each v ∈ V with (v, w) ∈ A do // Relax(v, w, c, g)
8 if c(v) > c(v, w) + g(v, w)c(w) then
9 if w �∈ T (v) then // no cycle at v, update v
10 delete the nodes of T (v) from T and from Q
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11 c(v) ← c(v, w) + g(v, w)c(w)
12 g(v) ← g(v, w)g(w)
13 T ← v; Q← v // re-insert(v)
14 else // w ∈ T (v) and a cycle γ
15 c(γ) = c(v, w) + g(v, w)(c(w)− c(v)g(w)/g(v))
16 g(γ) = g(v, w)g(w)/g(v)
17 if g(γ) < 1 then // lossy or negative cycles
18 ccycle(v) ← min{ccycle(v), c(γ)/(1− g(γ))}
19 else
20 delete v and all nodes which reach v in G

After the first run all nodes of G with v = nil are deleted. These nodes
are unreachable; there is no path from v to the target t. The nodes with a
computed cost of minus infinity are deleted too; more such nodes may be de-
tected in the second run. For each remaining node v add an arc (v, t) with cost
min{ccycle(v), c(v)} and gain one. Moreover, if ccycle(v) < c(v) then label the
arc lossy. Hence, the nodes are initialized with the computed cost of the first run.
Then the Reverse-Generalized-Bellman-Ford algorithm is run on the so modified
graph. It can be simplified to run in O(nm), since there are no lossy cycles and
the tests g(γ) < 1 in line 17 are false.

Theorem 1. The Reverse-Generalized-Bellman-Ford algorithm solves SGSP
from all nodes in O(nm log n).

Proof. The correctness of the Reverse-Generalized-Bellman-Ford algorithm is
proved as for Tarjan’s variant of the Bellman-Ford algorithm [19, 24]. The num-
ber of arcs of a simple path from a node v to the target is used as the inductive
parameter, and corresponds to the phases of the algorithm.

For each node v there is a path from v to the target t if and only if v �= nil.
Secondly, the nodes with minus infinite cost are detected in line 19 in either run
of the algorithm. Finally, let v be a feasible node of G with −∞ < c(v) < +∞,
and let τ = (v1, . . . , vr) be a cheapest path from v with minimal length.

If τ is a simple path to the target t of G, then the path is computed in the
first run. Otherwise, τ = σ ◦ γ consists of a simple path and a lossy cycle at
a node x, as shown in Lemma 1. Then there is a node u of γ such that in the
first run the lossy cycle is detected at u and ccycle(u) = c(γ)/(1 − g(γ)) is the
cost of the cycle γ at u. Using this value the second run skips lossy cycles and
computes the costs of the cheapest paths from each feasible node. Again this is
an inductive argument on the length.

Each run of the Reverse-Generalized-Bellman-Ford algorithm takes at most
n − 1 phases. In each phase at most O(m) arcs are visited and relaxed, and
all but the subtree tests in line 9 take O(1) time. In the first run, these tests
are done in O(log(|T |)), storing the pre- and postorder numbers of the nodes in
2-3-4 trees. In the second run the costs are amortized O(1) as in the standard
Bellman-Ford algorithm in [19, 24].
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Theorem 2. It can be checked in O(nm) time whether or not a generalized
network has lossy cycles, and in lossless networks SGSP can be solved in O(nm).

For the single-source problem SGSP care must be taken that the Reverse-
Generalized-Bellman-Ford algorithm visits all lossy cycles and all negative cycles
that are reachable from the source. This can be achieved by connecting all nodes
or representatives of the cycles to the target by new arcs with appropriately high
costs. This pre-processing takes at most O(nm) using the standard Bellman-Ford
algorithm from the source and the distance functions − log g(a) and log g(a) for
the detection of lossy and negative cycles, respectively.

Theorem 3. The single-source generalized shortest path problem SGSP can be
solved in O(nm log n) and in O(nm) in lossless networks.

Standard shortest path problems with nonnegative arc lenghts can be solved
by Dijkstra’s algorithm in O(n log n + m), see [7]. This can be extended to
monotone instances of the generalized shortest path problem with nonnegative
costs and gainy arcs and running Dijkstra’s algorithm backwards from the target
with the distance function c(v, w) + g(v, w)c(w).

Theorem 4. In generalized networks with nonnegative costs and gainy arcs
SGSP can be solved in O(n log n + m).

To summarize, the solution of the generalized shortest path problem SGSP
is only a O(logn) factor slower than the solution of the standard shortest paths
problem by the Bellman-Ford algorithm. Our algorithm improves the previously
known algorithms at least by a factor of O(n). This improvement is a major
(and probably the final) step in the long history of this problem.

5 Single-Pair Generalized Shortest Paths

The cheapest path from a node ends at the target or at a lossy cycle, where
the flow is consumed. The single-pair generalized shortest path problem SPGSP
excludes cycles and all flow reaches the target. Recall that the amount of flow
may increase or decrease due to the gains of the used arcs. The exclusion of cycles
completely changes the character and the complexity of generalized shortest path
problems and relates them to the Hamilton path problem.

Theorem 5. The single-pair generalized shortest path problem from the source
is NP-hard. It remains NP-hard, even (1) if the costs are nonnegative and all
arcs are uniformly lossy, e.g., g(a) = 0.5, or (2) if the costs are negative and all
arcs are purely lossy (purely gainy).

Proof. We reduce the directed Hamilton path problem. Let G be an instance of
the Hamilton path problem with distinguished nodes s and t for the source and
the target. For (1) let all arcs have unit cost and gain 0.5. Add a new target t̂
and an arc (t, t̂) with cost 2n+1 and gain 0.5. Then G has a Hamilton path from
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s to t if and only if c(s) = 2− 1/2n−1 + 4 is the cost of the cheapest path from
s to t̂ excluding lossy cycles. Notice that each lossy cycle has cost two. For (2)
let c(a) = −1 and g(a) = g for some fixed g > 0 for each arc a of G. Then a
Hamilton path induces minimal cost.

6 Conclusion

We have considered generalized shortest path problems with two parameters
on the arcs. Surprisingly, if the gains multiply and accumulate progressively, the
generalized version can be solved almost efficiently as the standard shortest path
problems, if lossy cyles are allowed. However, the single-pair problem is NP-hard.

There is a related version of generalized shortest path and network flow prob-
lems, which has been discarded so far: additive gains. Additive gains describe a
fixed servic charge for using an arc. This has lots of applications. Nevertheless
we could not find any reference to algorithmic solutions of this problem. The
additive generalized shortest path problem is not continuous, and thus not di-
rectly solvable by LP techniques. Its complexity is open. However, if the cost
and gain of the arcs are non-negative and the gains are integral then there is a
pseudo-polynomial time solution by a dynamic programming approach.
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Abstract. Clique-width of graphs is a major new concept with respect
to efficiency of graph algorithms; it is known that every algorithmic
problem expressible in a certain kind of Monadic Second Order Logic
called LinEMSOL(τ1,L) by Courcelle, Makowsky and Rotics, is solvable
in linear time on any graph class with bounded clique-width for which
a k-expression for the input graph can be constructed in linear time.
The concept of clique-width extends the one of treewidth since bounded
treewidth implies bounded clique-width.
We give a complete classification of all graph classes defined by forbidden
one-vertex extensions of the P4 with respect to their clique-width. Our
results extend and improve recently published structural and complexity
results in a systematic way.

1 Introduction

Recently, in connection with graph grammars, Courcelle, Engelfriet and Rozen-
berg in [15] introduced the concept of clique-width of a graph which has attracted
much attention due to the fact that, in [16], Courcelle, Makowsky and Rotics
have shown that every graph problem definable in LinEMSOL(τ1,L) (a variant
of Monadic Second Order Logic) is linear-time solvable on graphs with bounded
clique-width if a k-expression describing the input graph is given. The problems
Vertex Cover, Maximum Weight Stable Set (MWS), Maximum Weight Clique,
Steiner Tree and Domination are examples of LinEMSOL(τ1,L) definable prob-
lems. Note that every class of bounded treewidth has bounded clique-width as
well (see [17].

It is known that the class of P4-free graphs (also called cographs) is exactly
the class of graphs having clique-width at most 2, and a 2-expression can be
found in linear time along the cotree of a cograph. Due to the basic importance
of cographs, it is of interest to consider graph classes defined by forbidden one-
vertex extensions of a P4 - see Figure 1 - which are natural generalizations of
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cographs. The aim of this paper is to investigate the structure and to classify
the clique-width of all these graph classes in a systematic way. This is also
motivated by known examples such as the (P5,co-P5,bull)-free graphs studied by
Fouquet in [20] (see Theorem 16) and the (P5,co-P5,chair)-free graphs studied by
Fouquet and Giakoumakis in [21] (see Theorem 13). Moreover, there are papers
such as [29, 34] dealing with (chair,co-P,gem)-free graphs and [24] dealing with
(P5,P,gem)-free graphs where it is shown that the MWS problem can be solved
in polynomial time on these classes. Our results imply bounded clique-width
and linear time for the MWS problem and any other LinEMSOL(τ1,L) definable
problem for these classes as well as for many other examples. This also continues
research done in [2–5, 8–11].

Due to space limitations, all proofs in this extended abstract are omitted;
they are contained in the full version of the paper.

Throughout this paper, let G = (V,E) be a finite undirected graph without
self-loops and multiple edges and let |V | = n, |E| = m. The edges between two
disjoint vertex sets X,Y form a join, denoted by 1© (co-join, denoted by 0©) if
for all pairs x ∈ X, y ∈ Y , xy ∈ E (xy /∈ E) holds. A vertex z ∈ V distinguishes
vertices x, y ∈ V if zx ∈ E and zy /∈ E. A vertex set M ⊆ V is a module if no
vertex from V \M distinguishes two vertices from M , i.e., every vertex v ∈ V \M
has either a join or a co-join to M . A module is trivial if it is either the empty
set, a one-vertex set or the entire vertex set V . Nontrivial modules are called
homogeneous sets. A graph is prime if it contains only trivial modules. The notion
of modules plays a crucial role in the modular (or substitution) decomposition
of graphs (and other discrete structures) which is of basic importance for the
design of efficient algorithms - see e.g. [32] for modular decomposition of discrete
structures and its algorithmic use.

For U ⊆ V let G(U) denote the subgraph of G induced by U . Throughout
this paper, all subgraphs are understood to be induced subgraphs. A vertex
set U ⊆ V is stable (or independent) in G if the vertices in U are pairwise
nonadjacent. Let co-G = G = (V,E) denote the complement graph of G. A
vertex set U ⊆ V is a clique in G if U is a stable set in G.

For k ≥ 1, let Pk denote a chordless path with k vertices and k − 1 edges,
and for k ≥ 3, let Ck denote a chordless cycle with k vertices and k edges. A
hole is a Ck, k ≥ 5. Note that the P4 is the smallest nontrivial prime graph and
the complement of a P4 is a P4 itself.

See Figure 1 for the definition of the chair, P , bull, gem and their comple-
ments. Note that the complement of a bull is a bull itself. The diamond is the
K4 − e, i.e., a four vertex clique minus one edge.

Let F denote a set of graphs. A graph G is F-free if none of its induced
subgraphs is in F . There are many papers on the structure and algorithmic
use of prime F-free graphs for F being a set of P4 extensions; see e.g. [20–22,
25, 26, 28, 2, 4, 3, 11]. A graph is a split graph if G is partitionable into a clique
and a stable set. It is known [19] that G is a split graph if and only if it is a
(2K2,C4,C5)-free graph.
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Fig. 1. All one-vertex extensions of a P4

In what follows, we need the following classes of (prime) graphs:

– G is a thin spider if its vertex set is partitionable into a clique C and a stable
set S with |C| = |S| or |C| = |S|+ 1 such that the edges between C and S
are a matching and at most one vertex in C is not covered by the matching
(an unmatched vertex is called the head of the spider).

– A graph is a thick spider if it is the complement of a thin spider.
– G is matched co-bipartite if its vertex set is partitionable into two cliques

C1, C2 with |C1| = |C2| or |C1| = |C2| − 1 such that the edges between C1

and C2 are a matching and at most one vertex in C1 and C2 is not covered
by the matching.

– G is co-matched bipartite if G is the complement graph of a matched co-
bipartite graph.

– A bipartite graph B = (X,Y,E) is a chain graph [33] if for all vertices
from X (Y ), their neighborhoods in Y (X) are linearly ordered. If moreover,
|X| = |Y | and for all vertices from X (Y ), their neighborhoods in Y (X)
have size 1, 2, . . . , |Y | (1, 2, . . . , |X|) then these graphs are prime.

– G is a co-bipartite chain graph if it is the complement of a bipartite chain
graph.

– G is an enhanced co-bipartite chain graph if it is partitionable into a co-
bipartite chain graph with cliques C1, C2 and three additional vertices a, b, c
(a and c optional) such that N(a) = C1 ∪ C2, N(b) = C1, and N(c) = C2,
and there are no other edges in G.

– G is an enhanced bipartite chain graph if it is the complement of an enhanced
co-bipartite chain graph.
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2 Cographs, Clique-Width and Expressibility of Problems

The P4-free graphs (also called cographs) play a fundamental role in graph de-
composition; see [14] for linear time recognition of cographs, [12–14] for more
information on P4-free graphs and [7] for a survey on this graph class and related
ones. For a cograph G, either G or its complement is disconnected, and the cotree
of G expresses how the graph is recursively generated from single vertices by re-
peatedly applying join and co-join operations. The cotree representation allows
to solve various NP-hard problems in linear time when restricted to cographs,
among them the problems Maximum Weight Stable Set and Maximum Weight
Clique. Note that the cographs are those graphs whose modular decomposition
tree contains only join and co-join nodes as internal nodes.

Based on the following operations on vertex-labeled graphs, namely

– creation of a vertex labeled by integer l,
– disjoint union (i.e., co-join),
– join between all vertices with label i and all vertices with label j for i �= j,

and
– relabeling vertices of label i by label j,

the notion of clique-width cwd(G) of a graph G is defined in [15] as the
minimum number of labels which are necessary to generate G by using these
operations. Cographs are exactly the graphs whose clique-width is at most two.

A k-expression for a graph G of clique-width k describes the recursive gen-
eration of G by repeatedly applying these operations using at most k different
labels.

Proposition 1 ([16, 17]) The clique-width of a graph G is the maximum of
the clique-width of its prime subgraphs, and the clique-width of the complement
graph G is at most twice the clique-width of G.

Recently, the concept of clique-width of a graph attracted much attention
since it gives a unified approach to the efficient solution of many algorithmic
graph problems on graph classes of bounded clique-width via the expressibility
of the problems in terms of logical expressions.

In [16], it is shown that every problem definable in a certain kind of Monadic
Second Order Logic, called LinEMSOL(τ1,L) in [16], is linear-time solvable on
any graph class with bounded clique-width for which a k-expression can be
constructed in linear time.

Hereby, in [16], it is mentioned that, roughly speaking, MSOL(τ1) is Monadic
Second Order Logic with quantification over subsets of vertices but not of edges;
MSOL(τ1,L) is the restriction of MSOL(τ1) with the addition of labels added
to the vertices, and LinEMSOL(τ1,L) is the restriction of MSOL(τ1,L) which
allows to search for sets of vertices which are optimal with respect to some
linear evaluation functions.

The problems Vertex Cover, Maximum Weight Stable Set, Maximum Weight
Clique, Steiner Tree and Domination are examples of LinEMSOL(τ1,L) definable
problems.
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Theorem 1 ([16]) Let C be a class of graphs of clique-width at most k such that
there is an O(f(|E|, |V |)) algorithm, which for each graph G in C, constructs a
k-expression defining it. Then for every LinEMSOL(τ1,L) problem on C, there
is an algorithm solving this problem in time O(f(|E|, |V |)).

As an application, it was shown in [16] that P4-sparse graphs and some
variants of them have bounded clique-width. Hereby, a graph is P4-sparse if no
set of five vertices in G induces at least two distinct P4’s [25, 26]. From the
definition, it is obvious that a graph is P4-sparse if and only if it contains no C5,
P5, P5, P , P , chair, co-chair (see Figure 1). See [11] for a systematic investigation
of superclasses of P4-sparse graphs.

In [25], it was shown that the prime P4-sparse graphs are the spiders (which
were called turtles in [25]), and according to Proposition 1 and the fact that the
clique-width of thin spiders is at most 4 (which is easy to see), it follows that
P4-sparse graphs have bounded clique-width.

Recently, variants of P4-sparse graphs attracted much attention because of
their applications in areas such as scheduling, clustering and computational se-
mantics. Moreover, all these classes are natural generalizations of cographs.

It is straightforward to see that the clique-width of matched co-bipartite (co-
matched bipartite) graphs, bipartite chain (co-bipartite chain) graphs as well as
the clique-width of induced paths and cycles is at most 4, and corresponding
k-expressions can be determined in linear time. Distance-hereditary graphs are
the (house,hole,domino,gem)-free graphs - see [1, 7]. In [23], Golumbic and Rotics
have shown that their clique width is at most 3 and corresponding k-expressions
can be determined in linear time.

3 Further Tools

Lemma 1 ([27]) If a prime graph contains an induced C4 (induced 2K2) then
it contains an induced co-P5 or A or domino (induced P5 or co-A or co-domino).

�  ���!� ���� ��� ���!�

Fig. 2. The A and domino and their complements

The proof of Lemma 1 can be extended in a straightforward way to the case
of a diamond instead of a C4. For this purpose let us call d-A the graph resulting
from an A graph by adding an additional diagonal edge in the C4, and d-domino
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Fig. 3. The d-A and d-domino and their complements

the graph resulting from a domino graph by adding an additional diagonal edge
in one of the C4’s - see Figure 3.

Lemma 2 If a prime graph contains an induced diamond (co-diamond) then it
contains an induced gem or d-A or d-domino (co-gem or co-d-A or co-d-domino).

Theorem 2 ([2]) Prime (P5,diamond)-free graphs are either matched co-
bipartite or a thin spider or an enhanced bipartite chain graph or have at most
9 vertices.

For a structure description of (P5,gem)-free graphs see [4] where the following
Lemma is shown:

Lemma 3 ([4]) Prime (P5,gem)-free graphs containing a co-domino are
matched co-bipartite.

Theorem 3 ([9]) If G is a prime (diamond,co-diamond)-free graph then G or
G is either a matched co-bipartite graph or G has at most 9 vertices.

Lemma 4 ([3]) Prime chair-free bipartite graphs are co-matched bipartite, a
path, or a cycle.

Lemma 5 ([10]) Prime chair-free split graphs are spiders.

Lemma 6 ([3, 18]) Prime (bull, chair)-free graphs containing a co-diamond
are either co-matched bipartite or a cycle or a path.

Lemma 7 Prime co-gem-free bipartite graphs are co-matched bipartite.

Lemma 8 Prime (co-diamond,gem)-free graphs containing a diamond have at
most 11 vertices.

4 Structure and Clique-Width Results

Figure 4 contains all combinations of three forbidden P4 extensions (enumerated
according to Figure 1). Each class together with its complement class occurs
only once; we take the lexicographically smaller class; for example, the (P5,co-
P5,gem)-free graphs are the (2,9,10)-free graphs, and its complement class is the
class of (P5,co-P5,co-gem)-free graphs, i.e., the (1,2,9)-free graphs; in Figure 4,
only the class (1,2,9) occurs.
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Fig. 4. All combinations of three forbidden P4 extensions; + (−) denotes bounded
(unbounded) clique-width

Theorem 4 ((1,2,9)) If G is a prime (P5,co-P5,gem)-free graph then G is
distance-hereditary or a C5.

The subsequent Theorems 5 and 6 are a simple consequence of Lemma 2.

Theorem 5 ((1,2,10),(1,4,10)) If G is a prime (P5,gem,co-gem)-free or (gem,
co-P, co-gem)-free graph then G is (diamond,co-diamond)-free.

Theorem 6 ((1,3,9),(1,7,9),(1,8,9)) If G is a prime (P5,gem,co-chair)-free
or (P5,gem,bull)-free or (P5,gem,chair)-free graph then G is (P5,diamond)-free.

Thus, the structure of the classes considered in Theorems 5 and 6 is described
in Theorems 2, 3 respectively.

Theorem 7 ((1,3,10)) If G is a prime (co-gem,chair,gem)-free graph then G
or G is a matched co-bipartite graph or G has at most 11 vertices.
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Theorem 8 ((1,4,9)) If G is a prime (P5,P ,gem)-free graph then G is a
matched co-bipartite graph or a distance-hereditary graph or a C5 .

Theorem 9 ((1,5,8), [8]) If G is a prime (chair, co-P, gem)-free graph then
G fulfills one of the following conditions:

(i) G is an induced path Pk, k ≥ 4, or an induced cycle Ck, k ≥ 5;
(ii) G is a thin spider;

(iii) G is a co-matched bipartite graph;
(iv) G has at most 11 vertices.

The next theorem is partially based on the structure of (P5, gem)-free graphs
described in [4]:

Theorem 10 ([5]) The clique width of (P5, gem)-free graphs is at most 9.

Thus, according to Theorem 10, the classes (1,5,9) and (1,6,9) have bounded
clique-width as well; however, their structure is more complicated than the pre-
vious examples and we do not know any linear time algorithm for determining
k-expressions for these graphs.

Theorem 11 ([6]) The clique-width of (gem,co-gem)-free graphs is at most 24.

The proof of Theorem 11 is technically very involved and does not give any
simpler structure description for the subclasses (1,6,10), (1,7,10), (1,6,7,10); we
do not know any linear time algorithm for determining k-expressions for these
graphs.

Theorem 12 ((1,7,8)) If G is a prime (bull,chair,gem)-free graph then G ful-
fills one of the following conditions:

(i) G or G is an induced path Pk, k ≥ 4, or an induced cycle Ck, k ≥ 5;
(ii) G or G is a co-matched bipartite graph;

(iii) G has at most 11 vertices.

Theorem 13 ((2,3,9), [21]) If G is a prime (P5,P5,chair)-free graph then G
is either a co-bipartite chain graph or a spider or C5.

Theorem 14 ((2,5,8), [11]) If G is a prime (chair,co-P,house)-free graph then
G fulfills one of the following conditions:

(i) G is an induced path Pk, k ≥ 4, or an induced cycle Ck, k ≥ 5;
(ii) G is a co-matched bipartite graph;

(iii) G is a spider.

Theorem 15 ((2,7,8), [3]) If G is a prime (P5,bull,chair)-free graph then G
is either a co-matched bipartite graph or an induced path or cycle or G is
(P5,diamond)-free.



New Graph Classes of Bounded Clique-Width 65

������������	

����������


���������

����


��	�


�����

����


��	�


��	��

��	�


����

#

#

#

����

������


"

"

"

""

"

"

"

"

"

Fig. 5. Essential classes for all combinations of forbidden 1-vertex P4 extensions; +
(−) denotes bounded (unbounded) clique-width

Theorem 16 ((2,7,9), [20]) If G is a prime (P5,P5,bull)-free graph then G or
G is a bipartite chain graph or a C5.

Theorem 17 ((3,7,8), [3]) If G is a prime (bull,chair,co-chair)-free graph then
G or G is either a co-matched bipartite graph or an induced path or cycle.

Corollary 1 Every LinEMSOL(τ1,L) definable problem is solvable in linear time
on all graph classes of bounded clique-width (i.e. not indicated with − in Fig-
ure 4), except the classes (1,5,9), (1,6,9), (1,6,10), (1,7,10), (1,6,7,10).

Makowsky and Rotics have shown in [31] that the following grid types have
unbounded clique-width:

– the Fn grid (whose complements are (1,2,3,4,6,8)-free);
– the Hn,q grid (whose complements are (1,2,3,4,5,6,7)-free)

Moreover, they show that split graphs have unbounded clique width. This
implies unbounded clique-width for all classes with − in Figure 4 and in Figure 5.

Let F denote the 10 one-vertex extensions of the P4 (see Figure 1). For
F ′ ⊆ F , there are 1024 classes of F ′-free graphs. Figure 5 shows all inclusion-
minimal classes of unbounded clique-width and all inclusion-maximal classes of
bounded clique-width. As before, we consider the class of F ′-free graphs together
with its complement class, the co-F ′-free graphs, and mention only the lexico-
graphically smaller class. Note that any subclass of bounded clique-width has
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bounded clique-width as well, whereas any superclass of unbounded clique-width
has unbounded clique-width as well. Obviously, a graph with at least 5 vertices
is a cograph if and only if it contains none of the 10 possible one-vertex exten-
sions of a P4. For |F ′| ∈ {9, 8}, all these classes have bounded clique-width. For
|F ′| = 7 there is exactly one inclusion-minimal class (together with its comple-
ment class) of unbounded clique-width namely (1,2,3,4,5,6,7) (enumeration with
respect to Figure 1), and similarly for |F ′| = 6 and |F ′| = 5. For |F ′| = 4 there
is exactly one inclusion-maximal class of bounded clique-width namely (3,4,5,8).
For |F ′| = 3, the inclusion-maximal classes of bounded clique-width are (1,5,8),
(1,7,8), (2,3,9), (2,5,8), (2,7,8), (2,7,9), (3,7,8). For |F ′| = 2, the only classes
of bounded clique-width are (1,9) and (1,10), and for |F ′| = 1, all classes have
unbounded clique-width.
Open problem.

1. Is there a linear time algorithm for determining a k-expression with constant
k for the classes (1,9), (1,5,9), (1,6,9), (1,10), (1,6,10), (1,7,10), (1,6,7,10)?
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L. Kučera (Ed.): WG 2002, LNCS 2573, pp. 68–79, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



More about Subcolorings 69

only if {u, v} �∈ E. For a set of graphs G, we denote by G the set of complements
of graphs from G; hence G ∈ G if and only if G ∈ G. Let G = (VG, EG) and
H = (VH , EH) be graphs with VG∩VH = ∅. The disjoint union G∪̇H is the graph
with vertex set VG∪VH and edge set EG∪EH . The join G∨H of G and H is the
graph with vertex set VG∪VH and edge set EG∪EH∪{{u, v} : u ∈ VG, v ∈ VH}}.
Finally, G � H denotes the graph that results by adding a new vertex v to the
disjoint union of G and H, and by joining v to all the vertices in G and H.

For every non-empty W ⊆ V , the subgraph of G = (V,E) induced by W is
denoted by G[W ]. A clique C of a graph G = (V,E) is a non-empty subset of
V such that all the vertices of C are pairwise adjacent, i.e., G[C] is a complete
graph. The maximum size of a clique in G is denoted by ω(G). A subset of vertices
I ⊆ V is independent if no two of its elements are adjacent. An r-coloring of
the vertices of a graph G = (V,E) is a partition V1, V2, . . . , Vr of V ; the r sets
Vj are called the color classes of the r-coloring. An r-coloring is proper if every
color class is an independent set. The chromatic number χ(G) is the minimum
value r for which a proper r-coloring exists.

Evidently, an r-coloring is proper if and only if for every color class Vj the
induced subgraph G[Vj ] is the union of complete graphs of cardinality one. This
awkward reformulation leads to several interesting generalizations of the classical
chromatic number.

– An r-coloring V1, V2, . . . , Vr is an r-subcoloring, if for every color class the
induced subgraph G[Vi] is the disjoint union of complete graphs (there is no
restriction on the sizes of these complete graphs).

– An r-coloring is a cocoloring, if for every color class the induced subgraph
G[Vi] either is a clique or an independent set.

– Let F be some fixed graph. An r-coloring is an F -free coloring, if for every
color class the induced subgraph G[Vi] does not contain F as an induced
subgraph.

The subchromatic number χsub(G), the cochromatic number χco(G), and the F -
free chromatic number χ(F,G) of a graph G, is the smallest number r for which
G has an r-subcoloring, an r-cocoloring, and an F -free r-coloring, respectively.
Note that a coloring is a subcoloring if and only if it is a P3-free coloring (where
Pk denotes the path on k vertices).

In this paper, we study the algorithmic and combinatorial behavior of the
subchromatic number on various classes of specially structured graphs. See the
books of Brandstädt et al. [3] and Golumbic [11] for definitions of these graph
classes.

1.1 Known Results

Finding proper colorings for various classes of perfect graphs is a long studied
and well understood problem. We refer to the book [11] of Golumbic for a clas-
sical source on algorithmic aspects of perfect graphs. By a celebrated result of
Grötschel, Lovász & Schrijver [12], the chromatic number of a perfect graph
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can be computed in polynomial time. Simple and fast algorithms are known for
different subclasses of perfect graphs like chordal graphs, comparability graphs,
permutation graphs etc. However, even small steps away from proper coloring
towards more general concepts like subcoloring and cocoloring increase the com-
putational complexity of coloring enormously.

For instance, the cochromatic number is NP-hard to compute even for per-
mutation graphs (Wagner [17]). Gimbel, Kratsch & Stewart [9] proved the NP-
hardness of computing the cochromatic number for circle graphs and line graphs
of comparability graphs, and they derived a polynomial time algorithm for
chordal graphs. Achlioptas [1] proved that for any graph F with at least three
vertices and for any fixed integer r ≥ 2, the problem of deciding whether a given
input graph has an F -free r-coloring is NP-hard. By putting F = P3, we get
that r-subcoloring is NP-hard for any fixed integer r ≥ 2. Fiala, Jansen, Le &
Seidel [8] strengthened this hardness result to input graphs that are triangle-
free, planar, and have maximum vertex degree four. On the positive side, [8]
gave polynomial time algorithms for the subcoloring problem on cographs and
on graphs of bounded treewidth.

The literature also contains a number of results on P4-free colorings: Gimbel
& Nešetřil [10] showed that P4-free r-coloring in r = 2 or r = 3 colors is NP-hard
even for planar input graphs. Since P4 is isomorphic to its complement P 4, we
conclude that P4-free coloring in 2 or 3 colors is NP-hard for complements of
planar graphs. Hoàng & Le [13] proved that P4-free 2-coloring is NP-hard for
comparability and cocomparability graphs.

Now let us list a number of useful combinatorial results from the literature
on subcolorings and cocolorings.

Proposition 1. For any graph G, χsub(G) ≤ χco(G) ≤ min{χ(G), χ(G)}.

Proposition 2. (Mynhardt & Broere [16])
Let Km,m,...,m be the complete m-partite graph containing m classes of m ver-
tices. Then χsub(Km,m,...,m) = χco(Km,m,...,m) = χ(Km,m,...,m) = m.

Proposition 3. (Albertson, Jamison, Hedetniemi & Locke [2])
Let G and H be graphs with χsub(G) ≥ k and χsub(H) ≥ k. Then χsub(G � H) ≥
k + 1.

1.2 Our Results

We study combinatorial, algorithmic and complexity aspects of the subcoloring
problems. In particular, we derive the following results.

– For general n-vertex graphs the subchromatic number may be Θ(n/ log n);
for perfect graphs, permutation graphs, and cographs, it may be Θ(

√
n); for

chordal graphs and interval graphs, it may be Θ(logn). All these bounds are
best possible up to constant factors. These results are proved in Section 2.
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– For complements of planar graphs 2-subcoloring is polynomially solvable
(Section 4) whereas 3-subcoloring is NP-hard (Section 3).

– For AT-free graphs, r-subcoloring is NP-hard for any fixed r ≥ 3 (Section 3).
For comparability graphs, r-subcoloring is NP-hard for any fixed r ≥ 2
(Section 5.1).

– For interval graphs (Section 5.2) and for permutation graphs (Section 5.3)
r-subcoloring is polynomially solvable for any fixed r ≥ 2.
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Fig. 1. Summary of some of our results on r-subcoloring for special graph classes,
and the containment relations between these classes. [∗] denotes a contribution of this
paper.

Figure 1 summarizes some of our results and illustrates the relations between
some of the graph classes studied in this paper. The definitions of these graph
classes can be found in books [3] and [11].

2 Upper and Lower Bound Results

In this section we derive several bounds on the subchromatic number of graphs
in terms of their number of vertices. We first state two useful results from the
literature.

Proposition 4. (Albertson, Jamison, Hedetniemi & Locke [2])
For any graph G on n vertices, χsub(G) ≤ 2n/(log2 n− 2) + O(n/(log2 n)2).

Proposition 5. (Erdős, Gimbel & Kratsch [6])
Every perfect graph G on

(
k+2
2

)− 1 vertices has cochromatic number at most k.
Therefore, χco(G) ≤ √2n + 1/4− 1/2�.
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As our first result, we observe that up to constant factors the upper bound
stated in Proposition 4 is best possible.

Lemma 1. For every n, there exists a graph G on n vertices with χsub(G) ≥
n/(2 log2 n + 1).

Proof. We slightly modify the famous argument of Erdős [5]. Consider the ran-
dom graph on n vertices that contains every edge independently with probabil-
ity 1/2.

A subset X of k = 2 log2 n + 1 vertices is called good, if it induces a disjoint
union of cliques, and thus constitutes a feasible color class for a subcoloring. Let
us estimate the probability that some fixed set X is good. Altogether, there are
2(k

2) possibilities for the edges in X. Out of these exactly Bk are good, where Bk

denotes the kth Bell number that is the number of ways a set of n elements can
be partitioned into nonempty subsets. The crude upper bound Bk ≤ k! yields
that the probability that X is good is at most k!/2(k

2).
Therefore, the expected total number of good subsets of cardinality k is at

most
(
n
k

) ·k!/2(k
2). Since

(
n
k

) ≤ nk/k! and since k = 2 log2 n+1, a straightforward
calculation reveals that this expected number is strictly less than 1. Hence, there
exists a graph G in the probability space that does not contain any good subset.
In any subcoloring of G all color classes contain fewer than k vertices, and thus
χsub(G) > n/k. 
�

For perfect graphs, the subchromatic number is much smaller than n/ log n:
Propositions 5 and 1 yield that for every perfect graph G on n vertices, χsub(G) ≤
χco(G) ≤ √2n + 1/4 − 1/2�. Erdős, Gimbel & Kratsch [6] observed that the
disjoint union of cliques H = K1∪̇K2∪̇ · · · ∪̇Kk (this is a graph on

(
k+1
2

)
vertices)

has cochromatic number k. In every subcoloring of H every color class is either
a clique, or an independent set. Thus χsub(H) = χco(H) = χco(H) = k. Since H
is a perfect graph (in fact, it is even a cograph and a permutation graph), we get
that up to additive constant the bound

√
2n is the best possible upper bound

for the subchromatic number of perfect graphs.
In the rest of this section, we will discuss interval graphs. We will show that

for interval graphs the subchromatic number is bounded by O(logn).

Lemma 2. For every interval graph G on n vertices, χsub(G) ≤ log2(n + 1)�.
This bound is best possible.

Proof. For the upper bound we use induction on n. The statement is clearly
true for n = 1. Consider an interval representation of an interval graph G on
n vertices; without loss of generality we assume that the left endpoints of the
intervals are the integers 1, 2, . . . , n. If n is odd, we take an arbitrary maximal
clique C that contains the interval with left endpoint (n + 1)/2. Then every
component of G − C contains at most (n − 1)/2 vertices. We color C by one
color, and we use log2((n+1)/2)� additional colors to color all these components
inductively. If n is even, a similar analysis goes through.
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For showing that the bound log2(n + 1)� is best possible, we consider the
following graphs Gi: For k = 1, the graph G1 consists of one vertex. For k > 1,
we set Gk = Gk−1 � Gk−1 where the new vertex is called v. Note that Gk

has 2k − 1 vertices, and that by Proposition 3 χsub(Gk) = k. Moreover, Gk is
an interval graph; its interval representation can be obtained by putting two
disjoint interval representations of Gk−1 next to each other, and by adding one
long interval that corresponds to the vertex v. 
�

We mention without proof that a similar inductive argument yields χsub(G) =
O(logn) for any chordal graph G. Albertson, Jamison, Hedetniemi & Locke [2]
observed that the interval graphs Gk in the proof of Lemma 2 form a class
of interval graphs with unbounded subchromatic number. We now present a
stronger result on the coloring of interval graphs with forbidden subgraphs.

Lemma 3. For any m and r, there exists an interval graph I(m, r) that does
not have a Pm-free r-coloring.

Proof. Let N = R(Km+1; r) be the Ramsey number that specifies the smallest
number of vertices in a complete graph such that every r-coloring of the edges
of this graph induces a monochromatic clique Km+1 (that is, a clique in which
all edges have the same color). Let KN be the complete graph on vertex set
{1, 2, . . . , N}. Let IN be the intersection graph of all closed intervals with integer
endpoints from {1, 2, . . . , N}. Every interval [a, b] in IN naturally corresponds
to the edge {a, b} in KN .

Now consider an arbitrary r-coloring of the intervals in IN . This induces a
corresponding r-coloring of the edges in KN , and hence there exists a monochro-
matic clique Km+1 with vertex set X with |X| = m + 1. In IN , the intervals
with both endpoints in X also form a monochromatic set IX . Since IX contains
an induced path Pm, every r-coloring of IN contains an induced monochromatic
path Pm. 
�

3 Negative Results: AT-Free Graphs

In this section we derive a generic NP-hardness result. As corollaries to this
result, we derive the NP-hardness of 3-subcoloring for graphs with independence
number two (and hence for AT-free graphs).

For an integer p ≥ 1 and a graph G, we denote by pG the disjoint union of
p copies of G.

We omit the proof of the following lemma in the extended abstract.

Lemma 4. For any graph G and for any integer p ≥ χ(G), the chromatic num-
ber χ(G) of G coincides with the subchromatic number χsub(pG) of the graph
pG.

The following theorem is the main result of this section. It is an immediate
consequence of Lemma 4.
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Theorem 1. Let G be a graph class that is closed under taking disjoint unions
(that is, G,H ∈ G implies G∪̇H ∈ G). Let r be an integer.

If the proper r-coloring problem is NP-hard for graphs from G, then the r-
subcoloring problem is NP-hard for graphs from G.

Corollary 1. The 3-subcoloring problem is NP-hard even when restricted to

(a) graphs with independence number at most two,
(b) AT-free graphs,
(c) complements of planar graphs.

Proof. Maffray & Preissmann [15] proved that proper 3-coloring is NP-hard even
for triangle-free graphs. The class of triangle-free graphs is closed under taking
disjoint unions, and a graph is triangle-free if and only if its complement has
independence number at most two. With this, (a) follows from Theorem 1.

Since the graphs with independence number at most two form a subclass
of the AT-free graphs, (b) is a consequence of (a). Finally, the class of planar
graphs is closed under taking disjoint unions, and it is well-known that proper
3-coloring of planar graphs is an NP-hard problem. Thus, Theorem 1 implies
(c). 
�

We conclude this section with some consequences of Lemma 4 on the hardness
of approximation of the subcoloring problem for general graphs. We rely on the
results of Feige & Kilian [7] on the hardness of approximating the chromatic
number of a graph: For any ε > 0, the chromatic number of n-vertex graphs
cannot be approximated within a factor of n1−ε, unless NP ⊆ ZPP.

Corollary 2. For any ε > 0, the subchromatic number of n-vertex graphs cannot
be approximated within a factor of n1/2−ε, unless NP ⊆ ZPP.

Proof. Let G be an arbitrary graph on n vertices. Then the graph nG has n2

vertices, and by Lemma 4 we have χ(G) = χsub(nG). Now the result of Feige &
Kilian [7] completes the argument. 
�

4 Positive Results: Complements of Planar Graphs

Gimbel & Nešetřil [10] showed that deciding P4-free 2-colorability of a planar
graph is NP-hard. Since the complement of P4 is again P4, this implies that P4-
free 2-subcolorability is NP-hard for complements of planar graphs, too. Fiala,
Jansen, Le & Seidel [8] showed that deciding 2-subcolorability of a planar graph
is NP-hard. Surprisingly, we will show in this section that 2-subcolorability is
polynomially solvable for complements of planar graphs. This will follow as a
corollary from the main theorem of this section. The proof of this theorem will
appear in the full version of the paper.

Theorem 2. Let � ≥ 2, and let G be a class of graphs that do not contain
K�,� as an (induced or non-induced) subgraph. Then 2-subcolorability of a graph
G = (V,E) in G can be decided in polynomial time O(|V |3�).
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Fig. 2. The gadget graphs Source-Source and Source-Sink.

Since planar graphs do not contain K3,3 as a subgraph, we have the following
corollary to Theorem 2. Corollaries 1.(c) and 3 together provide a complete
classification of the complexity of subcolorings of complements of planar graphs.

Corollary 3. The 2-subcoloring problem on complements of planar graphs is
polynomially solvable.

5 Perfect Graphs

In this section, we discuss three classes of perfect graphs. In Section 5.1 we
prove NP-hardness of r-subcolorability for every fixed r ≥ 2 on comparability
graphs. In Sections 5.2 and 5.3, we give polynomial time dynamic programming
algorithms for r-subcolorability for every fixed r ≥ 2, on interval graphs and on
permutation graphs, respectively.

5.1 Comparability Graphs

In this section we prove the NP-hardness of r-subcolorings on comparability
graphs for every fixed r ≥ 2. Our NP-hardness reduction is based on the two
graphs Source-Source (depicted to the left) and Source-Sink (depicted to the
right) in Figure 2. Both graphs have two contact vertices a and b.

Lemma 5. (a) The graphs Source-Source and Source-Sink are comparability
graphs.

(b) The graphs Source-Source and Source-Sink possess a 2-subcoloring, in
which no contact point receives the same color as its neighbor.

(c) In every 2-subcoloring of Source-Source and Source-Sink, the contact
vertices a and b must receive different colors.

Proof. Proof of (a). The orientations depicted in Figure 2 are transitive. Proof
of (b). The 2-colorings depicted in Figure 2 are subcolorings. Proof of (c). By
checking all possible cases. 
�

Statements (b) and (c) in Lemma 5 are extremely useful for our NP-hardness
proofs: Consider a graph G, and let x, y be a pair of vertices in G. Let the graph
G+ result from G by adding an independent copy of a Source-Source or a Source-
Sink gadget to G, and by identifying vertex x with contact point a, and vertex
y with contact point b. Then the graph G+ has a 2-subcoloring, if and only if G
has a 2-subcoloring in which x and y receive different colors.
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Theorem 3. The 2-subcoloring problem is NP-hard for comparability graphs.

Proof. The proof is by a reduction from the NP-complete SET SPLITTING
problem [14]: Given a finite set S and a collection C of triples over S, decide
whether there is a partition of S into two subsets S1 and S2 such that every
triple in C has a non-empty intersection with S1 and with S2.

Now let C = {c1, c2, . . . , cm} be a collection of triples over a finite set S =
{s1, s2, . . . , sn}. We construct the following graph GC from C: For every sj ∈ S,
there is a corresponding vertex xj ∈ X. For every triple ci = (s1

i , s
2
i , s

3
i ) ∈ C,

there are three corresponding vertices y1
i , y

2
i , y

3
i that form a P3; there is an edge

between y1
i and y2

i , and there is an edge between y2
i and y3

i . Vertex y2
i is called

the middle vertex of this path, and vertices y1
i and y3

i are called the end vertices.
Moreover, we introduce the following copies of the Source-Source and Source-
Sink gadgets:

– For every occurrence of sj in the first or third position of some triple
ci = (s1

i , s
2
i , s

3
i ), the graph GC contains a copy of the Source-Source gad-

get; the contact points are identified with vertex xj , and with vertex y1
i

(first position) or y3
i (third position), respectively.

– For every occurrence of sj in the second position of some triple ci = (s1
i , s

2
i ,

s3
i ), the graph GC contains a copy of the Source-Sink gadget; the contact

point b is identified with vertex xj , and the contact point a is identified with
vertex y2

i .

This completes the definition of the graph GC . We argue that GC is a com-
parability graph by considering the following orientation: All Source-Sink and
Source-Source gadgets are oriented as shown in Figure 2. The edges of the paths
y1

i , y
2
i , y

3
i are directed towards the middle vertices y2

i . In the resulting orienta-
tion, all vertices xj ∈ X and all end vertices of paths are sources, and all middle
vertices of paths are sinks. Hence, arcs incident to these vertices can not violate
transitivity, and the remaining arcs are within the gadgets.

We claim that GC has a 2-subcoloring if and only if the corresponding in-
stance of SET SPLITTING has answer YES.

Assume that GC has a 2-subcoloring. We construct the following set splitting:
If xj is colored 1, then sj ∈ S1. If xj is colored 2, then sj ∈ S2. Consider a triple
ci = (s1

i , s
2
i , s

3
i ) in C. If it is contained in S1 or S2, then the three vertices

that correspond to s1
i , s

2
i , s

3
i must all have the same color, and the three vertices

y1
i , y

2
i , y

3
i on the P3 corresponding to Ci must all have the opposite color. But then

this P3 would be monochromatic, and the coloring would not be a subcoloring.
Next assume that C possesses a set splitting of S into S1 and S2. We construct

the following coloring: If sj ∈ S1, then we color vertex xj by 1. If sj ∈ S2,
then we color vertex xj by 2. Then we extend this coloring to the Source-Sink
and Source-Source gadgets according to Figure 2. It is easily checked that the
resulting coloring is a 2-subcoloring of GC . This completes the proof of the
theorem. 
�

The NP-hardness result on 2-subcoloring for comparability graphs can easily
be generalized to r-subcolorings with r ≥ 3.
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Theorem 4. For any r ≥ 2, the r-subcoloring problem on comparability graphs
is NP-hard.

Proof. We proceed by induction on r. The starting case r = 2 has been settled in
Theorem 3. So assume that we have proved the statement up to r, and that we
want to prove it for r + 1. This will be done as follows: For every comparability
graph Gr, we construct in polynomial time a comparability graph Gr+1 such
that Gr is r-subcolorable if and only if Gr+1 is (r + 1)-subcolorable.

Let K = Kr+1,...,r+1 be the complete (r + 1)-partite graph containing r + 1
classes of r + 1 vertices. Recall that by Proposition 2, χsub(K) = r + 1. We
put Gr+1 = Gr � K where the new vertex is called v. Observe that Gr+1

is a comparability graph: Gr and K are comparability graphs; we take their
transitive orientations, and we orient all edges that are incident with the new
vertex v away from v.

Assume that Gr+1 is subcolorable in r+1 colors. By Proposition 2 the vertices
of the graph K must use all r + 1 colors; in particular, the color c of the new
vertex v is used in K. But this implies that color c cannot be used for the vertices
of Gr, since this would yield a monochromatic P3 in color c. Hence, the graph
Gr is subcolorable in r colors.

Now assume that Gr is subcolorable in r colors. Take this r-subcoloring, and
color the new vertex v by a new color. Color K by r+1 colors in such a way that
every independent class of r+ 1 vertices receives all r+ 1 colors; in other words,
every color class induces a clique of size r+1 in K. The resulting (r+1)-coloring
of Gr+1 is a subcoloring. 
�

5.2 Interval Graphs

In this section we design for every fixed r ≥ 2 a polynomial time algorithm for
the r-subcoloring problem on interval graphs. Let G = (V,E) be an interval
graph with |V | = n. Without loss of generality we may assume that the left
endpoints of the intervals I1, . . . , In that represent G are the integers 1, 2, . . . , n.
For k = 1, . . . , n we denote by Gk the subgraph that is induced by the first
k intervals I1, . . . , Ik. For a clique Cl in G, we denote by inter(Cl) �= ∅ the
intersection of all intervals in Cl and by union(Cl) the union of all these intervals.
Note that inter(Cl) and union(Cl) are also intervals.

Consider an arbitrary color class C in an arbitrary r-subcoloring of Gk. This
color class C is the union of a number q of disjoint cliques Cl1, . . . ,Clq; without
loss of generality we assume that union(Cl i) always lies completely to the left of
union(Cl i+1). Now assume that we would like to extend the subcoloring to the
graph Gk+1 by adding interval Ik+1 (with left endpoint k + 1) to color class C.
There are only two possibilities for doing this:

(a) If the point k+1 lies to the right of union(Clq), then interval Ik+1 may start
a new clique in C.

(b) If the point k + 1 lies within inter(Clq), then interval Ik+1 may be added to
the rightmost clique Clq in C.
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Note furthermore that the left endpoints of inter(Clq) and union(Clq) do not
exceed k. Hence, for deciding whether case (a) or case (b) holds, we only need
to know the right endpoints of inter(Clq) and union(Clq). These observations
suggest the following dynamic programming formulation.

Every state is specified by a (2r + 1)-tuple [k; i1, i2, . . . , ir;u1, . . . , ur]. Here
1 ≤ k ≤ n, and the variables i1, . . . , ir and u1, . . . , ur either specify right end-
points of some of the intervals I1, . . . , Ik, or they take the dummy value ‘∗’.
Hence, altogether there are O(n2r+1) states. For every state, we compute a
Boolean value B[k; i1, . . . , ir;u1, . . . , ur]. This Boolean value is TRUE, if and
only if there exists a subcoloring of Gk with color classes C1, . . . , Cr with the
following properties for j = 1, . . . , r: If Cj is empty, then ij = uj = ∗. And if
Cj is non-empty, then ij is the right endpoint of inter(Cl) and uj is the right
endpoint of union(Cl) of the rightmost clique Cl in color class Cj .

The values B[k; i1, . . . , ir;u1, . . . , ur] are computed first for level k = 1, then
for level k = 2, and so on up to level k = n. Since in any subcoloring for Gk the
interval Ik+1 can be added in at most two possible ways (a) and (b) to at most
r color classes, every TRUE value at level k generates at most 2r TRUE values
at level k+ 1. The graph G is r-subcolorable, if and only if there exists a TRUE
value at level n. Summarizing, we get the following theorem.

Theorem 5. For any fixed r, the r-subcoloring problem for an interval graph
with n vertices can be solved in O(r · n2r+1) time.

5.3 Permutation Graphs

Theorem 6. For any fixed r, the r-subcoloring problem for a permutation graph
with n vertices can be solved in O(r · n3r+1) time.

To prove the theorem we use a dynamic programming approach that is quite
similar to the above algorithm for interval graphs. For details, see the full version
of this paper.

6 Concluding Remarks and Questions

– What is the computational complexity of r-subcoloring for cocomparability
graphs?

– What is the computational complexity of r-subcoloring for chordal graphs?
– What is the computational complexity of 2-subcoloring for AT-free graphs?

(In Section 3, we have proved that 3-subcoloring of AT-free graphs is NP-
hard).

– What is the computational complexity of r-subcoloring for interval graphs
and permutation graphs, if r is part of the input? (In Section 5, we have
proved that these problems are polynomially solvable if r is fixed and not
part of the input).
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Search in Indecomposable Graphs

Alain Cournier

LaRIA 5, rue du moulin neuf, 80 000 Amiens
cournier@laria.u-picardie.fr

Abstract. In this paper we will present some properties of indecom-
posable graphs, furthermore we see how a search in an indecomposable
graph can compute some of these properties. Endly we will see that using
this search, when the vertices of an indecomposable graph G are visited
in a given order O, the vertices of the complement of G (denoted G) can
also be visited in the same order O.

Keywords: Indecomposable Graphs, Prime Graphs, Search in a Graph.

1 Introduction

An undirected graph (or symmetric graph) G consists of a finite set V of vertices
together with a prescribed collection E of unordered pairs of distinct vertices
called the set of edges of G. Such a graph will be denoted G = (V,E). With each
subset X of V , is associated the (induced) subgraph G(X) = (X,E∩ (X×X)) of
G. Finally given a graph G = (V,E) the complement of G is the graph G = (V,E)
defined as follow: let x �= y ∈ V , (x, y) ∈ E if and only if (x, y) �∈ E.

A search in a graph G = (V,E) will explore all vertices and edges of G.
Some of these searches are very famous like Breadth-First Search [13], Deep-
First Search [9], Maximum Cardinality Search [15] or Lexicographic Breadth-
First Search [7].

In the following, we will use the following notations. Given a graph G =
(V,E), for a given vertex x of G, N(x) is the set of y ∈ V such that (x, y) ∈ E.
Finally, given unordered pairs (x, y) and (x′, y′) of distinct vertices of G, (x, y)
and (x′, y′) are equivalent denoted by (x, y) � (x′, y′) when either (x, y) ∈ E ↔
(x′, y′) ∈ E. Otherwise, we will denote this by (x, y) �� (x′, y′).

Let G = (V,E) be a graph, a subset X of V is an interval [6,10,16] (or an
autonomous subset [12] or a clan [5] or an homogeneous subset [8] or a module
[17] or a partitive subset [18]) whenever for all a, b ∈ X and all x ∈ V − X,
(a, x) � (b, x). For example, this notion is the classic notion of interval when
G is a linear ordering. Given a graph G = (V,E), ∅, V and {x}, where x ∈ V ,
are clearly intervals of G, called trivial intervals. A graph is then said to be
indecomposable [10,16] (or prime [3] or primitive [5]) whenever |V | ≥ 3 and
all of its intervals are trivial. Otherwise, a graph G = (V,E), which admits at
least an interval X such that 2 ≤ |X| < |V |, is said to be decomposable1. An
indecomposable graph G = (V,E) is minimal for elements x1, . . . , xk of V when
1 by convention, a graph G = (V, E) such that |V | ≤ 2 is said to be decomposable

L. Kučera (Ed.): WG 2002, LNCS 2573, pp. 80–91, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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for each Y ⊂ V (Y �= V ) such that {x1, . . . , xk} ⊆ Y and |Y | ≥ 3, G(Y ) is
decomposable. In a similar type of problem, J. H. Schmerl and W. T. Trotter
[16] examined critically indecomposable graphs which are indecomposable graphs
G = (V,E), with |V | ≥ 4, such that for x ∈ V , G(V − {x}) is decomposable.
Finally, we introduce the notion of quotient graph. Given a graph G = (V,E),
a partition P of V is an interval partition of G when all of the elements of
P are intervals of G. For such a partition P , we may define the quotient graph
G/P = (P,E/P ) of G by P as follows: let X �= Y ∈ P ,(X,Y ) ∈ E/P whenever
for x ∈ X and for y ∈ Y , (x, y) ∈ E.

The aim of this paper is to characterize a search in an indecomposable graph.
As a consequences, we will see that such a search in an indecomposable graph
can be useful to compute some properties.

2 The Indecomposable Graphs

2.1 General Properties

In this section, we will recall some of the properties of indecomposable graphs
which will be used in what follows. We start with a review of the properties of
the intervals of a graph as obtained in the papers concerning the decomposability
of graphs.

Proposition 1 Let G = (V,E) be a graph, the graphs G and G have the same
intervals. Moreover, these intervals satisfy the following assertions.

1. V , ∅ and {x}, where x ∈ V , are intervals of G.
2. If X and Y are intervals of G, then X ∩ Y is an interval of G.
3. Let X,Y be intervals of G, if X ∩ Y �= ∅, X ∪ Y is an interval of G.
4. Let X and Y be intervals of G, if X − Y �= ∅, where X − Y = {x ∈ X |

x �∈ Y }, then Y −X is an interval of G.
5. Given a subset W of V , if X is an interval of G, then X∩W is an interval

of G(W ).

The next propositions allow for the examination of the indecomposable sub-
graphs of an indecomposable graph.

Proposition 2 ([18]) Given an indecomposable graph G = (V,E), with | V |≥
3, there is a subset X of V such that | X |= 4 and G(X) is indecomposable.

In order to construct indecomposable subgraphs of a larger size, we use the
following partition.

Definition 1 Given a graph G = (V,E) and a subset X of V such that | X |≥ 3
and G(X) is indecomposable. For u ∈ X, Eq(u) is the set of x ∈ V − X such
that {u, x} is an interval of G(X ∪ {x}). The set of x ∈ V −X such that X is
an interval of G(X ∪ {x}) is denoted by [X] and the set of x ∈ V −X such that
G(X ∪ {x}) is indecomposable is denoted by Ext(X).
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Lemma 1 ([5]) Given a graph G = (V,E) and a subset X of V such that
| X |≥ 3 and G(X) is indecomposable.

1. The family p(X) = {Ext(X), [X], Eq(u)(u ∈ X)} is a partition of V −X.
2. For x �= y ∈ Ext(X), G(X ∪ {x, y}) is decomposable if and only if {x, y}

is an interval of G(X ∪ {x, y}).
3. For x ∈ Eq(u) and for y ∈ V − (X ∪Eq(u)), where u ∈ X, G(X ∪ {x, y})

is decomposable if and only if {x, u} is an interval of G(X ∪ {x, y}).
4. For x ∈ [X] and for y ∈ V − (X ∪ [X]), G(X ∪ {x, y}) is decomposable if

and only if X ∪ {y} is an interval of G(X ∪ {x, y}).

The next result is a direct consequence of Lemma 1.

Proposition 3 ([5]) Let G = (V,E) be an indecomposable graph, if X is a
subset of V such that G(X) is indecomposable and 3 ≤| X |≤| V | −2, then there
are x �= y ∈ V −X such that G(X ∪ {x, y}) is indecomposable.

Corollary 1 flows from Propositions 2 and 3.

Corollary 1 If G = (V,E) is an indecomposable graph, with | V |≥ 5, then
there exits X ⊂ V such that G(X) is indecomposable and | V −X |= 1 or 2.

Practically, in order to satisfy that a graph G = (V,E) is indecomposable,
we must first look for a subset X of V such that G(X) is indecomposable and
|X| = 4. We next calculate the partition p(X) and, using Lemma 1, we try to
find x, y ∈ V −X such that G(X ∪ {x, y}) is indecomposable. We continue this
procedure by replacing X by X∪{x, y}. For more details, refer to the recognition
algorithm described in [2].

2.2 Minimal Indecomposable Graphs for Two Vertices

We first define on {1, . . . , k}, where k ≥ 4, the symmetric graphs Pk and Qk

(see Figures 1 and 2) in the following manner. For i �= j ∈ {1, . . . , k}, (i, j) is
an edge of Pk when | i − j |= 1. For i �= j ∈ {1, . . . , k}, (i, j) is an edge of Qk

whenever either i, j ∈ {1, . . . , k − 2} and | i− j |= 1 or k − 1 ∈ {i, j} and there
is l ∈ {1, . . . , k − 3} ∪ {k} such that {i, j} = {k − 1, l}.

1 2 3 ... k-1 k

Fig. 1. Pk

Proposition 4 ([4]) Let G = (V,E) be an indecomposable symmetric graph,
with |V | ≥ 4, and x �= y be elements of V , G is minimal for x and for y if and
only if there is an isomorphism f from G or G onto Pk or Qk, where k ≥ 4,
such that f({x, y}) = {1, k}.
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Fig. 2. Qk

Proposition 4 is a direct consequence of the following result.

Proposition 5 ([4]) Given an indecomposable symmetric graph G = (V,E),
with | V |≥ 4, for x �= y ∈ V , there is a subset X of V satisfying: x, y ∈ X and
there is an isomorphism f from G(X) or G(X) onto Pk or Qk, where k ≥ 4,
such that f({x, y}) = {1, k}.

3 An Algorithm

The next algorithm will be used as a subroutine of our next search algorithm.

3.1 Principle

The algorithm takes an undirected graph G and two vertices x, y of G as inputs
and computes the smallest interval I of G satisfying one of the two following
conditions :

1. {x} ∪ (N(x)−N(y)) ⊆ I when (x, y) �∈ E;
2. {x} ∪ (N(y)−N(x)) ⊆ I when (x, y) ∈ E.
In the same time we also compute in an array a function M . This function

associates to each vertex of I an integer. We will use M later.

3.2 The Algorithm

In order to compute this set I, we will use the following sets: Set1, Set2,
Universal, Unseen. At the end of the algorithm we want Set1 = Set2 = ∅,
u ∈ Universal⇔ I ⊆ N(u) and u ∈ Unseen⇔ I ∩N(u) = ∅. Of course we also
need that I respects previous conditions.

At each iteration of the algorithm we can assume that I is the subset of the
final result already computed. In Set1 we have the vertices of G we want to insert
in I at this iteration of the algorithm. And let us suppose we maintain the two
properties u ∈ Universal ⇔ I ⊆ N(u) and u ∈ Unseen ⇔ I ∩N(u) = ∅. Then
an iteration of the algorithm, put each vertices v of Set1 in I. At this moment
some vertices of Universal or Unseen cannot stay anymore in their sets (with
respect of the previous properties). They will be inserted in Set2. In Fact, Set2
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contains the vertices previously in Universal or Unseen that violate interval
property of I ∪ Set1.

Algorithm: ComputeInterval
Data: G = (V,E) an undirected graph; x, y two vertices of G;
Result: I a set of vertices of G;M : array[V] of integer;
Var: Set1, Set2, Universal, Unseen: sets of vertices; d:integer;
BeginAlgo

I ← {x}; Set2 ← ∅; d← 1; M [x] ← 0;
If xy �∈ E then

Unseen← V − (N(x) ∪ {x}); Universal← N(x) ∩N(y);
Set1 ← N(x)− (N(y) ∪ {y})

Else
Unseen← V − (N(y) ∪N(x)); Universal← N(x);
Set1 ← N(y)− (N(x) ∪ {x});

Endif
While Set1 �= ∅ do

While Set1 �= ∅ do
Let z be a vertex of Set1; M [z] ← d;
Move z from Set1 to I;
Set2 ← Set2 ∪ (Unseen ∩N(z)) ∪ (Universal −N(z));
Universal← Universal ∩N(z); Unseen← Unseen−N(z);

EndWhile
d← d + 1;Set1 ← Set2; Set2 ← ∅;

EndWhile
EndAlago

3.3 Termination, Correctness and Complexity of the Algorithm

The first Invariant of the algorithm

Invariant 1 At each step of the algorithm {I, Set1, Set2, Universal, Unseen}
is a partition of V .

Proof. In fact one can notice that for any vertex v:
If the algorithm removes v from Universal, it inserts v in Set2;
If the algorithm removes v from Unseen, it inserts v in Set2;
If the algorithm removes v from Set2, it inserts v in Set1;
If the algorithm removes v from Set1, it inserts v in I.

Since we cannot lose any vertices and since at the beginning of the algorithm,
{I, Set1, Set2, Universal, Unseen} is a partition of V , the Invariant 1 is true.

The second invariant will give us the termination of the internal While loops.

Invariant 2 Each time the algorithm executes the statment of the internal While
loop, it increases the cardinality of I and decreases the cardinality of Set1.
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Corollary 2 The internal while loops stops.

Proof. Since the cardinality of Set1 strictly decreases during this loop, the
internal while loops stops.

Invariant 3 Each time the algorithm goes in the external While loop, it in-
creases the cardinality of I.

Proof. Since the test of the internal and external while loops are identical, if
the algorithm comes in the external while loop, it comes in the internal while
loop, so using Invariant 2, |I| increases.

Proposition 6 The algorithm ComputeInterval stops.

Proof. We know that 1 ≤ |I| ≤ |V |, using Invariant 3, we know that the
algorithm cannot enter more than |V |−1 time in the external while loop. So the
algorithm stops.

In order to verify that I is the smallest interval of G containing x and N(x)−
N(y) (respectively N(y) − N(x)) when xy �∈ E (respectively xy ∈ E). We will
verify first: At the end of the algorithm I is an interval of G.

Invariant 4 Let t, u, v be three vertices of G, such that t, u ∈ V isited and v ∈
Universal ∪ Unseen. We can say (v, t) � (v, u) � (v, x)

Proof. This invariant is true at the beginning of the algorithm since |I| = 1.
We will suppose that it stills true when |I| = k. Let us suppose ComputeInter-
val picks a new vertex z in Set1 and let us denote by Universal′ (respectively
Unseen′, I ′) the following set of vertices Universal′ = Universal ∩ N(z) (re-
spectively Unseen′ = Unseen−N(z), V isited′ = V isited ∪ {z}).

Let t, u, v be three vertices of G, such that t, u ∈ I ′ and v ∈ Universal′. Let
us suppose, t �= z �= u, since Universal′ ⊆ Universal, (v, t) � (v, u) � (v, x).
In the remaining case, t = z �= v, since Universal′ ⊆ Universal, (v, u) � (v, x),
furthermore, since v ∈ Universal′, (v, z), (v, x) ∈ E and (v, z) � (v, x).

Let t, u, v be three vertices of G, such that t, u ∈ V isited′ and v ∈ Unseen′.
Let us suppose, t �= z �= u, since Unseen′ ⊆ Unseen, (v, t) � (v, u) � (v, x). In
the remaining case, t = z �= v, since Unseen′ ⊆ Unseen, (v, u) � (v, x), further-
more, since v ∈ Unseen′, (v, z), (v, x) �∈ E and (v, z) � (v, x). The property still
true for the new sets, V isited′, Unseen′, Universal′ with |V isited| = k + 1.

So Invariant 4 is still true.

Corollary 3 At the end of the algorithm I is an interval of G.

Proof. Since the algorithm stops when Set1=Set2=∅, {I, Universal, Unseen}
is a partition of V (Invariant 1), and I is an interval of G (Invariant 4).

The following Invariant of the internal While loop will be helpful to prove
that I is the smallest interval. It gives also a characterization of Set2.

Invariant 5 At the end of the internal while loop, we can claim
Set2 = {u ∈ V − I|∃v, w ∈ I and (v, u) �� (w, u)}
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Proof. When the algorithm inserts a vertex u in Set2 then either u ∈
Universal −N(z) or u ∈ Unseen ∩N(z) in both cases, (u, z) �� (u, x).

Invariant 6 At the end of the internal while loop, any interval W containing I
must contain Set2.

Proof. Let us suppose the contrary. Let W be an interval of G containing I,
and s be a vertex of Set2 −W . Using Invariant 5, there exists i1, i2 ∈ I such
that (i1, s) �� (i2, s). Since i1, i2 ∈ W and s �∈ W , W is not an interval of G. A
contradiction.

Corollary 4 At the end of the algorithm, I is the smallest interval of G con-
taining x and N(x)−N(y) (respectively N(y)−N(x)) when xy �∈ E (respectively
xy ∈ E).

Proof. This is a direct consequence of Invariant 6.

Proposition 7 The algorithm ComputeInterval runs in O(|V |+ |E|) time com-
plexity.

Proof. In fact, we have to compute the 3 sets Universal∩N(z), Unseen−N(z),
and Set2∪(Universal−N(z))∪(Unseen∩N(z)), in O(|N(z)|) time complexity.
So these sets can be represented as queues, and we can use some techniques like
partition refinements developed in [14,2,1,3].

3.4 Properties of the Algorithm

The first property of this algorithm claims that the result is independent from
running on a graph G or the complement of this graph.

Theorem 1 Let G be a graph, x, y be two vertices of G, I, M the results of the
algorithm ComputeInterval(G, x, y, I,M) and I, M the results of the algorithm
ComputeInterval(G, x, y, I,M). Wecan claim I = I and For each i ∈ I, M [i] =
M [i].

Proof. In this proof we will assume that x �∈ NG(y).
Let us denote by I, Set1, Set2, Universal, Unseen,M, d, the variable sets of

ComputeInterval(G, x, y, I,M) and I, Set1, Set2, Universal, Unseen,M, d the
variable sets of ComputeInterval(G, x, y, I,M).

One can notice that C(G, x, y) ⇐⇒ C(G, x, y).
At the beginning of the algorithm, we can say :

Set1 = N(x)− (N(y) ∪ {y}) = N(x) ∩ (N(y) ∪ {y}) =
N(x) ∩NG(y) = NG(y)− (N(x)) = NG(y)− (NG(x) ∪ {x}) = Set1

I = {x} = I
So using Corollary 4 and Proposition 1, we can claim I = I at the end of the

algorithm.
Let us now suppose that the algorithm after k steps in the external while

loop verify the following conditions :
Set1k = Set1k, Set2k = Set2k, Ik = Ik, dk = dk = k, ∀x ∈ Ik,M [x] = M [x]
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Then the algorithm execute a k + 1th time the external while loop. At the
end of this step : Ik+1 = Ik ∪ Set1k = Ik ∪ Set1k = Ik+1.
At the end of the internal While loop, using Invariant 5, Set2k+1 = Set2k+1.
So at the end of the external While loop, Set1k+1 = Set1k+1 and Set2k+1 =
Set2k+1 = ∅. Of course dk+1 = dk+1 = k + 1.

The remaining question is: ∀x ∈ Ik+1,M [x] = M [x] ?
If x ∈ Ik+1 then either x ∈ Ik and M [x] = M [x] or x ∈ Set1k then at the

end of this step M [x] = k+ 1, since Set1k = Set1k x ∈ Set1k then at the end of
this step M [x] = k + 1. In both cases, ∀x ∈ Ik+1,M [x] = M [x].

Since the previous conditions are true for k = 0 Theorem 1 is true.

4 Search in an Indecomposable Graph

In a first time let us define the following condition:

Condition 1 G = (V,E) is an undirected graph and x, y are two vertices of G
such that: xy �∈ E =⇒ N(x) �⊆ N(y) and xy ∈ E =⇒ N(y) �⊆ N(x) ∪ {x}

In the following we will denote by C(G, x, y) the boolean value of Condition 1,
where x, y are two vertices of a given graph G.

4.1 Principle

We will use the previous algorithm to do a search in an indecomposable graph.
This algorithm takes an indecomposable graph G with more than 2 vertices and
two distinct vertices of G as inputs and produces a set of vertices (V isited).
In the same time, we also compute in an array a function M . This function
associate to each V isited vertices an integer. We will use M later.

4.2 The Algorithm

Algorithm: SearchInIndecomposableGraph
Data: G = (V,E): an indecomposable graph;
x, y: two distinct vertices of G;
Result: V isited: a set of vertices;
Var: M : array[V] of integer;
BeginAlgo

If C(G,x,y) then ComputeInterval(G, x, y, V isited,M)
Else ComputeInterval(G, y, x, V isited,M)
EndIf

EndAlgo

4.3 Correctness and Complexity

This algorithm is a search in a graph if and only if at the end of the algorithm,
V isited = V . This is the aim of the following proposition.
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Proposition 8 Let G = (V,E) be an indecomposable graph and x, y two distinct
vertices of G. The algorithm SearchInIndecomposableGraph(G, x, y, V isited,
M) stops with V isited = V

Proof. First one can notice that the Condition 1 in the particular cases of
indecomposable graphs verifies ¬C(G, x, y) =⇒ C(G, y, x).
Otherwise {x, y} is a non trivial interval of G.

Using Corollary 4, we know that V isited is an interval of G.
Let us assume that C(G, x, y) is true, then x ∈ V isited, and since C(G, x, y)

is true V isited contains one of the two following nonempty sets:
N(x)−N(y) when xy �∈ E or N(y)−N(x) when xy ∈ E.

Since G is an indecomposable graph V isited = V .
If C(G, x, y) is false, C(G, y, x) is true and the Proposition still true.
From proposition 7 we can claim the following Theorem.

Theorem 2 The algorithm SearchInIndecomposableGraph run in O(|V | +
|E|) time complexity.

5 Consequences

The following proposition is a direct consequence of Theorem 1

Proposition 9 For any indecomposable graph G = (V,E) and for any x, y ∈ V
(x �= y), SearchInIndecomposableGraph(G, x, y, V isited,M) and SearchIn-
IndecomposableGraph(G, x, y, V isited,M) can visit the vertices in the same or-
der. Furthermore the function M is independent from G and G.

6 Compute Minimal Indecomposable Graph
for Two Vertices

In this section we will see how to compute a minimal indecomposable graph
for two vertices. The algorithm will take an indecomposable graph G and two
distinct vertices x, y as inputs and gives as an output, a set of vertices inducing
a minimal indecomposable graph for the vertices x, y. This algorithm will use
the algorithm SearchInIndecomposableGraph as a subroutine.

6.1 Outline of the Algorithm

Algorithm: FindMinimalIndecomposableGraph
Data: G = (V,E) an indecomposable graph; x, y two vertices of G;
Result: S : A set of vertices inducing a minimal indecomposable graph;
Var: M : array [V] of integer; i: integer;s, t: vertices

P = {p0, p1, . . .}: a partition of V ;
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BeginAlgo
SearchInIndecomposableGraph(G, x, y, S,M); S ← ∅;
Compute P such that pi = {u ∈ V |M [u] = i};
If M[x] = 0 then s← y; t← x
Else s← x; t← y;
EndIf
i←M [s]; S ← S ∪ {s};
While i ≥ 2 do

pick a vertex w in pi−1 such that (w, s) �� (t, s);
s← w; S ← S ∪ {w}; i← i− 1

EndWhile
S ← S ∪ {t};

EndAlgo

6.2 Proof of the Algorithm

First of all, we will see that the algorithm can pick a vertex w.

Proposition 10 Let G be an indecomposable graph, x, y be two vertices of G and
M the output of the algorithm SearchInIndecomposableGraph(G, x, y, S,M).
For any vertex z of G, M [z] ≥ 2 there exists a vertex v such that M [v] = M [z]−1
and either M [x] = 0 and (x, z) �� (v, z) or M [y] = 0 and (y, z) �� (v, z);

Proof. This is a direct consequence of Invariant 5.

Theorem 3 There exists an isomorphism f from the subgraph G(S) onto

Pmax(M [x],M [y])+1 or Qmax(M [x],M [y])+1 or

Pmax(M [x],M [y])+1 or Qmax(M [x],M [y])+1 ,

such that f({x, y}) = {1,max(M [x],M [y]) + 1}.
Proof. Using the Theorem 1, we will assume that x �∈ N(y). In the following we
will denote by xi the vertex of S∩pi and by k the number max(M [x],M [y])+1.
Let us first prove that for any j, 0 ≤ j ≤ k − 3, (xj , xj+1) �� (x, y).

Let us suppose the contrary, there exists j, 0 ≤ j ≤ k − 3 with (xj , xj+1) �
(x, y), so either j = 0 and by construction, x1 ∈ N(x0)−N(xk) or j ≥ 1, in this
case xj+1 ∈ N(x0), so xj+1 ∈ N(x0) ∩N(xk), and k = j + 2. In these two cases
we hold a contradiction.

Since x �∈ N(y) we know (x0, x1) � (xk−1, xk) then either (x0, x1) � (xk−2,
xk−1) and G(S) is a Pk+1, or (x0, x1) �� (xk−2, xk−1) and G(S) is a Qk+1.

In the 2 cases the Theorem holds.

Proposition 11 When G is an indecomposable graph and x �= y, the algorithm
FindMinimalIndecomposableGraph runs in linear time.

Proof. The algorithm FindMinimalIndecomposableGraph needs to use tech-
niques like partition refinements developed in [14,2,1,3].
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7 Conclusion

In this paper, we saw another way to do a search in an indecomposable graph.
But one can notice that the algorithm SearchInIndecomposableGraph(G, x, y)
visits all the vertices of the graph when G = (V,E) is connected, G is connected
and V is the smallest interval containing x and y.

The search developed in this paper is close from the Breadth First Search
in a graph. In the same way one can imagine a Deep First Search, a Lexico-
graphic Breadth First search or a Maximal Cardinality Search in Indecomposable
Graphs.

On the other hand, it would be interesting to continue the examination be-
gun here by attempting to characterize the computable properties, using these
searches.
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Abstract. A graph G is (k, l) if its vertex set can be partitioned into
at most k independent sets and l cliques. The (k, l)-Graph Sandwich
Problem asks, given two graphs G1 = (V, E1) and G2 = (V, E2), whether
there exists a graph G = (V, E) such that E1 ⊆ E ⊆ E2 and G is (k, l).
In this paper, we prove that the (k, l)-Graph Sandwich Problem is NP -
complete for the cases k = 1 and l = 2; k = 2 and l = 1; or k = l = 2.
This completely classifies the complexity of the (k, l)-Graph Sandwich
Problem as follows: the problem is NP -complete, if k+l > 2; the problem
is polynomial otherwise. In addition, we consider the degree Δ constraint
subproblem and completely classifies the problem as follows: the problem
is polynomial, for k ≤ 2 or Δ ≤ 3; the problem is NP -complete otherwise.

1 Introduction

We say that a graph G1 = (V,E1) is a spanning subgraph of G2 = (V,E2) if
E1 ⊆ E2; and that a graph G = (V,E) is a sandwich graph for the pair G1, G2 if
E1 ⊆ E ⊆ E2. For notational simplicity in the sequel, we let E3 be the set of all
edges in the complete graph with vertex set V which are not in E2. Thus every
sandwich graph for the pair G1, G2 satisfies E1 ⊆ E and E ∩ E3 = ∅. We call
E1 the forced edge set, E2 \E1 the optional edge set, E3 the forbidden edge set.
The graph sandwich problem for property Π is defined as follows [10]:

graph sandwich problem for property Π
Instance: Vertex set V , forced edge set E1, forbidden edge set E3.
Question: Is there a graph G = (V,E) such that E1 ⊆ E and E∩E3 = ∅

that satisfies property Π?
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We shall use both forms (V,E1, E2) and (V,E1, E3) to refer to an instance
of a graph sandwich problem.

Graph sandwich problems have attracted much attention lately arising from
many applications and as a natural generalization of recognition problems [5,6,9,10,11,13,14
The recognition problem for a class of graphs C is equivalent to the graph
sandwich problem in which the forced edge set E1 = E, the optional edge set
E2 \ E1 = ∅, G = (V,E) is the graph we want to recognize, and property Π is
“to belong to class C”.

Golumbic et al. [10] have considered sandwich problems with respect to sev-
eral subclasses of perfect graphs, and proved that the graph sandwich prob-

lem for split graphs remains in P . On the other hand, they proved that
the graph sandwich problem for permutation graphs turns out to be
NP -complete.

We are interested in graph sandwich problems for properties Π related to de-
compositions arising in perfect graph theory: homogeneous set [5], join composi-
tion [6]. In this paper, we consider the decomposition of a graph into independent
sets and cliques.

Let G be an undirected, finite, simple graph. A (k, l) partition of a graph
G is a partition of its vertex set into at most k independent sets and l cliques.
A graph is (k, l) if it admits a (k, l) partition. The complexity of (k, l) graph
recognition has been completely classified as follows: if k = 3 and l = 0 then
the corresponding problem is 3-coloring, which implies [1,2] that the recognition
of (k, l) graphs is NP -complete, whenever k ≥ 3 or l ≥ 3. For the remaining
values of k and l, the problem is polynomial: (1, 1) graphs are split graphs; (2, 0)
graphs are the bipartite graphs; the polynomial-time recognition of (2, 1) graphs
and consequently of graphs (1, 2) was established in [1,2,3]; the polynomial time
recognition of (2, 2) graphs was established in [1,2] and independently in [7].

The studies on sandwich problems focus on those problems which are in-
teresting in terms of their complexity, i.e., neither trivially NP -complete nor
trivially polynomial.

Fact 1 If the recognition problem for a class of graphs C is NP -complete, then
its corresponding sandwich problem is also NP -complete.

Fact 2 If the property Π is hereditary then there exists a sandwich graph for
(V,E1, E2) with the property Π if and only if G1 = (V,E1) has the property Π.

Fact 3 If the property Π is ancestral then there exists a sandwich graph for
(V,E1, E2) with the property Π if and only if G2 = (V,E2) has the property Π.

Thus, Fact 1 says that the sandwich problem for (k, l) graphs is NP -complete,
whenever k ≥ 3 or l ≥ 3. In addition, Fact 2 (respectively Fact 3) says that
for each property which is hereditary (respectively ancestral), the graph sand-
wich problem reduces to the recognition problem for this property on the single
graph G1 (respectively G2). Therefore, the hereditary properties defining (1, 0)
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and (2, 0) graphs, and the ancestral properties defining (0, 1) and (0, 2) graphs
reduces these graph sandwich problems to recognition problems that are poly-
nomial. Given a property Π, we define its complementary property Π as follows:
for every graph G, G satisfies Π if and only if G satisfies Π.

Fact 4 There is a sandwich graph with property Π for the instance (V,E1, E3) if
and only if there is a sandwich graph with property Π for the instance (V,E3, E1).

Thus, our proof of the NP -completeness of the sandwich problem for (2, 1)
graphs implies the NP -completeness of the sandwich problem for (1, 2) graphs.

This paper is organized as follows: in Section 2 we prove that the (2, 1)-Graph
Sandwich Problem is NP -complete. Section 3 contains the proof that the (2, 2)-
Graph Sandwich Problem is NP -complete. This, together with the facts above
completely classifies the complexity of the (k, l)-Graph Sandwich Problem as
follows: the problem is NP -complete, if k+ l > 2; and polynomial otherwise. Fi-
nally, Section 4 defines and classifies the degree constraint subproblems obtained
by bounding the maximum degree in G2.

2 (2, 1)-Graph Sandwich Problem

In this section we prove that the (2, 1)-graph sandwich problem is NP -
complete by reducing the NP -complete problem 3-satisfiability to
(2, 1)-graph sandwich problem. These two decision problems are defined
as follows.

3-satisfiability (3sat)
Instance: Set X = {x1, . . . , xn} of variables, collection C = {c1, . . . , cm}

of clauses over X such that each clause c ∈ C has |c| = 3 literals.
Question: Is there a truth assignment for X such that each clause in C

has at least one true literal?

(2, 1)-graph sandwich problem

Instance: Vertex set V , forced edge set E1, forbidden edge set E3.
Question: Is there a graph G = (V,E), such that E1 ⊆ E and E∩E3 = ∅,

and G is (2, 1)?

Theorem 1. The (2, 1)-graph sandwich problem is NP -complete.

Proof. In order to reduce 3sat to (2, 1)-graph sandwich problem we need to
construct a particular instance (V,E1, E3) of (2, 1)-graph sandwich problem

from a generic instance (X,C) of 3sat, such that C is satisfiable if and only if
(V,E1, E3) admits a sandwich graph G = (V,E) which is (2, 1). First we describe
the construction of a particular instance (V,E1, E3) of (2, 1)-graph sandwich

problem; second we prove in Lemma 1 that every graph G = (V,E) satisfying
E1 ⊆ E and E ∩ E3 = ∅ and such that G is (2, 1), defines a truth assignment
for (X,C); third we prove in Lemma 2 that every truth assignment for (X,C)
defines a graph G = (V,E) which is (2, 1) satisfying E1 ⊆ E and E ∩ E3 = ∅.
These steps are explained in detail below. 
�
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Construction of Particular Instance of (2, 1)-Graph Sandwich

problem

The vertex set V contains: an auxiliary set of vertices {k1, k2, s11, s12, s21, s22};
for each variable xi, 1 ≤ i ≤ n, two vertices xi, xi, corresponding to its literals
and a vertex pi; for each clause cj = (lj1∨ lj2∨ lj3), 1 ≤ j ≤ m, three corresponding
vertices tj1, t

j
2, t

j
3. In Figure 1, solid edges are forced E1-edges and dashed edges

are forbidden E3-edges.
The Forced Edge Set E1 contains: edges between auxiliary vertices {k1k2,

k1s11, k1s12, s11s12, k2s21, k2s22, s21s22}; for each variable xi, 1 ≤ i ≤ n, the set
{xis11, xis12, xipi, xipi}; for each clause cj , 1 ≤ j ≤ m, the set {tj1tj2, tj1tj3, tj2tj3}.

The Forbidden Edge Set E3 contains: edges between auxiliary vertices {k1s21,
k1s22, k2s11, k2s12, s11s21, s11s22, s12s21, s12s22}; for each variable xi, 1 ≤ i ≤ n,
the set {xixi, pik2}; for each clause cj = (lj1 ∨ lj2 ∨ lj3), 1 ≤ j ≤ m, {tj1lj1, tj2lj2,
tj3l

j
3}.
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Fig. 1. Base Graph (BG), Variable Gadget (V G) and Clause Gadget (CG).

We call (2, 1) Base graph the subgraph of G2 = (V,E2) induced by {k1, k2,
s11, s12, s21, s22} (see Figure 1(BG)). For each i ∈ {1, . . . , n}, we call Variable
gadget the subgraph of G2 = (V,E2) induced by {xi, xi, pi} (see Figure 1(V G)).
For each j ∈ {1, . . . ,m}, we call Clause gadget the subgraph of G2 = (V,E2)
induced by {tj1,tj2,tj3} (see Figure 1(CG)). Lemmas 1 and 2 prove the required
equivalence for establishing Theorem 1.

Lemma 1. If the particular instance (V,E1, E3) of (2, 1)-graph sandwich

problem constructed above admits a graph G = (V,E) such that E1 ⊆ E and
E ∩ E3 = ∅ and G is (2, 1), then there exists a truth assignment that satisfies
(X,C).

Proof. Suppose there exists a (2, 1) sandwich graph G = (V,E) with (2, 1) par-
tition (S1, S2,K) where S1, S2 are independent sets and K is a clique.

Claim 1. k1, k2 ∈ K and s11, s12, s21, s22 ∈ S1 ∪ S2.

Proof of Claim 1: Since S1 ∪ S2 induce a bipartite subgraph in G, any trian-
gle induced in G1 must have at least one of its vertices in K. Hence, at least
one vertex of the triangle induced by k1, s11 and s12; and at least one vertex
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Fig. 2. (a) - Instance (V, E1, E3) obtained from the satisfiable instance of 3sat: I =
(U, C) = ({x1, x2, x3}, {(x̄1∨x2∨ x̄3), (x1∨ x̄2∨ x̄3), (x1∨x2∨x3)}) and (b) - respective
partition for the (2, 1) graph G defined from the satisfying truth assignment x1 = F ,
x2 = T , x3 = F .

of the triangle induced by k2, s21 and s22 belong to K. Now, each vertex in
{s11, s12, s21, s22} is joined by E3-edges to three vertices that induce a triangle
in G1. If one of the vertices of {s11, s12, s21, s22} belonged to K, then this would
force at least one triangle to have no vertices in K, a contradiction. Thus, we
must have {s11, s12, s21, s22} ⊆ S1 ∪ S2, and {k1, k2} ⊆ K. 
�

Both {s11, s12} and {s21, s22} induce edges in G1, which force {s11, s12}∩Si �=
∅, {s21, s22}∩Si �= ∅, i = 1, 2. We assume with no loss of generality that s11, s21 ∈
S1, which implies s12, s22 ∈ S2. In case the particular instance (V,E1, E3) admits
a (2, 1) sandwich graph G = (V,E) any (2, 1) partition (S1, S2,K) for G satisfies
S1, S2,K �= ∅.
Claim 2. For each i ∈ {1, . . . , n}, pi ∈ S1 ∪ S2, xi ∈ K ∪ S2 and xi ∈ K ∪ S1.

Proof of Claim 2: Since pik2 ∈ E3 and k2 ∈ K, we have that pi cannot be in
K. In addition, xis11, xis12 ∈ E1 and s11 ∈ S1, s12 ∈ S2, we have respectively
xi ∈ K ∪ S2 and xi ∈ K ∪ S1, i ∈ {1, ..., n}. 
�

Observe that since xipi ∈ E1 and xixi ∈ E3, we have that if xi ∈ K, then
xi ∈ S1, which implies pi ∈ S2; if xi ∈ S2, then pi ∈ S1, which implies xi ∈ K.
Therefore, for each i ∈ {1, ..., n}, exactly one vertex of {xi, xi} belongs to K.

Claim 3. For each j ∈ {1, . . . ,m}, at least one of the vertices {tj1, tj2, tj3} must
be in K.

Proof of Claim 3: Since S1 ∪ S2 induce a bipartite subgraph in G, for each
j ∈ {1, . . . ,m}, at least one of the vertices of the triangle induced in G1 by
{tj1, tj2, tj3} must be in K. 
�
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We now define the truth assignment for (X,C): for i ∈ {1, ..., n}, variable xi

is false if and only if the vertex xi ∈ K. Suppose that for some j ∈ {1, ...,m},
the clause cj = (lj1 ∨ lj2 ∨ lj3) is false. By the construction of (V,E1, E3), there
is an edge of E3 between the vertex assigned to the literal ljk and the vertex tjk,
k ∈ {1, 2, 3}. Hence, if the literal ljk is false, then its corresponding vertex is in
K which implies that tjk cannot be in K. So, all vertices of the triangle induced
in G1 by {tj1, tj2, tj3} must be in S1 ∪ S2. By Claim 3, this is a contradiction to
the hypothesis that S1, S2 and K is a (2, 1) partition of the set of vertices of G.
Hence, the above defined truth assignment satisfies (X,C). This ends the proof
of Lemma 1. 
�

The converse of Lemma 1 is given next by Lemma 2.

Lemma 2. If there exists a truth assignment that satisfies (X,C), then the par-
ticular instance (V,E1, E3) of (2, 1)-graph sandwich problem constructed
above admits a graph G = (V,E) such that E1 ⊆ E and E ∩ E3 = ∅ and G is
(2, 1).

Proof. Suppose there is a truth assignment that satisfies (X,C). We shall define
a partition of V into sets S1, S2 and K that in turn defines a solution G for the
particular instance (V,E1, E3) of (2, 1)-graph sandwich problem associated
with the 3sat instance (X,C).

Place vertices k1, k2 ∈ K and s11, s21 ∈ S1 and s12, s22 ∈ S2. For i ∈ {1, ..., n}
if variable xi is false then place vertices xi in K, xi in S1 and pi in S2. Otherwise,
if variable xi is true, then place vertices xi in S2, xi in K and pi in S1.

For j ∈ {1, ...,m} and cj = (lj1 ∨ lj2 ∨ lj3), place the corresponding vertices tj1,
tj2, t

j
3 as follows. For k ∈ {1, 2, 3}, if the literal ljk is false then place tjk in S1∪S2;

otherwise, place tjk in K. Since the truth assignment satisfies (X,C), for each j,
we have at most two vertices tjk in S1 ∪ S2. In addition, in case two vertices tjk
and tjp are placed in S1 ∪ S2, place one in S1 and the other one in S2.

To show that (S1, S2,K) is a (2,1) partition for a sandwich graph G = (V,E)
we need to prove that there is no E1 edge with both endnodes in S1, there is no
E1 edge with both endnodes in S2 and there is no E3 edge with both endnodes
in K.

By the above placement, s11, s21 are in S1, and xi, tjk and pi can be in
S1, i ∈ {1, ..., n}, j ∈ {1, ...,m}, k ∈ {1, 2, 3}. The only possible forced edges
between these vertices are: the edge xipi which does not have both endnodes
in S1, because xi ∈ S1 if the variable xi is false and pi ∈ S1 if xi is true; and
the edge tjkt

j
q which does not have both endnodes in S1, k �= q, k, q ∈ {1, 2, 3}.

Hence, there is no E1 edge with both endnodes in S1.
In the same way, s12, s22 are in S2, and the vertices xi, tjk, pi can be in

S2, i ∈ {1, ..., n}, j ∈ {1, ...,m}, k ∈ {1, 2, 3}. The only possible forced edges
between these vertices are: the edge xipi which does not have both endnodes
in S2, because xi ∈ S2 if the variable xi is true and pi ∈ S1 if xi is false; and
the edge tjkt

j
q which does not have both endnodes in S1, k �= q, k, q ∈ {1, 2, 3}.

Hence, there is no E1 edge with both endnodes in S2.
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For the set K we have that k1, k2 are in K, and the vertices xi, xi, t
j
k can be in

K, i ∈ {1, ..., n}, j ∈ {1, ...,m}, k ∈ {1, 2, 3}. The only possible forbidden edges
between these vertices are: the edge xixi which does not have both endnodes in
K, because xi ∈ K if and only if the variable xi is true and xi ∈ K if and only if
xi is false; and the edges xit

j
k, xit

j
k, by the above placement, we never have both

vertices in K. Hence, there is no E3 edge with both endnodes in K. And this
ends the proof of Lemma 2. 
�

3 (2, 2)-Graph Sandwich Problem

In this section we prove that the (2, 2)-graph sandwich problem is NP -
complete by reducing the NP -complete problem 3sat to (2, 2)-graph sandwich

problem.

(2, 2)-graph sandwich problem

Instance: Vertex set V , forced edge set E1, forbidden edge set E3.
Question: Is there a graph G = (V,E), such that E1 ⊆ E and E∩E3 = ∅,

and G is (2, 2)?

Theorem 2. The (2, 2)-graph sandwich problem is NP -complete.

Proof. In order to reduce 3sat to (2, 2)-graph sandwich problem we need to
construct a particular instance (V,E1, E3) of (2, 2)-graph sandwich problem

from a generic instance (X,C) of 3sat, such that C is satisfiable if and only if
(V,E1, E3) admits a sandwich graph G = (V,E) which is (2, 2). First we describe
the construction of a particular instance (V,E1, E3) of (2, 2)-graph sandwich

problem; second we prove that every graph G = (V,E) satisfying E1 ⊆ E
and E ∩E3 = ∅ and such that G is (2, 2), defines a truth assignment for (X,C);
third we prove that every truth assignment for (X,C) defines a graph G = (V,E)
which is (2, 2) satisfying E1 ⊆ E and E ∩ E3 = ∅. The particular instance is
explained in detail below. The required equivalence can be established following
the steps of Theorem 1 and details are omitted. 
�

Construction of Particular Instance of (2, 2)-graph sandwich problem

The vertex set V contains: an auxiliary set of vertices: B1 = {k1, k2, s11, s12, s21,
s22}; B2 = {k3, k4, s31, s32, s41, s42}; for each variable xi, 1 ≤ i ≤ n, two vertices
xi, xi, corresponding to its literals and a vertex pi; for each clause cj = (lj1∨ lj2∨
lj3), 1 ≤ j ≤ m, three corresponding vertices tj1, t

j
2, t

j
3. See Figure 1, where solid

edges denote forced E1-edges and dashed edges denote forbidden E3-edges.
The Forced Edge Set E1 contains: edges between auxiliary vertices {k1k2,

k3k4, k1s11, k1s12, k2s21, k2s22, k3s31, k3s32, k4s41, k4s42, s11s12, s21s22, s31s32,
s41s42}; for each variable xi, 1 ≤ i ≤ n, the set {xis11, xis12, xipi, xipi}; for
each clause cj , 1 ≤ j ≤ m, the set {tj1tj2, tj1tj3, tj2tj3}.

The Forbidden Edge Set E3 contains: edges between auxiliary vertices {k1s21,
k1s22, k2s11, k2s12, s11s21, s11s22, s12s21, s12s22} ∪ {k3s41, k3s42, k4s31, k4s32,
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s31s41, s31s42, s32s41, s32s42} ∪ {uv : u ∈ B1 and v ∈ B2} ∪ {uv : u ∈ B2 and v ∈
V \(B1∪B2)}; for each variable xi,1 ≤ i ≤ n, the set {xixi, pik2}; for each clause
cj , 1 ≤ j ≤ m, {tj1lj1, tj2lj2, tj3lj3}.

k 2k 1

s 1 1 s 2 1

s 1 2 s 2 2

k 4k 3

s 3 1 s 4 1

s 3 2 s 4 2

Fig. 3. (2, 2) Base Graph - all non-represented edges are E3 edges.

Call (2, 2) Base graph the subgraph of G2 = (V,E2) induced by {k1, k2, s11,
s12, s21, s22, k3, k4, s31, s32, s41, s42} (see Figure 3). As in the previous problem,
we have two kinds of gadgets: Variable gadget (Figure 1(V G)) and Clause gadget
(Figure 1(CG)). The special instance has a property similar to Theorem 1: if the
particular instance (V,E1, E3) admits a (2, 2) sandwich graph G = (V,E), then
any (2, 2) partition (S1, S2,K1,K2) for G satisfies S1, S2,K1,K2 �= ∅. With-
out loss of generality assume k1, k2 ∈ K1, k3, k4 ∈ K2, s11, s21, s31, s41 ∈ S1,
s12, s22, s32, s42 ∈ S2. This implies K2 = {k3, k4}.

4 (k, l)-Bounded Δ Graph Sandwich Problem

In this section, we consider the complexity of the (k, l)-Graph Sandwich problem
when restricted to inputs having G2 with bounded maximum degree.

(k, l)-Bounded Δ Graph Sandwich Problem ((k, l)−BΔGSP )
Instance: Vertex set V , forced edge set E1, forbidden edge set E3, where

G2 is a graph with no vertex degree exceeding Δ.
Question: Is there a graph G = (V,E) such that E1 ⊆ E and E∩E3 = ∅

which is a (k, l) graph?

We completely classify the (k, l) − BΔGSP as follows: (k, l) − BΔGSP is
polynomial for k ≤ 2 or Δ ≤ 3, and NP -complete otherwise.

Lemma 3. If (k, l) − BΔGSP is solvable in polynomial time then the
(k, l + 1)−BΔGSP is solvable in polynomial time.

Proof. Let (V,E1, E3) be an instance for (k, l+1)−BΔGSP . Suppose that there
exists a polynomial time algorithm A to solve the (k, l)−BΔGSP . We observe
that if there exists a sandwich graph for (V,E1, E3) which is (k, l + 1) then a
clique in G is also a clique in G2. Thus, in order to define a polynomial time
algorithm for (k, l+ 1)−BΔGSP we proceed as follows: for each subset S with
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less than or equal to Δ + 1 vertices we verify if S induces a clique in G2. In the
affirmative case we apply the algorithm A to test if there exists a sandwich graph
for the instance (V \S,E1, E3) of (k, l)−BΔGSP . Hence, we have designed an
algorithm for (k, l + 1) − BΔGSP which runs in time O(nΔ+1P ), where P is
the order of the algorithm A. 
�
Lemma 4. If k ≤ 2, then (k, l)−BΔGSP is solvable in polynomial time.

Proof. We argue by induction on l. As we said in the Introduction the (1, 0)
and (2, 0)-Graph Sandwich Problems are solvable in polynomial time, so are
the corresponding problems BΔGSP . Suppose that for k ≤ 2 and l ≥ 0 the
(k, l) − BΔGSP is solvable in polynomial time. By Lemma 3 we have that the
corresponding (k, l + 1)−BΔGSP is a polynomial time problem. 
�

Now, consider k ≥ 3. Note that, as a consequence of Brook’s Theorem [4],
(k, 0) graph recognition is polynomial when restricted to inputs having Δ ≤ 3.
This implies by Fact 2 that (k, 0)−B3GSP is solvable in polynomial time, and
by Lemma 3, (k, l) − B3GSP is also polynomial. However, by [8], (k, 0) graph
recognition is NP -complete, even when restricted to inputs having Δ ≤ 4, which
implies by Fact 1 that (k, 0) − BΔGSP is NP -complete, and as remarked in
[1,2], (k, l)−BΔGSP is NP -complete, for Δ ≥ 4.

5 Conclusion

We proved that the (k, l)-Graph Sandwich Problem is NP -complete for the cases
k = 1 and l = 2; k = 2 and l = 1; or k = l = 2. We note that the basic idea of the
construction of the particular instance of these problems is a simple necessary
condition: if a graph is (k, l) then it does not contain l+1 independent cliques of
size k + 1. Recently, this condition was established sufficient for the class of the
Chordal graphs, as proved by Hell, Klein, Protti and Tito [12]. In addition, we
considered the degree Δ constraint subproblem (k, l)−BΔGSP and completely
classified the problem as follows: (k, l) − BΔGSP is a polynomial problem for
k ≤ 2 or Δ ≤ 3; and NP -complete otherwise.
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Abstract. In on-line computation, the instance of a problem is revealed
step-by-step and one has, at the end of each step, to irrevocably decide
on the part of the final solution dealing with this step. We first study
the minimum vertex-covering problem under two on-line models corre-
sponding to two different ways vertices are revealed. The former one
implies that the input-graph is revealed vertex-by-vertex. The second
model implies that the input-graph is revealed per clusters, i.e., per in-
duced subgraphs of the final graph. Under the cluster-model, we then
relax the constraint that the choice of the part of the final solution deal-
ing with each cluster has to be irrevocable, by allowing backtracking.
We assume that one can change decisions upon a vertex membership of
the final solution, this change implying, however, some cost depending
on the number of the vertices changed. Finally we study simple model
where instance is revealed edge-by-edge. Most of the results we present
are tight and optimal, or asymptotically optimal.

1 Introduction

On-line computation is very natural in real world applications since there exist
situations modeled as problems for which the final data-set is not a priori known.
In other words, data are revealed step-by-step. Frequently, when one tries to
solve problems modeling such situations, many types of constraints (for example,
deadlines on the final solution delivery, deadlines on the implementation of the
solution computed) force her/him to start problem’s solution before the whole
set of data is completely revealed. On the other hand, these constraints may be
strict enough forcing so the problem solver to irrevocably decide on the part of
the final solution dealing with each part of data revealed, or may be relatively
weak, allowing her/him to go back over decisions previously taken about the
partial solution computed at each step.

Let Π be an NP optimization graph-problem. The on-line version of Π will
be denoted by LΠ. An on-line algorithm A decides at each step which of the data
(vertices or edges) revealed during this step will belong to the final solution. Its
performance is measured in terms of the so-called competitive ratio cA defined,

L. Kučera (Ed.): WG 2002, LNCS 2573, pp. 102–113, 2002.
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for an instance G, as the ratio of the value of the solution computed by it when
running on G to the value of a solution computed off-line, i.e., by an algorithm
running once the final graph is completely known. In this paper we deal with
deterministic on-line algorithms. On-line graph problems studied until now are,
to our knowledge, the traveling salesman ([1]), the graph-coloring ([2,3,4]) and
the independent set ([5]).

In this paper we study an almost paradigmatic computer science problem,
the minimum vertex-covering problem, denoted by VC in the sequel, and defined
as follows: given a graph G(V,E), compute the minimum-cardinality set V ′ ⊆ V
such that, ∀vivj ∈ E, at least one of the vi, vj belongs to V ′. We consider that G
(we set n = |V | and suppose n known at the beginning of the game) is revealed
per non-empty clusters, i.e., per induced subgraphs G1(V1, E1), G2(V2, E2), . . .
of G (we denote by ni the order of Gi, i = 1, 2, . . .). Every time a new cluster Gi

is revealed, the edges linking the vertices of Gi with the vertices of Gj , j < i, are
also revealed. We denote by t the number of clusters needed so that the whole
graph is completely revealed.

We first focus ourselves on the case where graph is revealed by means of its
vertices and consider t = n, i.e., that G is revealed vertex-by-vertex. We establish
the competitive ratio of a very simple but very natural on-line algorithm and
show that its competitive ratio is asymptotically optimal..

Next, we generalize our study assuming t < n and study the competitive
ratio of (more complicated) on-line algorithms for LVC against an optimal off-
line algorithm. Here we distinguish and analyze two cases: 2 < t < n and t = 2
and we provide analyses shown to be optimal or asymptotically optimal.

We then assume non-irrevocability in the construction of the on-line solution,
i.e., by allowing backtracking. This means that the algorithm can interchange a
number of vertices in the solution computed by a number of vertices not included
in it. But we consider that changes performed imply a cost on the vertices
changed. We study the competitiveness (against an optimal off-line algorithm)
of two algorithms under two cost models. The former implies that the cost paid
for any change is fixed, while the latter implies that for any vertex changed one
has to pay a cost equal to the total number of vertices changed. Our analyses
are, here also, asymptotically optimal.

Finally, we study a slightly different on-line model, where we assume that the
input-graph is revealed edge-by-edge. Together with the arrival of a new edge,
are revealed the links of its endpoints with the ones of the edges already revealed.
Here also we devise an on-line algorithm and study its competitive ratio against
an optimal off-line one. Let us note that for this part of the paper also results
are quasi-optimal.

Of course, the study of on-line vertex-covering is interesting per se. However,
as we show in [6], LVC is not simply a toy-problem since real production planning
problems (described in [6]) are modeled as instances of LVC. Furthermore, all
the cases of LVC studied here correspond to natural versions of these problems.

For reasons of length of the paper, basic notions used in the sequel as match-
ing, exposed vertex, augmenting path, independent set are not defined here. Their
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respective definitions can be found in [7]. Finally, a set will be called minimal
(resp., maximal) with respect to a property π if it satisfies π, while deletion
(resp., insertion) of an element from (resp., in) S results in a set not satisfy-
ing π.

In what follows, we denote by Δ the maximum degree of G(V,E), by τ(G)
the cardinality of a minimum vertex cover of G, by M (resp., Mi) a maximum
matching of G (resp., Gi), by m (resp., mi) the cardinality of M (resp., Mi),
and by P (resp., Pi) the set of the exposed vertices of G (resp., Gi) with respect
to M (resp., Mi). Denote also by X(M) (resp., X(Mi)) the set of the endpoints
of M (resp., Mi). Given V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced
by V ′. Finally, for v ∈ V , we denote by Γ (v) the set of neighbors of v, i.e.,
Γ (v) = {u : uv ∈ E}, Δ = max{|Γ (v)| : v ∈ V }.
Note 1. Consider a graph G(V,E), fix a maximal matching M of G and let P =
V \X(M). Then, any (maximal) independent set of G is the complement, with
respect to V , of a (minimal) vertex-cover of G. Moreover, (i) P is independent
for G and (ii) X(M) is a vertex-cover of G with |X(M)| = 2m.

2 On-Line Vertex-Covering with t = n

We first consider that G is revealed into t = n clusters, i.e., vertex-by-vertex.
Before specifying an on-line algorithm for this case, we establish a general result
for any algorithm (on-line or off-line) computing a minimal vertex-cover, i.e., a
vertex-cover that cannot be reduced by elimination of some of its vertices.

We denote by MAX MATCHING an algorithm computing a maximum match-
ing M of G (the problem of finding a maximum matching of a graph is polyno-
mial ([8])). By (ii) of note 1, X(M) = {vi, vj : vivj ∈ M} is a vertex-cover of
size 2|M | for G. Denote by m the size of M . Finally, set p = |P | = |V \X(M)|.
The following lemma will be used in theorem 1, just below, and later.

Lemma 1. For any graph without isolated vertices, p � m(Δ− 1). If, in addi-
tion, the graph contains ι isolated vertices, then p− ι � m(Δ− 1).

Proof (Sketch). Fix an edge vivj ∈M such that at least one of vi, vj has neigh-
bors in P . Let Pi = P ∩ Γ (vi) = {pi1 , pi2 , . . . , pi|Pi|

}; Pj is defined similarly.
Suppose |Pi| � |Pj |. Then, if Pj �= ∅, the following holds ([6]): Pj ⊆ Pi and
|Pj | = 1.

Consider now the following graph B(N,EB) constructed as follows: for every
edge of M we draw a vertex (let NM be the set of vertices so drawn); we also
consider vertices of P as vertices of N ; in other words, N = NM ∪ P ; let nij

be the vertex of NM associated with vivj ∈ M ; if there exists an edge linking
either vi or vj with a vertex pk ∈ P , then nijpk ∈ EB .

By the discussion above, any nij ∈ NM is linked with at most Δ− 1 vertices
of P (the maximum degree of G is Δ and one edge – the matching one – links vi

with vj). This remains true if Pj = ∅. Consequently, p � m(Δ− 1).
On the other hand, if G contains a set I of ι isolated vertices, then the

argument developed above remains valid on the graph G′(V \ I, E), q.e.d. 
�
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Since n = 2m+ p and, by lemma 1, p � m(Δ− 1) (resp., p− ι � m(Δ− 1)), one
easily gets n � m(Δ + 1) (resp., n − ι � m(Δ + 1)) and reaches the following
lemma.

Lemma 2. In any graph with no isolated vertices, m � n/(Δ+ 1). If the graph
has ι isolated vertices, then m � (n− ι)/(Δ + 1).

Theorem 1. For any graph G, the ratio of the size of any minimal vertex-cover
to the size of the vertex-cover induced by MAX MATCHING(G) is bounded above
by Δ/2.

Proof (Sketch). Assume first that G has no isolated vertices, denote by C a
minimal vertex cover of G and by s the size of the independent set associated
with C, i.e., |V \C| = s. Denote by m the size of a maximum matching M of G.
By (ii) of note 1, algorithm MAX MATCHING induces a vertex-cover of size 2m.
Recall finally that, by (i) of note 1, P = V \X(M) is independent.

Since C is supposed minimal, the independent set V \C is maximal. Conse-
quently, using s � n/(Δ + 1) ([7]), we get |C| � Δs.

We now distinguish the following two cases depending on the values of s
and m: (i) s � m, (ii) s > m. For case (i), using the expression for |C|, we get:
|C|/2m � Δ/2. For case (ii), using lemma 1, we also get: |C|/2m � Δ/2.

Consider now that G contains a set I of isolated vertices. Then, C being min-
imal, it does not contain any isolated vertex. Furthermore, MAX MATCHING(G[V \
I]) = MAX MATCHING(G). Hence, the analysis performed just above remains valid.


�
It is well-known ([7]) that, for any graph G and for any maximal matching M
(of cardinality m) of G,

τ(G) � m (1)

Corollary 1. For any graph, the ratio of the size of any minimal vertex-cover
to the size of an optimal one is bounded above by Δ.

We now analyze the competitiveness of a natural on-line algorithm, denoted
by OLVC. It works as follows: suppose that vertices are numbered in the order
they arrive; in step i, vertex vi is revealed; OLVC puts it in the solution C, if
there exists vj , j < i, not included in C, linked to vi. Obviously, the cover C so
constructed is minimal.

Proposition 1. The competitive ratio of algorithm OLVC against an optimal off-
line algorithm for VC is bounded above by Δ and this bound is tight.

Proof (Sketch). The ratio claimed is deduced by application of corollary 1 and
of theorem 1.

Fix now a Δ ∈ N, consider a star SΔ+1 on Δ + 1 vertices. Obviously,
τ(SΔ+1) = 1. Suppose that its center is the first vertex revealed; the rest of
vertices can be revealed in any order. Then, algorithm OLVC will not include the
star-center in C, while it will include all the remaining vertices of SΔ+1. There-
fore, the competitive ratio achieved in this case is equal to Δ. 
�
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In the rest of the section, we will provide lower bounds on the competitiveness
of any algorithm for the case t = n. Recall that vertices are numbered in the
order they arrive; in step i, vertex vi is revealed. Also consider that, in step i,
{v1, . . . , vi} = Ci ∪ Si, where Ci draws the vertex-set included in the vertex
cover under construction and Si = {v1, . . . , vi} \Ci. The final graph is denoted,
as usually, by G(V,E) and its maximum degree by Δ. Our purpose is to provide
limits in the competitiveness (against an optimal off-line algorithm) of any on-
line algorithm solving LVC with t = n (over all the ways the input-graph is
revealed). Let us consider the solution of LVC as a two-players game, where the
first one (player 1) reveals the instance and the second one (player 2) constructs
the solution. Then, we prove the following theorem.

Theorem 2. 1. No algorithm can achieve competitive ratio better than Δ, even
if an isomorphic of G is known in advance. 2. No algorithm can achieve com-
petitive ratio strictly better than Δ − 2, even if G is a tree and n is known in
advance.

Proof (Sketch). We first sketch the proof of 1. The isomorphic of G revealed in
advance consists of a disjoint collection of p stars, each of order Δ + 1 and of
Δ− 1 isolated vertices, where Δ and p are fixed integers. Obviously, the degree
of G is Δ and its order n = p(Δ+ 1) +Δ− 1. Assume that player 1 reveals the
graph with respect to the following rules: [i] if Ci contains Δ isolated vertices
(for the graph already revealed), then vi+1 is linked to all these vertices; [ii] if
vi ∈ Si (in other words, vi has not been taken in the solution) and vi is not
linked to any vertex vj , j < i, and if i � n−Δ, then vertices vi, vi+1, . . . , vi+Δ

form a star rooted in vi; [iii] if p stars have been revealed, the rest of the vertices
revealed are isolated; [iv] if rules [i] and [ii] cannot be applied and if i � n− 1,
then vertex vi+1 is isolated with respect to the graph already revealed.

Applications of rules [i] to [iv] above implies that player 2 cannot do better
than covering edges of any star by its leaves, while optimal off-line solution
consists of the star-centers. Therefore a ratio of Δ is achieved at best.

We now sketch the proof of 2. Let Δ be an integer greater than, or equal to, 3
and set n = Δ(Δ + 1) + 1. Consider that player 1 reveals the graph according
to the following rules: (i) if Ci contains Δ isolated vertices (with respect to
the graph already revealed) and if i � n − 2, then vi+1 is linked to all these
isolated vertices; (ii) if vi ∈ Si (in other words, vi has not been taken in the
solution) and if vi is not linked to any vertex vj , j < i, and if i � n − Δ − 1,
then vertices vi, vi+1, . . . , vi+Δ form a star rooted in vi; (iii) consider vi ∈ Si, vi

isolated with respect to the graph already revealed, and n− 2 � i � n−Δ; set
A = {vj : j < i, vj ∈ Ci,∀k � i, vjvk /∈ E} (i.e., A is the set of the isolated
vertices, at instant i, taken in Ci) and B = {vi+2, . . . , vn−1}; then: (iiia) vi+1 is
linked to vi and to any element of set A and (iiib) the elements of B form an
independent set and are linked to vi; (iv) if rules (i) and (ii) do not apply and
if i � n−Δ, then vertex vi+1 is isolated with the graph already revealed; (v) vn

is linked to Δ vertices of degree 1 picked in the several connected components
of the graph revealed until step n− 1.
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If rule (iii) is not applied, then in step n − 1, the graph contains Δ stars,
their vertices of degree 1 making part of the solution constructed by player 2. In
this case, τ(G) = Δ+1 (the roots of the stars plus vertex vn), while the solution
constructed is of size Δ(Δ+1). The competitive ratio is in this case Δ. Suppose
now that rule (iii) is applied. Then in step i, the graph consists of k stars (their
leaves making part of the solution constructed by player 2) plus the vertices of
A ∪ {i}. Then, as we prove in [6], τ(G) = Δ− 1 + 3 = Δ+ 2, while the solution
finally constructed by player 2 has at least (Δ − 1)Δ + Δ = Δ2 vertices. The
competitive ratio implied is then at least Δ− 2. 
�

3 On-Line Vertex Covering with n > t � 2

We assume in this section that G is revealed by non-empty clusters Gi, i =
1, . . . , t, with 2 � t < n. We assume first n > t > 2. For this case, we propose
the following algorithm denoted by t OLVC: when G1 arrives, t OLVC puts in the
cover C the endpoints of a maximum matching on G1; then for i = 2, . . . , t it
includes in C the endpoints of a maximum matching Mi on Gi as well as exposed
vertices of Vi with respect to Mi if they are linked to vertices of ∪1�j�i−1Vj not
included in C (the inclusion of these latter vertices is performed greedily).

Obviously, the set C finally computed by t OLVC is a vertex-cover, although
not necessarily minimal. So, proposition 1 does not represent the worst case for
its competitive ratio. Note that for the case where clusters are assumed without
any restriction, setting |C| � n−|I| (where I denotes the set of isolated vertices,
if any) and using lemma 2, competitive ratio Δ + 1 is immediately deduced.

In theorem 3 just below, we suppose that for i = 1, . . . , t, cluster Gi can
eventually contain isolated vertices (with respect to Gi) when it arrives. The
fact that the final graph G contains or does not contain isolated vertices does
not change neither the result nor its proof.

Theorem 3. Let λi be the number of the isolated vertices of Gi introduced in C
and set λ =

∑t
i=1 λi. Denote by Ai, i = 2, . . . , t, the sets of the exposed vertices,

with respect to Mi, introduced in C by algorithm t OLVC and set A = ∪t
i=2Ai

and ρ = λ/|A|. Then, the competitive ratio of algorithm t OLVC against an opti-
mal VC algorithm is bounded above by 2 + (Δ− 2)/(2− ρ).

Proof (Sketch). Observe that vertex-set A is exposed with respect to the (non-
maximum) matching ∪t

i=1Mi; moreover, it does not contain any isolated vertex.
Observe also that any isolate vertex is exposed with respect to any matching
of G; hence, ρ � 1. Denote by Mi, i = 1, . . . , t, a maximum matching of Gi, set
mi = |Mi|, i = 2, . . . , t. Let E′ be the set of edges that have entailed introduction
of the vertices of A in C and denote by B(A ∪ (V1 \ X(M1)), E′) the partial
subgraph of G induced by A ∪ (V1 \X(M1)) and by E′. Also, denote by MB a
maximum matching of B and by mB the cardinality of MB . Then, the cardinality
of the on-line solution C computed by t OLVC is |C| = 2

∑t
i=1 mi + |A|, while

τ(G) � (
∑t

i=1 mi) + mB . Consequently, ct OLVC � 2 + (|A| − 2mB)/(
∑t

i=1 mi +
mB). Using lemma 2, we get mB � |A|/Δ. Also, we prove in [6] that

∑t
i=1 mi �

(|A| − λ)/(Δ− 1). So, ct OLVC � 2 + (Δ− 2)/(2− ρ). 
�
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Since ρ � 1 and the competitive ratio obtained is increasing with ρ, setting ρ = 1
the following result is immediately obtained.

Corollary 2. The competitive ratio of algorithm t OLVC against an optimal VC
algorithm is bounded above by Δ.

Note that the solution C computed by algorithm t OLVC is not necessarily min-
imal. Consequently, the result of corollary 2 cannot be derived by direct appli-
cation of corollary 1. On the other hand, consider that clusters arrive without
isolated vertices. In this case, for any i = 1, . . . , t, λi = 0, so, ρ = 0 and the
following holds.

Corollary 3. Whenever clusters arrive without isolated vertices, the competitive
ratio of algorithm t OLVC against an optimal VC algorithm is bounded above
by (Δ + 2)/2.

We show in [6] that the bound of the corollary 3 can be slightly improved by
(Δ + 1)/2.

Consider now case t = 2 and suppose that the input graph is revealed within
two clusters G1(V1, E1) and G2(V2, E2). Assume also that n, the order of the
final graph, is known at the beginning of the game. We recall that, following
our assumptions, one has to decide which vertices of the first cluster will belong
to the final solution before the arrival of the second cluster. We distinguish two
sub-cases for t = 2 depending on whether G has or has not isolated vertices.

We first deal with the latter one and suppose that no additional hypotheses
are admitted on the forms of the clusters. We analyze the competitive ratio of
the following algorithm, denoted by 2 OLVC: if |V1| � n/2, then the solution C
returned by 2 OLVC is the union of V1 together with the endpoints of a maximum
matching M2 of G2; otherwise, the solution returned by 2 OLVC is the union of
the endpoints of a maximum matching M1 of G1 together with V2.

Theorem 4. If G has no isolated vertices, then the competitive ratio of algo-
rithm 2 OLVC against an optimal VC algorithm verifies c2 OLVC � (Δ+5)/2. This
ratio is asymptotically tight.

Proof (Sketch). Denote by mi the size of Mi, i = 1, 2 and suppose that C =
V1 ∪X(M2); |C| � n/2 + 2m2. Combining expression for C with expression (1)
and taking into account lemma 2 and the fact that m2 � m, then c2 OLVC �
(Δ + 5)/2. Suppose instead that |V2| � n/2; then C = X(M1) ∪ V2. In this
case also, the arguments previously developed hold and the competitive ratio
achieved is always (Δ + 5)/2.

Let us show that the analysis above is asymptotically tight. Consider a
graph G(V,E), collection of R stars SΔ+1. Consider the subgraph G1 of G con-
sisting of a set of n/2 exposed vertices with respect to a maximum matching M
of G. Remark that M contains one edge per star and that V (G1) is a set of
isolated vertices of size not larger than n/2. Set G2 = G[V \V (G1)] and assume
that G is revealed per clusters G1 and G2. Then, |C| = (n/2) + 2n/(Δ + 1),
τ(G) = n/(Δ + 1) and, consequently, |C|/τ(G) = (Δ + 5)/2. 
�
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Assume now that clusters Gi arrive with no isolated vertices. Let ni be the
order of Gi. Denote by Mi, i = 1, 2, a maximum matching of Gi, by Pi the set
of the exposed vertices with respect to Mi, by pi its cardinality. The algorithm
proposed, denoted by C2 OLVC(n, ε) for a fixed ε > 1 works as follows: when G1

arrives, it firstly computes M1 and, if n1 � n/ε, then it sets C = V1, else it sets
C = X(M1); when G2 arrives, it computes M2 and adds X(M2) in C; it finally
completes C with vertices of V2\X(M2) (i.e., vertices of V2 exposed with respect
to M2) linked to vertices of V1 that have not been included in C (this last set
of vertices added in C is denoted by A2; we assume that its vertices are chosen
greedily).

Theorem 5. Under the hypothesis that clusters arrive with no isolated vertices,
there exists ε0, the largest among the roots of the polynomial ε2 − 3ε + 1, such
that the competitive ratio of algorithm C2 OLVC(n,ε0) against an optimal VC
algorithm is bounded above by 2 + ((Δ + 1)/ε0).

Proof (Sketch). Set, for i = 1, 2, mi = |Mi|. If n1 � n/ε, then A2 = ∅; therefore,
the final covering C satisfies C = V1 ∪X(M2). In this case, using expression (1)
and lemma 2, we get:

|C|
τ(G)

� Δ + 1
ε

+ 2 (2)

Let us now suppose that n1 > n/ε instead. Then, the set C finally computed in
by algorithm C2 OLVC verifies: |C| = 2(m1 + m2) + |A2|.

Denote by Q1 ⊆ V1 \ X(M1) the set of vertices of V1 that has entailed the
introduction of set A2 in C, and by B(Q1, A2, EB), the subgraph of G induced by
Q1∪A2. Since they are both independent (subsets of P1 and P2, respectively), B
is bipartite. Denote also by MB a maximum matching of B and set mB = |MB |.
Since M1 ∪M2 ∪MB is a matching for G, τ(G) � m1 + m2 + mB .

Consider the set X(MB) ∩Q1; obviously, |X(MB) ∩Q1| = mB . Since G1 is
supposed without isolated vertices, any vertex of X(MB)∩Q1 has at most Δ−1
neighbors in A2. On the other hand, MB being maximum for B, any vertex of A2

receives edges from at least one vertex of X(MB) ∩Q1. So, |A2| � mB(Δ− 1).
Also, since G1 and G2 are both assumed without isolated vertices, application
of lemma 2 gives: m1 � n1/(Δ + 1) and m2 � n2/(Δ + 1).

The discussion above together with some easy algebra gives

|C|
τ(G)

� 2 (m1 + m2) + |A2|
m1 + m2 + mB

= 2 +
|A2| − 2mB

m1 + m2 + mB
� 2 +

Δ−3
Δ−1 |A2|
n

Δ+1 + |A2|
Δ−1

(3)

Recall that we are currently considering the case n1 � n/ε, i.e., n2 � n(ε− 1)/ε.
Then, |A2| � p2 = n2 − 2m2 � n(Δ − 1)(ε − 1)/((Δ + 1)ε). Remark also that
expression (3) is increasing with |A2|; hence,

|C|
τ(G)

� 2 +
(Δ−3)(ε−1)

(Δ+1)ε n

n
Δ+1 + (ε−1)n

ε(Δ+1)

= 2 +
(Δ− 3)(ε− 1)

2ε− 1
(4)
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Note that, for a fixed ε, (Δ−3)(ε−1)/(2ε−1) � (Δ+1)(ε−1)/(2ε−1) and that
expression (2) is decreasing with ε, while expression (4) is increasing. These two
expressions asymptotically coincide when (Δ + 1)/ε = (Δ + 1)(ε − 1)/(2ε − 1),
i.e., when ε2−3ε+1 = 0. Since, ε > 1, the admissible root of the above equation
is ε0 � 2.62.

Setting ε0 = 2.62, we get cC2 OLVC � (Δ + 6.24)/2.62. This, for large values
of Δ, is asymptotically equal to Δ/2.62. 
�
We provide in the next theorem upper bounds for the case where the number of
clusters needed for the revealing of the whole graph is O(logn

√
n) and for the

case t = 2. As before, we bring to the fore graphs and strategies for revealing it in
either t = O(logn

√
n) steps (point 1), or in t = 2 steps (point 2), such that any

on-line VC-algorithm cannot achieve competitive ratios better than the bounds
claimed. The proofs for both cases, being quite technical and lengthy, are not
given here. They can be found in [6]. In any case, the bounds presented in theo-
rem 6 show that the results presented in theorems 3, 4 and 5 are asymptotically
optimal.

Theorem 6. 1. When t = O(logn
√
n) and any cluster is non-empty, no on-line

algorithm for LVC can achieve competitive ratio smaller than Δ− 2 against an
optimal off-line algorithm, even if the input-graph is a tree and n is known in
advance. 2. For t = 2 and for all Δ � 2, no algorithm can achieve competitive
ratio strictly better than (Δ + 1)/2 for a graph of maximum degree Δ, even if
it is bipartite with no isolated vertices, both clusters have the same size and an
isomorphic of the input-graph is known in advance.

4 Allowing Backtracking

In this section we somewhat change the working hypotheses adopted and suppose
that one can go back over the solution constructed during previous steps. We
assume that one can change this solution but she/he has to pay some cost for
doing it.

Our on-line algorithm for the case of the backtracking is basically algo-
rithm t OLVC. The spirit of our thought process can be outlined as follows.
The best approximation ratio known for VC is bounded above by 2. On the
other hand, LVC being computationally harder, it is a priori worse approxi-
mated than VC. So, one can “restrain” her/himself in searching for competitive
ratios as near as possible to 2. The maximum matching performed on each clus-
ter of G by algorithm t OLVC obviously guarantees approximation ratio 2 on any
cluster. The fact that the whole competitive ratio is finally “deteriorated” is due
to the vertices of the graph B that have to be taken into account in order to cover
cross-edges, i.e., edges between clusters. We so analyze the following algorithm,
denoted by Bt OLVC: the solution-set C is initially assigned with the endpoints
of maximum matchings Mi of Gi, i = 1, . . . , t; next the graph B induced by
the union of the vertex-sets Vi \ X(Mi), i = 1, . . . , t, is constructed and C is
completed by the endpoints of a maximum matching MB of B.
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Let us denote by κ > 1 the cost due to the change of the status of a non-
covering vertex to a covering one. Also, as previously, we denote by mi the
cardinality of Mi, i = 1, . . . , t and by mB the cardinality of MB .

Theorem 7. The competitive ratio of algorithm Bt OLVC against an optimal
off-line algorithm for VC is bounded above by 2κ.

Proof (Sketch). The vertices changed are the ones of the set ∪t
i=1(Vi \X(Mi)).

Among these vertices, exactly |X(MB)| = 2mB vertices pass from non-covering
to covering ones. Suppose that for each of them a cost κ has to be paid. Then,
cBt OLVC = ((2

∑t
i=1 mi) + 2κmB)/((

∑t
i=1 mi) + mB) � 2κ. 
�

Theorem 7 draws the general case where no further specification of the type
of the cost is given. We now assume two cost-models: (i) κ is a fixed constant,
and (ii) κ is at most equal to the total number of vertices changed. For the first
cost-model, using directly theorem 7, the following result is directly proved.

Corollary 4. If a fixed cost has to be paid for any vertex-status modification,
then the competitive ratio of algorithm Bt OLVC against an optimal off-line VC-
algorithm is constant.

Let us now focus ourselves on the second of the cost-models specified above.
For this case, we assume n known in advance and deal with the following al-
gorithm, denoted by Mt OLVC: (1) once G1 arrives, the solution-set C receives
the endpoints of a maximum matching M1 of G1; (2) for i = 2, . . . , t, compute
a maximum matching Mi of Gi, construct the subgraph B of G induced by
the set ∪i

j=1(Vj \X(Mj)) and compute a maximum matching MB of B: (2a) if
mB � √

n, then add to C the endpoints of Mi; (2b) on the other hand, if
mB >

√
n, then add to C the whole set Vi; (3) let i0 be the last i ∈ {2, . . . , t}

for which step (2a) has been executed; construct the subgraph B′ of G induced
by the vertex-set ∪i0

j=1(Vj \X(Mj)) and add to C the endpoints of a maximum
matching MB′ of B′.

Theorem 8. If for any vertex changed, the cost of the change equals the to-
tal number of vertices changed, then the competitive ratio of algorithm Mt OLVC

against an optimal off-line VC-algorithm is bounded above by 3
√
n.

Proof (Sketch). Remark first that the only vertex-changes performed by al-
gorithm Mt OLVC are on X(MB′) and, furthermore, that mB′ always satisfies
mB′ � √

n.
If step (2b) is not executed at all, i.e., if i0 = t, then mB′ � √

n. Consequently,
using theorem 7 and the expression for mB′ , we get cMt OLVC � 2mB′ � 2

√
n. On

the other hand, suppose that step (2b) is executed at least once. Then, mB >
√
n.

Using for mB′ the expression given above, setting κ = mB′ and denoting
by v(C) the value of the set C (in v(C) any vertex non changed counts 1 and
any vertex changed counts κ), we get: v(C) � n − 2mB′ + 2κmB′ � n + 2m2

B′ .
Denote by m the cardinality of a maximum matching of G. Then, cMt OLVC =
v(C)/τ(G) � (n + 2m2

B′)/m � (n/mB) + 2mB′ � 3
√
n. 
�
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We now show that the result of theorem 8 is quite tight, since no on-line al-
gorithm can achieve competitive ratio (against an optimal off-line one) better
than O(

√
n).

Theorem 9. Under the hypotheses of theorem 8, no on-line algorithm for VC
can achieve, against an optimal off-line algorithm, competitive ratio

√
2n, even if

the input-graph is bipartite without isolated vertices and n is known in advance.

Proof (Sketch). Let (Δ,n1) ∈ N×N and set n = (1+Δ)n1. At the first step, V1

is an independent set of size n1. If player 2 selects some vertices of V1, then the
whole instance is a graph without any edge. In this case, the optimal value τ∗(G)
is 0, whereas the on-line value is positive. The resulting ratio equals ∞ and the
theorem holds.

Consequently, we can focus ourselves on the case where player 2 selects no
vertices during the first step. In this case, the instance graph consists of n1 stars
of size (1 + Δ) rooted in V1, one star per vertex in V1. Then, the optimal value
satisfies (recall that n = (1 + Δ)n1) τ∗(G) = n/(Δ + 1) = n1.

Denote by V ′
1 the set of vertices of V1 that are changed in order to be included

in the final solution (i.e., the vertices introduced in the solution after the back-
tracking). Then, solution C can be written as C = V ′

1∪V2\Γ (V ′
1) for a total cost

of v(C) = |V ′
1 |2+Δ(n1−|V ′

1 |). Therefore, player 2 chooses, at best, a set V ′
1 of car-

dinality β∗ ∈ Argminλ∈[0,n/(Δ+1)]{β2−Δβ + ((Δn)/(Δ+ 1))}. Define Δ = 2n1.
One can easily show that the expression for β∗ implies β∗ = n1. So, combining
the expression for τ∗(G) with the one for v(C) (with β∗ = n1), we get (after
some easy functional analysis) v(C)/τ∗(G) = n1 = (−1 +

√
1 + 8n)/4 �

√
2n.

�

5 A Simple On-Line Model Based Upon Edges

We consider in this section an on-line model supposing that the input-graph is
revealed by means of its edges. They arrive one at a time. For every new edge,
the links of its endpoints with the endpoints of the edges already present are also
revealed. We suppose that |E| is known in advance, we set E = {e1, . . . , e|E|},
where ei are numbered in order of their arrival, and devise the following algo-
rithm, dented by E OLVC: for any edge arriving, if no endpoint of it is already in
the solution-set C, then put in C both of its endpoints.

As one can see from the algorithm above the irrevocability in the construction
of the on-line solution deals with the endpoints of an edge as a whole. With
respect to a model based upon arrival of vertices it is as one allows, for every
edge arriving, a backtracking of level one.

Proposition 2. The competitive ratio of algorithm E OLVC against an optimal
off-line algorithm is bounded above by 2. This bound is tight.

Proof (Sketch). In order to prove the competitive ratio claimed, just remark that
the FOR-loop of algorithm E OLVC computes a maximal matching of G.
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Consider a star revealed edge-by-edge. Algorithm E OLVC will introduce in C
the endpoints of the first edge revealed and no new vertex will be introduced
in C later. The optimal vertex-cover for any star consists of its center. So here,
the bound 2 is attained. 
�
It is easy to see that the on-line model just described is equivalent to the one
where all vertices are present from the beginning of the game and edges are
presented one-by-one. Here, whenever an edge arrives none of the endpoints of
which are in C, then both of its endpoints enter C.

Observe that in the model considered in this section, the competitiveness of
the on-line algorithm proposed matches the approximation of the best known
heuristic for the off-line version of VC.

6 Conclusions

The vertex-covering problem dealt in this paper is one of the central problems
in combinatorial optimization in its off-line version. It remains very natural even
in its on-line version. We have studied algorithms for several on-line models
of LVC. The positive results obtained combined with the negative ones show
that the analyses presented are “quasi-optimal” in the sense that no spectacular
improvements are to be expected for the models dealt here. A further generaliza-
tion of the vertex-covering is the one where we consider weights on the vertices
of the input-graph and we search for a minimum total-weight vertex cover. Anal-
ysis of on-line algorithms for this weighted version of LVC seems to us a very
interesting open problem.
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Abstract. A version of weighted coloring of a graph is introduced:
each node v of a graph G = (V, E) is provided with a positive integer
weight w(v) and the weight of a stable set S of G is w(S) = max{w(v) :
v ∈ V ∩ S}. A k-coloring S = (S1, . . . , Sk) of G is a partition of V
into k stable sets S1, . . . , Sk and the weight of S is w(S1) + . . . + w(Sk).
The objective then is to find a coloring S = (S1, . . . , Sk) of G such that
w(S1) + . . . + w(Sk) is minimized. Weighted node coloring is NP-hard
for general graphs (as generalization of the node coloring problem). We
prove here that the associated decision problems are NP-complete for
bipartite graphs, for line-graphs of bipartite graphs and for split graphs.
We present approximation results for general graphs. For the other fam-
ilies of graphs dealt, properties of optimal solutions are discussed and
complexity and approximability results are presented.

1 Introduction

A k-coloring of G = (V,E) is a partition S = (S1, . . . , Sk) of the node set V
of G into stable sets Si. The objective is here to determine a node coloring
minimizing k. A natural generalization of the problem, denoted by WC in what
follows, is the one where a strictly positive integer weight w(v) is considered for
any node v ∈ V , and where the weight of stable set S of G is w(S) = max{w(v) :
v ∈ S}. Then, the objective is to determine S = (S1, . . . , Sk) a node coloring
of G minimizing the quantity

∑k
i=1 w(Si). This problem is easily shown NP-

hard; it suffices to consider w(v) = 1, ∀v ∈ V and WC becomes the classical
node coloring problem.

In [1] we show that WC is not a toy problem. In terms of scheduling, a
weighted node coloring amounts to assigning each job v to a time-slot (or pe-
riod) i in such a way that no two jobs u, v assigned to the some time slot i
are incompatible. In our situation, the lengths of the time slots 1, 2, . . . , k are
not given in advance; assuming that the jobs scheduled in time slot i may be
processed simultaneously, the amount of time needed will be given by w(Si) =

L. Kučera (Ed.): WG 2002, LNCS 2573, pp. 114–125, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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max{w(v) : v ∈ Si}. As a consequence, the total amount of time needed to
complete all jobs will be val(S) =

∑k
i=1 w(Si). where S = (S1, . . . , Sk). The

problem then amounts to finding for a weighted graph Gw = (V,E,w) a color-
ing S = (S1, . . . , Sk) such that val(S) is minimum. This problem is related to
the batch scheduling problem which has been studied by several authors (see for
instance [2] for a survey, or [3] for a special case). In the papers on batch schedul-
ing, there are usually incompatibility constraints between operations belonging
to a same job, or precedence constraints. The general case of incompatibility
requirements represented by an arbitrary graph is formulated in [4], where they
consider the complement of our graph: edges indicate compatibilities and they
partition the node set into cliques. On the other hand, several types of require-
ments are introduced, like sequencing constraints or limitations in the size of a
batch.

After establishing approximation results for the weighted coloring problem
in general graphs, we examine some special cases, dealing with bipartite graphs,
split graphs and cographs. We also study the weighted edge coloring problem in
bipartite graphs. For all these cases, complexity issues as well as approximability
will be discussed. For graph theoretical terms not defined here, the reader is
referred to [5].

2 General Properties

The following proposition describes a general property which will be needed
later.

Proposition 1. Consider an instance of WC given by a weighted graph G =
(V,E,w) and a coloring S ′. We can always construct in polynomial time a k-
coloring S = (S1, . . . , Sk) verifying val(S) � val(S ′) and k � Δ(G) + 1.

Proof (Sketch). Set S ′ = (S′
1, S

′
2, . . .) and rank the S′

i’s in decreasing weight
order. Take Si (the ith component of the coloring S) such that Si ⊇ S′

i is a
maximal stable set in G \ S′

1 \ . . . \ S′
i−1. 
�

In particular, this result holds for an optimal weighted node coloring of G. If H
is the line-graph of G, denoted by L(G), we have the following.

Corollary 1. If G = L(H), then the solution S of Proposition 1 verifies k �
2Δ(H)− 1.

We can easily show that in Corollary 1 we have k � p(ω(G)−1)+1 where ω(G)
is the maximum cardinality of a clique in G and p is the maximum number of
(maximal) cliques in which one node of G is contained. If G is a line-graph L(H)
then p = 2 and ω(G) = Δ(G), so Corollary 1 follows. Also, it follows from
Proposition 1 that the number k of colors in an optimal k-coloring val(S) can
be bounded above by any bound on the chromatic number which is derived by
a sequential coloring algorithm which gives maximal stable sets in the subgraph
generated by the colored nodes. In particular the bounds of Welsh-Powell and
of Matula are valid for k (see, for instance, [6]).
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We can also establish the following property of optimal k-colorings S in a
weighted graph G = (V,E,w) for w(v) ∈ {t1, . . . , tr} with t1 > . . . > tr for each
node v.

Proposition 2. Let G = (V,E,w) be a r-valued weighted graph and let q =
χ(G) be its chromatic number. Then every optimal k-coloring S∗ = (S∗

1 , . . . , S
∗
k)

satisfies: w(S∗
i ) > w(S∗

i+q−1), for any i � k − q. In particular, k � 1 + r(q − 1).
This bound is tight.

Proof (Sketch). Assume that there exists an index i � k − q such that w(S∗
i ) =

. . . = w(S∗
i+q−1); S

∗
i ∪ . . . ∪ S∗

k induces a subgraph G′ verifying χ(G′) � χ(G).
Thus, we can change sets S∗

i , . . . , S
∗
k by q other sets to obtain a q+ i−1-coloring

with a lower cost, a contradiction. 
�

3 Approximating Weighted Coloring in General Graphs

In this section, we establish approximability results for the weighted coloring
problem defined in section 1. We use two approximation-quality criteria called
in what follows standard approximation ratio and differential approximation ra-
tio, respectively. Consider an instance I of an NP-hard optimization problem Π
and a polynomial time approximation algorithm A solving Π; we will denote
by worst(I), valA(I) and opt(I) the values of the worst solution of I, of the
approximated one (provided by A when running on I), and the optimal one
for I, respectively. If Π is a maximization (resp., minimization) problem, the
value worst(I) is in fact the optimal solution of a minimization (resp., maximiza-
tion) problem Π ′ having the same objective function and the same constraint set
as Π. Let us note that computation of the solution realizing worst(I) can be easy
for some NP-hard problems (this is the case of graph coloring) but for other
ones (for example, for traveling salesman, or for optimum satisfiability, or for
minimum maximal independent set) this computation is NP-hard. Commonly,
the quality of an approximation algorithm for Π is expressed by the ratio (called
standard in what follows) ρA(I) = valA(I)/opt(I). On the other hand, the differ-
ential approximation ratio measures how the value of an approximate solution is
placed in the interval between worst(I) and opt(I). More formally, it is defined as
δA(I) = |worst(I)− valA(I)|/|worst(I)− opt(I)|. A very optimistic configuration
for both standard and differential approximations is the one where an algorithm
achieves ratios bounded below by 1− ε (1+ ε for the standard approximation for
minimization problems), for any ε > 0. We call such algorithms polynomial time
approximation schemes. The complexities of such schemes may be polynomial
or exponential in 1/ε (they are always polynomial in the sizes of the instances).
When they are polynomial in 1/ε the schemes are called fully polynomial time
approximation scheme.

The standard approximation result presented in this section is based upon
the so-called master-slave approximation strategy. Consider an NP-hard mini-
mization covering graph-problem consisting in covering the nodes of the input
graph G, of order n, by subgraphs G′ verifying a certain property π. Most of these
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problems can be approximated by the following strategy: (a) find a maximum
subgraph G′ of G verifying π; (b) delete V (G′) from V ; repeat steps (a) and (b)
in the remaining graph until V = ∅. The maximization problem solved at step (a)
is called the slave, while the original minimization problem is called the master.
These terms are due to [7] who points out the fact that if the slave problem is
polynomial then the master problem is approximable within O(logn). A classi-
cal example of master-slave approximation for graph coloring, using maximum
stable set as slave problem, is given in [8].

Proposition 3. ([9]) In the master-slave approximation game for weighted
problems, if the weighted slave problem is approximable within ratio ρ(n), then the
weighted master problem is approximable within standard ratio O(logn/ρ(n)).

For our problem, the (maximization) slave problem, denoted by SLAVE WC,
consists of determining a stable S∗ maximizing quantity |S|/w(S), over any
stable set S, where w(S) = max{w(v) : v ∈ S}. Consequently, the overall al-
gorithm W COLOR we devise for weighted coloring can be outlined as follows:
(1) solve SLAVE WC in G; let Ŝ be the solution obtained; set V = V \ Ŝ,
G = G[V ]; (2) color the nodes of Ŝ with a new color; repeat steps (1) and (2)
until all the nodes of the input graph are colored.

Lemma 1. SLAVE WC is approximable in polynomial time within standard ra-
tio O(log2 n/n).

Proof (Sketch). Consider the following algorithm, called SLAVE WC in the sequel:
(1) rank the nodes of V in nonincreasing weight-order; let L the list obtained;
(2) for any v ∈ L do: (2a) set Vv = {u ∈ L : w(u) > w(v)}, V = V \ (Vv ∪
({v} ∪ Γ (v))), G = G[V ]; (2b) run the maximum stable algorithm of [10] on G;
let Sv be the stable set computed; store set Sv = Sv ∪ {v} as candidate solution
for SLAVE WC; (2c) return to the original graph G; (3) among the sets stored
in step (2b), choose one, denoted by Ŝ, maximizing quantity |Sv|/w(v). We
prove in [1] that algorithm SLAVE WC achieves, for problem SLAVE WC the same
ratio, O(log2 n/n), as the algorithm of [10], called in step (2b) for stable set, this
ratio being the best known, in terms of n for the latter problem. 
�
Using Proposition 3 and Lemma 1, the following holds for algorithm W COLOR.

Proposition 4. The weighted coloring problem can be approximately solved in
polynomial time within standard approximation ratio O(n/ log n).

We now deal with differential approximation and present a polynomial time ap-
proximation algorithm guaranteeing a differential approximation ratio bounded
below by a fixed constant. Consider a graph G = (V,E,w), where w is the vector
of the node-weights of G. Then, our algorithm, denoted by DW COLOR works as
follows: [a] construct an edge-weighted graph Ḡ = (V,E′, w′) where Ḡ is the
complement of G and for any e = [v, u] ∈ E′, w′(e) = min{w(u), w(v)}; [b] com-
pute a maximum-weight matching M∗ of Ḡ; [c] color the endpoints of any edge
of M∗ with a new color; [d] color every exposed node of V (with respect to M∗)
with a new color. The solution computed DW COLOR is a collection of stable sets
of size 2 and of singletons.
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Proposition 5. The differential approximation ratio achieved by DW COLOR is
bounded below by 1/2. This bound is tight.

Proof (Sketch). Denote by S∗ = (S∗
1 , . . . , S

∗
p) an optimal weighted coloring and

by valḠ(M) the value of any maximum weight matching M of Ḡ. For any G[S∗
i ],

consider a maximum weight matching M ′
i , set M ′ = ∪p

i=1M
′
i and apply steps [b]

to [d] of DW COLOR starting from M ′; denote by S ′ the coloring so obtained.
Then, val(S ′) = worst(G) − valḠ(M ′) � (worst(G) + opt(G))/2. Finally, since
valḠ(M∗) � valḠ(M ′), the result claimed is easily deduced. The tightness of
the ratio is proved in [1] by considering an 1-valued graph Gm induced by a
matching of size m. 
�
Note that algorithm DW COLOR computes an optimal solution when α(G) � 2.

We finish this section by two inapproximability results. Consider any class G′

of graphs and a node-weighted graph G ∈ G′ and suppose that WC is NP-
complete for any G ∈ G′. Then, the following holds.

Proposition 6. For any class G′ of node-weighted graphs: if WC(G′) is NP-
complete, then, unless P = NP, for any c ∈ N, c � 1, no polynomial time
algorithm can compute a solution of WC in any class of graphs such that the
difference between its value and the optimal value is bounded above by c; fur-
thermore, if WC(G′) is strongly NP-complete, then, unless P = NP, WC(G′)
cannot be solved neither by a standard nor by a differential fully polynomial time
approximation scheme.

4 The Bipartite Case and Some Related Cases

4.1 The Bipartite Graphs

In this section G = (V,E,w) will be a weighted bipartite graph where L (resp. R)
is the “left set” (resp. “right set”) of nodes and each edge has one endpoint in L
and the other in R. An instance of WC is given by a bipartite weighted graph G
with a positive integer q. Let WC(G, q) be the following problem: does there
exist a coloring S of G with val(S) � q?

Proposition 7. WC(G, q) is NP-complete in the strong sense even if G is a
bipartite graph of maximum degree at most 14.

Proof (Sketch). We use a reduction from 1-PrExt ([11]): “given a bipartite graph
G = (V,E) with |V | � 3 and three nodes v1, v2, v3, does there exist a 3-coloring
(S1, S2, S3) of (the nodes of) G such that vi ∈ Si for i = 1, 2, 3?” Consider an
instance of 1-PrExt given by a bipartite graph and specific nodes v1, v2, v3. It
is immediate to see that we may assume {v1, v2, v3} ⊆ L. We introduce three
new nodes u1, u2, u3 in R and edges [vi, uj ] for i �= j and 1 � i, j � 3. In the
new bipartite graph G′ we associate weights w(ui) = w(vi) = 23−i for i = 1, 2, 3
and w(v) = 1 for every other node v in G′. Then we set q = 7 and we consider
problem WC(G′, 7). There exists a coloring S of G′ with val(S ′) � 7 if and only
if there exists a 3-coloring (S1, S2, S3) of G with vi ∈ Si, i = 1, 2, 3. 
�
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As a consequence of Proposition 7, WC is also NP-complete if G is a compa-
rability graph (i.e., a graph whose edges can be transitively oriented, see [5]).

Proposition 8. If G = (V,E,w) is a bipartite weighted graph with bivalued
weights, then one can construct an optimal k-coloring S in polynomial time.

Proof (Sketch). By Proposition 2, an optimal solution is either a 2- or a 3-
coloring. In the former case we can construct it by a greedy algorithm. For the
latter case, if any optimal solution is a 3-coloring, then the set Vmax of the
maximum-weight nodes is stable (if not, there exists an optimal 2-coloring) and
S = (Vmax, L \ Vmax, R \ Vmax). 
�
We now propose a polynomial time approximation algorithm achieving a con-
stant standard approximation ratio for WC in bipartite graphs. This algorithm,
denoted by BIP WCOLOR works as follows: (1) sort the nodes of G in nonincreasing
weight order; let L̄ = (v1, v2, . . . , vn) be the list obtained; (2) starting from v1

color the nodes of L̄ with color c whenever it is possible; (3) optimally color the
remaining uncolored nodes with at most two new colors b and g following the
bipartition of G; store the solution obtained during steps (2) and (3); (4) com-
pute a minimum-weight 2-coloring; store the solution obtained; (5) output the
smallest between the solutions stored in steps (3) and (4).

As the bicoloring of a of a connected bipartite graph is unique, a minimum-
weight 2-coloring is simply the unique bipartition of V . If the graph is not con-
nected, then a minimum-weight 2-coloring can be easily computed by taking
care of assigning the same color to all the heaviest color-classes of the connected
components of G. In what follows, we denote by wmax (resp., wmin) the largest
(resp., smallest) node weight.

Proposition 9. BIP WCOLOR polynomially solves WC in bipartite graphs within
standard approximation ratio bounded above by 4rw/(3rw + 2), where rw =
wmax/wmin. This bound is tight.

Proof (Sketch). Obviously, the weight of color c equals wmax. Suppose now that
step (2) stops while a node of weight wmax/t, for some t > 1, has been encoun-
tered. Then, opt(G) � wmax + (wmax/t) +wmin (otherwise, the optimal solution
for WC on G would be a 2-coloring). On the other hand, valBIP WCOLOR(G) �
wmax(t + 2)/t if the final solution is the one of step (3) and valBIP WCOLOR(G) �
2wmax if the final solution is the one of step (4). Combination of the expres-
sions above and some algebra show that the common value for both ratios is
4rw/(3rw + 2) � 4/3. Tightness is shown in [1]. 
�
In the proof of Proposition 7, one can see that WC is NP-complete when wmax =
4 and wmin = 1. Here, algorithm BIP WCOLOR yields ratio 7/8 and this ratio is
the best possible. So the following holds.

Proposition 10. Unless P = NP, for any ε > 0 no polynomial time algorithm
achieves a standard approximation ratio bounded above by (8/7) − ε for WC in
bipartite graphs.
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We now deal with the differential approximation of WC in bipartite graphs.
Consider the following algorithm, called C SCHEME in what follows and run it
with parameters G and a fixed constant ε > 0: (a) rank the nodes of G in
non-increasing weight and set wi = w(vi), i = 1, . . . , n; (b) set η = !1/ε"; set
SL = {v4η+3, . . . , vn} ∩ L; set SR = {v4η+3, . . . , vn} ∩ R; (c) set S̃ the best
partition into stable sets of the nodes v1, . . . , v4η+2; (d) output Ŝ = SL∪SR∪S̃.

Since η is a fixed constant, the whole complexity of C SCHEME is linear in n.
Denote now by G′ the subgraph of G induced by the node-set {v1, . . . , v4η+2}
and recall that S̃ is optimal for G′.

Proposition 11. For any fixed ε > 0, the differential approximation ratio of
C SCHEME when called with inputs G and ε, is bounded below by 1− ε.

Proof (Sketch). We can easily see that |S̃| � 2η + 2 and val(S̃) = opt(G′) �
opt(G) (the relative proof is given in [1]). Then, ε(worst(G′)−opt(G′)) � 2w4η+2.
Moreover, opt(G′) � opt(G). Hence, valC SCHEME(G) � opt(G′) + 2w4η+2 � (1 −
ε)opt(G′) + εworst(G′) � (1− ε)opt(G) + εworst(G). 
�

4.2 The Split Graphs

To conclude the study of the bipartite case, we have to examine the situation of
split graphs, i.e., graphs G in which the node set V (G) can be partitioned into
a stable set S and a clique K. These graphs can be considered as intermedi-
ate between bipartite graphs and complements of bipartite graphs. In this last
case, WC is polynomial (α(G) � 2, cf., Proposition 5).

Proposition 12. WC is NP-complete in the strong sense if G is a split graph.

Proof (Sketch). The reduction is from the Min-Set-Cover: given a collection C =
(Ci : i ∈ I) of subsets Ci of a set S and a positive integer q (q ≤ |I|) does there
exist a sub-collection C′ = (Cj : j ∈ J) with |J | ≤ q and ∪j∈JCj = S?

Let us construct a split graph G as follows. Each element v of S becomes
a node v of a stable set S; each subset Ci in C corresponds to a node ci of
the clique K of G. The set N(ci) of neighbors of node ci is given by: N(ci) =
{v : v ∈ S} \ {v : v ∈ Ci}. The weights are given by w(ci) = |I|, i ∈ I, and
w(v) = |I| + 1,v ∈ S. Now there exists a cover C′ = (Cj : j ∈ J) ⊂ C with
∪j∈JCj = S and |C′| = |J | ≤ q if and only if there exists in G a k-coloring
S = (S1, . . . , Sk) with val(S) ≤ |I|2 + q. 
�
The proof of Proposition 12 shows that the problem is NP-complete even if the
weights can take only two values. It also follows from this proof that WC(G, q) is
NP-complete if G is a chordal graph, since a split graph is a chordal graph ([5]).

5 An Edge Coloring Model

If the weighted graph G = (V,E,w) is a line-graph L(H), then our node coloring
problem becomes an edge coloring problem in a graph H where the edges e have
weights w(e).



Weighted Node Coloring: When Stable Sets Are Expensive 121

Proposition 13. WC is NP-complete in the strong sense if G is the line-
graph L(H) of a regular bipartite multigraph H with Δ(H) = 3.

Proof (Sketch). We shall start from the following NP-complete problem called 2-
SIM ([12]): given a bipartite regular multigraph H = (V,E) and two disjoint
(partial) matchings M∗

1 ,M
∗
2 , does there exist an edge 3-coloring (M1,M2,M3)

of H such that M∗
i ⊆Mi for i = 1, 2?

Replace any edge e = [u, v] in M∗
2 by edges [u, ve], [ve, ue]1, [ve, ue]2 and [ue, v]

where ue and ve are new nodes and introduce [u, ve] and [ue, v] in M∗
2 and [ve, ue]1

in M∗
1 . The resulting graph is still regular bipartite with degree 3. Let us give

weights w(e) = 23−i to all edges e ∈M∗
i for i = 1, 2 and weights w(e) = 1 to all

remaining edges of H. Let Ĥ be the resulting weighted graph. Then, by defining
the weight w(Mi) of a matching Mi as the maximum of the weights of the edges
in Mi, we have the following: Ĥ has an edge k-coloring M̂ = (M̂1, . . . , M̂k) with
val(M̂) = w(M̂1) + . . . + w(M̂k) � 7 if and only if H has an edge 3-coloring
M = (M1, . . . ,M3) with M∗

i ⊆Mi (i = 1, 2). 
�
In what follows, we denote by EWC(Gk, q) the edge coloring version of WC in
k-regular bipartite graphs Gk = (L,R,E).

Proposition 14. EWC is strongly NP-complete in k-regular bipartite graphs
with k � 3.

Proof (Sketch). The proof is by induction. For k = 3, we use Proposition 13
and the gadget of figure 1 showing how one can transform a cubic bipartite
multigraph G to a simple cubic bipartite graph B. Note that in any feasible
edge coloring of B, {color(a), color(b)} = {color(a′), color(b′)}.

Suppose that strong NP-completeness is true for k−1. We use the following
reduction from EWC(Gk−1, q) to EWC(Gk, 3q). Consider a (k−1)-regular bipar-
tite graph Gk−1 = (L,R,E) and denote by wk−1 is edge-weight vector. Remark
that |L| = |R| and let ri and li be for i = 1, . . . , |L| the nodes of R and L, respec-
tively. Construct a copy G′

k−1 = (L′, R′, E′) of Gk−1 (L = L′, R = R′, E = E′)
and denote by r′i and l′i the nodes of R′ and L′, respectively. For i = 1, . . . , |L|
link ri with l′i and li with r′i. Set wk(e) = wk−1(e) for e ∈ E∪E′ and wk(e) = 2q
for e ∈ {[ri, l

′
i], [li, r

′
i] : i = 1, . . . , |L|}. Obviously, Gk is k-regular. Then, there

exists an edge coloring of weight q in Gk−1, iff there exists an edge coloring of
weight 3q in Gk. 
�
We now study the special case where edge weights are bivalued.

Proposition 15. WC(L(H), q) can be solved in polynomial time if H is bipar-
tite with weights w(e) ∈ {a, b} on the edges.

Proof (Sketch). In order to simplify the sketch, suppose a = 1 and b = t. Starting
from H, we construct a network N and solve a particular flow problem. Let E(s)
be the set of edges e with weight w(e) = s for s = 1, t. Let Δ(s) be the maximum
degree of the partial graph H(s) generated by the edges in E(s) for s = 1, t.
Clearly if Δ(t) = Δ(H), then any edge Δ(H)-coloring of H is optimal. Construct
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(a)
(a)

(b)

(b)
(b′)

(a′)

Fig. 1. Transformation of a cubic bipartite multigraph G into a simple cubic bipartite
graph B.

a network N(r) as follows: remove from H all edges in E(t) and replace each
edge [u, v] in E(1) by an arc −→e = (u, v) with capacity c(−→e ) = 1 and lower bound
of flow l(−→e ) = 0; here r is a nonnegative integer. Introduce a source s0 with
arc (s0, u) for each u ∈ L which is adjacent in H to at least one edge of E(1); set
l(s0, u) = dH(1)(u)−r and c(s0, u) = Δ(t)−dH(t)(u). In the same way, introduce a
sink t0 with arc (v, t0) from each node v of R which is adjacent in H to at least one
edge of E(1); set l(v, t0) = dH(1)(v)− r and c(v, t0) = Δ(t)− dH(t)(v). We have
to find the smallest possible r for which N(r) contains a feasible flow. Such an r
will give us an edge (Δ(H(t))+r)-coloringM such that val(M) = Δ(H(t))t+r.
But such a coloring M may not be of minimum cost. We have to examine also
edge k-colorings M = (M1, . . . ,Mk) where w(Mi) = t for the first Δ(H(t)) + �
matchings and minimize the number r of matchings Mj with w(Mj) = 1. This
can be done by the network flow algorithm described above by increasing the
capacity of all arcs (s0, u) and (v, t0) by � units. We will have to do this for � = 0
to Δ(H)−Δ(H(t)). 
�

In [13] it is shown that WC is NP-complete if G is the line graph L(H) of
a complete bipartite graph Kn,n; the nodes of L(H) have degree 2n − 2. The
interest of the above proof is to deal with the case of fixed degrees, for any fixed
constant. In addition [13] states Proposition 15 for the special case of the line
graph of Kn,n.

We now deal with the approximation of EWC. Remark first that, by König’s
theorem ([14]), the optimal solution of the (unweighted) edge covering achieves
standard approximation ratio Δ for EWC, for any Δ � 3, where Δ is the maxi-
mum degree of the input graph G.

In what follows in this section, we restrict ourselves to bipartite graphs
of maximum degree Δ = 3. We are given a bipartite graph G; denote by w
the edge-weight vector and, for E′ ⊆ E, by G[E′] the partial subgraph of G
induced by E′, and consider the following algorithm EW COLOR, when we as-
sume that the set E = {e1, e2, . . . , e|E|} of edges of G is ranked in decreasing
weight order and, for any j ∈ {1, . . . , |E|}, we set Ej = {e1, . . . , ej}: (1) set
M1

1 = M1
2 = . . . = M1

|E| = ∅; (2) for i = 1 to |E| do: set j0 = min{j = 1, . . . |E| :
M1

j ∪ {ei} is a matching}; set M1
j0

= M1
j0
∪ {ei}; (3) set S1 = (M1

1 , . . . ,M
1
r1

)
the list of the non-empty matchings of (M1

1 ,M
1
2 , . . . ,M

1
|E|); set k0 = max{j :

G[Ej ] has maximum degree at most 2}; (4) for � = 2 to k0 do: (4a) compute
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an optimal 2-coloring (M �
1 ,M

�
2) for G[E�]; (4b) complete (M �

1 ,M
�
2) by running

steps (1) to (2) in G \G[E�]; (4c) set S� = (M �
1 ,M

�
2 , . . . ,M

�
r�

) the edge coloring
computed in steps (4a) and (4b); (5) output S = argmin{val(S�) : � = 1, . . . , k0}.

Any set S� computed by algorithm EW COLOR verify Corollary 1; hence, r� � 5.

Proposition 16. EW COLOR achieves standard approximation ratio 5/3 in poly-
nomial time. This ratio is tight.

Proof (Sketch). Following the remark just above on the value of r�, one can set
S� = (M �

1 , . . . ,M
�
5), (some of the M �

i , i = 1, . . . , 5 may be empty). Fix an optimal
solution S∗ and denote by M∗

1 , M∗
2 , M∗

3 the three largest matchings of S∗. Set
i∗3 = min{j : ej ∈ M∗

3 }. By construction, G[Ei∗3−1] has maximum degree at

most 2 and hence w(M i∗3−1
1 ) + w(M i∗3−1

2 ) � w(M∗
1 ) + w(M∗

2 ) and w(M i∗3−1
3 ) +

w(M i∗3−1
4 ) + w(M i∗3−1

5 ) � 3w(M∗
3 ). We so finally obtain valEW COLOR(S) �

val(Si∗3−1) � 5opt(G)/3. The proof of the tightness is shown in [1]. 
�
The same analysis as the one in the proof of Proposition 16 concludes that EWC
is approximable within standard approximation ratio bounded above by (2Δ−
1)/3, for any Δ � 3.

Proposition 17. Unless P = NP, for any ε > 0 no polynomial time algorithm
achieves approximation ratio bounded above by (2k/(2k−1))−ε, even in k-regular
bipartite graphs.

Proof (Sketch). From the proofs of Propositions 13 and 14, where, in the latter,
we change cost wk(e) to 2 max{wk−1(e)} (this case remains NP-complete), one
can see that EWC in regular bipartite graphs of degree at least k is NP-complete
whenever the optimal value of the instance is at most 2k − 1. 
�
We now give a differential approximation result for EWC. As previously we
first assume G = (L,R,E) is a bipartite graph of maximum degree Δ = 3 and
with edge-weight vector w, and consider the following algorithm, denoted by
EC SCHEME in what follows: set k = !1/ε"; rank the edges in E in decreasing-
weight order; set E = {e1, . . . , e|E|}; set E′ = {e1, e2, . . . , e3k+5}; optimally
color G[E′] and greedily complete the edge coloring of step obtained in order to
color E with at most three colors (in other words, omit weights and color the
unweighted version of G).

Proposition 18. Algorithm EC SCHEME is a polynomial time differential approx-
imation scheme for EWC.

Proof (Sketch). Let (M∗
1 , . . . ,M

∗
r ) be an optimal solution of G[E′]. By Corol-

lary 1, we can suppose r � 5. So, worst(G[E′]) − opt(G[E′]) � 3kw(e3k+5) �
3w(e3k+5)/ε, and valEC SCHEME(G) � opt(G[E′])+w(e3k+6)+w(e3k+7)+w(e3k+8).
After some algebra and taking into account that edges in E are ranked in de-
creasing weight order, valEC SCHEME(G) � (1− ε)opt(G) + εworst(G). 
�
One can easily see that the result of Proposition 18 holds also for any fixed
Δ > 3 and for any graph (not necessarily bipartite).
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6 Cographs

The case of cographs (or equivalently graphs containing no induced chain P4 on
four nodes) has to be mentioned. These graphs, also called P4-free graphs, are
a subclass of the perfectly ordered graphs introduced in [15]; for the perfectly
ordered graphs, an order θ on the node set V can be defined in such a way
that for any induced subgraph G′ of the original graph G the greedy sequential
algorithm (GSC) based on the order θ′ induced by θ on the nodes of G′ gives a
minimum coloring of G′. Here the GSC algorithm based on an order θ consists
in examining consecutively the nodes as they occur in θ and coloring them with
the smallest possible color. As observed in [6], a graph G is a cograph if and
only if for all induced subgraphs G′ of G the GSC based upon any order θ gives
a coloring of G′ in χ(G′) colors.

Lemma 2. If G = (V,E,w) is a weighted cograph, then all optimal colorings
S = (S1, . . . , Sk) satisfy k = χ(G).

Proof (Sketch). Assume there exists an optimal k′-coloring S ′ = (S′
1, . . . , S

′
k′)

with k′ > χ(G). We can order the nodes of G by taking consecutively the nodes
of S′

1, those of S′
2 and so on. Using the resulting order θ we can apply the GSC

algorithm which will produce a k-coloring S = (S1, . . . , Sk) with k = χ(G) (we
have ordered S and S ′ by non-increasing costs). Each node v ∈ S′

j will satisfy
v ∈ Si with i � j after applying GSC. Thus, we have w(S′

i ∪ {v}) = w(S′
i) and

Sk+1 = ∅, a contradiction. 
�

We can now show that there is a polynomial algorithm which constructs an
optimal k-coloring S; such a result can be expected from graphs like cographs
for which several generally difficult coloring problems are easier ([16]).

Proposition 19. Let G = (V,E,w) be a a weighted cograph. Then, the k-
coloring S, constructed by the GSC algorithm based upon any order θ where
u < v (u before v in θ) implies w(u) � w(v), is optimal.

Proof (Sketch). Let t1 > t2 > . . . > tr be the values taken by the weights w(v)
in G. Every k-coloring S = (S1, . . . , Sk) of G with k = χ(G) and w(S1) �
w(S2) � . . . � w(Sk) satisfies: w(Si) � max {ts : ω(G(s)) � i} where ω(H)
denotes the maximum size of a clique in a graph H and G(s) is the subgraph
generated by all nodes v with w(v) � ts. Indeed any such k-coloring will have
the first ω(G(1)) sets Si with w(Si) = t1; also the first ω(G(2)) sets Si will have
w(Si) � t2 and generally the first ω(G(s)) sets Si will have w(Si) � ts.

Now consider the k-coloring S = (S1, . . . , Sk) obtained by applying the GSC
algorithm based on any order θ with nonincreasing weights. Let p(s) be the
largest color given to a node v with w(v) = ts; let v0 be such a node. Since
cographs are perfectly ordered graphs, it follows by considering the subgraph G′

of G generated by v0 and all its predecessors in θ that there is in G′ a clique
K # v0 with K ∩ Si �= ∅ for i = 1, . . . , p(s). So, S satisfies w(Si) = max{ts :
ω(G(s)) � i} and thus S is an optimal coloring. 
�
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The above proof shows in fact that if we are given a perfectly ordered graph G
and if the order θ of nonincreasing weights in such that the GSC algorithm gives
a minimum coloring (i.e., a k-coloring with k = χ(G)), then one can find an
optimal k-coloring S which minimizes val(S). For cographs, this condition was
satisfied since any order θ could be chosen to construct a minimum coloring.

Proposition 19 is best possible in the following sense. If G is simply a P4,
then we may have no optimal k-coloring S with k = χ(G).
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Abstract. We define a variant of the H-coloring problem where the
number of preimages of certain vertices is predetermined as part of the
problem input. We consider the decision and the counting version of
the problem; namely the restrictive H-coloring and the restrictive #H-
coloring problems. We provide a dichotomy theorem characterizing the
H’s for which the restrictive H-coloring problem is either NP-complete
or polynomially solvable. Moreover, we prove that the same criterion
discriminates the #P-complete and the polynomially solvable cases of
the restrictive #H-coloring problem. Finally, we prove that both results
apply also to the list versions of the above problems.

1 Introduction

Let us consider the following processing setting, we have a host network H of
processors with communication links between them, and a set of jobs with com-
munication demands between them, these jobs and their restrictions in their
concurrent execution are modeled by a graph G. The goal is to make a suitable
assignment of jobs to processors satisfying all the communication constrains.
Historically, one good model to simulate these problems of assignation of in-
terrelated jobs to interconnected processors has been through the H-coloring
problem [9].

Formally, given two graphs G and H, a homomorphism from G to H is a
function σ : V (G) → V (H) where for any edge {v, u} ∈ E(G), {σ(v), σ(u)} is
also an edge of H. For fixed H we say that σ is an H-coloring of G. The graphs
in this paper are finite, undirected, and cannot have multiple edges but can have
loops. For a fixed graph H, the H-coloring problem asks for the existence of an H-
coloring of the input graph G, while the #H-coloring asks for the number of the
H-colorings of the input graph G. The complexity of these two problems depends
on the choice of the particular graph H. It is known that the H-coloring problem
is polynomially time solvable if H is bipartite or it contains a loop; otherwise it is
NP-complete [12]. Moreover, the #H-coloring problem is polynomially solvable
if all the connected components of H are either complete reflexive graphs or
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complete irreflexive bipartite graphs [7]. Recall that a reflexive graph has all its
vertices looped, and that if none of the vertices of a graph is looped then it is
irreflexive.

The processing may have further restrictions, in many practical cases, several
qualitative restrictions are imposed by the guest network concerning the types
of processors that are able to carry out each of the jobs. For this reason, each
job may be accompanied with a list of the processors that can perform the task.
More formally, for a fixed graph H, and given a graph G, a list of preferences is
a function L : V (G) → 2V (H). Given the pair (G,L) a list H-coloring of (G,L)
is a homomorphism σ from G to H such that for any v ∈ V (G), σ(v) ∈ L(v).
For a fixed graph H, the list H-coloring problem asks for the existence of a
list H-coloring of the input, formed by a graph G and an associated list of
preferences L, while the list #H-coloring asks for the number of list H-colorings
of the input. It is known that the list H-coloring problem is polynomially time
solvable if H is a bi-arc graph [8,9,10]. Moreover, the list #H-coloring problem is
polynomially solvable if all the connected components of H are either complete
reflexive graphs or complete irreflexive bipartite graphs [13,5].

In real systems the host network wants to keep bounded (or fixed) the load
of some processors. Thus, some processors may carry an additional quantitative
restriction the number of jobs that can be assigned to them. The goal is to make a
suitable assignment of jobs to processors satisfying all the communication, load
and preference constrains. A variant of the H-coloring problem, the so called
(H,C,K)-coloring problem and variations whose complexity was studied in [6,5],
considers the case in which the quantitative restriction is fixed independently of
the graph G. See also [4] and [2] for more results on parameterized version of H-
colorings. In this paper we consider the case in which the additional restriction
may depend on the graph G, and thus form part of the input.

For a fixed graph H, given a graph G with n vertices, a weighting function
is a function, w : V (H) → {0, . . . , n,∞}. Given the pair (G,w) a restrictive
H-coloring of (G,w) is an H-coloring σ of G such that for all a ∈ V (H) with
w(a) �= ∞, |{u ∈ V (G) | σ(u) = a}| = w(a), when w(a) = ∞ this set can have
any number of vertices. Given a graph G, a list L, S ⊆ V (H) and a weight
function w on S a restrictive list H-coloring of G is a list H-coloring σ of (G,L)
such that σ is also a (G,w) restrictive H-coloring. We introduce the following
problems:

Restrictive H-coloring problem: Given a graph G and a weighting function w on
H. Does (G,w) have a restrictive H-coloring?

Restrictive list H-coloring problem: Given a graph G, a list L on G, and a weighting
function w on H. Does (G,L,w) have a restrictive list H-coloring?

The counting versions of both problems, the restrictive #H-coloring and the
restrictive list #H-coloring are defined as usual.

We prove that all these problems are polynomial time solvable if all the con-
nected components of the host graph H are either complete reflexive graphs
or complete irreflexive bipartite graphs. Moreover, we prove that in any other
case the decision problems are NP-complete and the counting problems are
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Fig. 1. The four forbidden subgraphs of Lemma 1

#P-complete. Observe that, in contrast to the non restrictive problems, the
dichotomy result attained for this problem is the same for both list and non list
problems as well as for counting an decision problems.

We use standard notation for graphs and we set n = |V (G)| and h = |V (H)|.
For a given graph G and a vertex subset S ⊆ V (G), the subgraph induced by S
is the graph G[S] = (S,E(G) ∩ S × S).

2 NP-Completeness Results

Notice that, for any given graph G, by setting w(a) = ∞ for all a ∈ V (H), the
restrictive H-coloring problems solves the corresponding H-coloring problem,
therefore we can translate all the hardness results to the restrictive problem
versions. In particular, the #P-hardness results in [7,13,5] translate as shown in
the following result.

Theorem 1. If H has a connected component that is neither a complete ir-
reflexive bipartite graph nor a complete reflexive clique, then the restrictive #H-
coloring and the restrictive list #H-coloring problems are #P-hard.

In this section we will show that when H has a connected component that
is not a complete irreflexive bipartite graph or a complete reflexive clique the
restrictive H-coloring problem, and therefore the restrictive list H-coloring prob-
lem, are NP-complete. As both problems are clearly in NP, we provide the hard-
ness proofs.

It is well known that the four forbidden subgraphs given in Figure 1 charac-
terize the following property [14]:

Lemma 1. All the connected components of a graph H are either a complete
reflexive graph or a complete irreflexive bipartite graph iff H does not contain as
induced subgraphs any of the graphs given in Figure 1.

Now we can state the result in this section.

Theorem 2. If H contains any of the graphs in Figure 1 as induced subgraph
then, the restrictive H-coloring problem is NP-complete.

Proof. We will distinguish four cases depending on which of the graphs in Fig-
ure 1 appears as an induced subgraph of H. Observe that we can select a partic-
ular induced subgraph of H by setting to 0 the number of tasks that a processor
can perform.
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Case 1. If {a, b} is an edge in H where a is looped and b is unlooped, we define

w(v) =

⎧⎨⎩∞ if v = a,
k if v = b,
0 otherwise.

Then (G,w) has a restrictive H-coloring iff G has an independent set of size at
least k.
Case 2. If {a, b, c} form a triangle in H, we set

w(v) =
{∞ if v ∈ {a, b, c},

0 otherwise.

Then (G,w) has a restrictive H-coloring iff G is 3-colorable.
Case 3. Let now {a, b, c} be an induced reflexive path in H. We will reduce the
following problem to the restrictive H-coloring problem.
Balanced Separator: Given a graph G and positive integer k ≤ n. Is there a
partition of V (G) in three sets A,B,C, such that |C| = k, that removing C leaves
a graph with no edges between A and B, and such that max{|A|, |B|} ≤ |V |/2.

The above problem can be shown NP-complete by a slight variation of the
NP-hardness proof given in [1] for the minimum B-vertex separator problem.

Let G be an input of the above problem, we construct a new graph G̃ with
k + 1 new vertices, V (G̃) = V (G) ∪ {u0, . . . , uk}, and with edge set E(G̃) =
E(G) ∪ {{u0, x} | x ∈ V (G)} ∪ {{u0, ui} | 1 ≤ i ≤ k}.

For any v ∈ V (H), we set

w(v) =

⎧⎪⎪⎨⎪⎪⎩
n/2 if v = a,
k + 1 if v = b,
n/2 if v = c,
0 otherwise.

and we can show that G has a balanced separator iff (G̃,w) has a restrictive
H-coloring (see [3] for a detailed proof).
Case 4. Let now {a, b, c, d} be an induced irreflexive path in H. We consider the
following NP-complete problem, see [11]:
Balanced Complete Bipartite Subgraph: Given a bipartite connected graph G =
(V1, V2, E) and positive integer k, such that k ≤ |V1|+ |V2|. Does G contain Kk,k

as an induced subgraph?
Let (G, k) be an input of the above problem. Assume that V1 and V2 is the

partition of V (G), observe that as G is connected and bipartite this partition is
unique. Let u1, u2 be two new vertices not belonging in V (G). We construct a new
bipartite graph G̃ = (W,F ) with bipartition W1 = V1∪{u1} and W2 = V2∪{u2},
and with edge set F = {{u1, x} | x ∈ V2}∪{{x, u2} | x ∈ V1}∪{{u1, u2}∪{{x, y} |
x ∈ V1, y ∈ V2, and {x, y} �∈ E(G)}. Notice that G̃ is the bipartite complement
of G with two new adjacent vertices u1 and u2, such that u1 is connected with
all the vertices in one part and u2 with all the vertices in the other.



130 Josep Dı́az, Maria Serna, and Dimitrios M. Thilikos

�

����

�

�

����

�� ��

����

� �

�� ��

����

�

����

�

����

Fig. 2. The six basic cases for counting H-colorings

For all v ∈ V (H), we set

w(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k if v = a,
∞ if v = b,
∞ if v = c,
k if v = d,
0 otherwise.

Then G contains Kk,k as a subgraph iff G̃ has a restrictive H-coloring (see [3]
for a detailed proof).

Using the fact that the restrictive list H coloring problem can be used to
solve the restrictive H-coloring problem we get,

Theorem 3. If H has a connected component that is neither a complete irreflex-
ive bipartite graph nor a complete reflexive clique then the restrictive H-coloring
and the restrictive list H-coloring problems are NP-hard.

3 H-Coloring: The Connected Case

In this section we solve in polynomial time the counting version of the restrictive
H-coloring problem in the case that H does not contain as subgraph any of the
forbidden subgraphs in Figure 1 and furthermore G is connected.

Let us first show that for any of the different graphs and weighting functions
in Figure 2 the number of restrictive H-colorings of a graph G can be computed
in polynomial time.

Given two graphs G, H and a weighting function w on V (H), let H(G,H,w)
denote the number of restrictive H-colorings of (G,w). We set n = |V (G)|, and
for a connected bipartite graph G, we set n1, n2 to be the sizes of the two
partitions. It is easy to check that, for the graphs and weighting functions given
in Figure 2, the following algorithms compute correctly the number of restrictive
colorings.

algorithm H(G, A, wa)
begin

if n = k then ret 1 else ret 0 end if
end
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algorithm H(G, B, wb)
begin

if n ≤ k then ret
(

n
k

)
else ret 0 end if

end

algorithm H(G, C, wc)
begin

if G is not bipartite
then ret 0
elseif (n1 = k1 and n1 = k2) or (n2 = k1 and n2 = k2) then ret 0
elseif (n1 = k1 and n1 = k2 and n2 = k2) then ret 1
elseif (n1 = k1 and n1 = k2 and n2 = k1) then ret 1
else ret 2

end if
end

algorithm H(G, D, wd)
begin

if G is not bipartite
then ret 0
elseif (n1 < k1 and n1 < k2) or (n2 < k1 and n2 < k2) then ret 0
elseif (n1 ≥ k1 and n1 < k2 and n2 ≥ k2) then ret

(
n1
k1

)(
n2
k2

)
elseif (n1 < k1 and n1 ≥ k2 and n2 ≥ k1) then ret

(
n2
k1

)(
n1
k2

)
else ret

(
n1
k1

)(
n2
k2

)
+

(
n2
k1

)(
n1
k2

)
end if

end

algorithm H(G, E, we)
begin
if G has no edges and k = 1 then ret 1else ret 0 end if
end

algorithm H(G, F, wf )
begin

if G has no edges then ret 1 else ret 0 end if
end

Lemma 2. Let H be a reflexive clique, given a connected graph G and a weight-
ing function w on H, then H(G,H,w) can be computed in polynomial time.

Proof. Let C = {a ∈ V (H) | w(a) �= ∞}, let k =
∑

a∈C w(a), and let α =
|V (H)− C|. We will consider two cases.

Case 1. C = V (H). In this case, “collapsing” all the vertices in H into a single
vertex and assigning weight k to it, we get a type A graph with a weighting
function wa. Observe, that any restrictive A-coloring of (G,wa) can be extended
in k! ways to obtain a valid restrictive H-coloring of (G,w), and any valid H-
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coloring of (G,w) can be contracted to provide a valid restrictive A-coloring of
(G,wa).
Case 2. C �= V (H). In this case, “collapsing” all the vertices in C to a vertex
with weight k and all the remaining vertices to a vertex with weight ∞, we
obtain a type B graph with weighting function wb. Observe that any restrictive
B-coloring of (G,wb) can be extended in k!αn−k ways to obtain a valid restrictive
H-coloring of (G,w), and any valid H-coloring of (G,w) can be contracted to
provide a valid restrictive B-coloring of (G,wb).

Therefore the following algorithm, which takes polynomial time, computes
H(G,H,w).

algorithm H(G, H, w)
begin

Compute n, k and α;
if α = 0

then if n = k then output k! else ret 0 end if
elseif n ≤ k

then ret k! αn−k
(

n
k

)
else ret 0

end if
end

Lemma 3. Let H be a complete irreflexive bipartite graph with more than one
vertex. Given a connected graph G and a weighting function w on H, H(G,H,w)
can be computed in polynomial time.

Proof. Let H = (V1, V2, E). For i = 1, 2, let Ci = {a ∈ Vi | w(a) �= ∞}, let
ki =

∑
a∈Ci

w(a), and let αi = |Vi − Ci|. We will consider two cases.
Case 1. C1 = V1 and C2 = V2. In this case collapsing all the vertices in V1 to
a vertex with weight k1 and collapsing all the vertices in V2 to a vertex with
weight k2 we obtain a type C graph and a weighting function wc. Observe that
any restrictive C-coloring of (G,wc) can be extended in k1! k2! ways to obtain a
valid restrictive H-coloring of (G,w), and any valid H-coloring of (G,w) can be
contracted to provide a valid restrictive C-coloring of (G,wc).
Case 2. C1 �= V1 or C2 �= V2. In this case by collapsing all the vertices in Ci to
a vertex with weight ki and all the remaining vertices in Vi to an unbounded
vertex, we obtain a type D graph with a weighting function wd. Observe that any
restrictive D-coloring of (G,wd) can be extended in k1! k2!αn1−k1

1 αn2−k2
2 ways

to obtain a valid restrictive H-coloring of (G,w), and that any valid H-coloring
of (G,w) can be contracted to provide a valid restrictive D-coloring of (G,wd).

Therefore, the following algorithm computes H(G,H,w) in polynomial time.

algorithm H(G, H, w)
begin

if G is not bipartite
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then ret 0
else

Compute n1, n2, k1, k2, α1 and α2;
if α1 = α2 = 0

then
if (n1 = k1 and n1 = k2) or (n2 = k1 and n2 = k2)

then ret 0
elseif (n1 = k1 and n1 = k2 and n2 = k2) then ret k1! k2!
elseif (n1 = k1 and n1 = k2 and n2 = k1) then ret k1! k2!
else ret 2 k1! k2!;

end if
elseif (n1 < k1 and n1 < k2) or (n2 < k1 and n2 < k2)

then ret 0
elseif (n1 ≥ k1 and n1 < k2 and n2 ≥ k2)

then ret k1! k2! αn1−k1
1 αn2−k2

2

(
n1
k1

)(
n2
k2

)
elseif (n1 < k1 and n1 ≥ k2 and n2 ≥ k1)

then ret k1! k2! αn1−k1
1 αn2−k2

2

(
n2
k1

)(
n1
k2

)
else ret k1! k2! αn1−k1

1 αn2−k2
2

((
n1
k1

)(
n2
k2

)
+

(
n2
k1

)(
n1
k2

))
.

end if
end if

end if
end
In the case that H is an isolated vertex, G must also be an isolated vertex

and we can compute, in polynomial time, H(G,E,we) or H(G,F,wf ).
Now we can show the main result in this section.

Theorem 4. If all the connected components of H are either a complete irreflex-
ive bipartite graph or a complete reflexive clique, then the restrictive #H-coloring
problem can be solved in polynomial time.

Proof. Assume that H has l connected components. Given a weighting function
w on H, let wj denote the restriction of w to the vertices in Hj . As the given
graph G is connected, it can be mapped only to one connected component of H,
therefore we only have to count the number of restrictive Hj colorings of (G,wj)
that fulfill the weight bounds, with an empty assignment of vertices in G to the
remaining components.

We classify the connected components of H as follows; Hj is free if w(Hj) =
{∞}, Hj is forbidden if w(Hj) = {0}, otherwise Hj is restricted. Therefore, we
have

H(G,H,w) =

⎧⎪⎨⎪⎩
0 H has two restricted components,∑

1≤j≤l H(G,Hj ,wj) if all the c.c. are free or forbidden,
H(G,Hj ,wj) if Hj is the unique restricted c.c.

By Lemmas 2 and 3 the last formula can be evaluated in polynomial time.

As counting in polynomial time implies deciding in polynomial time we have,

Corollary 1. If all the connected components of H are either a complete ir-
reflexive bipartite graph or a complete reflexive clique, then the restrictive H-
coloring problem can be solved in polynomial time.
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4 H-Coloring: The General Case

Now we show how to compute the number of restrictive H-colorings in the
general case in which the graph G may not be connected. Observe that differ-
ent components of G can fill partially the weighted vertices of H, therefore we
are forced to consider H-colorings of components of G that are not restrictive
H-colorings, for the given pair (G,w), but that all together provide one such
restrictive H-coloring.

Theorem 5. If all the connected components of H are either a complete irreflex-
ive bipartite graph or a complete reflexive clique then the restrictive #H-coloring
problem can be solved in polynomial time.

Proof. Given (G,w) and assuming, as usual, that k ≤ ∞ holds for any integer
k, let E(w) be the set

E(w) = {f : V (H) → {0, . . . , n} | f(a) ≤ w(a) for all a ∈ V (H)}.
Given two functions w1 and w2 from V (H) to {0, . . . , n}, for any a ∈ V (H), its
sum is defined as usual: (w1 + w2)(a) = w1(a) + w2(a).

To keep uniform notation, we will assume that all the weighting functions
are defined over V (H). To fullfil this goal, any weighting function of a connected
component Hi is extended to H by assigning the weight 0 to all the vertices
outside V (Hi). We say that a weighting function w defined over H is proper for
Hi, if for all u ∈ V (H) − V (Hi), w(u) = 0. For any component i, 1 ≤ i ≤ l, let
P (i) be the set of proper functions for component i.

Assume that G has m connected components G1, . . . , Gm, Gi denotes the
graph formed by the disjoint union of G1, . . . , Gi. For given G and w, H(G,H,w),
we compute initially a table T [i, j,m], such that for any 1 ≤ i ≤ m, 1 ≤ j ≤ l
and f ∈ E(w))

T [i, j, f ] =

{
H(Gi, Hj , f) f ∈ P (j),
0 otherwise.

For each f , T (i, j, f) can be computed in polynomial time using Theorem 4.
As¡|V (H)| = h and |V (G)| = n, the size of E(w) is at most nh, therefore poly-
nomial because H is fixed, so the whole table can be computed in polynomial
time.

Using dynamic programming techniques, we can compute a table S[i, f ], for
1 ≤ i ≤ m and f ∈ E(w), such that S[i, f ] counts the number of restrictive
H-colorings of (Gi, f). To get the formula we take into account that a connected
component of G must be mapped entirely to a unique connected component of
H. Therefore, for any f ∈ E(w)

S[1, f ] =
∑

1≤j≤l

T [1, j, f ],

and, for any 1 < j ≤ m,

S[j, f ] =
∑

1≤j≤l,f1+f2=f

S[j − 1, f1] ∗ T [i, j, f2].
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As the size of E(w) is polynomial, table S can be computed in polynomial time.
To finish, let A(w) = {f ∈ E(w) | w(a) = f(a) for all a ∈ H with w(a) �= ∞}

be the set of weighting bounded functions fullfiling the restrictions, then

H(G,H,w) =
∑

{f∈A(w)}
S[m, f ],

which again can be computed in polynomial time.

Putting together Theorems 1, 3 and 5, we get the dichotomy result.

Theorem 6. If all the connected components of H are either a complete irreflex-
ive bipartite graph or a complete reflexive clique then the restrictive H-coloring
and the restrictive #H-coloring problems can be solved in polynomial time, oth-
erwise they are NP-complete, #P-complete, respectively.

5 The Restrictive List H-Coloring Problem

In his section we extend the previous result to the problem of counting restrictive
list H-colorings. The main difficulty here is that the vertices in a connected
component of H cannot be “collapsed” to a single vertex, as this may place
together vertices that are not in the same vertex list. Once we have solved the
connected case, the second step is identical to the general case for the restrictive
H-coloring.

We will consider the two main types of connected components and show that
a dynamic programming approach allow us to compute the number of restrictive
list H-colorings. Making an abuse of notation we will represent by H(G,H,w, L)
the number of restrictive list H-colorings of a triple (G,w, L).

Lemma 4. Let H be a reflexive clique. Given a connected graph G, a weighting
function w on H and a list selection for G, then H(G,H,w, L) can be computed
in polynomial time.

Proof. As H is a reflexive clique we can assign a vertex of G to any vertex in H,
provided that the additional restrictions are fulfilled. Let V (G) = {u1, . . . , un},
and let E(w) = {f : V (H) → {0, . . . , n} | for all a ∈ V (H) f(a) ≤ w(a)}. For
any a ∈ H define fa by

fa(b) =

{
1 if b = a,

0 otherwise.

We want to compute a table R[i, f ], 1 ≤ i ≤ n, f ∈ E(w), which counts
the number of restrictive list H-colorings for (G[{u1, . . . , ui}], f, L). For any f ∈
E(w), consider the following recurrence

R[1, f ] = if f = fa for some a ∈ L(u1) then 1 else 0,

R[i, f ] =
∑

f1 + f2 = f,
f2 = fa for some a ∈ L(ui)

R[j − 1, f1], for 1 < j ≤ m.
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As the size of E(w) is polynomial, we can fill the table R in polynomial time.
Setting A(w) = {f ∈ E(w) | w(a) = f(a) for all a ∈ H with w(a) �= ∞} we

have
H(G,H,w, L) =

∑
f ∈ A(w)R[n, f ].

Lemma 5. Let H be a complete irreflexive bipartite graph with more than one
vertex, given a connected graph G, a weighting function w on H, and a list
selection L for G, H(G,H,w) can be computed in polynomial time.

Proof. If H is bipartite, then G must be bipartite. In this case, we can work
separately with the two possible assignments of partitions of G with partitions
of H. Notice that once the global assignment is set, any vertex can be mapped
to any one in the assigned partition, thus working as in the previous lemma we
can compute H(G,H,w) in polynomial time.

Using the same technique of Section 4, we can obtain the polynomial time result.
This, together with Theorems 1 and 3, give the dichotomy for the list version of
the problem.

Theorem 7. If all the connected components of H are either a complete ir-
reflexive bipartite graph or a complete reflexive clique, then the restrictive list
H-coloring and the restrictive list #H-coloring problems can be solved in poly-
nomial time, otherwise they are NP-complete and #P-complete, respectively.

6 Further Variations and Conclusions

We can consider a generalized version of the restrictive H-coloring problem in
which each processor gets a list of desired ranges. Then, a valid restrictive H-
coloring is an H-coloring σ of G, such that, for any a ∈ H, |σ−1(a)| falls inside
one of a prescribed ranges.

Observe that in this generalized version, we can arrange the list to keep
a unique value or keep all possible values, so this generalized version contains
as a subproblem the restrictive H-coloring. Using Theorem 5 we can compute
H(G,H, f) for any function f ∈ E(u). Starting from this information, we can
compute in polynomial time the number of restrictive H-colorings satisfying any
given list of desired ranks.

We can add to all the above a list of preferences and attain the same di-
chotomy result for the generalized list problem.

We have dealt through the paper in H-colorings that correspond to embed-
dings with dilation one. As far as H remains fixed we can solve the restrictive
embedding problem for any prefixed maximum dilation d. To do so we just en-
hance H with edges joining vertices at distance d or less.
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Abstract. We present a new general 3-color criterion for planar graphs.
Applying this criterion we characterize a broad class of 3-colorable planar
graphs and provide a corresponding linear time 3-coloring algorithm. We
also characterize fully infinite 3-colorable planar triangulations.

1 Introduction

The problem of vertex coloring of a graph using few colors has given rise to one of
the most intensively studied areas of the graph theory. A frequently encountered
special case is that in which the graph to be colored is planar. Computing a
coloring that uses the smallest possible number of colors is known to be an NP-
complete problem, even when restricted to the class of planar graphs and 3 colors.
More precisely it is an NP-complete problem to decide whether a given planar
graph is 3-colorable [GJS]. On the other hand the famous “4-color theorem” says
that every planar graph is 4-colorable. Hence it is natural to characterize those
planar graphs which are 3-colorable. The first 3-color criterion was formulated
by Heawood in 1898 and it is known as the Three Color Theorem [Hea,Ste]:
A maximal planar graph is vertex colorable in three colors if and only if all
its vertices have even degrees. Obviously this theorem implies a very simple
algorithm for checking 3-colorability of maximal planar graphs. As the problem
of 3-colorability of planar graphs is NP-complete one cannot rather expect any
“effective” 3-color criterion for general planar graphs. On the other hand there
is a “simple”, general 3-color criterion which does not lead to an efficient 3-
coloring algorithms: A planar graph is vertex colorable in three colors if and
only if it is a subgraph of a maximal planar graph in which all vertices have
even degrees. This theorem was already known to Heawood as well as it was
discovered independently by several authors – see the comprehensive survey
written by Steinberg [Ste].

In this paper we introduce a new general 3-color criterion which can be
efficiently checked for a broad class of planar graphs. Our criterion generalizes
the Heawood’s Three Color Theorem. In order to get this result we define a new
class of planar graph colorings, so called edge-side colorings, and prove that the
new type of coloring is equivalent to the ordinary vertex 3-coloring. The criterion
allows to characterize 3-colorable triangulations with holes, i.e. plane graphs in

L. Kučera (Ed.): WG 2002, LNCS 2573, pp. 138–149, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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which each vertex touches at most one non-triangular face. We provide a linear
time algorithm for 3-coloring such graphs. Our criterion allows also to formulate
sufficient and necessary conditions for 3-coloring infinite planar triangulations.

2 Basic Definitions and Notation

It is known that a graph is 3-colorable iff all its biconnected components are
3-colorable. In the sequel, if it is not stated explicitly, saying a graph we mean
a biconnected, finite multigraph of at least three vertices but without selfloops.

A plane graph is a graph whose vertex set is a point set in the plane and the
edges are Jordan curves such that two different edges have at most end points
in common. A graph is called planar if it can be embedded in the plane, i.e. if
it is isomorphic to a plane graph.

Let C be a simple cycle in a plane graph G. The cycle C divides the plane
into two disjoint open domains – the interior C-domain (homeomorphic to an
open disc) and the exterior C-domain. The set consisting of all vertices of G
belonging to the interior C-domain and of all edges crossing this domain is
denoted by IntC. If v is a vertex on C then the number of the graph neighbors
of v lying in the interior C-domain is called the internal degree of v with respect
to C and it is denoted by dIn(C, v) = |{(v, w) ∈ E(G) : w ∈ IntC}|. We define
the internal degree of the cycle C as the sum of the internal degrees of all its
vertices. This sum is denoted by dIn(C) =

∑
v∈C dIn(C, v).

A face in a plane graph G is a C-domain (interior or exterior), for some cycle
C, without any vertices and edges inside. Only one face is unbounded and it is
called the outer face. Similarly, its boundary cycle is called the outer one.

A triangulation is a plane graph in which the boundary cycle of every face is
a triangle (3-cycle). A biconnected plane graph in which all the boundary cycles,
except at most one, are triangles is called a near-triangulation. W.l.o.g. we will
consider this boundary cycle to be the outer one.

A graph is even if all its vertices have even degrees. A near-triangulation is
internally even if all its vertices different from those on the outer cycle have even
degrees.

3 A New 3-Color Criterion

In 1898 Heawood [Hea] proved a theorem characterizing (finite) 3-colorable tri-
angulations:

Theorem 1 (Three Color Theorem). A (finite) triangulation is 3-colorable
if and only if it is even.

This criterion applies only to the maximal planar graphs which are isomor-
phic to triangulations. It allows to check in a very simple manner whether a
given maximal planar graph is 3-colorable. One can ask a natural question: can
the criterion be generalized to all planar graphs? Unfortunately, since checking
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3-colorability is an NP-complete problem even in the planar case, we cannot
rather expect any polynomially checkable criterion for general planar graphs.
However there are general criteria which allow checking 3-colorability of a given
planar graph in some special cases. As stated in [Ste] such a general criterion
was already known to Heawood [Hea]. Nevertheless it was not widely known and
has been independently discovered and proved several times, e.g. in [Kr1], [Kr2],
[Mar]. The criterion follows:

Theorem 2 (Heawood’s 3-Color Criterion). Let G be a plane graph. The
following two conditions are equivalent:

(i) G is 3-colorable.
(ii) There exists an even triangulation H such that G is a subgraph of H, i.e.

H ⊇ G.

Moreover, every 3-coloring of a plane graph G can be extended to a 3-coloring
of some even triangulation H ⊇ G.

As we can see the 3-color criterion stated above tells us nothing about the
structure of the graph under consideration. In this section we provide a new type
of graph coloring, called edge-side coloring, which is equivalent to the vertex 3-
coloring but additionally reflects some structural properties of a given graph.
This new feature will allow us to characterize a new, broad class of 3-colorable
planar graphs which are recognizable and 3-colorable in a linear time.

We start from a few indispensable definitions.
Let G be a plane graph, f a face in G and e an edge on the boundary cycle

of f . The pair s = (e, f) is called a side of edge e in face f (or shortly a side).
We say also that side s touches face f . If vertex v is an end point of e then side
s is said to be incident with v. Observe that in a biconnected graph every edge
has exactly two sides.

Let G be a plane graph and S be the set of all sides in G. Edge-side coloring
of G is an arbitrary function

m : S −→ {black, white}.

Edges with one side black and the other side white are called b-w edges. The
other edges are called one-color edges and can be of type b-b or w-w depending
on the colors of their sides, black or white respectively.

We say that an edge-side coloring of a plane graph G is proper if and only if
the following two conditions are satisfied:

(i) for each face f in G the numbers of white and black sides touching f are
congruent (equal) mod 3;

(ii) each vertex v in G is incident with an even number of one-color edges.

We say that a plane graph G is edge-side colorable if its edge-sides can be properly
colored.

Now we can state the main theorem of the paper.
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Fig. 1. A proper edge-side coloring. Light (dark) lines indicate white (black) sides

Theorem 3 (3-Color Criteria). Let G be a (biconnected) plane graph. The
following three conditions are equivalent:

(i) G is 3-colorable.
(ii) There exists an even triangulation H ⊇ G.
(iii) G is edge-side colorable.

The equivalence of conditions (i) and (ii) was proved by Heawood (see The-
orem 2). The proof of the equivalence of (ii) and (iii) is our main contribu-
tion to this paper. We start from a few observations on internally even near-
triangulations.

Lemma 1. Every internally even near-triangulation is 3-colorable.

Proof. Let C be the outer cycle of a near-triangulation G. Let us take a separate
embedding G′ of G in which the cycle C ′ corresponding to C is not longer the
outer one. Now we build a new plane graph H from G′ placing the entire graph
G in the interior C ′-domain and identifying the corresponding vertices and edges
of the cycles C and C ′ as shown in Fig. 2. One can easily check that the graph
H is an even plane triangulation and hence it is 3-colorable by the Heawood’s
Three Color Theorem. Since G ⊆ H it is also 3-colorable. 
�

Lemma 2. Let G be an even near-triangulation with the outer cycle C. Then
|C| ≡ 0 (mod 3).

Proof. By Lemma 1, G is 3-colorable. Let C = v0v1 . . . v|C|−1v0 and let K be an
arbitrary 3-coloring of G. We will show that one can rename the colors in K in
such a way that K(vi) = (i mod 3) + 1, for every i = 0 . . . |C| − 1.

Let v be an arbitrary vertex in C and let x and y be its neighbors such
that x, y and v are incident with the same internal (not unbounded) triangular
face in G. Vertices x, y, and v have different colors. Now one can observe that
every two successive neighbors of v, in a sequence of all neighbors listed in the
clockwise order, have different colors. Since the degree of v is even its neighbors
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Fig. 2. Proof of lemma 1

on C have different colors. As a result we get K(vi) = (i mod 3) + 1 (possibly
after renaming the colors) what implies |C| ≡ 0 (mod 3). 
�

Lemma 3. For every i ≥ 3 such that i ≡ 0 (mod 3) there exists a finite even
near-triangulation with the outer cycle of length i.

Proof. The proof is by induction on i. For i = 3 it suffices to take K3.
Inductive step: by the induction hypothesis there exists a finite, even near-

triangulation G0 with the outer cycle of length i − 3. Let v1, v2 be arbitrary
adjacent vertices in the outer cycle of G0. Then G = G0∪{v3, v4, v5}∪{v2− v3,
v3 − v4, v4 − v5, v5 − v1, v2 − v4, v1 − v4} is an even near-triangulation and its
outer cycle has length i. 
�

Let C be a simple cycle and let mC be an arbitrary edge 2-coloring of C,
mC : E(C) −→ {black, white}. We say that coloring mC is balanced if and only
if |m−1

C (black)| ≡ |m−1
C (white)| (mod 3).

Let G be a graph and let C be a simple cycle in G. We say that a balanced
coloring mC of C corresponds with G if the following holds: for every vertex v
in C the edges of E(C) incident with v have different colors if and only if the
degree dG(v) of v in G is odd.

Lemma 4 (Key Lemma).

(i) For every internally even near-triangulation G with the outer cycle C there
exists a balanced 2-coloring mC of C corresponding with G.

(ii) For every balanced 2-coloring mC of a cycle C there exists an internally
even near-triangulation G with the outer cycle C and such that mC corre-
sponds with G.

Proof (i). Since G is internally even, the number of vertices of C with odd
degrees is even. Let v1, v2, . . . , v2k−1, v2k be a list of all such vertices given in
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the clockwise order. For each i = 1, 2, . . . , k, we color black edges on C between
v2i−1 and v2i. The remaining edges are colored white (see Fig. 3). Observe that
vertices in C are incident with edges of different colors if and only if they have
odd degrees.

v 1

v 2

v 3
v 4

v 5

v 6

Fig. 3. Constructing a balanced 2-coloring

Let b be the number of black edges on C and let w be the number of white
edges on C. After extending G by triangles formed in the outer (unbounded) face
and with the black edges as the triangle bases (as shown in Fig. 3) we get an even
near-triangulation. By Lemma 2 the outer cycle of this triangulation has length
≡ 0 (mod 3). Hence 2b + w ≡ 0 (mod 3) and finally b ≡ w (mod 3). 
�
Proof (ii). Denote the number of black and white edges of C by b and w re-
spectively. We form a triangle on each black edge e in the interior C-domain as
shown in Fig. 4. As the result we get a graph H. Observe that vertex v of H has
odd degree if and only if it is incident on C with edges of different colors.

H

C

Fig. 4. The graph H with the outer cycle C – constructing a near-triangulation

Let f be the only face of H different from the added triangles and placed
in the interior C-domain. The length of the f ’s boundary cycle is 2b + w ≡
0 (mod 3). By Lemma 3, one can triangulate this face and obtain a required
internally even near-triangulation G. 
�

Lemma 5. Let G be a finite, biconnected plane graph. Let H be an even trian-
gulation (possibly infinite but locally finite) such that G ⊆ H. If for every face
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f of G with facial cycle Cf there exists a balanced edge 2-coloring corresponding
with Cf ∪ IntH Cf , the graph G is edge-side colorable.

Proof. For every face f of G with the facial cycle Cf let mCf
be a balanced edge

2-coloring corresponding with Cf ∪ IntH Cf . Let us take an edge-side coloring
assigning each side (f, e) the color mCf

(e). Obviously this coloring satisfies the
first condition of the definition of the proper edge-side coloring. In order to prove
the other one let us consider an arbitrary vertex v in G. Let f ′ be an arbitrary
face in G with v on its facial cycle. Denote this cycle by C ′. Let e1, e2 be the
edges of C ′ incident with v. Since mCf′ corresponds with Cf ′∪IntH Cf ′ the sides
of e1, e2 in f ′ have the same color if and only if the degree dInH(C ′, v) is even.
Let B(v) denote the number of black sides incident with v. If dG(v) is odd then
there is an odd number of faces f ′ incident with v and such that dInH(C ′, v) is
odd. On the other hand if dG(v) is even the number of faces f ′ incident with v
and such that dInH(C ′, v) is odd is even. It follows that dG(v) +B(v) is always
even which is equivalent to the statement that the number of one-color edges
incident with v is even.

We have just showed that the second condition in the definition of proper
edge-side coloring is satisfied, which completes the proof. 
�

Now we are ready to prove the part (ii)↔(iii) of our main theorem.

Proof.
(ii)−→(iii)
Assume that there exists an even triangulation H ⊇ G. Observe that since G
is biconnected, every face is bounded by a simple cycle. For each face f with
the facial cycle Cf we can apply lemma 4 to get a balanced edge 2-coloring mC

of E(C) corresponding with the near-triangulation Cf ∪ IntH Cf . Now we can
apply lemma 5 to obtain a proper edge-side coloring of G, what completes the
proof of (ii)−→(iii).

(ii)←−(iii)
Assume that G is properly edge-side colored. By Lemma 4 one can triangulate
(i.e. divide into triangles) each face into an internally even near-triangulation
getting a triangulation H ⊇ G. Let v be an arbitrary vertex of G. Denote by
F (v) the number of faces incident with v for which the odd number of edges
ending in v was added during the process of triangulation. Similarly as in the
proof of lemma 5 one can show that dG(v) +F (v) is even. It implies finally that
for every vertex v, dH(v) is even, what means that H is an even triangulation.


�

As the result we get a new 3-color criterion for general planar graphs. In fact,
using this criterion for checking whether an arbitrary plane graph is 3-colorable
is equally hard as trying to find a proper 3-coloring of a given graph. However
we can apply our theorem to show a few classes of planar graphs for which the
new criterion can be effectively checked.
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4 Applications

One can expect that the criterion formulated in section 3 can be effectively
checked for graphs that are ”highly triangulated”, i. e. when a lot of faces are
triangles. Moreover, if such a graph has a special structure it can be colored using
a greedy algorithm. We define formally a class of graphs for which the greedy
algorithm works well. A plane graph G is called triangle connected if each vertex
of G is incident with a triangular face and the subgraph of the graph dual to G
induced by the triangular faces is connected.

In the following subsections we present the greedy algorithm and three classes
of graphs for which effective 3-color criteria can be formulated. Our general
criterion can be also used to show that plane graphs with face lengths of multiple
of three are 3-colorable.

4.1 The Greedy Algorithm

Given a planar, triangle connected graph (without its planar embedding) the
algorithm below computes its 3-coloring or reports that such a coloring doesn’t
exist. The algorithm runs in a linear time. For each vertex v set PossibleColors(v)
contains colors which are still admissible for v; S represents the set of vertices
for which set PossibleColor contains at most one color. Algorithm uses operation
RESTRICT(v) which restricts the set of admissible colors for neighbors of v.

OPERATION RESTRICT(v)::
for each u in Neighbors(v) do

if Col(u) = -1 then
begin

PossibleColors(u).Remove(Col(v))
if |PossibleColors(u)| ≤ 1 then S.Add(u)

end

ALGORITHM GREEDY::
for each v in V (G) do
begin

PossibleColors(v) := {1, 2, 3}
Col(v) := -1 {undefined}

end
S := ∅
(p, q) := an arbitrary edge of an arbitrary triangle in G
Col(p) := 1
Col(q) := 2
RESTRICT(p)
RESTRICT(q)

while not S.Empty do
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begin
v := S.Remove
if |PossibleColors(v)| �= 1 then

Exit{G is not 3-colorable}
else
begin

Col(v) := PossibleColors(v).Get
RESTRICT(v)

end
end while

Finding a triangle in a planar graph without its embedding in the plane
can be easily done in a linear time, see [Chr]. During each iteration algorithm
chooses a triangle with two vertices already colored and colors the third vertex.
It can be easily shown that in every embedding one of edges of the initial triangle
bounds a triangular face. As graph is triangle connected algorithms stops when
all vertices are properly colored.

4.2 Triangulations with Holes

A biconnected plane graph is called a triangulation with holes if every of its
vertices is incident with at most one non-triangular face, i.e. a face of length at
least 4.

Proposition 1. Every triangulation with holes is triangle connected.

Proof. Let G be a triangulation with holes. Consider two triangular faces f , h
sharing a common vertex v. Vertex v is incident with at most one non-triangular
face and subsequently f and h can be connected by a sequence formed of trian-
gular faces, where each two successive faces share a common edge.

Now let f and h be two arbitrary triangular faces of G. Since G is connected,
f and h can be connected by a path e1, e2, . . . , ek, where ei are edges of G. Each
edge belongs to at least one triangular face. Denote such face for ei by ti. Every
two successive faces ti, ti+1 share a vertex. Additionally t1 shares a vertex with
f and tk shares a vertex with h. Hence we conclude that f and h are connected
by a path formed of triangular faces, where each two successive faces share a
common edge. 
�

Triangulations with holes have the following interesting property. Let G a
triangulation with holes and let f be a face in G. Let Cf be the facial cycle of
f . Then for every vertex v in Cf and an arbitrary even triangulation H ⊇ G the
parity of dInH(Cf , v) is the same. It follows that there is exactly one edge-side
coloring for every triangulation with holes (if not to consider isomorphic ones).
This implies a very simple 3-color criterion for triangulations with holes.

We say that a triangulation with holes is internally even when the degree of
every vertex incident with triangular faces only is even.



A New 3-Color Criterion for Planar Graphs 147

Theorem 4. A triangulation with holes G is 3-colorable if and only if

(i) it is internally even,
(ii) for every non-triangular face f with the facial cycle Cf there exists a bal-

anced edge 2-coloring mCf
of Cf corresponding with G.

Proof. The proof follows easily from Theorem 3. Let G be a triangulation with
holes satisfying conditions (i) and (ii). We shall show that G is 3-colorable. For
each triangular face f , we color all its sides (e, f) black. For each non-triangular
face f with facial cycle Cf we color every side (e, f) with color mCf

(e). The
constructed edge-side coloring is balanced for each face and it is easy to check
that every vertex is incident with an even number of one-color edges. Now it
suffices to use theorem 3.

Now we will show the other implication. Let G be a 3-colorable triangulation
with holes. Using theorem 3 we can obtain its proper edge-side coloring m. We
recolor black all sides of all triangular faces obtaining a new edge-side coloring
m′. One can see that m′ is also proper. Now all vertices touching only triangular
faces are ends of only one-color (black) edges. Hence they have even degrees.
Moreover one can verify that for every non-triangular face f with the facial
cycle Cf the coloring mCf

(e) = m′(f, e) corresponds with G. 
�

4.3 Near-Triangulations and Outerplanar Graphs

Obviously near-triangulations are triangulations with holes. Informally speaking
a near-triangulation is a triangulation with only one hole. It gives a very simple
3-color criterion for near-triangulations:

Theorem 5. A near-triangulation is 3-colorable if and only if it is internally
even.

Proof. Lemma 4 implies that the second condition of the Theorem 4 is always
satisfied for near-triangulations. 
�

As every outerplanar graph is a subgraph of a certain internally even near-
triangulation we immediately get the following known result:

Corollary 1. Outerplanar graphs are 3-colorable.

4.4 Plane Graphs with Faces Which Lengths Are of Multiple of 3

The following theorem ([Ore], [Ste]) easily follows from our criterion:

Theorem 6. Let G be a graph embedded in the plane in such a way that the
number of edges in the boundary of each face is a multiple of 3. If G is even then
G is 3-colorable.

Proof. It suffices to color all edge-sides in G black and to apply Theorem 3. 
�
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4.5 Infinite Triangulations

It is surprising that we can apply our criterion to infinite plane graphs. An
infinite triangulation is an infinite plane graph with all faces being triangles. We
will consider only locally finite triangulation where degrees of all vertices are
finite. An edge accumulation point (shortly EAP) of an infinite plane graph G
is a point P such that for every positive real number ε there are infinitely many
edges of G with Euclidean distance from P less than ε. We will show that the
Three Color Theorem holds also for EAP-free infinite triangulations.

Theorem 7. An EAP-free infinite triangulation is 3-colorable if and only it is
even.

Proof. Assume that EAP-free infinite triangulation G is 3-colorable. Let v be
a vertex of odd degree. Since arbitrary two successive neighbors (in clockwise
order) of v are adjacent they have different colors. As there is an odd number
of neighbors of v we need 3 colors to color them and there is no color left for v.
We have just proved implication (−→).

Assume that G is even. Let v0 be an arbitrary vertex of G. We define a
sequence of graphs

G0 ⊂ G1 ⊂ G2 ⊂ G3 . . .

Let V (G0) = {v0} and E(G0) = ∅. Let Wi be the set of vertices with the graph
distance at most i from v. Since graph G(Wi) is finite, it has the outer face fi

with the facial cycle Ci. Obviously there are no cut vertices in G(Wi). Therefore
Ci is a simple cycle. We define Gi as Ci ∪ IntG Ci. Since G is EAP-free for
every natural i, Gi is a finite graph. Moreover Gi is an internally even near-
triangulation. It follows from Theorem 5 that graphs Gi are 3-colorable. Since
Gi−1 ⊆ Gi, for i > 1, and 3-colorings of Gi and Gi−1 are unique (i. e. they define
the unique partition of the vertices into 3 independent subsets) we can construct
3-colorings Ki for graphs Gi, i = 0, 1, 2, . . ., such that Ki|Gi−1 = Ki−1. Now we
can define a 3-coloring of G as K(u) = Kd(v0,u)(u), where d(v0, u) denotes the
graph distance from v0 to u. 
�

It is easy to show examples of infinite even triangulations with EAP that
are even, but not 3-colorable. The construction of such triangulation is shown
in Fig. 5. One can see that even first graph in this sequence is not 3-colorable.

In the sequel we use the following well-known fact.

Fact. Let G be an infinite graph. If every finite subgraph of G is k-colorable
then G is k-colorable.

Theorem 8. Let G be an infinite but locally finite triangulation (not necessarily
EAP-free). G is 3-colorable if and only if

(i) G is even,
(ii) for every simple cycle C in G there exists a balanced edge 2-coloring of C

corresponding with C ∪ IntG C.
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. . .

Fig. 5. A construction of not 3-colorable even infinite triangulation

Proof. Assume that G is 3-colorable. Then obviously G must be even. Now let
us consider an arbitrary cycle C in G. Let VH ⊂ V be a set of vertices defined
as follows: v ∈ VH if and only if v has a neighbor in V (C) and v ∈ C ∪ IntG C.
Let H = G(VH). As H ⊂ G, H is 3-colorable. It is easy to see that H is a
biconnected graph. Therefore we can apply Theorem 3 and get a required edge
2-coloring mC corresponding with C ∪ IntG C.

Now we prove that if (i) and (ii) hold then G is 3-colorable. It suffices to prove
that if G satisfies (i) and (ii) then every finite subgraph of G is 3-colorable. Let
F be a finite subgraph of G. W.l.o.g. one can assume that F is biconnected. If
not, F is a subgraph of a certain biconnected graph G(Wi) defined in the proof
of the previous theorem. Now we can use Lemma 5 to get a proper edge-side
coloring of F and finish the proof using Theorem 3. 
�
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for Chordal Graphs
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Abstract. This paper concerns routing with succinct tables in chordal
graphs. We show how to construct in polynomial time, for every n-
node chordal graph of maximum clique size k, a routing scheme
using routing tables of O(k log n) bits per node and O(logn) bit
addresses such that the length of the route between any two nodes
is at most the distance between the nodes in the graph plus two.
This is complemented by a recent lower bound that shows that if
the shortest paths and O(logn) bit addresses are required, every
routing strategy for this class needs Ω(2k log(n/2k)) bits per node.

Keywords: Chordal graph, compact routing tables, tree-decomposition

1 Introduction

Delivering messages between pairs of processors is a basic activity of any dis-
tributed communication network. This task is performed using a routing scheme,
which is a mechanism for routing messages in the network. The routing mecha-
nism can be invoked at any origin node and be required to deliver a message to
some destination node.

It is naturally desirable to route messages along paths that are as short as
possible. The efficiency of a routing scheme is measured in terms of its multi-
plicative stretch (or additive stretch), namely, the maximum ratio (or surplus)
between the length of a route produced by the scheme for some pair of nodes,
and their distance. A straightforward approach to achieving the goal of guar-
antees optimal routes is to store a complete routing table in each node v in the
network, specifying for each destination u the first edge (or an identifier of that
edge, indicating the output port) along some shortest path from v to u. However,
this approach may be too expensive for large systems since it requires O(n log d)
memory bits for a node of degree d in an n-node network. Thus, an important
problem in large scale communication networks is the design of routing schemes
that produce efficient routes and have relatively low memory requirements.

The routing problem can be presented as requiring to assign two kinds of
labels to every node of a graph. The first is the address of the node, whereas
the second label is a data structure called the local routing table. The labels are
assigned in such a way that at every source node v and given the address of
any destination node u, one can decide the output port of an edge outgoing of
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v that leads to u. The decision must be taken locally in v, based solely on the
two labels of v and with the address label of u, the latter label being forwarded
with the message allowing each intermediate node to proceed similarly.

There are several strategies to decrease the size of the routing tables while
keeping route lengths close to the shortest paths. One of the most popular (be-
cause quite efficient on tree networks) is called interval routing scheme, IRS for
short, introduced by [SK85,vLT87]. The addresses range in [1, n] with n the
number of nodes. At each edge e outgoing of a node u is assigned one or more
sub-intervals of [1, n], corresponding to the set of destinations whose the routes
from v traverse e (the destination sets assigned to distinct outgoing edges of v
must be disjoint). For a tree, using a depth-first search traversal for assigning
the addresses, each destination set consists in exactly one sub-interval of [1, n]
(modulo n), so that each node of degree d has to maintain a table of O(d log n)
bits storing the boundaries of the intervals. This size has to be compared with
the O(n log d) bound for the complete routing table approach. (An overview of
the IRS technique is developed in [Gav00].) Actually, the IRS strategy can be
improved for trees if addresses on slightly more than !log n" bits are used. More
precisely, it is constructed in [FG01a] a routing scheme using routing tables and
addresses on c log n bits, for a small constant c > 1, even for arbitrary large
degree node. Actually, [TZ01] showed that the factor c can be even reduced to
1 + o(1) for n large enough.

Unfortunately, such schemes do not hold for general graphs. In [PU89] it is
shown that every routing strategy that guarantees a multiplicative s stretched
routing scheme for every n-node graph requires Ω(n1+1/(2s+4)) bits in total, so
Ω(n1/(2s+4)) for local routing tables, for some worst-case graphs. For the case
of optimal stretch (multiplicative 1 or additive 0 stretch), it is shown in [GP96]
that for every shortest path routing strategy and for all d and fixed ε > 0
such that 3 � d � (1 − ε)n, there exists a graph of degree bounded by d for
which Ω(n log d) bit routing tables are required simultaneously on Θ(n) nodes,
matching with the memory requirements of complete routing tables. Both lower
bounds assume that routes and O(logn) bit addresses can be computed and
optimized by the routing strategy in order to decrease the memory requirement.

These lower bounds are motivations for the design of routing strategies with
compact tables on more specific class of graphs. Here we non exhaustively list
some of them. Regular topologies (as hypercubes, tori, cycles, complete graphs,
etc.) have specific routing schemes (cf. [Lei92]), but one can design also for
them an IRS with few intervals as shown for instance in [vLT87]. For non-
regular topologies, several trade-offs between the stretch and the size of the
routing tables have been achieved, in particular for c-decomposable graphs [FJ90]
(including bounded tree-width graphs), planar graphs [FJ89], and bounded genus
graphs [GH99]. More recently, a multiplicative 1 + ε stretched routing scheme
for every planar graph, for every ε > 0, with logO(1) n bit addresses and routing
tables has been announced in [Tho01]. For more detailed presentation of these
schemes and an overview of the other strategies and techniques, see [Gav01]
and [Pel00].
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In this paper we investigate chordal graphs, namely the class of graphs con-
taining no induced cycles of length greater than 3. Two such graphs are depicted
on Fig. 1. Based on the construction of a multiplicative 3-spanner [PS89] with
O(n log n) edges (namely, a spanning subgraph whose the distance between any
two nodes does not exceed 3 times the original distance in the graph), [PU89]
have constructed a multiplicative 3 stretched routing strategy for chordal graphs
using O(n log2 n) bits in total for tables and O(log2 n) bit addresses. However
the scheme does not produce balanced routing tables and Ω(n log n) bits might
be required at some nodes. If we insist on shortest path (i.e., optimal stretch),
no strategy better than complete routing tables is known. Nevertheless, every
chordal graph whose all its maximal cliques are of size k+1 exactly, namely every
k-tree, supports an IRS using at most 2k+1 intervals per outgoing edge [NN98].
Actually, as we will show in Section 2, the result can be easily extended to every
chordal graph of maximum clique of size at most k + 1. Derived from the result
of [NN98], every chordal graph with maximal clique k + 1 has shortest path
routing tables of O((2k +d) logn) bits per node of degree d, and using addresses
∈ [1, n].

In this paper we show that, while keeping addresses on O(logn) bits (more
precisely on (2+o(1)) logn bits), we construct a routing scheme for every chordal
graph of maximum clique k+1 with O(k log n) bits for local routing tables. This
is performed under the ”designer-port model”, that is the designer of the scheme
can permute, during the preprocessing of the graph and the construction of the
scheme, the port numbers of all the links attached to the nodes (this assumption
is also done in [FG01b,TZ01]). This result is achieved by the use of two main
ingredients: 1) the well known tree-decomposition in maximal cliques of chordal
graphs; and 2) the recent compact and distributed data structures for trees, in
particular answering efficiently routing queries and ancestor queries with small
labels [AR01,KM01,KMS02,FG01a,TZ01]. At this step, it is worth to observe
that additive r stretched routing scheme on chordal graphs cannot be reduced
to the problem of routing in a suitable spanning tree of the graph. Indeed, as
mentioned in [Pri97,BCD99], for every fixed integer r there is a chordal graph
without tree r-spanners (additive as well as multiplicative).

The paper is organized as follows. In Section 2, we show how to reformulate
the result of [NN98] on k-trees to work on chordal graph of maximum clique k.
In Section 3, we describe our routing strategy. We propose some open problems
in Conclusion.

2 The Extended Scheme of k-Trees

We study at first the strategy presented in [NN98] for k-trees, and show how
to adapt it for chordal graphs. The results of [NN98] is based on the following
definition of k-trees.
Definition 1. For integral k > 0, the set of k-trees is the smallest set of graphs
satisfying: 1) A clique of size k is a k-tree; and 2) let G be a k-tree on n nodes
and K be a clique of size k in G. Then the graph on n+1 nodes formed by taking
G and introducing a new node u adjacent to all of K is a k-tree.
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In this definition, the clique K is named attachment clique of the node u, and
all the nodes of K the parents of u. The node u is a child of each nodes of K. The
notions of ancestors and descendants are analogously defined. For each node u,
the depth of u is either one greater than the maximum depth of any parent of u,
or 0 if u has no parents. Fig. 1(a) depicts a k-tree with depth represented at
each node. Finally, using the notion of cluster of a node, [NN98] proposed for all
k-trees a node-labeling from 1 to n supporting a shortest path IRS with at most
2k+1 sub-intervals of [1, n] per outgoing edge. Formally, cluster(u) is the set of
descendants of u, equidistant from all of the parents of u. This non trivial bound
results of a long series of lemmas in [NN98] that cannot be presented here. But,
roughly speaking, labels of the nodes in cluster(u) form a single interval, and
[NN98] were able to bound the number of clusters needed at each outgoing edge
in order to route along shortest path.

In this paper, we are interested in chordal graphs (a superset of k-trees). Let
Ck denote the family of chordal graphs of maximum clique at most k + 1. The
result of [NN98] can be naturally extended to Ck with the following adaptations.

Definition 2. (cf. [BLS99]) Let G be a graph. The node v ∈ V (G) is simplicial
in G if the set of neighbors of v induced a clique in G. An ordering (v1, v2, . . . , vn)
of the nodes of G is a perfect elimination ordering if for every i ∈ {1, . . . , n},
the node vi is simplicial in the subgraph of G induced by {vi, . . . , vn}.

Proposition 1. (cf. [BLS99]) A graph G is chordal if and only if it has a
perfect elimination ordering.

Proposition 2. For integral k > 0, Ck is the smallest set of graphs satisfying:
1) A clique of size at most k is in Ck; and 2) Let G ∈ Ck with n nodes and K be
a clique of size at most k in G. Then the graph on n+ 1 nodes formed by taking
G and introducing a new node adjacent to all of K is a graph of Ck.

Proof. Every graph G satisfying points 1) and 2) are in Ck. Conversely, if G ∈ Ck,
by Proposition 1, G has a perfect elimination ordering (v1, . . . , vn). {vn} is a
clique of size at most k > 0, and using successively vn−1, . . . , vi, . . . , v1 we can
reconstruct G by connecting vi to a clique of G, a clique induced by {vi, . . . , vn}
say K. As the biggest clique in G is of size k + 1, the size of the neighborhood
of vi, the size of K, is at most k. �

Using the constructive definition of Ck (Proposition 2), we can extend all
notions introduced in [NN98] for k-trees. Namely, the parents of u are the nodes
of the clique K used to introduce u. From that, we can define naturally, the
children, ancestors and descendants of u. The notions of depth and of cluster
of u are defined as previously for k-trees. Note that the only difference with
k-trees is that the number of parents of any node is at most k and not exactly k.

Fig. 1(b) represents a graph in Ck constructed with the same node ordering
to the k-tree depicted in (a). Thanks to these extensions, we can check that all
lemmas in [NN98] can be rewritten for Ck. So, every G ∈ Ck supports a shortest
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Fig. 1. A 3-tree and a graph in C3 with same ordering on nodes.

path IRS with at most 2k+1 intervals per edge. Actually [NN98] have shown
a stronger result: the total number of intervals assigned at the outgoing edges
of a node of degree d is at most S = d − k +

∑k
i=1 2k−i+2. It is known that

a such interval routing scheme can be implemented at each node by a table of
O(S log n) bits allowing a routing queries of O(logS) time per node [Gav00].
Therefore we have:

Theorem 1. For every n-node graph G ∈ Ck, there exists a shortest path routing
scheme using labels of log n bits and O((2k +d) logn) bits of information in each
node of degree d. Moreover, this scheme is polynomial-time constructible and the
routing function is computable in O(k + log d) time.

3 Additive Stretched Routing Scheme

3.1 Preliminaries

We need the notion of tree-decomposition used by Robertson and Seymour in
their work on graphs minors [RS86].

Definition 3. A tree-decomposition of a graph G is a tree T whose nodes are
subsets of V (G), such that (see an example on Fig. 2):

1.
⋃

X∈V (T ) X = V (G);
2. for all {u, v} ∈ E(G), there exists X ∈ V (T ) such that u, v ∈ X; and
3. for all X,Y, Z ∈ V (T ), if Y is on the path from X to Z in T then X∩Z ⊆ Y .

Proposition 3. (cf. [Die00]) A graph G is a chordal graph if and only if there
exists a tree-decomposition of G (polynomial-time constructible) such that for all
X ∈ V (T ), X induced a maximal clique in G.

From now we consider an arbitrary connected graph G ∈ Ck with n nodes.
According to Proposition 3, let T be a tree-decomposition of G such each one of
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Fig. 2. From left-to-right: a chordal graph G, its set of maximal cliques, and a tree-
decomposition of G satisfying Proposition 3.

its nodes induced a maximal clique in G. We assume that T is rooted. Finally,
let S be an arbitrary shortest path spanning tree of G rooted some node taken
from the root of T . (see Fig. 3).

Thanks to the trees S and T , we will show how to construct compact routing
tables for G. To prove this fact we need some notations. We will use the standard
notions of children, parent, ancestors, descendants and depth in rooted trees. For
simplicity we assume that a node is an ancestor of itself. For every node u of G,
the ball of u, denoted by B(u), is a node X of T of minimum depth such u ∈ X.
Observe that, once T has been fixed, B(u) is unique for each u by Rule 3 of
Definition 3.

The two following Propositions are very important to understand why the
routing scheme we will describe in Paragraph 3.3 is correct.

Proposition 4. Let u, v be two adjacent nodes of G. One of these statements is
true:

1. B(u) is an ancestor of B(v) in T and then u ∈ B(v).
2. B(v) is an ancestor of B(u) in T and then v ∈ B(u).
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Fig. 3. The tree-decomposition T and a spanning tree S of G (directed edges) rooted
at a.

Proof. Let u, v be two adjacent nodes of G. If B(u) = B(v) then the two state-
ments are trivially trues (recall that we consider that a node is an ancestor of
itself).

So, assume that B(u) �= B(v). By minimality of the depth of the balls and
by definition of T , every ball X containing a node x is a descendant of B(x) in
T . Moreover by Rule 2 of Definition 3, there exists a ball Y containing u and v.
Thus Y is a descendant of B(u) and of B(v). Thus either B(u) is an ancestor
of B(v) or the reverse. If B(u) is an ancestor of B(v) then B(v) is on the path
from B(u) to Y in T , by Rule 3 of Definition 3, u ∈ B(v). Similarly if B(v) is
an ancestor of B(u) then v ∈ B(u). �

Proposition 5. Let u, v be two nodes of G such that B(u) is an ancestor of
B(v) in T . There exists at least one node w ∈ B(u), and at most two, such that
w is an ancestor of v in S.

Proof. As T is a tree-decomposition of G, every path in G from any node of the
root of T to v, has to use some nodes of B(u). So at least one node of B(u) is
ancestor of v in S.

Assume that there exists w1, w2, w3 in B(u) such that they are ancestors of
v in S. We can suppose w.l.o.g. that in S: w1 is an ancestor of w2, and w2 is
an ancestor of w3. Say in other words, the path of S traversing w1, w2, w3 is a
shortest path from w1 to w3 in S and thus in G (by construction of S). There is
a contradiction because B(u) is a clique so {w1, w3} is an edge. �

3.2 The Routing Scheme

Our scheme associate to every node u of G two labels: its address denoted by
address(u), and a local routing table denoted by table(u). The length of a label
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(address or table) is the length in bits of its binary representation. A port-labeling
of G is a labeling of each directed edge (u, v) of G by an output port number, an
integer denoted by port(u, v), such that port(u, v) ∈ [1,deg(u)] and is distinct
for every neighbor v of u.

The address of u in G is defined by address(u) = 〈ancestor(B(u)), route(u)〉,
where:

– ancestor(X), defined for every ball X ∈ V (T ), is a binary label such that X
is an ancestor of Y in T if and only if f1(ancestor(X), ancestor(Y )) = true,
for a suitable computable function f1.

– route(u), defined for every node u of G, is a binary label such that f2(route(u),
route(v)), for every v �= u, returns the output port number of the first edge
of the path from u to v in S, for a suitable computable function f2 and a
suitable port-labeling of S. Moreover, f2(route(u), route(v)) = 1 if and only
if v is a not a descendant of u.

Proposition 6. There is a suitable port-labeling of S such that the length of
address(u) is (2 + o(1)) logn bits for all u. Moreover, the addresses are polyno-
mial-time constructible.

Proof. The number of maximal cliques in G is at most n, thus |V (T )| � n. By
the result of [AR01], the length of ancestor(B(u)) is at most log n + O(

√
log n )

bits for every u. In [TZ01], it is shown that the length of route(u) is log n +
O(logn/ log log n) bits for a suitable port-labeling of S. Both labelings are
polynomial-time constructible. �

We construct for G a port-labeling as follows: for every edge (u, v) of S,
port(u, v) is determined by Proposition 6, and for all edges (u,w) not in S,
port(u,w) are distinct integers ranging in [k + 1,deg(u)] where k is the degree
of u in S.

Each node u of G has a finite set of algorithms (including the functions f1 and
f2) representing a constant number of bits, and its table label. More precisely,
table(u) containing the address of every node v ∈ B(u) and the port number of
the edge (u, v). More precisely,

table(u) = {(address(v),port(u, v)) | v ∈ B(u)} .

W.l.o.g. entries of table(u) are sorted such that the i-th entry (address(vi),
port(u, vi)) is such that in T , depth(B(vi)) � depth(B(vi+1)).

Proposition 7. The length of table(u) is O(k log n) bits, for every u ∈ V (G).

Proof. The length of address(v) is O(logn), port(u, v) can be represented on
O(logn) bits, and as |B(u)| � k + 1, the length of table(u) is O(k log n) bits. �

Moreover propositions 3 and 6 implies that:

Proposition 8. The routing scheme is polynomial-time constructible.
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3.3 The Routing Algorithm

Consider u, v two nodes of G, u the sender and v the receiver. We define the
procedure send(u, v) that returns port(u, v), the port number of the edge on
which the message has to be sent. For that we define two subsets of B(u):

I = {w ∈ B(u) | w is an ancestor of v in S}
J = {w ∈ B(u) | B(w) is an ancestor of B(v) in T }

Recall that we assume that a node is ancestor of itself. Note that for every
v ∈ B(u), the labels route(v) and ancestor(B(v)) are contained in table(u).
Thus, thanks to functions f1 and f2, u is able to construct I and J .

Procedure send(u, v): (the four cases are evaluated sequentially)

1. If u is ancestor of v in S then route to v in S.
2. If I �= ∅ then route to w such that w ∈ I and w is of maximum depth in S.
3. If J �= ∅ then route to w such that w ∈ J and B(w) is of maximum depth

in T .
4. Otherwise route to w such that w ∈ B(u) and B(w) is of minimum depth in
T .

We now give the correctness of the routing algorithm. Let ρ(u, v) denote the
length of the route produced by send from u to v. We want to show that ρ(u, v)
is bounded by d(u, v) + 2, where d(u, v) denotes the distance between u and v
in G.

Lemma 1. If u is an ancestor of v in S, then ρ(u, v) = d(u, v).

Proof. In this case, send routes through the tree S and this produced a shortest
path. �

Lemma 2. Let u, v be two nodes of G such that I �= ∅.

1. If there exists a shortest path u, v1, . . . , vl = v in G from u to v and with
v1 ∈ B(u), then ρ(u, v) � d(u, v) + 1;

2. otherwise ρ(u, v) � d(u, v) + 2.

Proof. Let u, v be two nodes of G such that I �= ∅ and w be the node of B(u)
chosen by the algorithm send. w is an ancestor of v in S. So, by Lemma 1,
ρ(w, v) = d(w, v). This clearly implies that ρ(u, v) � d(u, v) + 2.

Suppose now that there exists v1, . . . , vl such that v1 ∈ B(u) and u, v1, . . . ,
vl = v is a shortest path in G from u to v. As w and v1 are both in B(u) there
is an edge between w and v1. Thus d(w, v) � d(v1, v) + 1 = d(u, v) and then
ρ(u, v) � d(u, v) + 1. �

Statement 1 of Lemma 2 occurs for instance in Fig. 3, when computing
send(e, l). The route is e,c,i,l whereas e,f,l is a shortest path. Statement 2 occurs
for instance for send(g, k) that produces the route g,d,h,k whereas {g, k} is an
edge.
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Lemma 3. Let u, v two nodes of G such that I = ∅ but J �= ∅, then ρ(u, v) �
d(u, v) + 2.

Proof. Let u, v be two nodes of G such that I = ∅ but J �= ∅, let w be the node
of B(u) chosen by the algorithm send and let u, v1, . . . , vl = v be a shortest
path in G from u to v.

Note that by the choice of w, B(w) is an ancestor of B(v) in T . Thus Propo-
sition 5 shows that in w we can apply Lemma 2. Moreover by Proposition 4,
B(w) is an ancestor of B(u) in T . Applying Proposition 4 between u and v1,
either B(u) is an ancestor of B(v1) in T or the reverse. Thus there are only two
different cases:

– B(v1) is an ancestor of B(w) in T and v1 ∈ B(u).
In this case, Rule 3 of Definition 3 shows that v1 ∈ B(w) and then w, v1,
v2, . . . , vl = v is a path in G from w to v. If it is not a shortest path then
d(w, v) = d(u, v)− 1, and by Statement 2 of Lemma 2: ρ(w, v) � d(w, v) + 2
thus ρ(u, v) � d(u, v)+2. Otherwise d(w, v) = d(u, v), but by Statement 1 of
Lemma 2: ρ(w, v) � d(w, v)+1 and here again we have ρ(u, v) � d(u, v)+2.

– B(w) is a strict ancestor of B(v1) in T .
As I = ∅ and thanks to Proposition 5, B(u) is not an ancestor of B(v) in
T . Let X be the nearest common ancestor in T of B(u) and B(v). As w is
the node of J of maximum depth in T , v1 /∈ J , thus v1 /∈ X. As T is a tree-
decomposition of G, there exists i ∈ {2, . . . , l} such that vi ∈ X. Moreover, as
w ∈ J , B(w) is an ancestor of X in T . By Rule 3 of Definition 3, w ∈ X. X is
a clique so there is an edge between w and vi. Therefore u,w, vi, . . . , vl = v is
a shortest path from u to v, thus d(w, v) = d(u, v)− 1. Finally by Lemma 2,
we have ρ(w, v) � d(w, v) + 2 and thus ρ(u, v) � d(u, v) + 2. �

Lemma 4. Let u, v be two nodes of G such that I = ∅ and J = ∅, then ρ(u, v) �
d(u, v) + 2.

Proof. Let u, v be two nodes of G such that I = ∅ and J = ∅, let w be the node
chosen by the algorithm send (w is the node of B(u) such B(w) is of minimum
depth in T ), and let u, v1, . . . , vl, v be a shortest path in G from u to v.

By Proposition 4, B(w) is an ancestor of B(u). Moreover, B(w) is an ancestor
of B(v1). Indeed, applying Proposition 4 between u and v1, either B(u) is an
ancestor of B(v1) and thus B(w) is an ancestor of B(v1), or B(v1) is an ancestor
of B(u) and v1 ∈ B(u) and by choice of w, B(w) is an ancestor of B(v1) as well.

Now there exists i ∈ {2, . . . , l} such that B(vi) is an ancestor of B(w) because
B(w) is not an ancestor of B(v). W.l.o.g. assume that i is minimum (i.e., B(w)
is an ancestor of B(vi−1)). Applying Proposition 4 between vi−1 and vi, we have
vi ∈ B(vi−1). It follows that vi ∈ B(w), and that u,w, vi, . . . vl = v is a shortest
path from u to v. So d(w, v) = d(u, v)− 1.

Step by step we find a sequence w = w1, w2, w3, . . . each one closer to v (i.e.,
with d(wi, v) = d(wi+1, v) + 1), or we get a node wi that falls in Case 1, 2 or 3
of Procedure send. So, ρ(u, v) = i + ρ(wi, v) � i + d(wi, v) + 2 = d(u, v) + 2 as
claimed. �
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Proposition 9. For all u, v, the port returned by send(u, v) is computable in
O(k) time. Moreover, adding a data structure of O(k log n) bits to u, send(u, v)
can be performed in O(log2 k).

Proof. Let u be a node of G and address(v) the address of a node v of G.
The address of u is the first entry in table(u) (recall that entries are sorted),

so the label route(u) and route(v) can be extracted in O(1) time. Then testing
if u is ancestor of v in S and routing if it is necessary is done in O(1) time using
p = f2(route(u), route(v)).

If p = 1, we need to construct I. For that we can test function f2 on route(v)
and route(w) for every node w ∈ B(u) (i.e., each entries in table(u)). It takes
O(k) time. If I �= ∅, we find w in O(1) time since I is of size at most 2 (Propo-
sition 5).

In Case 3 of Procedure send does not need to construct the whole set J . Just
the node of maximum depth in J is required. As table(u) is sorted by depth in
T and observing that if depth(B(vi)) � depth(B(vi+1)) and B(vi) ∈ J then
B(vi+1) ∈ J , we only need to make O(log k) tests to find w if it exists. Thus this
step needs of O(log k) time.

In Case 4, w is the last entry in table(u). So, it takes O(1) time to find it.
Actually, the time for searching w in I can be improved as follows. We build

a search tree M spanning all the nodes of B(u). The root of M is a node of S
whose removal consists of a forest whose each tree contains at most k/2 nodes
of B(u). (We check that this is doable by assigning to each node of S a 0-1
weight: the weight of x is 1 if and only if x is in B(u).) We apply recursively
such a decomposition in each tree of the forest, and at each step we label the
port number of the nodes of M with the original port numbers in S. The number
of nodes in M is O(k) (because the degree of each internal node of M is at least
two) and its depth is h = O(log k). So storing in u the whole tree M with all the
labels costs O(k log n) bits. Using the sublabel route(v) in address(v) one can
”route” in M from its root (this is done virtually in the node u), and find (if it
exists) an ancestor of v in B(u). More precisely, at the current node x visited in
M we compute p = f2(route(x), route(v)), and test in this order: (1) if p is the
port label of an incident edge (x, y) in M , then continue the test in the node y;
(2) otherwise (no incident edge of x has label p), then either x /∈ B(u) (we test
its weight) and then I = ∅, or x ∈ B(u) and then we have found w = u. The
number of tests to perform is at most h, and each test costs O(log k) time. �

Propositions 6, 7, 8, 9 and Lemmas 1, 2, 3, 4, can be gathered in the following
theorem.

Theorem 2. For every chordal graph of maximum clique of size k+1 there exist
an additive 2 stretched routing scheme using addresses of size (2 + o(1)) logn
bits and O(k log n) bits of information in each node, under the assumption that
output port numbers can be permuted. Moreover, this scheme is polynomial-time
constructible and the routing function is computable in O(log2 k) time.

In the model proposed in this paper (headers cannot be modified), any
routing scheme on chordal graphs (stretched or not) must route along short-
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est path in trees. And trees are chordal graphs of maximal clique size 2, thus
our scheme routes optimally in trees. Observe that if output port numbers can-
not be permuted, the size of the tables and of the addresses must be at least
Ω(log2 n/ log log n), by the recent lower bound of [?] on trees. Therefore, for ev-
ery k = O(logn/ log log n), every routing scheme on Ck (stretched or not) that
provides better memory requirements than Theorem 2 (tables and addresses)
must permute the output port numbers.

4 Conclusion and Discussions

In this paper we have constructed a routing scheme on chordal graphs generating
routes close to the shortest paths up to an additive factor two. Our scheme uses
pre-computed addresses of O(logn) bits and routing tables of O(k log n) bits per
node, where k + 1 is the size of the maximum clique of the graph. The time to
route a message in a node is O(log k).

We note that our scheme is under the ”designer-port model”, that is the
designer of the scheme can permute, during the preprocessing of the graph and
the construction of the scheme, the port numbers of all the links attached to
the nodes. However, this assumption can be easily relaxed according to scheme
based on trees (see [TZ01,FG01a]). Our scheme can be adapted to the fixed-
port model (port numbers are fixed in advance and cannot be permuted) with
an increasing on the addresses and routing tables size by a O(logn/ log log n)
factor, the length of the routes remaining the same.

Another direction for improvement is the length of the routes vs. the size
of the routing tables. A natural problem would be to find for each integral
parameter r, an additive r stretched scheme using, say, logO(1) n bit addresses
and O(fr(n, k)) bit routing tables for a function fr. Derived from [NN98], we have
that f0(n, k) � 2k log n. Our contribution in that paper is a proof for f2(n, k) �
k log n. These results are complemented with the lower bounds of [Gav02] that
shows that f0(n, k) � 2k log(n/2k) and that f1(n, k) � 2k/k. The question of
determining a tight bound for f2(n, k) is open, and more fundamentally we are
wondering if there is a constant r such that fr(n, k) = logO(1) n, meaning that
chordal graphs support additive constant stretched routing scheme with logO(1) n
bit addresses and tables.
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Abstract. A k–cycle system is a system of cyclically ordered k–tuples
of a finite set. A pattern is a sequence of letters. A coloring of a k–cycle
system with respect to a set of patterns of length k is proper iff each cycle
is colored consistently with one of the patterns, i.e. the same/distinct
letters correspond to the same/distinct color(s). We prove a dichotomy
result on the complexity of coloring a given cycle system with a fixed set
of patterns P by at most l colors and discuss possible generalizations.

1 Introduction

Coloring problems for different combinatorial objects are among intensively stud-
ied problems. Problems dealing with colorings of graphs have been generalized to
hypergraphs and the original notion of proper colorings of hypergraphs, demand-
ing that no edge of a hypergraph is monochromatic, has been generalized to lots
of other structures: Steiner triple and quadruple systems ([1,3,9,10]), mixed hy-
pergraphs ([4]), mixed hypertrees ([5,6]), mixed multigraphs ([7]), block–pattern
cycle systems and designs ([11]).

A k–cycle system is a pair C = (VC , CC) where VC is a finite set and CC is set
of cyclically ordered k–tuples of VC . The members of VC are called vertices and
the members of CC are called cycles. A k–cycle system is a k–cycle design if for
each pair of vertices u and v there is exactly one cycle containing uv or vu. Some
of the properties of k–cycle systems, especially of k–cycle designs, can be found
in [8], e.g. the 4–cycle designs on n vertices exist precisely for n mod 8 = 1.

A pattern of length k is a sequence of letters of length k. The coloring c of
vertices of a k–cycle system C with the set of patterns P of length k is proper iff
for each cycle C of C there is a pattern p ∈ P which satisfies the following: There
is a rotation of C such that the vertices on the positions with the same letters of
p are colored by the same color and the vertices on the positions with mutually
different letters of p are colored by mutually different colors. This notion of
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pattern coloring was introduced in [11] and is actually generalization of several
previously introduced notions. Coloring of 2–cycle systems with the pattern AB
is just graph coloring: The pattern forces the vertices in the same cycle to be
colored by different colors and thus the cycles correspond to the edges of a graph.
Coloring of 3–cycle systems with the pattern AAB is just bicoloring of (Steiner)
triple systems considered in [1,9,10]. The pattern forces each triple to be colored
by exactly two colors. Coloring k–cycle systems with suitable set of patterns also
correspond to coloring uniform mixed bihypergraphs of [4].

We address the following complexity problem in this paper: “What is the
complexity of decision whether a given cycle system C with the pattern set P can
be colored by at most l colors (P and l are fixed)?” We describe all the pattern
sets P and the numbers l for which this problem can be solved in polynomial
time and we prove NP–completeness for the remaining cases.

The problem is trivial for l = 1. We study the problem for l ≥ 3 in Section 2.
It is, not very surprisingly, NP–complete for any l ≥ 3 and any set P of pat-
terns omitting the monochromatic pattern — see Theorem 1. We deal with the
remaining case l = 2 in Section 3. It is enough to consider only the pattern sets
P containing only patterns consisting of at most two letters. It is not hard to see
that if we get an affine subspace over GF(2) through replacing the letters in the
patterns of P by ones and zeroes and taking all the rotations of the patterns of
P, the problem of finding a coloring of the given cycle system is reduced to the
problem of finding a solution of a system of linear equations (see the beginning
of the Section 3 and Lemma 2 for more details). Lemma 5 states that all the
remaining cases are NP–complete (except for P containing the monochromatic
pattern). The results are summarized in Theorem 2.

Theorem 2 is general and it does not provide any examples of patterns for
which the problem can be solved in polynomial time. We address the following
question in Section 4: “For which patterns p consisting of l distinct letters, the
decision problem whether a given cycle system with the pattern set {p} can
be colored by at most l colors is solvable in polynomial time?” The results of
Section 2 and 3 imply that this is possible only for the pattern consisting of one
or two letters. In the former case, the problem is actually trivial. In the latter
case, these are exactly the patterns whose rotations induce affine subspaces over
GF(2). We list all such patterns in Theorem 3 of Section 4; these patterns are
exactly the following ones: Ak, (AB)k, (AABB)k and (AAAB)k for all k’s (we
write Xk for the concatenation of k copies of X). We would like to point the
attention of the reader to a quite interesting linear algebra Lemma 6 in Section 4.

We relate our results to previous results in the last section, Section 5. Namely,
another proof of one of our main theorems, Theorem 2, is sketched and a more
general notion of coloring systems of k-tuples is introduced and counterparts of
Theorem 1 and Theorem 2 are stated. Detailed proofs of these two theorems are
omitted due to space limitations.

We introduce additional notation: A pattern is called an l–pattern if it con-
sists of at most l different letters. The monochromatic pattern of length k is Ak

(we write throughout the paper for shortness Ak instead of the sequence consist-
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ing of k A’s), the alternating pattern of length k is (AB)k/2 (for k even) and the
multichromatic pattern of length k is a pattern consisting of k mutually different
letters, e.g. the multichromatic pattern of length 3 is ABC. We say that the
pattern p is periodic if it is a concatenation of two or more copies of another
pattern. We say that the pattern is aperiodic if it is not periodic.

2 NP–Completeness of Coloring of Cycle–Systems

We first prove that it is enough to deal with multichromatic patterns:

Lemma 1. Let P be any fixed set of l–patterns of length k ≥ 2 omitting the
monochromatic pattern of length k and m ≥ l a fixed integer. Then there exists a
k–cycle system C with m special vertices v1, . . . , vm such that any proper coloring
of C with at most m colors with respect to the pattern set P assigns the vertices
v1, . . . , vm distinct colors.

Proof. We create the k–cycle system C on km2 vertices vj
i for 1 ≤ i ≤ m and

1 ≤ j ≤ km. We add to C all the k–cycles such that the coloring c0(v
j
i ) := i colors

them properly with respect to the set of patterns P. Let Vi = {vj
i |1 ≤ j ≤ km}.

Let c be any proper coloring of C using at most m colors. Each Vi contains at
least k vertices Ui ⊆ Vi colored by c with the same color γi due to the pigeonhole
principle. Assume that there is a vertex v ∈ Vi′ such that c(v) = γi for i �= i′.
Let p1 be a pattern of P which contains the greatest number of occurrences
of the same letter and let λ1 be this number. Let C be a cycle containing λ1

vertices of Ui and the vertex v of Vi′ — there is certainly such a cycle colored
properly by the coloring c0 with respect to the (non–monochromatic) pattern
p1 for any λ1–tuple of vertices of Vi and any single vertex of Vi′ . But the cycle
C contains at least λ1 + 1 vertices colored by c with the same color γi which is
impossible due to the choice of p1. Hence the vertices colored by c with the color
γi are only in Vi. Since c uses at most m colors, all the vertices of Vi have to be
colored by c with the color γi and thus c0 is upto renaming the colors the only
proper coloring of C. Choosing vertices v1

1 , . . . , v
1
m to be the special vertices of C

completes the proof.

It is quite easy to prove the NP–completeness result of this section using
Lemma 1.

Theorem 1. Let P be any fixed set of l–patterns of length k ≥ 2 omitting the
monochromatic pattern of length k and let l′ ≥ max{3, l} be a fixed integer. Then
the decision problem whether a given k–cycle system with the pattern set P can
be colored by at most l′ colors is NP–complete.

On the other hand, if P contains the monochromatic pattern, any cycle sys-
tem with P can be colored by one color and the problem is trivial.

Proof. We may w.l.o.g. assume that k = l = l′ ≥ 3 and P contains only the
multichromatic pattern of length k due to Lemma 1. We present the reduction
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from the well–known NP–complete problem (see [2]) whether a given graph
can be colored by at most k colors. Let G be a graph with vertices v1, . . . , vn

and edges e1, . . . , em. We create a k–cycle system C. C contains m(k − 2) + n
vertices v1, . . . , vn and wj

i for 1 ≤ i ≤ m and 1 ≤ j ≤ k − 2. We add a cycle
u, v, w1

i , . . . , w
k−2
i for each edge ei = uv, 1 ≤ i ≤ m. It is easy to see that G can

be colored by at most k colors iff C can be colored by at most k colors.

The condition that l′ ≥ l in the statement of the theorem is not restrictive
because the patterns containing more than l′ letters can be removed from the
set P without changing the complexity of the problem.

3 Complexity of Two–Coloring of Cycle Systems

We develop a connection between colorings using two colors and linear algebra.
The calculations are done over the field GF(2) and the elements of GF(2) repre-
sent the colors. Let P be the set of 2–patterns of length k. Let A(P) be the set
of all the vectors over GF(2) of length k such that they are consistent with the
set of patterns P, i.e., there is a cyclic rotation p of a pattern of P such that the
vector contains zeroes exactly in those positions where p has A’s and ones where
p has B’s (or vice versa). We say that P can be described by a system of linear
equations iff A(P) forms an affine subspace of GF(2)k, i.e., there exists a matrix
A of size k′ × k and a vector b of size k′ such that A(P) = {x|Ax = b}. We say
that the matrix A and the vector b describe the set of patterns P in such case.

Lemma 2. The decision problem, whether a given k–cycle system with the 2–
pattern set P of length k ≥ 2 can be colored by at most 2 colors, can be solved
in polynomial time if P can be described by a system of linear equations.

Proof. Let A be the matrix of size k′ × k and let b the vector of size k′ which
describe P. A(P) forms an affine subspace of GF(2)k. Let C be a given k–cycle
system with the pattern set P, let v1, . . . , vn be the vertices of C and let m be
the number of cycles of C. We form a system of mk′ equations with n variables
x1, . . . , xn. We add for each cycle vi1 , . . . , vik

of C the following k′ equations:

A

⎛⎜⎝xi1
...

xik

⎞⎟⎠ = b

The solutions x1, . . . , xn of these equations one–to–one correspond to proper 2–
colorings c of C through equalities c(vi) = xi for 1 ≤ i ≤ n. Hence the decision
problem from the statement of the lemma can be solved in polynomial time.

Lemma 3. The decision problem whether a given 3–cycle system with the pat-
tern AAB can be colored by at most 2 colors, is NP–complete.
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Proof. We present an easy reduction from the well–known NP–complete prob-
lem of not–all–equal satisfiability (NAE-SAT) (cf. [2]). The problem is to de-
cide whether for a given formula there exists a variable assignment such that
each clause contains both a positive and a negative literal. The problem is NP–
complete even for formulas with all the clauses consisting of exactly three literals.

Let Φ be a given formula with clauses of sizes exactly three. Let x1, . . . , xn

be the variables of Φ. Let C be a 3–cycle system with the pattern AAB with two
vertices which are forced to be colored by different colors described in Lemma 1.
We take n copies of C with special vertices v1, . . . , vn and v′1, . . . , v

′
n (the vertices

vi and v′i belong to the same copy of C). We add for each clause of the formula
Φ a 3–cycle which contains vi iff the clause contains xi and v′i iff the clause
contains the negation of xi. The constructed 3–cycle system can be 2–colored
iff the formula Φ can be NAE–satisfied: Let c be a proper 2–coloring and let
the colors used by c be 0 and 1. We set xi to false if c(vi) = 0 and to true
otherwise (c(vi) = 1). The obtained truth assignment NAE–satisfies the formula
Φ: Coloring of a vertex vi (v′i) by 0/1 represents that the value of (the negation of)
xi is false/true. The same correspondence also works in the opposite direction,
i.e. when constructing a proper coloring from a NAE–satisfying assignment.

Lemma 4. Let P be a set of 2–patterns of length k ≥ 2 without the monochro-
matic pattern. If there is a k–cycle system C with P with vertices u, v and w
such that there are exactly 3 (up to renaming the colors) ways in which proper
2–colorings color u, v and w, then the decision problem whether a given k–cycle
system can be colored by at most 2 colors with respect to P is NP–complete.

Proof. The possible ways of coloring u, v and w with colors A and B are either
AAB, ABA, BAA, ABB, BAB, BBA or AAA, BBB, AAB, BBA, ABA,
BAB. In the first case, C forces the vertices to be colored consistently with the
pattern AAB and the problem is NP–complete due to Lemma 3. In the latter
case, we use Lemma 1 which provides a k–cycle system CAB with two special
vertices u′ and u′′ which are forced to be colored by different colors. We create
a cycle system C′ from a copy of C and a copy of CAB by identifying the vertices
u′′ and u. The possible ways of coloring its vertices u′, v and w are BAA, ABB,
BAB, ABA, BBA, AAB and we reduced the latter case to the former one.

We prove that Lemma 2 actually describes all the polynomial cases:

Lemma 5. If a set P of 2–patterns of length k ≥ 2 omitting the monochromatic
pattern cannot be described by a system of linear equations, the decision problem,
whether there is 2–coloring of a given k–cycle system with the pattern set P, is
NP–complete.

On the other hand, if P can be described by a system of linear equations, and
the dimension of A(P) is k′, then there exists β1, . . . , βk′+1 ∈ GF(2) such that
the following system of k equations describes P:

k′+1∑
i=1

βix1+(j+i−2) mod k = 1 for 1 ≤ j ≤ k
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Proof. We find a system of equations describing P or we prove that the decision
problem from the statement of the lemma is NP–complete for the given set P.

Let A(P) be the set of zero–one vectors defined in the beginning of this
section. We understand the vectors of A(P) as sequences of length k. We say
that α1, . . . , ακ uniquely determines the (κ + 1)-th coordinate iff the (κ + 1)-
th coordinate of each vector of A(P), whose first κ coordinates are equal to
α1, . . . , ακ, is uniquely determined. If both α1, . . . , ακ and α1, . . . , αi−1, αi +
1, αi+1, . . . , ακ uniquely determine the (κ + 1)-th coordinate, we say that αi is
essential (1 ≤ i ≤ κ) iff the (κ + 1)-th coordinate differs for α1, . . . , ακ and
α1, . . . , αi−1, αi + 1, αi+1, . . . , ακ. We say that αi is non–essential otherwise.

Let κ be the smallest number such that there exists a sequence α1, . . . , ακ

such that it uniquely determines the (κ + 1)-th coordinate; if it does not exist,
A(P) contains all the vectors of length k. For each sequence α′

1, . . . , α
′
κ there

exists a vector of A(P) whose first κ coordinates are equal to α′
1, . . . , α

′
κ: Other-

wise, let α′
1, . . . , α

′
κ be the sequence such that there is not a vector of A(P) whose

first κ coordinates are equal to α′
1, . . . , α

′
κ. Let κ′ be the largest number such

that there is a vector of A(P) whose first κ′ coordinates are equal to α′
1, . . . , α

′
κ′ ;

such a number exists because A(P) is closed under negations. Hence 1 ≤ κ′ < κ.
The sequence α′

1, . . . , α
′
κ′ determines the (κ′ + 1)-th coordinate (it forces it to

be α′
κ′+1 + 1) and this contradicts the choice of α1, . . . , ακ and κ.

We prove: Each sequence α′
1, . . . , α

′
κ uniquely determines the (κ + 1)-th co-

ordinate (unless the problem is NP–complete). Assume the opposite and let
α′

1, . . . , α
′
κ be the sequence with the longest initial subsequence common with

α1, . . . , ακ which does not uniquely determine the (κ + 1)-th coordinate. Let κ′

be the smallest number such that ακ′ �= α′
κ′ ; κ′ ≥ 2 since A(P) contains to-

gether with each vector also its negation. Due to Lemma 1 there exists a k–cycle
system CAB which forces two of its vertices to have different colors. Thus we can
force two vertices to have different colors and (since we work with 2–colorings)
we can also force two vertices to have the same color by using CAB twice. We
create a k–cycle system C with vertices v1, . . . , vk as follows: We add for each
1 < i ≤ κ, i �= κ′ either one copy of CAB or two copies of CAB as follows:

– If αi = α′
i = α1 = α′

1, we force the colors of vi and v1 to be the same.
– If αi = α′

i �= α1 = α′
1, we force the colors of vi and v1 to be different.

– If αi �= α′
i, αi = ακ′ and α′

i = α′
κ′ , we force the colors of vi and vκ′ to be the

same.
– If αi �= α′

i, αi = α′
κ′ and α′

i = ακ′ , we force the colors of vi and vκ′ to be
different.

Next, we add a cycle v1, . . . , vk. The vertices v1, . . . , vκ are colored consistently
with either α1, . . . , ακ or α′

1, . . . , α
′
κ by any proper coloring using at most two

colors. In the first case, the colors of v1 and vκ′ uniquely determine the color
of vκ+1, in the second case the color of vκ+1 can be arbitrary. C is a k–cycle
system such that the vertices v1, vκ′ and vκ+1 can be colored in 3 different ways
(upto permutation of the colors). Thus the decision problem of 2–colorability of
k–cycle systems with the pattern set P is NP–complete due to Lemma 4.
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We summarize: Unless the problem is NP–complete, there exists κ
such that each sequence α1, . . . , ακ uniquely determines the (κ + 1)-th
coordinate.

The preceding immediately implies, sinceA(P) is closed under rotations, that
A(P) contains exactly 2κ vectors — the first κ coordinates uniquely determines
the rest of the vector. We prove that αi is either essential for the (κ + 1)-th
coordinate for all the choices of α1, . . . , ακ or non–essential for all the choices
(unless the problem is NP–complete). Let us assume the opposite: Let α1, . . . , ακ

be the sequence where αi is essential for ακ+1 and α′
1, . . . , α

′
κ be the sequence

where α′
i is non–essential for α′

κ+1. Assume that α1 = α′
1, because A(P) contains

together with each vector also its negation, and assume also that the (κ+ 1)-th
coordinates determined by α1, . . . , ακ and by α′

1, . . . , α
′
κ are the same (otherwise

we could change αi in the first sequence to αi + 1 and α′
i in the second one to

α′
i + 1—note that this preserves α1 = α′

1 if i = 1); let ακ+1 be this value. Let κ′

be the smallest number different from i such that ακ′ �= α′
κ′ . We create a k–cycle

system C with vertices v1, . . . , vk similarly to the above paragraph. We add for
each 1 < j ≤ κ + 1, j �∈ {κ′, i} either one or two copies of CAB as follows:

– If αj = α′
j = α1 = α′

1, we force the colors of vj and v1 to be the same.
– If αj = α′

j �= α1 = α′
1, we force the colors of vj and v1 to be different.

– If αj �= α′
j , αj = ακ′ and α′

j = α′
κ′ , we force the colors of vj and vκ′ to be

the same.
– If αj �= α′

j , αj = α′
κ′ and α′

j = ακ′ , we force the colors of vj and vκ′ to be
different.

Next, we add a cycle v1, . . . , vk. Each proper coloring of C with at most two colors
colors the vertices v1, . . . , vκ, vκ+1 consistently with either α1, . . . , ακ, ακ+1 or
with α′

1, . . . , α
′
i−1, 0, α′

i+1, . . . , α
′
κ, α

′
κ+1 or with α′

1, . . . , α
′
i−1, 1, α′

i+1, . . . , α
′
κ,

α′
κ+1 (recall that ακ+1 = α′

κ+1). Thus C is a k–cycle system with the pattern
set P such that the vertices v1, vi and vκ′ can be colored by colorings using
at most two colors only in three different ways upto renaming the colors. Thus
the problem of 2–colorability of k–cycle systems with the pattern set P is NP–
complete due to Lemma 4.

We can summarize: Unless the problem is NP–complete, there exists
κ such that each sequence α1, . . . , ακ uniquely determines the (κ+1)-th
coordinates and αi is either essential or non–essential for the (κ+1)-th
coordinate regardless the choice of α1, . . . , ακ.

Let I be the set of all i’s for which αi is essential for the (κ+1)-th coordinate
and let γ be the value of the (κ+1)-th coordinate determined by the sequence of
κ zeroes. Let α1, . . . , ακ be any sequence of length κ, then this sequence forces
the (κ+1)-th coordinate to be γ+

∑
i∈I αi, since each change of αi for i ∈ I from

0 to 1 changes the value of the (κ + 1)-th coordinate and the change of αi for
i �∈ I from 0 to 1 does not affect the (κ+ 1)-th coordinate. Let I ′ = I ∪ {κ+ 1}.
The previous can be restated (A(P) is closed under rotation) as follows:∑

i∈I′
α1+(i+j−2) mod k = γ for all 1 ≤ j ≤ k
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The first k − κ equations above, for 1 ≤ j ≤ k − κ, are linearly independent
and since A(P) contains 2κ vectors these equations describe A(P). Since the
all–zero vector does not belong to A(P), the constant γ has to be one (otherwise
the all–zero vector would belong to A(P)). The above system of equations can
be clearly rewritten to the form from the statement of the lemma by setting
k′ = κ, βi = 1 for i ∈ I ′ and βi = 0 for i �∈ I ′.

Lemma 2 and Lemma 5 immediately imply the following theorem:

Theorem 2. Let P be a set of 2–patterns of length k ≥ 2. The decision problem
whether a given k–cycle system with the pattern set P can be colored by at most
2 colors is solvable in polynomial time if and only if at least one of the following
two conditions holds (unless P=NP):

– P contains the monochromatic pattern of length k.
– P can be described by a system of linear equations.

Otherwise, the problem is NP–complete.

4 Single Polynomial Patterns

We answer the question for which single 2–patterns there is a polynomial–time
algorithm for deciding whether a given cycle system can be 2–colored. We first
state and prove an interesting linear algebra lemma:

Lemma 6. Let λ be a power of two and let α1, . . . , αλ be any sequence of 0’s
and 1’s which contains at least one 1. Then the following system of equations
has a solution over GF(2):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 α2
. . . αλ−1 αλ

αλ α1
. . . αλ−2 αλ−1

. . . . . . . . . . . . . . .

α3 α4
. . . α1 α2

α2 α3
. . . αλ α1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
x1

x2

...
xλ−1

xλ

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
1
...
1
1

⎞⎟⎟⎟⎟⎟⎠
Proof. The proof proceeds by induction on λ. The statement is trivial for λ = 1;
let λ ≥ 2. Let A be the matrix consisting of αi’s from the statement of the
lemma. Let A1 and A2 be the λ/2× λ/2 matrices forming the matrix A:

A =
(
A1 A2

A2 A1

)
We construct the solution recursively. We distinguish two cases:

– A1 + A2 is a non–zero matrix (A1 �= A2). Then the matrix A1 + A2 is
the matrix for the sequence α1 + αλ/2+1, . . . , αλ/2 + αλ. Let x1, . . . , xλ/2 be
the solution for the sequence α1 +αλ/2+1, . . . , αλ/2 +αλ. Setting x(λ/2)+1 =
x1, . . . , xλ = xλ/2 yields a solution of the original system of linear equations.
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– A1+A2 is a zero matrix (A1 = A2). Then αi = αi+λ/2 for all 1 ≤ i ≤ λ/2.
The matrix A1 = A2 is the matrix obtained for the sequence α1, . . . , αλ/2. Let
x1, . . . , xλ/2 be the solution for the sequence α1, . . . , αλ/2. Setting xλ/2+1 =
. . . = xλ = 0 yields a solution of the original system of linear equations.

We prove that aperiodic patterns for which the above stated problem can be
solved in polynomial time have only lengths equal to powers of two:

Lemma 7. If P is a set containing a single aperiodic 2–pattern of length k which
can be described by a system of linear equations, then k is either 2k′−1 or 2k′

where k′ is the dimension of the affine subspace A(P) considered over GF(2).

Proof. The affine subspace A(P) contains all the rotations and negations of
the only pattern contained in P. If it can be described by a system of linear
equations, then the size of A(P) is 2k′

where where k′ is its dimension. If all
the vectors of A(P) can be obtained just by the rotations of the pattern, then
k = 2k′

. Otherwise, each rotation of the pattern adds to A(P) itself and its
negation and thus the size of A(P) is 2k and k = 2k′−1.

We describe the single patterns allowing a polynomial–time algorithm:

Theorem 3. The only 2–patterns p (upto rotation) for which the decision prob-
lem whether a given k–cycle system with the pattern set {p} can be colored by at
most 2 colors can be solved in polynomial time (unless P=NP) are the following:

– p = Ak

– p = (AB)k/2 for k even
– p = (AABB)k/4 for k divisible by four
– p = (AAAB)k/4 for k divisible by four

The problem is NP–complete for all the remaining ones.

Proof. Let us assume that there is a polynomial algorithm for 2–coloring of k–
cycle systems with the set of patterns P = {p} where p is not the monochromatic
pattern. In this case, P can be described by a system of linear equations due to
Theorem 2. If the only pattern p of P is periodic, i.e. of the form p′κ where p′ is
an aperiodic 2–pattern and κ ≥ 2 is an integer, then also {p′} can be described
by a system of linear equations: Let β1, . . . , βk′+1 be the coefficients of the linear
equations from Lemma 5 for P. The following system of linear equations clearly
describes {p′}:

k′+1∑
i=1

βix1+(i+j−2) mod (k/κ) = 1 for 1 ≤ j ≤ k/κ

On the other hand, if {p′} can be described by a system of linear equations, then
clearly also each pattern p′κ for κ ≥ 2 can be described by a system of linear
equations. Thus it is enough to prove that the only aperiodic patterns (except for
the monochromatic one) which can be described by a system of linear equations
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are AB, AABB and AAAB. These patterns can be indeed described by a system
of linear equations through the following choice of βi’s:

AB : β1 = 1, β2 = 1
AABB : β1 = 1, β2 = 0, β3 = 1
AAAB : β1 = 1, β2 = 1, β3 = 1, β4 = 1

We prove that the three above mentioned aperiodic patterns are the only ones
which can be described by a system of linear equations. We assume that p = p′.
Let k′ be the dimension of A(P). The length of p is either 2k′−1 or 2k′

due to
Lemma 7. We prove that there exists a pattern q of length K = 2	log2(k

′+1)
 such
that the vector corresponding to qk/K is a solution of the system of equations
for A(P). Such an aperiodic pattern p of length k cannot exist for K < k. Since
2k′−1 ≤ k and K = 2	log2(k

′+1)
, there are no aperiodic patterns for k′ ≥ 5. It is
routine to check that the only aperiodic patterns which can be described by a
system of linear equations for k′ = 1, 2, 3, 4 are AB, AABB and AAAB.

Note that K ≥ k′ +1 due to choice of K. Let us set αi = βi for 1 ≤ i ≤ k′ +1
and αi = 0 for k′ + 2 ≤ i ≤ K. Let x1, . . . , xK be the solution of the following
system of equalities (its existence follows from Lemma 6):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 α2
. . . αK−1 αK

αK α1
. . . αK−2 αK−1

. . . . . . . . . . . . . . .

α3 α4
. . . α1 α2

α2 α3
. . . αK α1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
x1

x2

...
xK−1

xK

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
1
...
1
1

⎞⎟⎟⎟⎟⎟⎠

Let q be the pattern corresponding to x through changing zeroes to A’s and ones
to B’s. Then the periodic pattern qk/K has to belong to P contradicting the fact
that P contains only a single aperiodic pattern.

5 Relation to Other Results

Schaefer studied in [12] the complexity of the satisfiability problem with predi-
cates of restricted types. Namely, he proved the following dichotomy result (we
freely use term “described by a system of linear equations” in the obvious mean-
ing through this section even if not defined precisely before for certain types of
objects):

Theorem 4. A satisfiability problem for formulas which are conjunctions of
predicates of restricted types is NP-complete unless one of the following six con-
ditions holds:

1. A predicate of each type is true when all its variables are set to false.
2. A predicate of each type is true when all its variables are set to true.
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3. A predicate of each type can be defined by a CNF formula consisting only of
clauses containing at most one negated variable.

4. A predicate of each type can be defined by a CNF formula consisting only of
clauses containing at most one unnegated variable.

5. A predicate of each type can be defined by a CNF formula consisting only of
clauses of size at most two.

6. A predicate of each type can be described by a system of linear equations.

Another way of proving Theorem 2 is deducing it from Theorem 4: The
two colors assigned to the vertices of a cycle systems can be represented by
false/true values (each vertex gets a single variable). Each predicate in the for-
mula correspond to a single cycle of the system and the predicate is true iff the
corresponding cycle is colored properly. Another proof of Theorem 2 may be
in showing that these predicates (unless a monochromatic pattern is present)
cannot fall into any of the polynomial cases except for the last one.

Theorem 4 suggests the following generalization of cycle systems and their
coloring: A k–tuple system is a pair T = (VT , TT ) where VT is a finite set of
vertices and TT is set of ordered k–tuples of VT . The difference between cycle
systems and tuple systems is replacing a cyclic ordering with an usual ordering.
A coloring c of vertices of a k–tuple system T with the set of patterns P of
length k is proper iff for tuple T of T there is a pattern p ∈ P such that the
vertices on the positions with the same letters of p are colored by the same color
and the vertices on the positions with mutually different letters of p are colored
by mutually different colors. Cycle systems may be viewed as tuple systems with
pattern sets closed under rotations of the patterns.

In a similar way, the following counterparts of Theorem 1 and Theorem 2
may be proved:

Theorem 5. Let P be any fixed set of l–patterns of length k ≥ 2 omitting the
monochromatic pattern of length k and let l′ ≥ max{3, l} be a fixed integer. Then
the decision problem whether a given k–tuple system with the pattern set P can
be colored by at most l′ colors is NP–complete.

On the other hand, if P contains the monochromatic pattern, any tuple sys-
tem with P can be colored by one color and the problem is trivial.

Theorem 6. Let P be a set of 2–patterns of length k ≥ 2. The decision problem
whether a given k–tuple system with the pattern set P can be colored by at most
2 colors is solvable in polynomial time if and only if at least one of the following
two conditions holds (unless P=NP):

– P contains the monochromatic pattern of length k.
– P can be described by a system of linear equations.

Otherwise, the problem is NP–complete.

We omit the proofs of these two theorems due to space limitations though
they are not straightforward generalizations of the proofs of Theorem 1 and
Theorem 2.
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Abstract. Several sets of reductions rules are known for preprocessing
a graph when computing its treewidth. In this paper, we give reduction
rules for a weighted variant of treewidth, motivated by the analysis of
algorithms for probabilistic networks. We present two general reduction
rules that are safe for weighted treewidth, which generalise many of the
existing reduction rules for treewidth. Experimental results show that
these reduction rules can significantly reduce the problem size for several
instances of real-life probabilistic networks.

1 Introduction

For many graph problems, it is useful and important to find a tree decomposition
of minimal treewidth [3,9,11]. Often these problems can be solved in linear or
polynomial time when a tree decomposition of bounded treewidth is known.

The problem of finding a tree decomposition with minimum treewidth is
NP-hard [1], and it is also hard to approximate the treewidth [8]. Preprocessing
techniques can help reducing the sizes of instances of these problems.

In [5], we give a set of reduction rules that can be used to preprocess a
graph when computing its treewidth. Each of the rules reduces the number of
vertices of the graph and a tree decomposition for the reduced graph with min-
imum treewidth can easily be extended to a tree decomposition for the original
graph that also has minimum treewidth. We call such a rule safe. To allow more
safe rules, we maintain a variable low that invariantly is a lower bound on the
treewidth of the graph. We now say that a reduction rule is safe, if and only if
the maximum of low and the treewidth of the graph is not changed. Preprocess-
ing applies a series of safe reduction rules, taken from a set, on a graph until no
more reduction rules can be applied. When the preprocessing results in an empty
graph, we can trivially find a tree decomposition with minimum treewidth for
the original graph. When the graph resulting after preprocessing is not empty,
either the treewidth can be computed for the remaining graph by an exact, but
possibly computational expensive algorithm (like integer linear programming),
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or the treewidth can be approximated using heuristic algorithms. Given the tree
decomposition of the reduced graph, reversing the reductions now yields a tree
decomposition of the original graph that has either an exact or an approximate
treewidth.

Several modern decision support systems have probabilistic networks as un-
derlying technology. These networks model dependences and independencies be-
tween statistical variables using a directed acyclic graph. For each statistical
variable, represented by a vertex in the graph, a probabilistic function is de-
fined. The most important problem to solve on these networks is probabilis-
tic inference, which computes the probability distribution of a variable given a
value-assignment to other variables. The most efficient algorithm currently used
for probabilistic inference is based upon the use of a tree decomposition, since
many probabilistic networks that model real-life situations appear to have small
treewidth [7,11]1. However, the statistical variables in a probabilistic network
may have more than two values, and thus a tree decomposition with minimum
treewidth may not be optimal for this algorithm. Instead of treewidth, we con-
sider minimising the weighted treewidth, where the weighted treewidth of a tree
decomposition is defined as the maximum of

∏
v∈Xi

w(v) over all bags Xi in the
tree decomposition. The function w(v) denotes the weight of vertex v; this is the
finite number of values the variable associated with v can attain. The weighted
treewidth expresses the maximum time needed to process a node of the tree
decomposition.

Note that the treewidth of a graph is one less than the logarithm (with base
2) of the weighted treewidth when all vertices have weight 2 (binary variables).

In Section 3, we present the Simplicial rule, which is a rather straightforward
generalisation of the non-weighted case. It removes a simplicial vertex, which
is a vertex for which all neighbours form a clique, and updates a variable low
representing the lower bound for the weighted treewidth of the original graph.
We also provide a general rule that comprises many possible reduction rules. For
this rule we try to generate a clique that separates some single vertices from the
rest of the graph using contraction of edges. The contraction operation contracts
an edge into a single vertex that is adjacent to the neighbours of the endpoints
of the edge. When applying this operation, the safeness property requires that
the weight of the resulting vertex is equal to the minimum of the weights of the
endpoints.

In Section 4, we show that these rules generalise several known reduction
rules, which can now be extended to work on weighted graphs, in particular
the rules used for recognising graphs with for non-weighted graphs identified to
use for recognising graphs with treewidth at most 1, 2, or 3 [2] and the almost
simplicial rule from [5].

Section 5 presents several experiments conducted by applying a subset of our
reduction rules on 23 real-life probabilistic networks. Our experiments reveal
that for several networks a decomposition with minimal weighted treewidth can

1 More precisely, the algorithms work on a tree decomposition of the so called
moralised graph of the probabilistic network. We refer to e.g., [7,11] for details.
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be found, while most remaining networks are reduced significantly. With Section
6 we conclude the paper.

2 Definitions and Preliminaries

In this paper, we assume that graphs are undirected, and simple, and have a
weight function w : V → N+. We use the notation G = (V,E,w). We assume
familiarity with standard graph notions, like independent set, clique, etc.

Let G = (V,E,w) be a graph. The set of neighbours of a vertex v is denoted
N(v). The degree of a vertex is denoted as deg(v) = |N(v)|. A vertex v ∈ V
is simplicial when N(v) is a clique. A subgraph H(G) of G is a graph H =
(V ′, E′, w[V ′]) with V ′ ⊆ V , E′ ⊆ (V ′ × V ′) ∩ V , and w[V ′] : V ′ → N+ a
function that assigns for every vertex v ∈ V ′ the value w(v) to w[V ′](v). For
a set of vertices W ⊆ V , the subgraph induced by W is the subgraph G[W ] =
(W, (W ×W )∩E,w[W ]). For the sets of vertices W,X ⊂ V , W and X disjoint,
the set X separates W when every path between a vertex in W and a vertex in
V \(W ∪X) uses a vertex in X.

Let G = (V,E,w) be a graph. The neighbourhood weight or nw(v) of a vertex
v ∈ V is nw(v) = w(v) ·∏u∈N(v) w(u). The weight of a set of vertices S ⊆ V is
w(S) =

∏
v∈S w(v).

A tree decomposition of a graph G = (V,E), or a weighted graph G =
(V,E,w), is a pair ({Xi|i ∈ I}, T = (I, F )) with T a tree and for every i ∈ I a
bag Xi ⊆ V , such that for each vertex v ∈ V there exists a bag with v ∈ Xi,
for each edge (v, u) ∈ E there exists a bag with v, u ∈ Xi, and for each vertex
v ∈ V the induced graph T [Sv], with Sv = {i ∈ I|v ∈ Xi}, is a tree.

The weighted treewidth of a tree decomposition ({Xi|i ∈ I}, T = (I, F )) of
a weighted graph G = (V,E,w) equals maxi∈I w(Xi); the weighted treewidth
of a graph G, denoted τw(G), is the minimum weighted treewidth over all tree
decompositions of G.

Let G = (V,E,w) be a graph. A contraction of an edge (v, u) ∈ E with
w(v) ≤ w(u) makes v adjacent to (N(v)∪N(u))\{v}, and removes vertex u and
edge (v, u). Rephrased more intuitively, an edge is contracted to the endpoint
that has the smallest weight.

A minor of a graph G is a graph G′ that is obtained from G by a sequence
of zero or more vertex removals, edge removals, and/or edge contractions. Using
that edges are always contracted to the endpoint with the smaller weight, one
can prove the following lemma similar to the unweighted case (e.g.: [4, Lemma
16]).

Lemma 1. Let G′ be a minor of G. Then τw(G′) ≤ τw(G).

3 General Reduction Rules

In this section, we define two reduction rules. The first rule deletes simplicial
vertices, and the second rule is based upon sets of edges that can be contracted



Safe Reduction Rules for Weighted Treewidth 179

such that they form cliques in the graph. This rule generalises some reduction
rules known for non-weighted graphs.

When reversing a reduction, for each vertex deleted in the reduction a new
bag is added containing this vertex and its neighbours. Because the neighbours
form a clique in the reduced graph, the bag can be included in the tree decompo-
sition. We must be able to guarantee that this bag will not increase the weighted
treewidth to a value above the weighted treewidth of the original graph. There-
fore we maintain a variable low that represent the largest lower bound we know
for the weighted treewidth of the original graph. When a non-simplicial vertex
is deleted, its neighbourhood weight must have a value equal or smaller than
low. When deleting a simplicial vertex, the value of low can be increased to the
neighbourhood weight of the vertex.

A reduction rule is called safe when application of the rule changes a graph
G and its associated variable lowG, into G′ and its associated variable lowG′ ,
such that max(lowG, τw(G)) = max(lowG′ , τw(G′)). Safeness of a reduction rule
implies that when we start with low any value that is at most the weighted
treewidth of the original graph, the rule does not increase the weighted treewidth
of the graph above that of the original graph.

We will first introduce the Simplicial rule.

Definition 1. Let G be a graph, and let v be a simplicial vertex in G
with neighbourhood weight nw(v) ≥ 0. The Simplicial rule increases low to
max(low, nw(v)), and removes vertex v from G.

Theorem 1. The Simplicial rule is safe.

Proof. As G contains a clique of size nw(v), we know that τw(G) ≥ nw(v).
Furthermore, because G− v is a minor of G, we know that τw(G) ≥ τw(G− v).
Therefore, τw(G) ≥ max(nw(v), τw(G− v)).

Now let T ′ be a tree decomposition for G − v with weighted treewidth k ≤
max(nw(v), τw(G − v)). We create a tree decomposition T by adding a bag Xi

to T ′ as follows. Bag Xi consists of N(v)∪ {v}, and we connect Xi to a bag Xj

in T ′ with i �= j and N(v) ⊆ Xj . Since N(v) is a clique in G′, Xj exists (Lemma
3.1 in [6]). The weighted treewidth of T now equals max(nw(v), k), and thus
τw(G) ≤ max(nw(v), τw(G− v)), hence τw(G) = max(nw(v), τw(G− v)). 
�
In Figure 1 an application of the Simplicial rule is illustrated. Solid lines represent
edges, and the dotted lines connect to the remainder of the graph. The numbers
represent the weights on the vertices. For this example, low will become at least
120.

The second reduction rule is based upon edge contraction.

Definition 2. A contraction-reduction is a 4-tuple (G,X, Y, S) with G =
(V,E,w) a weighted graph, X, Y disjoint sets of vertices ⊂ V , X an independent
set, Y not a clique, and S a set of edges, each with one endpoint in X and one
endpoint in Y such that for each (x, y) ∈ S, x ∈ X, y ∈ Y : w(x) ≥ w(y), and
such that contraction of all edges in S will turn Y into a clique.
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Fig. 1. An instance of the Simplicial rule.
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Fig. 2. A contraction-reduction

Note that for a contraction-reduction (G,X, Y, S) we know that τw(G) ≥ w(Y ),
because Y is a clique in a minor of G. See Figure 2 for an example of a contraction
reduction; the edges in S are drawn by fatter lines.

Definition 3. Let C = (G,X, Y, S) be a contraction-reduction. When low ≥
maxx∈X nw(x), the Contraction-reduction rule denoted by C removes all vertices
of X from G and turns Y into a clique.

Theorem 2. The Contraction-reduction rule is safe.

Proof. Let (G,X, Y, S) be a Contraction-reduction rule, and let low ≥ 0 be
the value of the variable low during the application of the rule. Let G′ be the
minor of G obtained by contracting all edges in S. Then, we have that τw(G′) ≤
τw(G). Combined with the precondition low ≥ maxx∈X nw(x), we have that
max(low, τw(G)) ≥ maxx∈X(nw(x), τw(G′)).

Now let T ′ be a tree decomposition of G′. We obtain T from T ′ by adding a
bag Xx to T ′ for each vertex x ∈ X as follows. Bag Xx consists of N(x)∪{x}, and
we connect Xx to a bag Xj in T ′ with x �= j and N(x) ⊆ Xj . Since N(x) ⊆ Y
is a clique in G′, Xj exists (see [6, Lemma 3.1]).

The weighted treewidth of T is at most the maximum of τw(T ′) and
maxx∈X nw(x), which is τw(G) ≤ maxx∈X(nw(x), τw(G′)). Hence, τw(G) =
maxx∈X(nw(x), τw(G′)). So max(τw(G), low) = max(τw(G′), low). 
�
Note that for a Contraction-reduction rule (G,X, Y, S), we also can increase low
to max(w(Y ), low), since Y is a clique in a minor of G. However, this observation
is only useful when no vertex x ∈ X exists with N(x) = Y , as otherwise this
rule already requires that low ≥ maxx∈X nw(x), which then equals w(Y ). Note
that the contraction-reduction in Figure 2 is safe when low ≥ 72.
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4 Existing and New Rules as Instances of General Rules

Unfortunately, we can show that determining the existence of a contraction-
reduction in a given graph is NP-complete. This proof will be given in the full
version. For preprocessing the need for reduction rules with low computational
cost for finding them is obvious, and therefore we search for easily identifiable
instances of the Contraction-reduction rule. So far, several of those instances
are known for non-weighted graphs: including the Simplicial rule, Arnborg and
Proskurowski have identified the complete set of reduction rules for non-weighted
graphs with treewidth at most three [2], i.e. the Single, Twig, Series, Triangle,
Buddy and Cube rule. The Single and Twig rule are instances of the Simplicial
rule, because they regard vertices with degree 0 and 1. Sanders [13] provided
an extension to this set for non-weighted graphs with treewidth at most four.
Only a subset of his reduction rules are instances of our contraction-reduction
rule; many of his rules are not reversible easily. (See also [10].) Furthermore,
we generalised the Series and Triangle rule to the Almost simplicial rule for
non-weighted graphs [5].

We will now show that all mentioned rules, except for the Simplicial rule, can
also be written as a Contraction-reduction rule, that is, extended to weighted
graphs. Thus, we have established sufficient conditions for safeness on the weights
of the vertices involved in the following rules. We define the Almost simplicial
rule as follows.

Definition 4. Let G be a graph with vertices v and u, where v is not
simplicial and N(v)\{u} forms a clique. Let low ≥ nw(v) and w(v) ≥
w(u). The Almost simplicial rule is defined as the Contraction-reduction rule
(G, {v}, N(v), {(v, u)}).

Corollary 1. The Almost simplicial rule is safe.

Proof. Let (G, {v}, N(v), (v, u)) be an Almost simplicial rule with a lower bound
for τw(G) as defined. When applying the Almost simplicial rule, contraction of
(v, u) turns N(v) into a clique. Because N(v) separates v, Theorem 2 can be
used. 
�

Figure 3 shows an instance of the Almost simplicial rule; it can be carried
out when low ≥ 288.

�

� �

� �

� �

� �

Fig. 3. An instance of the Almost simplicial rule.
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The Series and Triangle rules are special cases of the Almost simplicial rule.
When a vertex v has neighbours x and y, with x and y not adjacent, v can
be removed and edge (x, y) can be added when the weight of v is larger than
the weight of x or the weight of y, and when low is equal or larger than the
multiplication of the weights of v, x, and y.

�
�

� �

�

� �

�

Fig. 4. An instance of the Buddies rule.

The Buddies rule is defined as follows.

Definition 5. Let G be a graph with vertex sets X = {x1, . . . , xn} and
Y = {y1, . . . , yn+1}, n ≥ 0, with ∀1≤i≤n : N(xi) = Y . Let low ≥
max1≤i≤n(nw(xi)), and let ∀1≤i≤n : w(xi) ≥ w(yi). The Buddies rule is de-
fined as (G,X, Y, {(xi, yi) | 0 ≤ i ≤ n}).
The Buddies rule can be proven safe using Theorem 2. The Buddies rule
(G,X, Y, S) with |X| = 2 and |Y | = 3 is also known as the Buddy rule. The
instance of the Buddies rule shown in Figure 4 can be applied when low ≥ 48.
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Fig. 5. An instance of the Cube rule.

The last reduction rule from Arnborg and Proskurowski [2] is the Cube rule.

Definition 6. Let G = (V,E,w) be a graph with vertex sets Y = {v, x, y, z} ⊆
V , X = {a, b, c} ⊆ V . Let N(a) = {z, y, x}, N(b) = {x, y, v}, N(c) = {v, y, z}.
When low ≥ max(nw(a), nw(b), nw(c)) and w(z) ≤ w(a), w(x) ≤ w(b),
and w(v) ≤ w(c), the Cube rule is defined as the Contraction-reduction rule
(G,X, Y, {(z, a), (x, b), (v, c)}).
The Cube rule can be proven safe with Theorem 2. We will not generalise the
Cube rule, since our experiments on the unweighted case [5] indicate that this
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reduction rule seldom occurs. In Figure 5 an instance of the Cube rule is given,
which can be applied when low ≥ 90.

All reduction rules mentioned are built upon existing rules. However, it is
also possible to derive new reduction rules with help of Theorem 2. Consider
Figure 6. If for 1 ≤ i ≤ 5, we have w(xi) ≥ w(yi), then the subgraph of Figure 6
depicts a contraction-reduction; and it cannot be reduced using the Simplicial,
Almost simplicial, Buddies, or Cube rule.

�� �� �� �� ��

�� �� �� �� ��

Fig. 6. A contraction-reduction when w(xi) ≥ w(yi) for 1 ≤ i ≤ 5.

Testing for and applying of the Simplicial and Almost simplicial rules on a
graph G = (V,E,w) can be done in O(|V |2|E|) time, and of the Cube rule in
O(|V |) time [2,5,12]. For the Buddies rule (G,X, Y, S) the time bound is O(|V |2)
when |X| is bounded by some constant.

5 Experiments

In the previous sections we introduced several reduction rules for preprocessing a
graph. We now report the results of some experiments with our reduction rules.
Our experiments are conducted on 23 probabilistic networks developed for real-
life problems. The Alarm, BOBLO, Diabetes, Link, Munin, Oesoca, PigNet2,
Pigs, VSD, and Wilson networks are taken from medical applications; several
versions exist of the Munin and Oesoca networks. The Barley and Mildew net-
works are used for agricultural purposes, the Water network models a water
purification process and the OOW-trad, OOW-bas, OOW-solo, and Ship-ship
networks are developed for maritime use.

Table 1 shows some results of our preprocessing technique. The preprocessing
consists of two phases; for each phase a set of reduction rules is employed. In
the first phase the set Prepro-1 = {Simplicial rule} is used, and for the second
phase we applied the set Prepro-2 = Prepro-1 ∪ {Almost simplicial rule, Buddy
rule}. For each instance the size of the graph is shown after moralisation, and
after the first and second phase. After each phase we also provide the number
of vertices deleted by each reduction rule in the set, and the value of variable
low, representing the lower bound currently known for the weighted treewidth
of the instance. Our table reveals for example, that the second phase reduces
six graphs to the empty graph, meaning that for these instances we find a tree
decomposition with minimum weighted treewidth. The Buddies and Cube rule
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Table 1. Preprocessing results for several probabilistic networks

instance moral Prepro-1 Prepro-2
|V | |E| |V | |E| #smpl low |V | |E| #smpl #asmp #bud low

Alarm 37 65 11 19 26 32 0 0 32 5 0 32

Barley 48 126 35 92 13 40320 29 83 14 5 0 40320
BOBLO 221 328 71 132 150 687820 0 0 186 35 0 687820
Diabetes 413 819 335 665 78 7056 332 662 78 3 0 7056

Link 724 1738 494 1349 230 128 339 1194 230 155 0 128
Mildew 35 80 20 40 15 280000 15 31 15 5 0 280000
Munin1 189 366 108 241 81 600 90 220 82 17 0 600
Munin2 1003 1662 449 826 554 600 317 674 564 122 0 600
Munin3 1044 1745 419 790 625 600 172 443 652 208 12 2000
Munin4 1041 1843 436 920 605 600 271 724 614 156 0 2000
Munin-KGO 1066 1730 298 549 768 1280 95 252 803 168 0 2000
Oesoca+ 67 208 30 141 37 1536 27 131 37 3 0 1536
Oesoca 39 67 5 7 34 240 0 0 38 1 0 240
Oesoca42 42 72 6 10 36 240 0 0 40 2 0 240
OOW-trad 33 72 27 59 6 900 25 57 6 2 0 900
OOW-bas 27 54 19 37 8 5400 17 35 8 2 0 5400
OOW-solo 40 87 31 68 9 5400 29 66 9 2 0 5400
PigNet2 3032 7264 1643 4556 1389 81 1051 3835 1418 563 0 81
Pigs 441 806 163 305 278 27 126 265 282 33 0 27
Ship-ship 50 114 39 92 11 600 38 91 11 1 0 600
VSD 38 62 12 21 26 240 0 0 32 6 0 240
Water 32 123 24 101 8 3072 22 96 8 2 0 3072
Wilson 21 27 6 8 15 36 0 0 19 2 0 108

are not yet implemented completely; addition of the Buddy rule only resulted
in the deletion of 12 vertices from the Munin3 network. The lower bound value
for Mildew is caused by a clique of three vertices with weights 100, 100, and 28;
the weights in the BOBLO network have values between 2 and 595.

Our preprocessing method takes little time: the algorithm (implemented in
C++) used at most a few seconds per network on a standard modern worksta-
tion.

6 Conclusions

Instances of NP-hard problems often can be reduced to equivalent but smaller
instances using preprocessing techniques. For the problem of finding a tree de-
composition for a weighted graph with minimal weighted treewidth, we pro-
vided such a technique. Our method consists of the application of a set of re-
duction rules that allows for reduction of a weighted graph without increasing
its weighted treewidth, and for which every reduction is easily reversible. We
showed that several of the known reduction rules can be generated from the
generic Contraction-reduction rule, and that new feasible reduction rules can be
created.

Experiments were conducted on the graphs of a set of probabilistic networks
taken from real-life applications. These experiments revealed that a subset of
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the identified reduction rules were able to reduces the graphs significantly, or
even completely. Therefore, preprocessing by applying reduction rules is a very
useful technique for the weighted treewidth problem.

Acknowledgements

We thank Linda van der Gaag for her comments and guidance for this paper;
furthermore we thank Kristian Kristensen, Anders L. Madsen, Kristian G. Ole-
sen, Claus Skaaning Jensen, and Linda van der Gaag for providing instances of
probabilistic networks.

References

1. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

2. S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-
trees. SIAM J. Alg. Disc. Meth., 7:305–314, 1986.

3. S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems
restricted to partial k-trees. Disc. Appl. Math., 23:11–24, 1989.

4. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor.
Comp. Sc., 209:1–45, 1998.

5. H. L. Bodlaender, A. M. C. A. Koster, F. van den Eijkhof, and L. C. van der
Gaag. Pre-processing for triangulation of probabilistic networks. In J. Breese and
D. Koller, editors, Proceedings of the 17th Conference on Uncertainty in Artificial
Intelligence, pages 32–39, San Francisco, 2001. Morgan Kaufmann.
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Abstract. This paper continues our research on the use of graph sep-
arator theorems for designing fixed parameter algorithms started with
the COCOON’01 contribution [2], showing how a more elaborated use
of these theorems can bring down the algorithmically relevant constants.
More precisely, if a c

√
k-algorithm is obtainable with the help of apply-

ing the well-known Lipton/Tarjan planar separator theorem, our new
approach will lead to a c2/3

√
k-algorithm, this way also improving on the

direct use of the “best” known planar separator theorem. For several
problems, the constants can be even improved more by analyzing other
separator theorems.

1 Graph Separator Based Parameterized Algorithms

In [2], it was shown how to use classical graph separator theorems for develop-
ping recursive fixed parameter algorithms for NP-hard (planar) graph problems.
Typically, these algorithms have running time c

√
knO(1) (hence, these are c

√
k-

algorithms for short) for a constant c, where k is the parameter of the problem.
Special attention was paid to figure out the constant c depending on two con-
stants α and β related to separator theorems and σ and d depending on the
nature of the concrete problem. We explain these constants in more detail in the
following two subsections.

The focus of the present paper is to bring down the algorithmically relevant
constants. More precisely, if a c

√
k-algorithm is obtainable with the help of apply-

ing the well-known Lipton/Tarjan planar separator theorem, our new approach
will lead to a c2/3

√
k-algorithm, this way also improving on the direct use of the

“best” known planar separator theorem. For several problems, the constants can
be even improved more by analyzing other separator theorems.

1.1 Separator Theorems

Let G = (V,E) be an undirected graph. A separator S ⊆ V of G divides V into
two parts A1 ⊆ V and A2 ⊆ V such that A1 +S +A2 = V and no edge joins

L. Kučera (Ed.): WG 2002, LNCS 2573, pp. 186–197, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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vertices in A1 and A2. The triple (A1, S, A2) is also called a separation of G.
According to Lipton and Tarjan [17], an f(·)-separator theorem (with constants
α < 1, β > 0) for a class G of graphs which is closed under taking vertex-induced
subgraphs is a theorem of the following form:

If G is any n-vertex graph in G, then there is a separation (A1, S, A2)
of G such that neither A1 nor A2 contains more than αn vertices and S
contains no more than βf(n) vertices.

Clearly, these notions can be generalized to the case where a separator partitions
the vertex set into � subsets instead of only two.

The techniques we develop here all are based on the existence of “small”
graph separators. Here, “small” means that |S| is bounded by o(|V |). Known
results on planar separator theorems are summarized in Table 1.

Table 1. Summary of various
√·-separator theorems with their constants α and β.

Here, r(α, β) denotes the ratio r(α, β) = β/(1 − √α), which is of central importance
to the running time analysis of our algorithms, cf. Theorem 1. The last row contains
the derived exponential base for Vertex Cover.

bounds for β α = 2
3

r( 2
3
, β) α = 1

2
r( 1

2
, β) α = 3

4
r( 3

4
, β)

upper 2
√

2 [17] 15.41 7 + 1√
3

[20] 25.87
√

2π√
3
· 1+

√
3√

8
[19] 13.73√

6 [13] 13.35
√

24 [6,8] 16.73√
4.5 [7] 11.56√

2
3

+
√

4
3

[12] 10.74
lower 1.55 [13] 8.45 1.65 [19] 5.63 1.42 [19] 10.60

best c for VC 215.19 ≈ 37381 223.66 ≈ 13254694 219.42 ≈ 701459

We will call a separator S of a planar graph G cycle separator if there exists
a triangulation Ĝ of G such that S forms a simple cycle in Ĝ. In fact, the current
“record holder” in the case of α = 2/3 yields a cycle separator, see [12].

Similar separator theorems for planar weighted graphs exist (sometimes with
slightly worse constants), which can be used for designing parameterized algo-
rithms, as well.

As can be seen by looking closer at the column for α = 2/3, a certain race
has been going on to bring down r(α, β); this indeed influences directly the per-
formance of straightforward algorithmic applications of the mentioned separator
theorems, as shown in the third main row of Table 1. We will argue in this paper
that alternative ways of making use of separator theorems exist which yield bet-
ter constants, even when starting off from the conceptually simplest separator
theorem, which is the one due to Lipton and Tarjan. So, from an algorithmic
perspective, it might be worthwhile starting this sort of race again, improving
the exponential bases by more sophisticated applications of (other) separator
theorems.
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Finally, we think that also the lower bound argument(s) yielding the figures
indicated in Table 1 applies to our approach, so that we do not see any real
barrier for improving separator-based algorithms. Maybe, the folklore statement
that separator-based algorithms are doomed to be impractical (which, according
to computer experiments, need not be the case anyways) can be even falsified
this way.

1.2 Parameterized Graph Algorithms

Let L be a parameterized problem, i.e., L is a subset of Σ∗ × N. Reduction to
problem kernel , then, means to replace instance (I, k) ∈ Σ∗ ×N by a “reduced”
instance (I ′, k′) ∈ Σ∗×N (which we call problem kernel) such that k′ ≤ c·k, |I ′| ≤
p(k) with constant c, some function p only depending on k giving the size of the
problem kernel, and (I, k) ∈ L iff (I ′, k′) ∈ L. Furthermore, we require that
the reduction from (I, k) to (I ′, k′) is computable in polynomial time TK(|I|, k).
Often, the best one can hope for is that the problem kernel is size linear in k, a
so-called linear problem kernel, i.e., |I ′| ≤ d · k for some constant d.

A parameterized problem is called fixed parameter tractable iff it allows for a
solving algorithm running in time f(k)|I|O(1) on input instance (I, k)—where f
is an arbitrary function only depending on k—iff it admits a problem kernel. For
more details, we refer to the monograph [16].

In [2], the notion of (slim) glueable select&verify problems was coined in order
to pin down the class of graph problems suitable for a divide and conquer ap-
proach. We refer to the mentioned paper for the precise, very technical definition
of these notions. For our purposes, it is sufficient to know that, for solving cer-
tain problems recursively, σ colours are needed to implement the book-keeping
handing down information to the sub-problems and receiving partial solutions
back.

Let us clarify these notions a bit by discussing one example: In the case of
vertex cover VC, applying a separator theorem (recursively) means: (i) find a
separation (A1, S, A2) of the “current” graph G 1; (ii) discuss all “colourings” of
the vertices of S with 0 (meaning that the vertex in question is considered not to
belong to the vertex cover) or with 1 (i.e.., the vertex in question is considered to
belong to the vertex cover), hence, 2|S| many cases have to be treated separately;
(iii) in each case, we can modify the graph G[A1] (and similarly G[A2]) induced
by A1 by erasing all vertices which are neighbouring a vertex in the separator
coloured with 0, since the connecting edges must be covered by putting these
vertices within the vertex cover to be constructed; this way, we obtain modified
graphs G1 and G2; (iv) recursively, we have to solve VC on G1 and G2; (v)
after returning from the recursive descent, we must “combine” the partial VC
vertices and select some optimal VC solution (among the possibly 2|S| many
ones) which will be handed “upwards”, either giving a solution to the original
problem or testifying that such a solution does not exist (when the upper bound
k is surpassed) or forming part of a VC solution of a bigger graph.
1 For a recent survey on fast separator-finding algorithms, we refer to [5].
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In fact, the reasoning just described shows that vertex cover is a se-
lect&verify graph problem which is glueable with two colours (referring to the
fact that two different colours are enough to “pre-set” the vertices in the separa-
tor and to construct (“glue together”) a valid vertex cover from partial solutions
obtained recursively). Moreover, we have shown that vertex cover is a slim
problem, since in the recursive step (iii), there is no need to “hand down” graphs
which are “much larger” than G[Ai] (in our example, they tend to be even smaller
than this by the mentioned graph modifications).

In a similar but more complicated fashion, it is possible to describe a recur-
sive algorithm for dominating set on planar graphs, this time needing three
colours: 1 means that the such-coloured vertex was selected to be part of the
dominating set to be constructed, 0i, i = 1, 2, means that the such-coloured
vertex will not be part of the dominating set to be constructed and it must be
dominated by a vertex from Ai. Details are left to the reader (or can be found
in [3]). According to the algorithms that we know, dominating set is not a
slim problem: somehow, at least the vertices of the separator which are meant
to be dominated by vertices of Ai need to be handed down in order to verify
the validity of a partial dominating set, which means that in the worst case all
separator vertices are considered in the recursive step, formalized by G[Ai ∪ S].

Table 2. The results listed in the table are contained in [1,2,9].

Problem planar VC planar IS planar DS
σ 2 2 4
d 2 4 > 300

Table 2 shows the relevant two problem-specific parameters σ and d for three
important problems on planar graphs: vertex cover VC, planar indepen-

dent set IS, and planar dominating set DS. All these problems were proven
to be glueable select&verify problems [2].

As the main theorem in [2], the following theorem was derived:

Theorem 1. Suppose that G admits a problem kernel of polynomial size p(k)
on G computable in time TK(n, k). Then, there is an algorithm to decide (G, k) ∈
G, for a graph G ∈ G, in time

c(α′, β, σ)
√

p(k)q(k) + TK(n, k), where c(α′, β, σ) = σβ/(1−
√

α′), (1)

and α′ = α + ε for any ε ∈ (0, 1 − α), holding only for n ≥ n0(ε), where q(·) is
some polynomial. If, however, G is slim or the

√·-separator theorem yields cycle
separators, then the running time for the computation is c(α, β, σ)

√
p(k)q(k) +

TK(n, k), which then holds for all k. 
�
In particular, this means that for glueable select&verify problems for planar
graphs that admit a linear problem kernel of size dk, we get an algorithm of run-
ning time O

(
c(α′, β, σ, d)

√
kq(k)+TK(n, k)

)
, where c(α′, β, σ, d) = σβ

√
d/(1−

√
α′).
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Since vertex cover is a slim problem, Theorem 1 yields the concrete con-
stants listed in Table 1. Theorem 1 also gives a c

√
gk-algorithm for the class Gg

of graphs of genus bounded by g, based on a separator theorem derived by
Djidjev [15] and a c

√
�k-algorithm for the class of �-map graphs, see [10,11]. In-

terestingly, both g and � is (up to an additive constant) also the size of the
largest clique found in graphs belonging to these graph classes, which is intu-
itively satisfying, since cliques make graphs hard to separate.

Let us mention that Theorem 1 is also applicable in a non-parameterized
setting by taking n = dk. This way, c

√
n-algorithms can be obtained for many

graph problems. The improvements we derive in the next sections also apply to
this non-parameterized setting.

2 A Brief Sketch of Separator Theorem Proofs

As pointed out by Venkatesan [20], a small separator, as obtained by Lipton and
Tarjan’s approach, consists of two ingredients:

– the first ingredient of the separator is composed of all vertices which have
the same distance from the root of an assumed minimal height spanning tree
(modulo some constant s), and

– the second ingredient is found according to a “special separator theorem”
for planar graphs with radius of at most s.

The constant s is chosen such that the overall size of the separator is minimized.
Let us discuss the first ingredient in more details. Consider an n-vertex planar

graph G = (V,E), and let a spanning tree T of minimal height of G be given
which has root r. A level i of a vertex v of G specifies the distance of v from r
in the tree T . Choose some integer s “suitably” (this will become clearer later).
Let LT,j denote the vertices of G which are at those levels i in T such that
i mod s = j. In particular, r ∈ LT,0. If s does not exceed the number of levels
in T , then there exists a level LT,i0 such that

|LT,i0 | ≤ n/s�. (2)

As seen later, the case when s exceeds the number of levels of T is an easy one.
The vertex set LT,i0 will be the first ingredient of the separator we are going

to construct. Observe that LT,i0 alone is not a separator of G in general, since
there may be edges not belonging to the spanning tree T which connect vertices
of the remaining levels. Nevertheless, the graph G − LT,i0 is small when we
look at its radius. Therefore, we will also call the procedure of cutting out LT,i0

from G a folding step. More precisely, Venkatesan [20, Theorem 1] proved:

Lemma 1. Assume that s does not exceed the radius h of G. Let T be a spanning
tree of height h. For any level LT,j of G, the components of G − LT,j form a
subgraph of another planar graph G′ which contains n − |LT,j | + 1 vertices and
which has radius no more than s. 
�
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The second ingredient of the separator we are going to construct is obtained
via a separator theorem for planar graphs of bounded radius, applied to G′ form
Lemma 1; of course, the obtained small separator will also separate G−LT,j . Let
us quote the needed “special separator theorem” in the form of a lemma which
is due to Lipton and Tarjan [17]. Observe that weights are given to vertices of
a graph by means of a function ω which assigns non-negative reals to vertices
and, hence, to vertex sets.

Lemma 2. Let G be a planar graph of radius s, with nonnegative weights on its
vertices adding in total to no more than 1. Then, a separation (A1, S, A2) of G
can be found in linear time such that neither A1 nor A2 has weight exceeding
2/3 and |S| ≤ 2s + 1. The vertices of S lie on a cycle if G is triangulated. 
�

We remark that a statement similar to Lemma 2 is also valid for graphs of
bounded genus, compare [14,15], so that our approach can be easily generalized
to these graph classes Gg. In addition, if it can be shown that there is a function h̄
such that h̄(k) is an upper bound on the radius of any graph instance (G, k)
with G ∈ Gg for a select&verify graph problem, then this problem (restricted to
graphs from Gg) is fixed-parameter tractable.

It is now possible to derive the classical Lipton/Tarjan result from the above
considerations:

– If the radius of a given n-vertex planar graph G is less than or equal to
√

2n,
then we might apply Lemma 2 directly.

– Otherwise, choose s =
√

n/2. The first ingredient of the separator, delivered
by the folding step, then contains at most n/s =

√
2n vertices according to

Equation (2) and the second ingredient less than 2s + 1 =
√

2n + 1 vertices
according to Lemma 2 (which is applicable due to Lemma 1), summing up
to at most 2

√
2n + 1 vertices within the separator.

Here, the “magic number” s was determined as to minimize the sum

n/s + 2s (3)

of the two ingredients of the separator.

3 Optimizing Divide and Conquer Algorithms

We are now going to improve the constants involved in the proof of Theorems 1
considerably by tailoring the use of separator theorems for the divide and conquer
approach.

Our main two observations leading to the improvements explained in the
next theorem are the following ones:

1. It is unnecessary to perform the folding step over and over again in the
recursion, since the graph parts which occur after having applied a classical
separator theorem will have small radius. Instead, one can apply Lemma 2
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directly several times in a row in the course of the recursion. We cannot
expect good results if we only apply Lemma 2, since the radius (as condition
of applying Lemma 2) would not decrease in general, which means that the
separators we get after several recursive applications of Lemma 2 will be
rather large. Therefore, from time to time, a folding step has to be inserted.
The goal is now to find the optimal number of recursive applications of
Lemma 2 in a row.

2. It is not necessary to minimize a single separator occurring in the recursion,
but it might be more reasonable to minimize the sum of all separators which
occur on an arbitrary recursion path, since the running time of a divide and
conquer algorithm based on separators in graphs basically depends only on
the sum of the sizes of the separators accumulated along a fixed recursion
path, cf. the discussions preceding Equation (3). Thus, it can be advanta-
geous to have larger separators at certain levels of the recursion tree if this
buys us smaller separators at the other levels.

In the following, we are specializing the constants α and β as α = 2/3 and
β =

√
8, because the simple proof structure of the planar separator theorem

of Lipton and Tarjan (as sketched in Section 2) allows for easy modifications.
It remains a challenging future research topic to see which ideas from other
separator theorems could be used in order to obtain better constants in the next
theorem. In fact, the results of Section 4 indicate that other separator theorems
can be preferable.

Theorem 2. Let G be a select&verify problem on planar graphs which is glue-
able with σ colours, and suppose that G admits a problem kernel of polynomial
size p(k) computable in time TK(n, k).

Then, there is an algorithm to decide (G, k) ∈ G, for an n-vertex planar graph
G, in time

c(α′, σ)
√

p(k)q(k) + TK(n, k), where c(α′, σ) ≈ σ1.80665/(1−
√

α′),

and α′ = 2/3 + ε for any ε ∈ (0, 1/3), holding only for k ≥ k0(ε), where q(·) is
some polynomial.

If G is slim, then the running time for the computation is

c(2/3, σ)
√

p(k)q(k) + TK(n, k),

which then holds for all k.

Proof. After kernelization, we are left with a graph with at most p(k) vertices.
For this graph G′, we would like to answer the question whether (G′, k′) ∈ G for
some k′ linearly depending on k. We will do this in a recursive manner.

In the first step of the recursion, we will basically use the classical separa-
tor theorem of Lipton and Tarjan. Recall the outline of its proof in Section 2.
Especially, note that the obtained separator consists of two ingredients. We will
discuss these ingredients once more in the following.
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Analogously to the considerations preceding Lemma 1, let LT,i0 be a level
in the vertex set induced by some spanning tree T of minimal height in G′ such
that |LT,i0 | ≤ p(k)/s�, where s is an integer we are going to optimize in the
following. We use LT,i0 in a folding step. According to Lemma 1, we are now
left with a planar graph with radius upperbounded by s. Therefore, we can now
recurse the next � steps in a row using only Lemma 2. Then, we will interleave
another folding step in order to decrease the radius of the remaining graph parts,
which are again handled by � applications of Lemma 2 in a row, and so forth.

Within this basic scheme of recursion, let us consider a fixed recursion path.
The time spent in � recursion steps using only Lemma 2 basically is σ(2s)�, since
the accumulated size of the separators along the recursion path is upperbounded
by 2s�. Namely, in each of these � recursion steps, a new separator of size 2s has
to be considered. Therefore, the size size� of all separators along the recursion
path after one folding step and � applications of Lemma 2 is upperbounded by:

size� ≤ |LT,i0 |+ 2s� ≤ p(k)/s�+ 2s�. (4)

In order to minimize size� (which directly influences the running time of
the recursive algorithm, as noted in the discussion preceding this theorem), we
should choose s = s� :=

√
p(k)/(2�). This means that we obtain an optimal

total separator size of
size� ≤

√
8�p(k). (5)

Let us now compare this new mixed strategy with a direct application of
known separator theorems for obtaining divide and conquer algorithms. Firstly,
observe that, after � recursion steps according to our new mixed strategy, we
are left with a graph whose components contain at most (2/3)�n vertices, if we
started with an n-vertex graph. This situation is completely the same if we would
have repeatedly applied the currently best separator theorem known for planar
graphs, see Table 1. Consider a separator theorem with general constants α and
β. After � iterations of this separator theorem, along a fixed recursion path, we
would have accumulated separators of total size upperbounded by

β · √n + β · √αn + · · ·+ β ·
√
α�−1n,

if we started with an n-vertex graph. This geometric sum can be rewritten,
yielding the general upper bound

β · 1− α�/2

1−√α
· √n (6)

Let us compare our approach therefore with Djidjev’s separator theorem with
constants β =

√
2/3+

√
4/3 ≈ 1.97 and α = 2/3, see Table 1. After � iterations of

this separator theorem, along a fixed recursion path, we would have accumulated
separators of total size size�, where

size� ≤ (
√

2/3 +
√

4/3) · 1− (2/3)�/2

1−√2/3
·
√
p(k) (7)
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according to Equation (6). Comparing this approach with the previously out-
lined new mixed strategy can now be done by comparing size� and size�. Simple
arithmetics shows that size� ≤ size� iff � ∈ {1, . . . , 12}. Therefore, our mixed
strategy is better than the direct approach for � ∈ {1, . . . , 12}.

Which � ∈ {1, . . . , 12} is the best choice within our mixed strategy? We
answer this question by the following approach. Equating the right-hand side
of Equation (5) and Expression (6) (in the case when α = 2/3 and n = p(k))
allows us to compute a β� of a hypothetic separator theorem whose direct use
for divide and conquer matches our mixed strategy. In this way, we obtain the
following formula for β�:

β� =
√

8� · 1−√2/3
1− (2/3)�/2

.

Some computations show that β6 is the minimum of all such β� for �∈{1, . . . , 12}.
More precisely, we have β6 = 1.80665 as required in the theorem. 
�

Example 1. For Vertex Cover on planar graphs, we obtain by the previous
theorem a 213.9234

√
k ≈ 15537

√
k-algorithm, which obviously beats the figures in

Table 1.

To further improve our constants, we need a generalized notion of separation
as introduced in the following section.

4 Regular Partitions

Djidjev [13] coined the notion of regular γ-partition. We will only need the fol-
lowing restricted notion (which Djidjev would term regular 1/2-partition):

Definition 1. A regular partition (A1, A2, A3, S) of an n-vertex graph G =
(V,E) is a partition V = A1 + A2 + A3 + S such that

– Ai and Aj are not connected to each other for 1 ≤ i < j ≤ 3 and
– |Ai| ≤ 1/2 · n for i = 1, 2, 3.

Hence, in a regular partition, S can be viewed as a separator that splits G
into three parts A1, A2, and A3. Djidjev has shown the following analogue of
Lemma 2:

Lemma 3. Let G be a planar graph of radius s. Then, a regular partition
(A1, A2, A3, S) exists such that |S| ≤ 3s + 1. 
�
With the help of Lemma 3, Venkatesan [20] proved:

Lemma 4. Let G be a planar n-vertex graph. Then, there exists a regular par-
tition (A1, A2, A3, S) such that |S| ≤ √12

√
n. 
�
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In principle, the proposition was shown in the same way as the separator
theorem of Lipton and Tarjan. In the folding step, a level LT,i0 of a spanning
tree of G is chosen such that |LT,i0 | ≤ n/s; then, Lemmas 1 and 3 are used to get
a regular partition with |S| ≤ n/s+ 3s; finally, s is chosen to minimize n/s+ 3s
which yields the claimed constant. Obviously, we can try the same trick as in
Theorem 2 to find an optimal � so that Lemma 3 is used � subsequent times in
the recursion. Some computations lead to:

Theorem 3. Let G be a select&verify problem on planar graphs which is 3-
glueable with σ colours, and suppose that G admits a problem kernel of polynomial
size p(k) computable in time TK(n, k).

Then, there is an algorithm to decide (G, k) ∈ G, for an n-vertex planar
graph G, in time

c(α′, σ)
√

p(k)q(k) + TK(n, k), where c(α′, σ) ≈ σ2.7056/(1−
√

α′),

and α′ = 1/2 + ε for any ε ∈ (0, 1/2), holding only for k ≥ k0(ε), where q(·) is
some polynomial.

If G is slim, then the running time for the computation is

c(1/2, σ)
√

p(k)q(k) + TK(n, k),

which then holds for all k. 
�
We need to explain one more term used in the formulation of the preceding

theorem: we call a problem x-glueable with σx colours if we are referring to an
algorithmic use of a separator theorem splitting graphs into x chunks where σx

colours are needed in the recursion; so, our previous notion of glueability with
σ colours would now become 2-glueability with σ colours.

Example 2. For Vertex Cover on planar graphs, we obtain in this way a
213.0639

√
k ≈ 8564

√
k-algorithm, which again beats the figure of Example 1, since

vertex cover is 3-glueable with 2 colours.

As to dominating set, four colours are now needed instead of three to
specify which of the three graph chunks is made “responsible” for dominating
certain not yet dominated vertices of the separator; so, we have 3-glueability with
4 colours versus 2-glueability with 3 colours. Hence, Theorem 3 is not always
yielding better algorithms compared with Theorem 2.

5 Conclusions

In this abstract, we sketched how an interleaved use of different separator the-
orems could yield improved running time estimates for algorithms based on
recursively bisecting graphs. Interestingly, the basic scheme of these algorithms
is not affected at all. This scheme can be sketched as follows:
If the currently examined graph piece is not small enough, then
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– Find a small separator.
– For all assignments of “colours” to the vertices of the separator, recurse.

Since this scheme is very general, in particular it not only applies to parameter-
ized algorithms.

Therefore, it keeps being a challenging question to bring down the constants
derived in Theorem 3 by an even more sophisticated analysis of the use of sepa-
rator theorems. It would be also interesting to see such optimizing ideas applied
to other graph classes as graphs of bounded genus or map graphs.

A somewhat different venue to use graph separation for the design of param-
eterized algorithms was taken in [4], relying even more on properties of planar
graphs. It would be interesting to see whether both approaches can be combined
in order to get algorithms with better provable worst-case upper bounds.

Finally, let us mention that it is also possible to devise algorithms based on
n/ε separation theorems, see [20]. This way, we can prove the following result:

Theorem 4. Let G be a select&verify problem on planar graphs. We make the
following further assumptions:

– G is glueable with σ colours.
– G admits a problem kernel of linear size dk computable in time TK(n, k).
– There is an O(ρn) algorithm for solving the (possibly precoloured) graph de-

cision problem under consideration for a planar graph with n vertices.

Then, there is an algorithm to decide (G, k) ∈ G, for an n-vertex planar
graph G, in time

O(dk ·2θ(σ,ρ,d)·k2/3
+TK(n, k)), where θ(σ, ρ, d) = 2 log(ρ)

(√
24d

log(σ)
log(ρ)

)2/3

.


�

Example 3. In the case of vertex cover, Robson’s algorithm [18] gives ρ ≈
1.21, so that Theorem 4 yields a ck2/3

-algorithm with

c = 2(2·log 1.21·(2
√

24/ log 1.21)2/3) ≈ 25.27 ≈ 38.59.

Compare this running time with the best known ck1/2
-algorithm (c = 24

√
3 ≈

121.79 was shown in [4]).
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Abstract. We study H(p, q)-colorings of graphs, for H a fixed simple
graph and p, q natural numbers, a generalization of various other vertex
partitioning concepts such as H-covering. An H-cover of a graph G is a
local isomorphism between G and H, and the complexity of deciding if
an input graph G has an H-cover is still open for many graphs H. In this
paper we show that the complexity of H(2p, q)-COLORING is directly
related to these open graph covering problems, and answer some of them
by resolving the complexity of H(p, q)-COLORING for all acyclic graphs
H and all values of p and q.

1 Introduction

Colorings of graphs is a well-studied subject. In some cases the ‘colors’ to be
assigned are the vertices of a fixed graph H, and model a situation where
certain pairs of colors are treated specially. For example, in the well-known
H-COLORING problem we ask for an assignment of ‘colors’ to the vertices
of an input graph G such that adjacent vertices of G obtain adjacent ‘colors’,
defining a homomorphism between G and H. H-COLORING is known to be
solvable in polynomial time for bipartite H, and NP-complete otherwise [9]. In
the H-COVER problem a vertex v ∈ V (G) is assigned a ‘color’ u ∈ V (H) of the
same degree, in such a way that the set of ‘colors’ assigned to the neighbors of v
is exactly the set of ‘colors’ adjacent to u, defining a local isomorphism between
G and H. Graph coverings come from algebraic graph theory [3], and form a
special case of covering spaces from algebraic topology [14], with applications in
topological graph theory [8]. The first applications in computer science were to
graph recognition by parallel networks of processors [2,6]. The question of the
computational complexity of H-COVER was first posed in 1989 [4], a variety of
results have been shown, see e.g. [10,11,12,7], but it is still unclear what char-
acterizes the class of simple graphs H that lead to polynomial time H-COVER
problems.
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A wide generalization of both H-coloring and H-covering is given by the
so-called H(σ, ρ)-colorings for subsets of natural numbers σ and ρ [13], and in
this paper we focus on the case of |σ| = |ρ| = 1. For a fixed graph H and
natural numbers p and q, the H(p, q)-COLORING problem studied in this pa-
per asks if an input graph G has a mapping f : V (G) → V (H) where the
neighbors of any v ∈ V (G) are mapped to the closed neighborhood of f(v),
with exactly p neighbors mapped to f(v), and exactly q neighbors mapped to
each neighbor of f(v). From the definition it is clear that H(0, 1)-coloring is
equivalent to H-covering, but it is maybe more surprising that for any simple
graph H and any p ≥ 0, q ≥ 1 there exists a multigraph M such that H(2p, q)-
coloring is equivalent to M -covering. In fact, the first graph covering problem
shown to be NP-complete in [1] was equivalent to P2(2, 1)-COLORING, P2 an
edge. Moreover, it is known that resolving the complexity of M -COVER for all
multigraphs M (where the covering definition is somewhat more complicated) is
necessary and sufficient for resolving the complexity of H-COVER for all sim-
ple graphs H [10]. Via this link, the results in this paper, on the complexity
of H(p, q)-COLORING, contribute directly towards the partial solution of the
open problem mentioned above. See Fig. 1 for an example of a tree T and values
of p and q (for which T (p, q)-COLORING is NP-complete), the corresponding
simple graph H (for which H-COVER then is NP-complete), and the linking
multigraph M .

p = 2

T

q = 2

M

H

Fig. 1. A tree T (for which T (2, 2)-COLORING is NP-complete), the corresponding
simple graph H (for which H-COVER then is NP-complete), and the linking multi-
graph M

The degree refinement matrix MG of a graph G gives crucial information for
these problems, and it is defined as follows: The degree refinement of a multi-
graph G is the partition of its vertices into the minimum number of blocks
BG = {B1(G), . . . , Bt(G)} for which there are constants mij , such that for all
1 ≤ i, j ≤ t each vertex in Bi has exactly mij neighbors in Bj . For a given, canon-
ical, ordering of degree refinement blocks, the t× t matrix MG, MG[i, j] = mij ,
is called the degree refinement matrix.
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We can now state our main theorem.

Theorem 1. T (p, q)-COLORING, for a tree T and natural numbers p and q,
is solvable in polynomial time if either:

– (trivial cases) all blocks [in the degree refinement of T ] have size 1, or q = 0,
or p = 0, q = 1,

– p = 0, q = 2 and either all blocks containing non-leaves have size 1, or they
all have size 2,

– p = 0, q ≥ 3 and all blocks have size 2,
– p = 1, q = 1 and all entries in [the degree refinement matrix] MT are at

most 2, or
– p ≥ 2, q = 1, all entries in MT are at most 2, and no block contains an

induced edge,

and is NP-complete in all other cases.

The next section contains all formal definitions, and several important obser-
vations. The remainder of the paper is then devoted to the proof of Theorem 1,
which has three different ingredients, split into three sections: Sect. 3 contains
polynomial-time algorithms, based on finding factors in regular graphs and on
reductions to 2SAT, Sect. 4 NP-completeness reductions, and Sect. 5 various
characterizations of trees, to show that all cases have been accounted for.

2 Definitions and Basic Observations

Let H be a fixed simple graph with k vertices V (H) = {u1, u2, . . . , uk}, and
let p and q be natural numbers. An H(p, q)-coloring of a simple graph G is a
partition V1, V2, . . . , Vk of V (G), such that for all 1 ≤ i, j ≤ k

∀v ∈ Vi : |NG(v) ∩ Vj | =
⎧⎨⎩p if i = j

q if uiuj ∈ E(H)
0 otherwise ,

where NG(v) denotes the open neighborhood of v in G. We will also view the
partition as a vertex mapping f : V (G) → V (H), with f(v) = vi for v ∈ Vi.
Note that this is equivalent to the definition given in Sect. 1.

In this paper we investigate the complexity of the following problem.

H(p, q)-COLORING
INSTANCE: Simple graph G.
QUESTION: Does G have an H(p, q)-coloring?

For a simple graph H, H(0, 1)-COLORING is precisely the same as the
H-COVER problem. Moreover, any H(2p, q)-coloring will correspond to an
M -covering for some multigraph M , as we now show. The usual definition of
topological covering spaces requires that to cover a multigraph M by a graph
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G we must specify, in addition to a vertex mapping f : V (G) → V (M), also an
edge mapping g : E(G) → E(M). The edge map must respect the vertex map,
and for every vertex v ∈ V (G), and every edge e incident to f(v), there must be
exactly one edge incident to v that is mapped to e. Moreover, for every self-loop
s on f(v) there must be exactly two edges (or one self-loop) incident to v mapped
to s.

For a simple graph H and natural numbers p and q, let Hp
q be the multigraph

obtained from H by adding p self-loops to each vertex of H, and replacing each
edge of H by q multiple edges.

Observation 1 A simple graph G has an H(2p, q)-coloring if and only if it has
an Hp

q -cover.

Proof. The forward direction of the proof follows from [10] which shows that
even if multigraph-covering requires an edge map, this edge map always exists if
the vertex map f obeys the cardinality constraint that for every vertex v ∈ V (G)
the number of neighbors of v mapping to a vertex u ∈ V (H) is the same as the
number of multiple edges between u and f(v). Likewise, the number of neighbors
of v mapping to f(v) should be twice the number of self-loops on f(v). Clearly,
an H(2p, q)-coloring of G does satisfy these cardinality constraints as imposed
by Hp

q . The other direction of the proof is trivial. 
�
The degree refinement and degree refinement matrix of a graph are computed

in polynomial time by stepwise refinement. Start with the vertices partitioned
by their degrees and refine the partition as long as two vertices in the same block
do not have the same number of neighbors in some other block. Note that the
center of a tree, consisting of vertices whose greatest distance from any other
vertex is as small as possible, contains either one or two vertices. The following
fact is folklore.

Fact 1 If G has an H-cover f , then MG = MH , and f is a one-to-one mapping
of the degree refinement blocks.

Theorem 2. If G has an H(p, q)-coloring, and H is a simple, connected graph,
then

MG = qMH + pI .

Proof. If p = 2r we know from Observation 1 and Fact 1 that MG = MHr
q
, and

first show that MHr
q

= qMH + 2rI. When computing the degree refinement of
Hr

q , self-loops are inconsequential, since all vertices u ∈ V (Hr
q ) have exactly r

such loops. Likewise, the edge multiplicity is also inconsequential, since for all
distinct, adjacent vertices u, u′ ∈ V (Hr

q ), there are exactly q edges between u
and u′. This implies that the degree refinements of H and Hr

q have the same
block structure. Moreover, since every vertex in V (H) gets r self-loops, and every
edge in E(H) is replaced by q multiple edges, we have MHr

q
= qMH + 2rI. The

argument for odd p differs only by some technical details. 
�
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The following fact is now evident.

Fact 2 If G has an H(p, q)-coloring f , and H is connected, then |f−1(u)| =
|f−1(u′)| for all u, u′ ∈ V (H).

The simple (p, q)-cover of G is the graph (G � Kq) � Kp+1, where the graph
products � and � are defined as follows (in so called Nešetřil convention):

– V (G � G′) = V (G � G′) = V (G)× V (G′),
– (v, v′)(w,w′) ∈ E(G � G′) if and only if vw ∈ E(G), and (v′w′ ∈ E(G′) or

v′ = w′),
– (v, v′)(w,w′) ∈ E(G � G′) if and only if (vw ∈ E(G) and v′ = w′), or

(v′w′ ∈ E(G′) and v = w).

For an example see the simple (2, 2)-cover of P3 depicted in Fig. 2, P3 the path
on three vertices.

(G � Kq) � Kp+1

Kp+1 = K3

G � Kq

Kq = K2

G = P3

Fig. 2. Simple (2, 2)-cover of P3

Observe, that the operation G � Kq replaces an edge of vw ∈ E(G) with
a complete bipartite graph Kq,q on q copies of the vertices v and w. Similarly
the operation G � Kp+1 forms a clique Kp+1 on p + 1 copies of every vertex
v ∈ V (G), while the edges inside the p+1 copies of G are maintained. Blocks in
the degree refinement of the simple (p, q)-cover correspond to the blocks in the
degree refinement of the original graph, as indicated in Fig. 2 by the black and
white vertex colors.

Lemma 1. For every graph H and every p ≥ 0, q ≥ 1, the simple (p, q)-cover
of H has an H(p, q)-coloring.

Proof. The mapping f : ((u, a), b) → u, where u ∈ V (H), a ∈ V (Kq),
b ∈ V (Kp+1) is an H(p, q)-coloring. Every vertex has p neighbors mapped to
the same target, those that differ only in the b-coordinate; and for every neigh-
bor u′ of u, ((u, a), b) is adjacent to ((u′, a′), b), for every 1 ≤ a′ ≤ q. 
�
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3 Polynomial Cases

Theorem 3. If MH = AH , the adjacency matrix of H, i.e. if all blocks in the
degree refinement of H are of size 1, then H(p, q)-COLORING is solvable in
polynomial time.

Proof. From Theorem 2 we know what the degree refinement matrix must be.
Theorem 2 describes the necessary condition, and when MH = AH this is also
the sufficient condition. 
�

As an aside we mention that for a random graph H of the model G(n, p), it
is almost always the case that MH = AH when 0 < p = p(n) ≤ 1

2 is such that
p5n/(logn)5 →∞ [5, ch. 3].

Lemma 2. T (0, q)-COLORING, q ≥ 2, is solvable in polynomial time for every
tree T whose degree refinement blocks are all of size 2.

Proof. We reduce to 2SAT. Let G be an instance of T (0, q)-COLORING, q ≥ 2,
where T is a tree whose degree refinement blocks are all of size 2. We construct
a formula φ, such that φ has a satisfying truth assignment if and only if G has a
T (0, q)-coloring. It will be obvious how to transform φ into a set V of variables
and a collection C of two-literal clauses, to form a 2SAT instance (V,C).

First, compute the degree refinements of G and T . If they do not obey the
constraints of Theorem 2, reject the input G. Otherwise, let BG = {B1(G), . . . ,
Bt(G)} and BT = {B1(T ), . . . , Bt(T )} be the degree refinements of G and T ,
respectively. Let Bi(T ) = {lefti, righti}, and note that for each vertex v ∈ Bi(G)
we must decide whether it should map to lefti (variable v FALSE) or righti

(variable v TRUE). When all blocks in the degree refinement of T are of size 2,
the center of T is an edge uu′, and both u and u′ belong to the same degree
refinement block B1(T ). B1(T ) is the only block containing adjacent vertices. For
every pair of adjacent vertices v, w ∈ B1(G) we insert the subformula (v � w)
into φ, and for every vertex x ∈ Bi(G), with a neighbour y ∈ Bj(G), j �= i, we
insert the the subformula (x⇔ y) into φ.

Let f : V (G) → V (T ) be a T (0, q)-coloring of G, and label the left and right
vertex of each block Bi(T ) with 0 and 1, respectively. Viewing the label of f(v)
as a truth assignment to variable v, we get a satisfying truth assignment τ for
φ. In the other direction of the proof we first use the degree refinement of G to
determine which block Bi(T ) in the degree refinement of T a vertex v ∈ V (G)
must map to. We then use a truth assignment τ for φ to determine if v should
be mapped to the left or right vertex of Bi(T ). 
�

Let Sk denote the graph K1,k, the star on k + 1 vertices.

Lemma 3. Sk(0, 2)-COLORING is solvable in polynomial time for every k.

Proof. Let G be an instance of Sk(0, 2)-COLORING. By Theorem 2, the vertices
of G must either be of degree 2, or 2k. The vertices of degree 2k must map to
the central vertex of Sk. The remaining vertices must map to the k leaves, in
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such way that the neighborhoods of the vertices mapping to the center can be
split into k disjoint pairs, where both vertices of a pair map to a unique leaf.

Contracting the vertices of degree 2 in a homeomorphic manner results in
a 2k-regular graph G′. By Petersen’s theorem, G′ can be split into k disjoint
2-factors. This split can be done in polynomial time, and we get an Sk(0, 2)-
coloring of G by mapping the vertices of degree 2 to the same leaf if and only if
the corresponding edges belong to the same 2-factor. 
�

Note that in the case k = 2 the lemma also provides a polynomial time
algorithm for P3(0, 2)-COLORING.

Lemma 4. T (0, 2)-COLORING is solvable in polynomial time for every tree T
if either all blocks containing non-leaves have size 1, or they all have size 2.

Proof. Note that the condition on T implies that we have either: (1) all de-
gree refinement blocks of size 2 or more contain only leaves, or (2) all degree
refinement blocks of size not equal to 2 contain only leaves.

Case 1: Let G be an instance of T (0, 2)-COLORING, where T is a tree such
that all blocks in the degree refinement of T of size 2 or more contain only leaves.

First, compute the degree refinements of G and T . If they do not obey the
constraints of Theorem 2, reject the input G. Otherwise, let BG = {B1(G), . . . ,
Bt(G)} and BT = {B1(T ), . . . , Bt(T )} be the degree refinements of G and T ,
respectively. For each block Bi(G) corresponding to a block Bi(T ) of size 1, all
vertices of Bi(G) must map to the single vertex of Bi(T ). For each block Bj(G)
corresponding to a block Bj(T ) of size 2 or more, the vertices of Bj(G) have
neighbors in exactly one other block in the degree refinement of G; this block
must correspond to a block of size 1 in the degree refinement of T . Thus, for
each such Bj(G), the problem can be solved independently, in polynomial time
by Lemma 3, and the solutions combined into an overall T (0, 2)-coloring of G.

Case 2: Let G be an instance of T (0, 2)-COLORING, where T is a tree such
that all blocks in the degree refinement of T of size not equal to 2 contain only
leaves.

First, compute the degree refinements of G and T . If they do not obey the
constraints of Theorem 2, reject the input G. Otherwise, let BG = {B1(G), . . . ,
Bs(G), Bs+1(G), . . . , Bt(G)} and BT = {B1(T ), . . . , Bs(T ), Bs+1(T ), . . . , Bt(T )}
be the degree refinements of G and T , respectively, with B1(T ), . . . , Bs(T ) as the
blocks of size 2, and Bs+1(T ), . . . , Bt(T ) as the remaining blocks. For the portion
of G induced by the blocks B1(G), . . . , Bs(G), the vertices can be mapped to
the appropriate vertices of the portion of T induced by B1(T ), . . . , Bs(T ) in
polynomial time by Lemma 2. The blocks Bs+1(G), . . . , Bt(G) can be handled
independently, in polynomial time by Lemma 3, and the solutions combined into
an overall T (0, 2)-coloring of G. 
�
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Lemma 5. T (p, q)-COLORING is solvable in polynomial time for every tree T
if either:

(1) p = 1, q = 1 and all entries in MT are at most 2, or
(2) p ≥ 2, q = 1, all entries in MT are at most 2, and no block in the degree

refinement of T contains an induced edge.

Proof. Both problems can be reduced to 2SAT. We only provide proof of case 1,
as the proof of case 2 is similar.

Let G be an instance of T (1, 1)-COLORING, where T is a tree such that all
entries in MT are at most 2. We construct a set V of variables and a formula
φ, such that φ has a satisfying truth assignment if and only if G has a T (1, 1)-
coloring. It will be obvious how to transform φ into a collection C of two-literal
clauses, to form a 2SAT instance (V,C).

First, compute the degree refinements of G and T . If they do not obey the
constraints of Theorem 2, reject the input G. Otherwise, let BG = {B1(G), . . . ,
Bt(G)} and BT = {B1(T ), . . . , Bt(T )} be the degree refinements of G and T ,
respectively. Let B1(T ) be the block containing the center of T , and level the
blocks of BT according to their distance from B1(T ), with B1(T ) as level 1. BG

is given the same leveling. For each vertex v ∈ Bi(G) we must decide which
vertex of Bi(T ) it should map to. When all entries in the degree refinement
matrix MT are at most 2, a vertex u ∈ Bi(T ) can have at most 2 neighbours in
Bj(T ), and B1(T ) is the only block that can contain adjacent vertices. A block
Bi(T ) on level l, l > 1, can therefore contain at most 2l vertices. Every vertex
v in a block on level l is represented by l variables v1, . . . , vl. For every vertex
v ∈ B1(G) we insert the subformula (v1) into φ; for every vertex w ∈ Bi(G)
on level l, with two children x, x′ ∈ Bj(G) on level l + 1, we insert subformulas
(x1 ⇔ w1), . . . , (xl ⇔ wl), (x′

1 ⇔ w1), . . . , (x′
l ⇔ wl), (xl+1 � x′

l+1) into φ; and
for every vertex y ∈ Bi(G) on level l, with only one child z ∈ Bj(G) on level l+1,
we insert subformulas (z1 ⇔ y1), . . . , (zl ⇔ yl), (zl+1) into φ.

Let f : V (G) → V (T ) be a T (1, 1)-coloring of G, and label the vertices of T as
follows: label vertices in the center of T with 1, for all other vertices concatenate
the label of its parent with 0 if the vertex is the left child of its parent, in its
block, and concatenate the label of its parent with 1 if it is the right, or only,
child. For a vertex v ∈ Bi(G) on level l, viewing the label of f(v) as a truth
assignment to the variables v1, . . . , vl, digit by digit, we get a satisfying truth
assignment τ for φ.

In the other direction of the proof we first use the degree refinement of G to
determine which block Bi(T ) in the degree refinement of T a vertex v ∈ V (G)
must map to. If the center of T is an edge, T consists of two subtrees Tleft and
Tright, and we must decide whether a vertex v should map to the left or right
subtree. In this case B1(G) induces a 2-regular graph, which is split by following
the cycles, mapping two adjacent vertices to the left vertex of the center, two
to the right, and so on. This split of B1(G) propagates down through the rest
of G, and we map one part to Tleft, the other to Tright. Finally, we use a truth
assignment τ for φ and its restriction to variables v1, . . . vl, to determine which
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vertex u ∈ Bi(T ) a vertex v ∈ Bi(G) on level l must map to, in the same manner
as described above. 
�

4 NP-Complete Cases

In this section all remaining T (p, q)-COLORING problems are shown to be NP-
complete. Due to lack of space we only give the full proof of Lemma 6. To resolve
the complexity of the open H-COVER problems mentioned in the introduction,
it will probably be necessary to generalize Lemma 6 to all graphs, hence its proof
is of special interest.

Recall that the simple (p, q)-cover of H has |V (H)| · q(p + 1) vertices. For
simplicity we write u(i−1)q+j for the vertex ((u, a), b), when a is the i-th vertex
of Kq, and b is the j-th vertex of Kp+1.

Lemma 6. If T ′ is a tree isomorphic to a connected component of the subtree
of T induced by some subset of degree refinement blocks B′

T ⊆ BT , and the degree
refinement of T ′ is identical to B′

T restricted to T ′, then T ′(p, q)-COLORING
reduces to T (p, q)-COLORING, for every p and q.

Proof. We can assume q �= 0, otherwise both T ′(p, q)-COLORING and T (p, q)-
COLORING are solvable in polynomial time, and the reduction follows trivially.

For every u ∈ T ′ let Tu denote the component of (V (T ), E(T ) \ E(T ′))
containing u, i.e., the part of T which hangs from u, but which does not belong
to T ′. Clearly trees Tu and Tu′ are isomorphic if u and u′ belong to the same
degree refinement block.

Let G′ be an instance of T ′(p, q)-COLORING. We may assume, that the
blocks in the degree refinement of G′, BG′ = {B1(G′), . . . , Bt(G′)}, correspond
to the blocks B′

T , otherwise G′ has no T ′(p, q)-coloring. We construct a graph G
which will have a T (p, q)-coloring if and only if G′ has a T ′(p, q)-coloring.

For every vertex v ∈ V (G′) there is a gadget Fv. For v ∈ Bi(G′) Fv is
constructed by taking the simple (p, q)-cover of Tu, for an arbitrary vertex
u ∈ Bi(T ′), and removing the edges connecting the q(p+1) copies u1, . . . , uq(p+1)

of vertex u. Note that gadgets Fv and Fv′ are isomorphic for vertices v and v′

from the same degree refinement block. G is constructed by making q(p + 1)
disjoint copies of G, where the a-th copy of a vertex v ∈ V (G′) is labeled va. For
every vertex v ∈ V (G) we insert the gadget Fv, and identify vertex va from the
a-th copy of G and vertex ua from Fv.

For an example of the construction of G see Fig. 3. The example shows a
reduction from P2(2, 1)-COLORING, where P2 appears as a block in T indicated
by the white vertices. For a white vertex u ∈ V (T ), the tree Tu is depicted in
the upper right corner together with the gadget Fv, the dotted edges connecting
copies of u are removed. An instance G′ and the constructed graph G are depicted
in the lower part. The dashed edges are those that belong to the copies of G′,
while the solid edges belong to the gadgets Fv.

Let BG = {B1(G), . . . , Bt(G)} be the degree refinement of G. We claim, that
each Bi(G) corresponds to the block Bi(T ) ∈ BT . Every vertex v ∈ Bi(G′) is
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G′ G

u

Tu

T

Fv

Fig. 3. Constructed graph G has a T (2, 1)-coloring if and only if G′ has T ′(2, 1)-
coloring, for T ′ = P2

connected to exactly p neighbors inside Bi(G′), in G; every copy of va is therefore
connected to the same p neighbors inside the a-th copy of G′. Similarly, va has the
correct number of neighbors in every other block Bj(G). Take any u ∈ Bi(T ),
for Bj(G′) ∈ BG′ , |N(va) ∩ Bj(G)| = |N(v) ∩ Bj(G′)| = q · |N(u) ∩ Bj(T )|
holds inside each copy of G′, and for Bj(G) /∈ BG′ we get the same equality,
|N(va) ∩ Bj(G)| = q · |N(u) ∩ Bj(T )|, due to the construction of the simple
(p, q)-cover Fv of Tu. The properties of Fv assure the same for its vertices.

If G has a T (p, q)-coloring f , its restriction to a single copy of G′ is a T ′(p, q)-
coloring. Only vertices of T ′ (or its isomorphic copy in T ) may appear as colors
of G′, because the blocks in the degree refinement of T and G are in one-to-
one correspondence if any such T (p, q)-coloring exists. Conversely, any T ′(p, q)-
coloring f ′ of G′ can be extended to a T (p, q)-coloring f of G; we use the same
mapping on each copy of G′, i.e. f(va) = f ′(v) for all 1 ≤ a ≤ q(p + 1), and
extend it to each Fv as described in Lemma 1. 
�

Lemma 7. If no block in the degree refinement of H contains an edge, then
H(p, q)-COLORING reduces to H(p + 1, q)-COLORING, for every p and q.

Lemma 8. P2(p, q)-COLORING is NP-complete if p ≥ 1, q ≥ 1, except for the
case p = q = 1.

Lemma 9. P3(p, q)-COLORING is NP-complete if either:

(1) p = 0, q ≥ 3, or
(2) p = 1, q = 2.
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Lemma 10. Sk(0, q)-COLORING is NP-complete for k ≥ 2 if q ≥ 3.

Lemma 11. Sk(p, q)-COLORING is NP-complete for k ≥ 3 if either:

(1) p = 1, q = 1, or
(2) p = 1, q = 2.

Lemma 12. T (0, 2)-COLORING is NP-complete for every tree T whose de-
gree refinement consists of three blocks, one of size 1 and the others of size at
least 2.

Lemma 13. If T is a tree with one degree refinement block consisting of ex-
actly one vertex u, and 2T is the tree made from two disjoint copies of T , T1

and T2, joined by the edge u1u2, then T (p, q)-COLORING reduces to 2T (p, q)-
COLORING, for every p and q.

5 Completing the Proof

In the following we write v ≈G v′ if vertices v, v′ ∈ V (G) belong to the same
block in the degree refinement of G.

Lemma 14. For any tree T with degree refinement BT , one of the following
cases applies:

(1) All blocks of BT contain only one vertex,
(2) there exists a block Bi(T ) ∈ BT of size 2, whose vertices induce an edge,
(3) there exists two adjacent blocks Bi(T ), Bj(T ) ∈ BT whose vertices induce a

disjoint union of stars Sk, k ≥ 3, or
(4) for all pairs of adjacent blocks Bi(T ), Bj(T ) ∈ BT , their vertices either induce

a perfect matching or a disjoint union of paths P3 = S2, and at least one
pair inducing a P3 exists in T .

Proof. Assume T has at least two distinct vertices u ≈T u′, otherwise the
first case applies. Since T is connected, u and u′ are connected by a path
P = v1, . . . , vk with u = v1 and u′ = vk as its terminals. The fact u ≈T u′

implies vi ≈T vk+1−i. Therefore, if P is of odd length, its center v�k/2, v	k/2

induces an edge and the second case applies.

Otherwise vertices of two adjacent blocks always induce a disjoint union of
stars Sk, k ≥ 1. The last two cases distinguish whether an induced star Sk, k ≥ 3
exists, or not. 
�

Proof of Theorem 1. Throughout this case study we assume that the degree
refinement of the tree T contains at least one block of size 2 or more, other-
wise a polynomial-time algorithm follows from Theorem 3. There are nine cases
depending on the values of p and q.
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A. p = 0.

A1. q = 1. This case is equivalent to the tree-isomorphism problem, which is
solvable in polynomial time, even if T is not fixed.

A2. q = 2. Assume T does not satisfy the conditions of Lemma 4. Since the
center of any tree is always of size at most 2, the degree refinement of T
contains two adjacent blocks Bi(T ) and Bj(T ), with |Bi(T )| < |Bj(T )|,
and neither Bi(T ) nor Bj(T ) contain leaves. Hence, Bj(T ) is adjacent
to another block Bk(T ), |Bj(T )| ≤ |Bk(T )|. A connected component
T ′ of the subtree of T induced by Bi(T ) ∪ Bj(T ) ∪ Bk(T ) satisfies the
properties of Lemma 12, possibly with the application of Lemma 13. We
apply Lemma 6 to T ′ to show NP-completeness for T .

A3. q ≥ 3. Assume T does not satisfy the conditions of Lemma 2. The degree
refinement of T must then contain two adjacent blocks Bi(T ) and Bj(T ),
with |Bi(T )| �= |Bj(T )|. Any connected component T ′ of the subtree
induced by Bi∪Bj is either isomorphic to Sk, k ≥ 2, or to two such stars
linked as described in Lemma 13. NP-completeness for T follows from
Lemmata 10 and 6.

B. p = 1.

B1. q = 1. Assume T does not satisfy the conditions of Lemma 5. Since
mij ≥ 3, any connected component T ′ of T , restricted to Bi(T )∪Bj(T ), is
either isomorphic to a star Sk, k ≥ 3, or two such stars linked as described
in Lemma 13. NP-completeness for T follows from Lemmata 11 and 6.

B2. q = 2. By Lemma 14, T either contains (in the sense of Lemma 6) a
block-induced subtree isomorphic to
∗ P2, in which case NP-completeness for T follows from Lemma 8,
∗ Sk, k ≥ 3, in which case NP-completeness for T follows from

Lemma 11, or
∗ P3 = S2, in which case NP-completeness for T follows from

Lemma 9.
B3. q ≥ 3. As for B2 above. For a P2 contained in T NP-completeness follows

from Lemma 8, for P3 from Lemmata 9 and 7, and for Sk, k ≥ 3 from
Lemmata 10 and 7.

C. p ≥ 2.

C1. q = 1. Assume T does not satisfy the conditions of Lemma 5. The degree
refinement of T must then either contain a block Bi(T ) inducing a P2, or
a pair of blocks Bi(T ) and Bj(T ) inducing an Sk, k ≥ 3. In the former
case NP-completeness for T follows from Lemma 8, in the latter from
Lemmata 10 and 7.

C2. q = 2. As for B2 above. For a P2 contained in T NP-completeness follows
from Lemma 8, for P3 from Lemmata 9 and 7, and for Sk, k ≥ 3 from
Lemmata 11 and 7.

C3. q ≥ 3. As for C2 above, with Lemma 10 instead of Lemma 11. 
�
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Abstract. The oriented diameter of a (undirected) graph G is the small-
est diameter among all the diameters of strongly connected orientations
of G. We study algorithmic aspects of determining the oriented diameter
of a chordal graph. We
– give a linear time algorithm such that, for a given chordal graph G,

either concludes that there is no strongly connected orientation of
G, or finds a strongly connected orientation of G with diameter at
most twice the diameter of G plus one;

– prove that the corresponding decision problem remains NP -complete
even when restricted to a small subclass of chordal graphs called split
graphs;

– show that unless P = NP , there is neither a polynomial-time ab-
solute approximation algorithm nor an α-approximation (for every
α < 3

2
) algorithm computing oriented diameter of a chordal graph.

Keywords: Diameter, orientation, chordal graph, approximation algo-
rithm.

1 Introduction

A variety of different diameter problems are discussed in the literature (see the
survey of Chung [3] for further references), including the problem of finding ori-
entations for undirected or mixed graphs to minimize diameters. This problem
has a long history. In 1939 Robbins [14] proved that an undirected graph G ad-
mits a strongly connected orientation if and only if G is connected and bridgeless.
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More recently, Chung, Garey and Tarjan [4] provided a linear-time algorithm for
testing whether a graph has a strong orientation and finding one if it does.

Chvátal and Thomassen [5], studied the following question: How are the
diameter of a graph G and the diameter of a strongly connected orientation of
G related? This leads to the following problem:

Oriented Diameter Problem (ODP): Given a graph G, find a strongly
connected orientation H with the smallest diameter.

This question is very basic and natural. We refer to Chapter 2 of Roberts
book [15] and to Chapter 2 of Bang-Jensen & Gutin book [1] for some nice
applications and discussions of oriented diameter problem.

1.1 Definitions

Let G be either a simple graph or a digraph with vertex set V (G) and edge set
E(G). By {u, v} we denote the undirected edge with ends in u and v and by
(u, v) we denote the directed arc, directed from u toward v. The distance dG(u, v)
between two vertices u and v of G is the length of the shortest path (the shortest
directed path if G is directed) between u and v in the graph G (from u to v if
G is directed). If there is no path from u to v then we put dG(u, v) = +∞.
The diameter of a graph G, denoted by diam(G), is defined to be the maximum
distance between two vertices of G. Thus diam(G) = max{dG(u, v) : u, v ∈
V (G)}. We denote by dH(u, v) = max{dH(u, v), dH(v, u)}.

An orientation of an undirected graph G is a directed graph whose arcs
correspond to assignments of directions to the edges of G. An orientation H of
G is strongly connected if every two vertices in H are mutually reachable in H
(diam(H) < +∞). An edge e in a connected graph G is called a bridge if G− e
is not connected. A connected graph G is bridgeless if G − e is connected for
every edge e, i.e. there is no bridge in G. For a graph G let us define its oriented
diameter.

OD(G) = min{diam(H) : H is an orientation of G}.
As it was proved by Robbins in 1939, if G is not connected or has a bridge,

then there is no strongly connected orientation of G. In that case OD(G) = +∞.
Further we consider only connected bridgeless graphs and strongly connected
orientations.

We say that an algorithm A is an (α, k)-approximation algorithm for ODP

if for every graph G it runs in polynomial time and outputs an orientation H of
G such that diam(H) ≤ αOD(G) + k.

An (α, 0)-approximation algorithm for ODP is called an α-approximation
algorithm for ODP and an (1, k)−approximation algorithm for ODP is called
an absolute approximation algorithm for ODP.

A chord of a cycle C in G is an edge not in C that has both end in C. A
chordless cycle in G is a cycle of length more than three that has no chord. A
graph G is chordal if it contains no chordless cycle.



The Complexity of Approximating the Oriented Diameter of Chordal Graphs 213

1.2 Known Results

Chvátal and Thomassen [5] showed that ODP is NP -hard for general graphs.
Therefore, there is a natural interest to investigate the complexity issues of ODP

for different graph classes.
Some graph classes for which ODP can be computed are known. However,

the direction of previous studies were mainly directed on finding graph classes
for which oriented diameter is equal to the diameter of a graph. Koh and Tay [11]
study ODP for the Cartesian products of several simple graph classes. Šoltés [18]
obtained some results on complete bipartite graphs and Gutin [9] investigated
n-partite complete graphs. Konig, Krumme & Lazard [12] study the orientation
problem on the torus. The case of planar grids was studied by Roberts & Xu
[16].

Chung [3] discusses some implications and results on ODP in context of
network routing. The surveys of Hedetniemi, Hedetniemi & Liestman [10] and
Fraigniaud & Lazard [7] stress the importance of ODP in study communication
networks problems like broadcasting and gossiping. Discussion on one-way street
arrangements problems and it relation to ODPcan be found in the book of
Roberts [15].

Chordal graphs form very well investigated class of graphs. They have well un-
derstood nice properties and many NP hard problems like Coloring, Clique,
Independent Set can be solved fast when the input is restricted to chordal
graphs. We refer to Golumbic book [8] for the introduction and to Brandstädt,
Le, & Spinrad book [2] for more recent results on chordal graphs.

Not much was known about the algorithmic aspects of ODPd for chordal
graphs. Chvátal and Thomassen [5] proved that every bridgeless connected graph
G admits a strongly connected orientation H with the property

(P) If an edge {u, v} belongs to a cycle in G of length k, then (u, v) or (v, u)
belongs to a directed cycle in H of length at most (k − 2)2[(k−1)/2] + 2.

For a graph G where every edge belongs to a triangle, Property (P) tell us
that the oriented diameter of G is at most 3 times the diameter of G. Connected
bridgeless chordal graphs are graphs for which every edge belongs to a triangle.
Therefore, Property (P) suggests the existence of a 3-approximation algorithm
for ODP when restricted to chordal graphs. The searching of both better ap-
proximation algorithms and hardness results for ODP when restricted to chordal
graphs, motivates this paper.

1.3 Our Contribution

In Section 2 we show that for every chordal graph G there exists computable in
linear time orientation H such that for every pair of vertices u and v, dH(u, v) ≤
2dG(u, v) + 1. Notice that this result implies that for chordal graphs ODP is
(2, 1)−approximable. To show that the bound is sharp we construct an infinite
sequence of chordal graphs such that for every graph G from this sequence any
orientation of G has diameter at least 2 diam(G) + 1.
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In Section 3 we prove that ODP remains NP -hard in the subclass of chordal
graphs called split graphs. Moreover, we prove two non approximability results:
first, for every α < 3

2 ODP is not α−approximable in the class of split graphs;
second, there is no absolute approximation algorithm for ODP when restricted
to chordal graphs.

2 Positive Results

Our algorithmical contribution is stated in the following theorem.

Theorem 1. There is a linear time (2, 1)-approximation algorithm for ODP in
the class of chordal graphs.

Theorem 1 follows from the next much stronger result.

Theorem 2. For every bridgeless connected chordal graph G there exists com-
putable in linear time orientation H such that, for every pair of vertices u and
v, dH(u, v) ≤ 2dG(u, v) + 1.

Notice that Theorem 2 is an improvement of the bound of Chvátal and
Thomassen applied to chordal graphs. Moreover, as stated in Theorem 3, this
bound is the best possible.

Theorem 3. For every n ≥ 1 there exists a chordal graph Gn such that
diam(Gn) = 2n + 1 and diam(H) ≥ 2 diam(Gn) + 1 for every orientation H
of Gn.

Proof. Figure 1 shows a chordal graph G2 of diameter 5 for which there is no
orientation with diameter smaller than 2 · 5 + 1. This construction can be easily
generalized to larger graphs. For details, see the full version of this paper. 
�

Fig. 1. Connected bridgeless chordal graph of diameter 5.
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The rest of this section is devoted to the proof of Theorem 2. The proof of
this theorem is indirect. First we prove that every 2-connected chordal graph has
a special orientation that can be obtained from his perfect elimination ordering
(Lemma 3). Then we use this orientation to prove the theorem for 2-connected
graphs and only then extend the result on bridgeless graphs.

Let us begin with some definitions. For a given chordal graph G and an
orientation H of its edges we say that an arc in H is good if it belongs to a
directed triangle and it is bad otherwise. A good orientation is an orientation
leaving every arc good. Let Kn be the complete graph with n vertices.

In order to orient chordal graphs we need first to construct good orientations
of complete graphs Kn for n ≥ 5.

Lemma 1. For every n ≥ 5 there exists a good orientation of Kn. Moreover,
every good orientation of Kn can be extended to a good orientation of Kn+1 and
this extension can be found in linear time.

Proof. Let us think that Kn+1 is obtained from Kn by adding new vertex v and
let Hn be a good orientation of Kn.

If n is even then a good orientation of Kn+1 can be obtained from orientation
of Kn by forming n

2 directed triangles using all edges adjacent to v. The orien-
tation of every triangle is induced by the arc from Hn. Clearly, this orientation
can be done in O(n) steps.

Suppose that n is odd. Observe first that for any n ≥ 4 and every orientation
H of Kn there are three vertices in Kn inducing a triangle that is not strongly
connected. Let a, b and c be such vertices for the orientation Hn. W.l.o.g. we may
think that the arcs in H are of the form (a, b), (a, c) and (b, c). The remaining
n− 3 edges adjacent to v are in (n− 3)/2 triangles, each of the triangles having
one arc in Kn. We orient these edges as in the previous case. So to obtain the
orientation of Kn+1 one should choose four arbitrary vertices in Kn and find
three vertices that do not undue strongly connected triangle. This can be done
in constant number of steps. And the orientation of the remaining n − 3 edges
can be done in O(n) steps. 
�

Notice that for n = 4 the statement of Lemma 1 is not true. In terms of
diameter we have the following corollary which will be used in Section 3.

Corollary 1. For every n ≥ 4 there exists an orientation of Kn with diameter
2 if n ≥ 5, and with diameter 3 if n = 4.

We first consider 2-connected chordal graphs. A connected graph G is said to
be 2-connected if for every vertex v, the graph G−{v} is connected. At the end
of the section we show how to orient a chordal graph G by using the orientations
of its 2-connected components.

A vertex v in a graph G is called simplicial if the graph induced by its
neighborhood NG(v) is a clique. By the classical result of Dirac [6], chordal
graphs have been characterized as those having a perfect elimination ordering.
This is a vertex ordering {v1, . . . , vn} such that for every i ∈ {1, . . . , n}, the
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vertex vi is simplicial in Gi := G[v1, . . . , vi] (where G[S] denotes the graph
induced by the vertex set S). A perfect elimination ordering of a chordal graph
can be found in linear time by using LexBFS (see the pioneering paper of Rose,
Tarjan & Lueker [17]).

The idea of our construction is to orient all the edges incident to vi in
G[v1, . . . , vi] sequentially (following the perfect elimination ordering). If a chordal
graph doesn’t contain a maximal clique of size 4 then using Lemma 1 one can
construct an orientation of G with diameter at most 2 diam(G) easily. The main
problem we have to deal with is the existence of the non good orientable cliques
K4 in chordal graphs.

Let δ = (v1, . . . , vn) be a perfect elimination ordering of chordal graph G. We
say that vertex vi is super-simplicial (subject to δ) if N(vi)∩{vi, vi+1, . . . , vn} =
∅. Notice that every super-simplicial vertex is simplicial but not vice versa.

We need the following technical lemma about super-simplicial vertices.

Lemma 2. Let δ = (v1, . . . , vn) be a perfect elimination ordering of a 2-
connected chordal graph G. Then if vi is not super-simplicial and N(vi) ∩ {v1,
v2, . . . , vi−1} �= ∅ then there are k > i > l such that vk, vi, vl is a clique in G.

Proof. Let vp and vq, p > i > q, be vertices adjacent to vi. If {vp, vq} ∈ E(G)
then {vp, vq, vi} induce a clique and the lemma is proved. If {vp, vq} �∈ E(G)
then vertices {vp, vq, vi} belong to a cycle C in G (G is 2-connected). We choose
C to have the shortest length among all cycles containing {vp, vq, vi}. Notice
that the length of C is at least 4. The cycle contains at least one vertex which
is before (in δ) vi and at least one vertex that is after vi. Therefore, there are
two adjacent vertices vp′ , vq′ with p′ > i > q′. Because C is the shortest cycle,
the only chords in this cycle are the edges adjacent to vi. Then chordality of
G implies that vi is adjacent to vp′ and vq′ which concludes the proof of the
lemma. 
�

Lemma 3. There exists a linear time algorithm that given a 2-connected chordal
graph G and a perfect elimination ordering {v1, . . . , vn} of V (G) computes an
orientation H with the following properties.

(a) Every maximal clique in G has at most one bad arc in H.
(b) If (u, v) is a bad arc in H then u is a simplicial vertex (in the perfect elimi-

nation ordering) of V (G).
(c) For every v ∈ V (G), dH(v, v1) ≤ 2dG(v, v1).
(d) Every clique in H has diameter at most 3.

Proof. Iteratively, for k = 3, . . . , n we construct an orientation Hk of Gk =
G[v1, . . . , vk] with the following properties.

(P1) Every bad arc belongs to a maximal clique (in Hk) of size four or two.
(P2) At most one arc is bad in each maximal clique.
(P3) If (u, v) is a bad arc in H then u is either a super-simplicial vertex in G

or the vertices u, v are used in some step j > k to form a new clique, i.e.
u, v ∈ NGj

[vj ] for some j > k.
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Clearly, for k = 3 such an orientation exists. We extend the orientation Hk

to an orientation Hk+1 of Gk+1 satisfying properties (P1), (P2) and (P3).
Suppose that NGk+1(vk+1) = {u1, ..., ur}. Notice that r ≥ 2 since G is 2-

connected.

1. If r > 4 then by (P1) we have that every arc in Hk [u1, ..., ur] is good. We
use Lemma 1 to get a good orientation of G [u1, ..., ur, vk+1].

2. For r = 4 we use Lemma 1 to get a good orientation of G [u1, ..., ur, vk+1].
For r = 2 we orient new edges in a directed triangle following the orientation
given to {u1, u2}. In both cases the bad arc in Hk (if any) belongs to one of
the directed triangles in H [u1, ..., ur, vk+1] and is good in Hk+1.

3. For r = 3 we consider three cases.
(i) If Hk [u1, u2, u3] contains a bad arc, say (u1, u2), then we direct the new

edges obtaining the following arcs: (u2, vk+1) and (vk+1, u1). Moreover,
if (u1, u3) ∈ Hk then we add (u3, vk+1) to Hk+1. Otherwise we add
(vk+1, u3) to Hk+1. Then the arcs (u2, vk+1), (vk+1, u1) and (u1, u2) are
in a directed triangle and the arc between vk+1 and u3 is also in a directed
triangle.

(ii) If Hk [u1, u2, u3] has no bad arcs and vk+1 is not super-simplicial (with
respect to the perfect elimination ordering) then by Lemma 2 at least
one edge, say, with ends in {vk+1, u1}, is used in a step j > k. Then we
direct edges {vk+1, u2} and {vk+1, u3} to form a directed triangle with
arc (u2, u3) (or (u3, u2)) and we add the bad arc (vk+1, u1).

(iii) If Hk [u1, u2, u3] has no bad arcs and vk+1 is super-simplicial then we
direct edges {vk+1, u2} and {vk+1, u3} to form a directed triangle with
arc (u2, u3) (or (u3, u2)) and we add the bad arc (vk+1, u1), where the
vertex u2 has among all ui the minimum distance in G to v1.

It is easy to see that the orientation Hk+1 satisfies properties (P1), (P2) and
(P3).

Clearly the orientation H satisfies properties (a) and (b). We prove that H
satisfies Property (c) by induction in k. As before let {u1, . . . , ur}=NGk+1(vk+1).
Let us assume that for all v ∈ Gk

dH(v1, v) ≤ 2dG(v1, v) (1)

If there is no bad arcs in H connecting vk+1 with u1, . . . , ur we have that
dH(ui, vk+1) ≤ 2 for all i = 1, . . . , r and (1) holds for Gk+1.

If vk+1 is connected to some ui by a bad arc in H then r = 3, {u1, u2, u3}
induces a directed triangle in H and vk+1 is a simplicial vertex of G. Therefore
dG(v1, vk+1) = dG(v1, u2) + 1 where u2 is the vertex having minimum distance
to v1 in G, among all ui, i = 1, 2, 3. By the construction of H, there exists a
directed triangle that contains vk+1 and u2 which implies that dH(u2, vk+1) ≤ 2.
Therefore dH(v1, vk+1) ≤ 2dG(v1, u2) + 2 = 2dG(v1, vk+1). Property (d) follows
from (P2).

Finally, we claim that for every k the orientation of the arcs adjacent to vk+1

during the extension of orientation Hk to Hk+1 can be performed in O(|N(vk)|).
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We assume that the set of super-simplicial vertices is known. (Clearly this set
can be computed in linear time O(

∑
v∈V (G) |N(v)|) = O(|E(G)|).)

If we are in the cases 1 or 2 then the orientation of arcs can be performed in
O(|N(vk)|) steps by Lemma 1. If we are in case 3 then subcase (i) is performed
in a constant number of steps. For subcases (ii) we should be able to find an
edge adjacent to vk+1 that will be turned into a bad arc. To find this edge we
need a vertex from {u1, u2, u3} which is adjacent to a vertex vj , j > k + 1. This
can be done in linear time. The subcase (iii) takes constant number of steps.

Finally, the complexity of the algorithm is O(
∑

1≤k≤n |N(vk)|) = O(|E(G)|).

�

Lemma 4. There exists a linear time algorithm that given a 2-connected chordal
graph G computes an orientation H such that, for every pair of vertices u and
v, dH(u, v) ≤ 2dG(u, v) + 1.

Proof. Given G the algorithm first computes (in linear time) a perfect elimina-
tion ordering and then the orientation H (in linear time) given by Lemma 3. We
prove that H has the desired property.

Take u, v ∈ V (G) and let P be a shortest (u, v)−path in G. If dG(u, v) = 1
then u, v are in some clique C, |C| ≥ 3. From Property (d) we have dH(u, v) ≤ 3.

Suppose that dG(u, v) > 1. Clearly, the inner vertices of P cannot be simpli-
cial; therefore each arc in H associated to some inner edge of P is contained in
a directed triangle in H.

If the arc associated to the edge in P incident to u is bad then u is simplicial
and the arc is directed from u in the orientation H. Therefore, if the arc e
associated to the edge of P incident with v is contained in a directed triangle
(in H), then we get dH(u, v) ≤ 2dG(u, v).

If the arc e is bad then v is simplicial and e = (y, v). But dH(y, v) ≤ 3.
Hence, dH(u, v) ≤ dH(u, y) + dH(y, v) ≤ 2dG(u, y) + 3 = 2dG(u, v) + 1. 
�

Considering the special rôle that vertex v1 plays in the orientation H obtained
in Lemma 3, we say that H is rooted in v1 and by extension we say that G is
rooted in v1.

Proof of Theorem 2. For a simplicial decomposition {v1, . . . , vn}, we consider
the 2-connected component C0 of G that contains v1 and we orient it as in
Lemma 4. The set of 2-connected components has a tree-like structure T which
we consider rooted in C0. By the classical result of Tarjan [19], the tree-like
structure of 2-connected component can be computed in linear time. Notice that
the notion of father and sons of a 2-connected component is well defined. For
every 2-connected component C we define its father cut vertex as the unique
vertex in C which belongs to its father.

To each 2-connected component we assign an orientation as in Lemma 3
rooted in its father cut vertex. Let H be the orientation of G so obtained. In
each 2-connected component the construction of H is done in linear time by
Lemma 3. the orientation H is computable in linear time.
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Let u and v be two vertices of G and let P be a shortest path between u
and v in G. If P has no cut points then u and v lay in the same 2-connected
component. From Lemma 4 and the construction of H we have dH(u, v) ≤
2dG(u, v) + 1. Otherwise, let u1, . . . , ur be the cut points in P and Ci the 2-
connected component containing ui and ui+1 for i = 1, . . . , r − 1. Notice that
for at most one i0 neither ui0 nor ui0+1 are father cut vertices of Ci0 . From the
construction of H we know that dH(ui, ui+1) ≤ 2dG(ui, ui+1) for all i = 1, . . . , r
not equal to i0 (in this case dH(ui0 , ui0+1) ≤ 2dG(ui0 , ui0+1) + 1). Therefore,
dH(u, v) ≤ 2dG(u, v) + 1. 
�

3 Negative Results

Our first step is to prove the NP -hardness of ODP for chordal graphs. In fact
we will prove a stronger result: The NP -hardness of ODP for split graphs. A
graph G is a split graph if its vertex set V (G) can be partitioned into sets C
and I such that C is a clique and I is an independent set. Split graphs form a
subclass of chordal graphs of diameter at most 3.

Our proof, inspired by the one of Chvátal and Thomassen [5], relies on the
NP -completeness of the 2-coloring problem for hypergraphs obtained by Lovász
[13]. Let us recall that a hypergraph H is called 2-colorable if its vertices can be
colored red and blue in such a way that every edge includes at least one vertex
of each color.

Lemma 5. For every k ≥ 0 and for every hypergraph H there exists a chordal
graph Gk

H (split graph for k = 0) such that if H is 2-colorable then OD(Gk
H) =

2(k + 1) and if H is not 2-colorable then OD(Gk
H) = 3(k + 1)

Proof. We first consider the case k = 0. For a given hypergraph H, we will
construct a split graph G0

H = GH such that H is 2-colorable if and only if there
is an orientation of GH of diameter 2. Let H be a hypergraph with vertex set V
of size n and edge set E of size m.

The clique C of GH contains n+ 2m+ 2 vertices. More precisely, C = V ∪Y
with V = {v1, v2, . . . , vn} being the vertex set of H, and Y = {α, β} ∪ E1 ∪ E2

where E1 and E2 are copies of the edge set E of H. The independent set I of
GH contains m + 1 vertices. More precisely, I = {x} ∪ E.

Now let us explain how to connect the vertices of I with those of C. The
vertex x is connected to all the vertices of V . A vertex e ∈ E is connected to a
vertex v ∈ V if and only if v ∈ e (in the hypergraph H). Finally, every vertex
y ∈ Y is connected to every vertex e of E. Clearly, OD(GH) ≤ 3.

Let D be an orientation of GH of diameter two. The way we color every vertex
v of the hypergraph H is the following: If according to D, the edge connecting
vertex x with v is oriented towards v, then we color it red (otherwise we color
it blue). Since for every vertex e ∈ E the distance dD(x, e) = dD(e, x) = 2, it
follows that every edge e in H contains a red and a blue vertex.

Now let us suppose that H is 2-colorable. Let us denote by R and B the
set of red and blue vertices in V . We partition the sets R and B as follows:



220 Fedor V. Fomin, Mart́ın Matamala, and Ivan Rapaport

R = {r} ∪ R′, B = {b} ∪ B′ (we just need the sets R′, B′, E1, E2 to have more
than 5 elements; we can assume without loss of generality that the 2-coloring
problem is restricted to instances satisfying this). In Corollary 1, we showed that
we can orient the internal edges of R′, B′, E1, E2 in order to achieve, for each
subgraph, an internal diameter 2.

The rest of the orientation is described in the following 0−1 matrix. A value
1 in the position (P,Q) means that all the edges connecting the vertices of P
with those of Q are oriented from P towards Q.

x r R′ b B′ α β E E1 E2

x 1 1
r 1 1 1
R′ 1 1 1
b 1 1 1
B′ 1 1 1
α 1 1 1 1
β 1 1 1 1
E 1 1
E1 1 1 1 1
E2 1 1 1 1

The only edges that have not been oriented yet are those connecting the subsets
R and B with E. By orienting them we will solve the problem of reaching E
from x and reaching x from E. The solution is easy: We orient all the edges
between R and E from R towards E and all the edges between B and E from
E towards B.

The last problem is to reach any e ∈ E from any other e′ ∈ E. For achiev-
ing this we slightly modify the orientation between the sets E,E1 and E2. We
identify m disjoint directed triangles of the form e→ e1 → e2 → e, with e ∈ E,
e1 ∈ E1 and e2 ∈ E2, and we reverse the order getting e2 → e1 → e → e2. The
reader should be able to verify that the diameter of D is at most 2.

For k > 0 the chordal graph Gk
H is constructed from several copies of the split

graph G0
H = (C, {e1, . . . , em, x}) arranged in a tree-like structure (see Figure 2).

In this way we are able to “amplify the gap” of the diameter of G0
H according to

the colorability of H. The details can be found in the full version of this paper.

�

Theorem 4. ODP is NP -hard for split graphs.

Proof. Taking k = 0 in Lemma 5 the 2-coloring problem for hypergraphs can be
reduced to ODP in polynomial time. 
�

Now we prove two results concerning the hardness of approximating the
oriented diameter.

Theorem 5. Let α < 3
2 . Unless P = NP , ODP has no α-approximation algo-

rithm for split graphs.
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Fig. 2. Tree-like structure of G2
H.

Proof. Let A(G) be the orientation assigned to a graph G by an α-approximation
algorithm for ODP. If H is 2-colorable then GH has diameter 2. Thus
diam(A(GH)) ≤ 2α < 3. On the other hand, if H is not 2-colorable then every
orientation of the graph GH has diameter at least 3. Whence diam(A(GH)) ≥
3. Therefore, since GH can be constructed in polynomial time, by knowing
diam(A(GH)) we can decide the 2-colorability of H. 
�

Theorem 6. Unless P = NP , there is no absolute approximation algorithm for
ODP when restricted to chordal graphs.

Proof. Let us assume that there exist K and an absolute approximation algo-
rithm for ODP such that diam(A(G)) ≤ OD(G) + K. By using this algorithm
we could decide the 2-coloring problem for hypergraphs. Let H be a hypergraph
and k > K. From Lemma 5 there exists a chordal graph Gk

H computable in
polynomial time such that, if H is 2-colorable, then Gk

H has diameter 2k + 2.
Thus diam(A(Gk

H)) ≤ 2k + 2 + K < 3k + 2. And, if H is not 2-colorable then
Gk

H has diameter 3k + 2. Thus diam(A(Gk
H)) ≥ 3k + 2. 
�

4 Concluding Remarks

In this paper we have provided linear time (2, 1)-approximation algorithm for
oriented diameter of chordal graphs. From another hand, we proved that for
every α < 3/2 finding an orientation with diameter at most α times the oriented
diameter is NP hard. The challenging question is to decrease the gap between
these lower and upper bounds. But even existence of 2-approximation algorithm
is an interesting open problem.
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Abstract. The Frequency Assignment Problem (FAP) in radio net-
works is the problem of assigning frequencies to transmitters exploiting
frequency reuse while keeping signal interference to acceptable levels.
The FAP is usually modelled by variations of the graph coloring problem.
The Radiocoloring (RC) of a graph G(V, E) is an assignment function
Φ : V → IN such that |Φ(u) − Φ(v)| ≥ 2, when u, v are neighbors in G,
and |Φ(u) − Φ(v)| ≥ 1 when the distance of u, v in G is two. The range
of frequencies used is called span. Here, we consider the optimization
version of the Radiocoloring Problem (RCP) of finding a radiocoloring
assignment of minimum span, called min span RCP.
In this paper, we deal with a variation of RCP: that of satisfying fre-
quency assignment requests with some periodic behavior. In this case,
the interference graph is an (infinite) periodic graph. Infinite periodic
graphs model finite networks that accept periodic (in time, e.g. daily)
requests for frequency assignment. Alternatively, they may model very
large networks produced by the repetition of a small graph.
A periodic graph G is defined by an infinite two-way sequence of repe-
titions of the same finite graph Gi(Vi, Ei). The edge set of G is derived
by connecting the vertices of each iteration Gi to some of the vertices
of the next iteration Gi+1, the same for all Gi. The model of periodic
graphs considered here is similar to that of periodic graphs in Orlin [13],
Marathe et al [10]. We focus on planar periodic graphs, because in many
cases real networks are planar and also because of their independent
mathematical interest. We give two basic results:
– We prove that the min span RCP is PSPACE-complete for periodic

planar graphs.
– We provide an O(n(Δ(Gi) + σ)) time algorithm, (where |Vi| = n,

Δ(Gi) is the maximum degree of the graph Gi and σ is the number
of edges connecting each Gi to Gi+1), which obtains a radiocoloring
of a periodic planar graph G that approximates the minimum span
within a ratio which tends to 2 as Δ(Gi) + σ tends to infinity.
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1 Introduction, Previous Work and Our Results

1.1 The Radiocoloring Problem

The Frequency Assignment Problem (FAP) in radio networks is a well-studied,
interesting and well motivated problem, aiming at assigning frequencies to trans-
mitters exploiting frequency reuse while keeping signal interference to acceptable
levels. The FAP is usually modeled by variations of the graph coloring problem.
The interference between transmitters is usually modelled by the interference
graph G(V,E), where the set V corresponds to the set of transmitters and E
represents distance constraints. The set of colors represents the available fre-
quencies. In addition, the color of each vertex in a particular assignment gets
an integer value which has to satisfy certain inequalities compared to the values
of colors of nearby nodes in the interference graph G (frequency-distance con-
straints). We study an important variation of FAP, the Radiocoloring Problem
(RCP):

Definition 1. Radiocoloring Problem (RCP): Given a graph G(V,E) con-
sider a function Φ : V → N such that |Φ(u) − Φ(v)| ≥ 2 if d(u, v) = 1 and
|Φ(u)−Φ(v)| ≥ 1 if d(u, v) = 2, where d(u, v) is the distance between u and v in
G. The function Φ is a radiocoloring (RC) of the graph G. We call the problem
of finding such an assignment the Radiocoloring Problem (RCP).

An important parameter of a radiocoloring assignment is the following:

Definition 2. span: The number ν = maxv∈V Φ(v)−minu∈V Φ(u) + 1 used in
a radiocoloring assignment Φ is called the span of the assignment Φ.

The optimization version of RCP corresponding to this parameter, considered
here, is the following:

Definition 3. min span RCP: Given a graph G, find a radiocoloring assign-
ment for the graph G of minimum span, denoted by Xspan(G).

Note that this version of RCP has been proved to be NP-hard even for planar
and other restricted families of ordinary graphs ([5,2]).

1.2 The Min Span RCP in Periodic Graphs

In this work we investigate the min span RCP for an interesting family of infinite
planar graphs, called periodic planar graphs. A periodic graph G is defined by
an infinite sequence of repetitions of the same finite graph Gi(Vi, Ei). The edge
set of G is derived by connecting some of the vertices of each iteration Gi to
some of the vertices of the next iteration Gi+1, the same for all iterations.

Infinite periodic graphs usually represent finite networks that accept periodic
(in time, e.g. daily) requests for frequency assignment. We note that periodic
interference graphs usually represent networks of great practical interest, since
in many networks the requests for frequency assignment exhibit some periodic
behavior. That is, the network accepts periodic (e.g. daily) requests for frequency



Radiocolorings in Periodic Planar Graphs 225

assignment. Each request has a starting and ending time and a node where it
is applied. Two requests interfere if they apply for nearby nodes and their time
intervals overlap. The assignment should be such that there is no time overlap
between any two nearby requests of the same or the preceding and following
periods of requests. Alternatively, infinite periodic graphs can model very large
networks produced by the repetition of a small graph. Note in this context that
many real networks consist of the repetition of the same component.

We focus here on planar periodic graphs, because in many cases real networks
are planar and because of the independent mathematical interest of this family
of graphs.

Definition 4. Linear Periodic Planar Graph G: A linear periodic planar
graph is defined as follows:

Let G̃ be an arbitrary finite connected planar graph. Let V the vertex set of
G̃. Let also E0 be the edge set of G̃. Let E+ be a specific set of ordered pairs (u, v)
of the nodes of G̃. Note that E+ must be a set of ordered pairs of vertices whose
connection according to the rule (c2) below leads to planarity preservation.

Consider the two-way infinite sequence of graphs . . . , Gi, Gi+1, . . ., where each
Gi is isomorphic to G̃. The infinite graph G is obtained from this sequence as
follows:

(a) We assume a line (in fact, any 1-dimensional infinite simple curve) on
which we select discrete points . . . , i, i + 1, i + 2, . . . , such that:

(a1) Each point in the line is replaced by G̃.
(a2) Each edge (i, i + 1) in the line is replaced by E+.
(a3) For any finite subset of consecutive points in the line, replacing the
points of the line by graphs G̃ end the edges between them by E+, the
resulting graph is planar.

(b) The vertex set of G is the union of the vertex sets of the sequence
. . . , Gi, Gi+1, . . ..
(c) The edges of G are (c1) The union of edge sets of the sequence of Gis
(i.e., the edge set E0 of G̃) (c2) For each pair of adjacent copies of G̃, call
them Gi, Gi+1, we use the E+ specification of G to connect the nodes of Gi

corresponding to the first elements of the pairs in E+ to the nodes of Gi+1,
corresponding to the second elements of the pairs in E+.

We denote a linear periodic planar graph by G = (G̃(V,E0), E+).

For an iteration i of G, Gi(Vi, Ei), let Ei− and Ei+ the set of edges connecting
Gi with the previous and next iterations of G, respectively. Note that both Ei−
and Ei+ are the same as E+ and that Gi is isomorphic to G̃.

Note that this model of infinite periodic graphs is similar to the model of
Orlin [13] for l-dimensional periodic graphs with l = 1. Our model is in fact
equivalent to 1-level-restricted periodic graphs in Marathe et al [10], which is a
special case of [13]. We consider the planar case of such graphs.

Definition 5. (G̃, E+): The pair G̃, E+ is called the finite specification of G.
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Observe that there can be infinite periodic graphs which are not linear. For
example, the periodic graph whose graph G̃ in its finite specification, is a cycle
connecting vertices a, b, c, d, and E+ = {(a, a), (b, b), (c, c), (d, d)}, is not a linear
periodic planar graph, since there is no line of discrete points such that each
point in the line can be replaced by G̃ and each edge of it can be replaced by
E+ leading to planarity.

Note 1. All our results refer to linear periodic planar graphs, which we call
periodic planar graphs in the sequel.

1.3 Our Results

1. We first prove that the min span RCP is PSPACE-complete for periodic
planar graphs. (The space is polynomial with respect to the size of the finite
specification G̃.)
2. We provide an O(n(Δ(Gi)+σ)) time algorithm, (where |Vi| = n, Δ(Gi) is
the maximum degree of the graph Gi and σ is the number of edges connecting
Gi to Gi+1), which obtains a radiocoloring of a periodic planar graph G that
approximates the minimum span within a ratio which tends to 2 as Δ(Gi)+σ
tends to infinity.
We remark that, any approximation algorithm for the min span RCP of a
finite planar graph G, that achieves a span of at most αΔ(G) + constant,
for any α and where Δ(G) is the maximum degree of G, can be used as
a subroutine in our algorithm to produce an approximation for min span
periodic planar RCP of asymptotic ratio α for periodic planar graphs.

1.4 Previous Work

The FAP has been considered in e.g. [4,1]. The problem of min span RCP for
ordinary planar graphs was proved to be NP-complete in [5,6,2]. In [5,1] the
authors provide an efficient approximation algorithm for the min order RCP of
planar graphs achieving an approximation ratio tending to 2 and 1.8 (for graphs
of large degree (Δ(G) ≥ 749)), respectively. The work of [2] presents efficient
approximations for some interesting families of graphs: outerplanar, bounded
treewidth, permutation and split graphs.

A model for periodic graphs (called l-dimensional periodic graphs) was first
presented by Orlin in [13]. The model of periodic graphs considered in this
work is similar to that of Orlin for the 1-dimensional case, l = 1 (also called 1-
dimensional periodically specified graphs or simply periodically specified graphs),
when restricted to planar instances.

The complexity of various basic problems of periodically specified graphs was
studied by Orlin [13] and Wanke [17]. In [13,11,16] it is proved that the problems
of Maximum Independent Set (MIS), Hamiltonial Path, Partition into Trian-
gles, SAT, 3-coloring for periodically specified graphs are PSPACE-complete.
The appoximability of basic problems on infinite periodic graphs was studied
by several researchers ([3,8,14]) giving efficient algorithms for solving problems
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such as determining strongly connected components, testing the existence of cy-
cles, bipartiteness, planarity and minimum cost spanning forests for periodically
specified graphs.

Marathe et al [10] presented several PSPACE-hardness results and also effi-
cient approximation schemes for partitioning problems including MIS, min vertex
cover and max-SAT for periodically specified graphs when restricted to planar in-
stances. However, their approximation technique for periodically specified graphs
(illustrated for the MIS problem) can not directly apply for coloring problems,
considered here, because it takes the union of partial solutions-subsets of the in-
finite graph and thus it does not consider all the vertices; something not allowed
in coloring problems.

Because of the page limit, we have included full proofs of some Lemmas and
Theorems in the full version of the paper [7].

2 Embeddings of Periodic Planar Graphs

In this paper, we use the notion of an embedding of a planar graph.

Definition 6. Planar Embedding (of a periodic graph G)([12]): For each
node v of G, there is an adjacency list, such that all neighbours of v appear in
clockwise order with respect to an actual drawing of G.

The following Lemma reveals important information about the structure of a
linear periodic planar graph.

Lemma 1. Any linear periodic planar graph G can be embedded in the plane by
interchanging at most two different planar embeddings of the graph obtained by
an iteration i of G, Gi (which is isomorphic to G̃) and the set of edges connecting
Gi with the previous and next iterations, sets Ei−, Ei+ (each of which is equal
to E+), called Extended G̃.

Proof. Observe first that there are cases where we need to interchange two dif-
ferent embeddings of the graph Extended G̃ in order to draw a linear periodic
planar graph preserving planarity. As an example, consider the periodic graph
whose graph G̃ in its finite specification is a single edge connecting two ver-
tices a, b, and E+ = {(a, b), (b, a)}. See the graph of Figure 1(a). We will show
that interchanging at most two different embeddings of the graph Extended G̃
is enough to draw any linear periodic planar graph G preserving planarity.

In order to check whether it is possible that three embeddings to be required,
we need to consider any 3 consecutive iterations of G. Recall that different
embeddings may be introduced because of the connections between nodes of
consecutive iterations. Hence, only nodes of the exterior face of each iteration
will be involved. So, we can view the three consecutive iterations as three cycles.
Moreover, we can consider three simple lines, since less edges are involved in the
embeddings of consecutive iterations in the case of lines compared to cycles.

Finally, observe that, in order for three or more planar embeddings to be
needed, we have to consider at least 3 nodes of Gi, assume a, b, c. So, we can
consider a line consisting of nodes a, b, c, having edges ab, bc (denoted by L3).
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Fig. 1. (a) For this graph we need to interchange two different embeddings of the
graph Extended G̃, in order to draw the periodic graph in the plane without crossings.
(b) The six possible ‘drawings’ of Line L3.

We distinguish 6 different ‘drawings’ of a line L3 in the plane (see Figure
1(b)). Note that some of them are equivalent embeddings with respect to defi-
nition 6 of a planar embedding. However, we consider all 6 of them since for an
iteration i each such drawing combined with sets of edges Ei− and Ei+ can result
in a distinct embedding of the graph Extended G̃. In our case the Extended G̃ is
the graph obtained by L3 of iteration i and a set of edges connecting L3 with the
previous and next iterations, (sets Ei−, Ei+). In the following, we use the term
‘drawing’ when we refer to any of these 6 drawings and the term ‘embedding’
when we refer to any of them together with an instance of sets Ei− and Ei+.

To check whether three embeddings may be needed, we need to check all
possible triples of these drawings. For each such triple, we check all possible
sets E+ that can lead to a linear periodic graph. For each such set, we show
that interchanging at most two of these six drawings in any two consecutive
iterations, is enough to draw the infinite graph in the plane. Recall that two
drawings (of consecutive iterations i and i + 1) combined with the sets of edges
connecting each iteration with next and previous iterations (sets Ei−, Ei+ and
E(i+1)−, E(i+1)+) result in two different embeddings of the graph Extended G̃.
Henceforth, interchanging two different embeddings of the graph Extended G̃
we can draw the infinite periodic planar graph in the plane without crossings.

By exhaustive check of all possible cases (see the full version [7]), we conclude
that in all cases, interchanging at most two embeddings of the graph G̃, is enough
to draw the linear periodic graph in the plane, without edge crossings. 
�

Lemma 2. Assume that we construct an infinite graph as in Definition 4 except
that instead of (a3) we have that for any three consecutive points of the line,
replacing each point by graph G̃ and the edges among consecutive points by E+,
the resulting graph is planar.

Then, the infinite graph thus constructed is a linear periodic planar graph.

Proof. The above requirement implies (a3) of Def. 4 because of Lemma 1. To see
why, observe that there are two possible ways to draw a linear periodic planar
graph: using the infinite sequence . . . , A,B,A, . . . or . . . , B,A,B, . . . (where A, B
are the two planar embeddings of G̃ needed). Our assumption guarantees that the
coexistence of AB and BA graphs (together with E+) has a planar embedding.
Thus, by induction, any longer string will also have a planar embedding. 
�
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3 The PSPACE-Completeness of Min Span RCP
for Periodic Planar Graphs

We prove have that min span RCP is PSPACE-complete for periodic planar
graphs. In order to show this, we need to prove that a number of problems are
PSPACE-complete. Our PSPACE-completeness proofs utilize known construc-
tions for the NP-completeness of corresponding problems for ordinary graphs.
However, note that applying those constructions on the infinite periodic graph
G we need infinite time to get the transformed graph G′ with the desired proper-
ties. We manage to apply the transformation only to a part of the infinite graph
(an iteration) and from the obtained graph to get the transformation of the
whole infinite periodic graph, thus the new graph G′, in time polynomial to the
size of the finite specification of G. Moreover, the new graph fulfills the desired
properties. These are achieved by exploiting some ‘locality characteristics’ that
the constructions utilized here exhibit, i.e. the construction applies locally on a
part (vertex or edge) of this part involving only information of the neighborhood
of the part and it affects only to this neighborhood. This, combined with the
repetitive structure of an infinite periodic graph enables us to get constructions
of polynomial time in the size of the finite specification of the graph.

Let any iteration Gi(Vi, Ei) of G and let Ei+ the set of edges connecting any
iteration Gi to the next iteration Gi+1. A constant period 4-edge coloring of a
periodic graph G is a 4-edge coloring of G that assigns to each edge uv of Ei and
Ei+ of any iteration Gi the same color as the color assigned to the corresponding
edge u′v′ of any other iteration Gj of G.

Lemma 3. The problem of deciding whether a periodic planar graph
G = (G̃(V,E0), E+) is 3-colorable (also called periodic planar 3-coloring) is
PSPACE-complete.

Proof. (a) Membership in PSPACE:
The proof that this problem is in PSPACE is similar to that for periodic SAT
[16]: The 3-coloring of two adjacent iterations must repeat after at most 32n

copies, and thus the whole 3-coloring can be assumed to be periodic with ex-
ponential period. A polynomial-space machine can then guess and check such a
3-coloring.

More analytically, suppose that the given periodic graph is 3-colorable, and
consider a valid 3-coloring of it. This assignment consists of a two-way infinite
. . . , Ti, Ti+1, Ti+2, . . . of valid 3-coloring assignments to the various blocks of
nodes (one for each iteration). Each Ti is an element of {1, 2, 3}n, where n = |V |
is the number of vertices of the graph Gi.

The ith chunk, where i is any integer, is the pair (Ti, Ti+1), of two consecutive
valid 3-coloring assignments. Since there are 32n possible different chunks, there
must be two chunks, not further than 32n from each other, that are identical.
That is (Ti, Ti+1) = (Tj , Tj+1) for some i and j between i + 2 and i + 32n.
But this means that there is a 3-coloring assignment consisting of a two-way
infinite repetition of (Ti, Ti+1, . . . , Tj−1). We conclude that if a periodic graph G
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is 3-colorable, then it has a periodic 3-coloring assignment with period at most
exponential in the number of nodes of one iteration.

This crucial observation allows us to solve the problem in polynomial space:
Using non-determinism we can guess valid assignments T1, T2, . . . , always re-
membering the last two. After we guess Ti we check that all nodes in iteration
i − 1 are still properly colored. Once we have successfully guessed T32n+2 we
accept: We know that there is a periodic 3-coloring assignment on G.

(b) The PSPACE-completeness proof:

In order to show the completeness, we reduce from 3-coloring of periodic gen-
eral graphs, which is known to be PSPACE-complete ([16]). We adapt the con-
struction used by [15] to prove theNP-completeness of PLANAR-3-COLORING
from 3-COLORING. See the full version [7] for a complete proof. 
�

Lemma 4. The problem of deciding whether a given periodic planar graph G =
(G̃(V,E0), E+) of maximal degree four is 3-colorable is PSPACE-complete.

Proof. (outline) We reduce planar 3-coloring of a periodic graph with a maxi-
mum degree 4 from periodic planar 3-coloring which was proved to be PSPACE-
complete in Lemma 3 adapting the same technique used to prove that the prob-
lem of 3-coloring an ordinary planar graph of maximum degree four it is NP-
complete of [15]. For the full proof, see [7]. 
�

Lemma 5. The problem of 3-Coloring a periodic planar graph with a given con-
stant period 4-edge coloring is PSPACE-complete.

Proof. (outline) We use a transformation from the 3-coloring for planar periodic
graphs with maximum degree four which was proved to be PSPACE-complete in
Lemma 4 adapting the reduction used in [15] to show NP-hardness of 3-coloring
of planar graphs with maximum degree four. For the full proof, see [7]. 
�
Next, we prove the main Theorem using the above results. We will show that
it is PSPACE-complete to decide whether Xspan(G) ≤ 9 for a given periodic
planar graph G = (G̃(V,E0), E+).

Theorem 1. The problem of deciding whether a periodic planar graph G =
(G̃(V,E0), E+), of maximum degree seven, whose graph G̃ in its finite specifica-
tion (G̃, E+) is a planar bipartite graph, can be radiocolored using a span of size
at most 9, is PSPACE-complete.

Proof. We prove that the min span radiocoloring for periodic planar graphs is
PSPACE-complete, by reducing it from 3-coloring of periodic planar graphs
with a given constant period 4-edge coloring which was proved to be PSPACE-
complete in Lemma 5. Our reduction adapts the construction by Bodlaender
et al in [2] to show NP-hardness of min span RCP of ordinary planar graphs
reducing it from the 3-coloring of planar graphs with a given 4-edge coloring.
For the full proof of the Theorem see [7]. 
�
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As in [2], it is possible to generalize the result as follows:

Theorem 2. Let r ≥ 8 be an even integer. The problem of deciding whether
a periodic planar graph G = (G̃(V,E0), E+) of maximal degree r − 2 can be
radiocolored using a span of size at most r is PSPACE-complete.

4 An Efficient, Constant Ratio Approximation Algorithm
for Min Span RCP for Periodic Planar Graphs

We present an efficient time, constant ratio approximation algorithm that ap-
proximates the min span radiocoloring problem for periodic planar graphs with
the same ratio as the ratio obtained by the best known approximation algorithm
for planar graphs (which we use as a subroutine for the finite specification), for
the same problem.

4.1 The Modified Graph

Consider the following partition of the periodic graph G: group together every
four consecutive iterations of the graph, call the j−th such group Ggroup j . More
specifically,

Ggroup j = {G(i)
⋃

G(i+1)
⋃

G(i+2)
⋃

G(i+3)}, ∀ i = . . . ,−7,−3, 1, 5, 9, . . .

where j = 1, 2, 3, 4, . . . , (respectively, i.e. j = !i/4"). Consider the graph Ggroup j

of G. Denote the first graph of the group as G(j)1 or G1, the second as G(j)2

or G2 and so on until the fourth. The algorithm produces a new graph, called
G′

group j defined as follows: The graph has the same vertex and edge set as the
graph Ggroup j except from the following modifications on the first and the fourth
graphs of group Ggroup j :

Consider an edge uv ∈ E4+ of graph G4. Recall that u ∈ V4 and the vertex
v belongs to the next iteration of G, that is v ∈ V(j∗4)+1. For each such edge uv
of the graph G4 we do the following:

– Delete edge uv.
– Add a new edge uv′ connecting the vertex u ∈ G4 to vertex v′, where v′ ∈ V1

is the corresponding to v (v ∈ V(j∗4)+1) vertex in graph G1. Recall that the
graphs G1, V(j∗4)+1 are isomorphic.

– Delete edge u′′v′ of graph G1, where v′ ∈ G1 and u′′ is the corresponding to
u vertex (u ∈ V4) in iteration Gj∗4−1 of G.

An example of the graph obtained by a periodic graph is illustrated in Figure 2.
The graph G′

group j has two critical properties compared to the initial periodic
planar graph G: (i) it has the same maximum degree as the initial graph G, i.e.
Δ(G′

group j) = Δ(G) and (ii) as the next Lemma proves, it is a planar graph.

Lemma 6. The modified graph G′
group j is a planar graph.

Proof. See the full version of this paper [7]. 
�
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Fig. 2. The graph G′
group j produced by the Group j of the periodic graph G

4.2 The Periodic Radiocoloring Partitioning Algorithm (PRPA)

The following definition is needed by the Algorithm. The definition uses the
observation that the optimal span, S∗, of a radiocoloring of a graph G with
maximum degree Δ(G) is clearly S∗ ≥ Δ(G).

Definition 7. RC Algorithm: Let an RC Algorithm be any known min span
radiocoloring polynomial time approximation algorithm for finite planar graphs
with performance ratio R (when Δ(G) is used as a lower bound), i.e. if S∗ is
the optimal span and SRC is the span obtained by the algorithm then there are
constants R > 1 and b such that

Δ(G) ≤ S∗ ≤ SRC ≤ R ·Δ(G) + b

For example the algorithm of [9] is an RC algorithm with R = 2 and b = 35.

Algorithm PRPA:

1. Run an RC algorithm, on graph G′
group j.

Let SRC be the span obtained by RC on G′
group j.

2. For all j = 1, 2, . . . color the four graphs G(j−1)∗4+1, G(j−1)∗4+2,
G(j−1)∗4+3, , G(j−1)∗4+4 of the group Ggroup j as follows: Set the
color of each vertex of graph G(j−1)∗4+k, k = 1, 2, 3, 4 to the
color of its corresponding vertex, in Vk of V (G′

group j).
Step 2 produces a radiocoloring of the whole periodic graph G
with span SRC.

Theorem 3. (Correctness) The algorithm PRPA produces a radiocoloring of
a periodic graph G.

Proof. (outline) It can be proved that there is no conflict either between the
colors of vertices inside a group Ggroup j or between the colors of vertices in
neighbour groups. For the full proof, see [7]. 
�
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Theorem 4. The Algorithm PRPA runs in time O(T (RC)) and approximates
the span within an asymptotic ratio of R, where T (RC) is the time needed for
the RC Algorithm to run on G′

group j.

Proof. Let Δ(G) the maximum degree of the periodic graph G. Recall that the
graph G′

group j has maximum degree Δ(G′
group j) = Δ(G). Denote by S the span

of graph G′
group j obtained by our algorithm and by S∗(G′

group j) the optimal
span of G′

group j . Note that, (a) S∗ ≤ S.
(b) Also that, S ≤ R ·Δ(G′

group j)+b, by the definition of the RC Algorithm.
(c) Since, Δ(G′

group j) = Δ(G), we get S∗ ≤ S ≤ R ·Δ(G) + b

Also, since S∗ ≥ Δ(G), we get that, 1 ≤ S
S∗ ≤ R + b

Δ(G)

Finally, since Δ(G) ≥ Δ(G̃), we have 1 ≤ S
S∗ ≤ R + b

Δ(G̃)
.

Also, the algorithm, clearly, needs O(T (RC)) time, where T (RC) is the time
needed for algorithm RC to run on G′

group j . 
�

Remark. If the RC Algorithm is the algorithm in [9], then algorithm PRPA
has R = 2 and b = 35 and runs in O(n(Δ(Gi) + σ)) time, where n = |Vi|, and
σ is the number of edges with which each Gi is connected to Gi+1 and Δ(Gi) is
the maximum degree of Gi.

The min order RCP is the problem of finding a radiocoloring assignment
that uses a minimum number of distinct frequencies. We conjecture that min
order is PSPACE-complete for periodic planar graphs. Note that the following
modification of PRPA works also for min order RCP: In Step 1, apply a known
min order radiocoloring algorithm (instead of a min span RC algorithm), e.g.
[5,1], for the radiocoloring of G′

group j . The same analysis gives that the modified
PRPA algorithm approximates the min order RCP of G within an asymptotic
approximation ratio of 2.

Lemma 7. Any approximation algorithm for the min span RCP of a finite pla-
nar graph G, that achieves a span of at most αΔ(G) + constant, for any α,
can be used as a subroutine in algorithm PRPA to produce an approximation
algorithm for min span periodic planar RCP of asymptotic ratio α.

Proof. Using the same arguments as in Theorem 4. 
�
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Abstract. Let G be a graph. Let T1, T2, . . . , Tk be spanning trees in G.
If for any two vertices u, v in G, the paths from u to v in T1, T2, . . . , Tk are
pairwise openly disjoint, then we say that T1, T2, . . . , Tk are completely
independent spanning trees in G. In this paper, we show that there are
two completely independent spanning trees in any 4-connected maximal
planar graph. Our proof induces a linear-time algorithm for finding such
trees. Besides, we show that given a graph G, the problem of deciding
whether there exist two completely independent spanning trees in G is
NP-complete.

1 Introduction

1.1 Independent Spanning Trees

Let G be a graph. The vertex set and the edge set of G are denoted by V (G)
and E(G), respectively. A subgraph H of G is called spanning if V (H) = V (G).
Let P1 and P2 be paths from a vertex x to a vertex y in G. If E(P1)∩E(P2) = ∅
and V (P1) ∩ V (P2) = {x, y}, then we say that P1 and P2 are openly disjoint.
Let T ′ and T ′′ be trees rooted at a vertex r in G. If for any vertex v(�= r) ∈
V (T ′) ∩ V (T ′′), the paths from r to v in T ′ and in T ′′ are openly disjoint,
then we say that T ′ and T ′′ are independent. Let T1, T2, . . . , Tk be spanning
trees rooted at r in G. If T1, T2, . . . , Tk are pairwise independent, then we say
that T1, T2, . . . , Tk are independent spanning trees rooted at r in G. A graph H is
called k-connected if the removal of any k−1 vertices from H results a connected
graph with at least two vertices. The following conjecture is a central topic on
independent spanning trees.

Conjecture 1. Let G be a k-connected graph. Then there are k independent
spanning trees rooted at any vertex in G.

This conjecture was shown to be true for k ≤ 3, ([10],[1],[20]). Also, Huck
proved that the conjecture holds if we restrict ourselves to planar graphs ([5],[7]).
The conjecture remains open for general graphs when k ≥ 4.

L. Kučera (Ed.): WG 2002, LNCS 2573, pp. 235–245, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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Three variations of this conjecture are obtained by replacing “openly dis-
joint” (in the definition of independent) and “k-connected” with “edge-disjoint”
and “k-edge-connected”, respectively, or considering directed graphs instead of
graphs. The directed edge version of this conjecture indeed holds for any k ≥ 1,
which was shown by Edmonds [2]. The directed version originally conjectured
by Frank was shown to be true for k ≤ 2 [19], and for line digraphs [9], but was
disproved for general digraphs when k ≥ 3 [6].

Independent spanning trees have been studied not only from the theoretical
point of view but also from the practical point of view. Independent spanning
trees have applications to fault-tolerant broadcasting problems in interconnec-
tion networks. Broadcasting is a process that send a message originated from a
processor to all other processors in a parallel computer, and can be modeled by a
spanning tree in the interconnection network. Suppose that we have k indepen-
dent spanning trees rooted at r in G. Using these spanning trees to broadcast
the same message from r, even if any (k − 1) processors (different from r) fail,
we can correctly broadcast the message to all fault-free processors. Motivated
by this application, independent spanning trees in several graph (or digraph)
classes related to interconnection networks have been studied (de Bruijn and
Kautz digraphs [4] [9], product graphs [15], chordal rings [11]).

1.2 Completely Independent Spanning Trees

In the application of independent spanning trees to fault-tolerant broadcasting,
we have to reconstruct independent spanning trees when the root is changed
with another vertex. If one set of spanning trees is always a set of independent
spanning trees rooted at any given vertex, then we do not have to reconstruct
independent spanning trees. Motivated by this point of view, the notion of com-
pletely independent spanning trees was introduced in [8]. Let T ′ and T ′′ be trees
in G. If for any two vertices u, v ∈ V (T ′) ∩ V (T ′′), the paths from u to v in T ′

and in T ′′ are openly disjoint, then we say that T ′ and T ′′ are completely inde-
pendent. Let T1, T2, . . . , Tk be spanning trees in G. If T1, T2, . . . , Tk are pairwise
completely independent, then we say that T1, T2, . . . , Tk are completely indepen-
dent spanning trees in G.

It has been shown in [8] that there are k completely independent spanning
trees in the underlying graph of a k-connected line digraph. Also, the notion of
completely independent spanning trees was characterized in as follows.

Theorem 1. [8] Let T1, T2, . . . , Tk be spanning trees in a graph G. Then, T1, T2,
. . . , Tk are completely independent if and only if T1, T2, . . . , Tk are edge-disjoint
and for any vertex v of G, there is at most one spanning tree Ti such that the
degree of v in Ti is greater than one.

From this characterization, we can see that for any given set S of k completely
independent spanning trees, the removal of any one vertex can make at most one
spanning tree disconnected. Thus, at least one spanning tree in S preserves its
connectedness in the case that any (k−1) vertices are removed. By this property,
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completely independent spanning trees may be useful not only fault-tolerant
broadcasting but also general fault-tolerant network issues.

Completely independent spanning trees are edge-disjoint spanning trees, al-
though independent spanning trees are not always edge-disjoint. On edge-disjoint
spanning trees, Nash-Williams [14] showed that there are k edge-disjoint span-
ning trees in any 2k-edge-connected graph. Analogously to this fact, we pose the
following statement as a conjecture.

Conjecture 2. There are k completely independent spanning trees in any
2k-connected graph.

As special cases, we can check that the complete bipartite graph K2k−1,2k−1

cannot have k completely independent spanning trees, but K2k,2k has k com-
pletely independent spanning trees. In this sence, the connectivity condition in
the conjecture cannot be weakened. Also, we can easily checked that the complete
graph K2k has k completely independent spanning trees. Thus, the conjecture is
a sufficient condition for the existence of completely independent spanning trees.

1.3 Our Results

In this paper, we show that Conjecture 2 holds for maximal planar graphs,
i.e., there are two completely independent spanning trees in any 4-connected
maximal planar graph. From our proof, a linear-time algorithm for finding such
trees is obtained. Besides, we show that given a graph G, the problem of deciding
whether there exist two completely independent spanning trees in G is NP-
complete.

This paper is organized as follows. In Section 2, basic definitions and ter-
minology are given. In Section 3, we show that Conjecture 2 holds for maximal
planar graphs. In Section 4, we present an NP-completeness result on completely
independent spanning trees. Finally, we conclude the paper in Section 5.

2 Preliminaries

A planar graph is a graph which can be embedded in the plane without crossing
of edges. A planar graph is maximal if we cannot add a new edge to it while
preserving its planarity. By a planar embedding of a planar graph, the plane is
cut into faces. The outer face is a unique unbounded face.

In this paper, we treat maximal planar graphs and assume that a maximal
planar graph is given along with a fixed planar embedding. A triangle is a cycle
of length 3. Let G be a maximal planar graph. Every face of G is surrounded by
a triangle. A cycle of G divides the plane into its interior and exterior portions.
A region of a cycle is the portion inside the cycle. A region may contain vertices
and edges. A face which is not the outer face is a minimal region. Let R be a
region of a cycle of G. Then the cycle is called the boundary of R, and denoted
by C(R).

Let S ⊆ V (G) and U ⊆ E(G). The subgraphs of G induced by S and U are
denoted by 〈S〉G and 〈U〉G, respectively. Let v ∈ V (G). We denote by NG(v)
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the set of vertices adjacent to v in G. Also, the set NG(v) ∪ {v} is denoted by
N+

G (v).
Let C be a cycle in a maximal planar graph G. An edge inside C joining

non-adjacent vertices in C is called a chord of C. Let w ∈ V (C). The set of
vertices inside C which are adjacent to w is denoted by N in

C (w). (Note that
N in

C (w) ∩ V (C) = ∅.) Let x ∈ V (G). From the property of a maximal planar
graph, 〈NG(x)〉G contains a cycle having all vertices in NG(x) following the
clockwise order with respect to a planar embedding, and the cycle is denoted by
CG(x).

A cut-vertex of a graph H is a vertex such that removing it from H results
a disconnected graph. A connected graph with at least two vertices and no cut-
vertex is called a block. A block of H is a subgraph of H, which is itself a block
and maximal with respect to that property. A cyclic block is a block with at least
three vertices.

3 Two Completely Independent Spanning Trees
in Four-Connected Maximal Planar Graphs

In this section, we show that there are two completely independent spanning
trees in any 4-connected maximal planar graph.

Consider a coloring of the vertices and edges in G using k colors such that
every set of edges with the same color induces a spanning tree and every internal
vertex in each spanning tree has the same color as the edges. From Theorem 1,
the set of spanning trees induced by each color is a set of completely independent
spanning trees. In what follows, we use blue and red for such a coloring in order
to construct two completely independent spanning trees.

We start with the following lemma, which is used as the basis for our inductive
proof.

Lemma 1. Let G be a maximal planar graph with at least four vertices. Let v ∈
V (G). Then there are two completely independent spanning trees in 〈N+

G (v)〉G.

Proof. Let u,w ∈ NG(v) such that (u,w) ∈ E(G). We color v and u red, and
color all vertices in NG(v) \ {u} blue. Also, we color the edge (u,w) and all
edges in {(v, x) | x ∈ NG(v) \ {w}} red, and color the edge (v, w) and all edges
in E(CG(v)) \ {(u,w)} blue. It is easily checked that the trees induced by the
red edges and by the blue edges are completely independent spanning trees in
〈N+

G (v)〉G.

Here, we introduce definitions and terminology used in the proof.

Definition 1. Let x be a vertex inside a chordless cycle C. If |NG(x)∩V (C)| ≥
2, then x is called a clipping vertex of C. For a clipping vertex x of C, let
NG(x,C) denote the set NG(x) ∩ V (C).

By a clipping vertex x and the edges joining x and a vertex in NG(x,C), the
region of C is cut into several regions called clipped regions of x. For a clipped
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region R of x, a vertex in the boundary of R which is neither x nor a vertex in
NG(x,C) is called a proper boundary vertex of R. If v is a proper boundary vertex
of a clipped region R of x, then we say that x is a clipping vertex with respect to
v, and R is a clipped region with respect to v. The set of clipping vertices with
respect to v is denoted by Vcl(v, C). Also, the set of clipped regions with respect
to v is denoted by Rcl(v, C).

Definition 2. Let G be a maximal planar graph. Let C be a chordless cycle in G
and v ∈ V (C). The inscribed graph with respect to v and C denoted by HG(v, C)
is defined as follows.

HG(v, C) = 〈∪w∈V (C)\{v}N
in
C (w) ∪ {v}〉G.

A boundary edge of HG(v, C) is an edge in

E(HG(v, C)) ∩ (∪w∈V (C)\{v}E(CG(w))).

Now, we consider the following situation. We have already obtained two
completely independent trees outside a cycle C which contain all vertices in V (C)
such that all vertices in V (C) have the same color except for one vertex called
the entering vertex. Several vertices in V (C) different from the entering vertex
are not allowed to change their color hereafter. Such vertices in V (C) is called
forbidden vertices. We try to augment the two completely independent trees to
have all vertices inside C while preserving their completely independentness. We
will show that we can correctly augment the trees if the configuration of the
entering vertex and forbidden vertices in C is one of the following 5 types. (Note
that in the description of each type, “u is adjacent to v” means that u is adjacent
to v in C, i.e., (u, v) ∈ E(C).)

– Type 1: There is exactly one forbidden vertex. The entering vertex is adjacent
to the forbidden vertex.

– Type 2: The number of forbidden vertices is two. The two forbidden vertices
are adjacent. The entering vertex is adjacent to one of the forbidden vertices.

– Type 3: The number of forbidden vertices is two. The two forbidden vertices
are not adjacent. The entering vertex is adjacent to one of the forbidden
vertices.

– Type 4: C has no chord. The number of forbidden vertices is three. The three
forbidden vertices are consecutive. The entering vertex is adjacent to one of
the forbidden vertices.

– Type 5: C has no chord. The number of forbidden vertices is three. There
are three forbidden vertices v1, v2, v3 such that v1 and v2 are adjacent and
v3 is not adjacent to v1 and v2. The entering vertex is adjacent to v3.

Let v be a vertex in the boundary of the outer face of G. Also, let u,w ∈
NG(v) such that (u,w) ∈ E(G). According to the proof of Lemma 2, we can
construct two completely independent spanning trees in 〈N+

G (v)〉G. For the cy-
cle CG(v), let u be the entering vertex and w a forbidden vertex. Then, the
configuration is Type 1. Therefore, by proving the next lemma, our main theo-
rem is obtained.
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Lemma 2. Let G be a 4-connected maximal planar graph. Let C be a cycle
in G. Suppose that there are two completely independent trees outside C which
contain all vertices in V (C) such that all vertices in C except for the entering
vertex have the same color, and the configuration of the entering vertex and
forbidden vertices is one of the five types defined above. Then the completely
independent trees can be augmented to have all vertices inside C while preserving
their completely independentness.

Proof. We show this lemma by induction on the number of vertices inside C. In
this proof, we assume that all vertices in C except for the entering vertex have
blue color (thus the entering vertex has red color). Let ve be the entering vertex.

The basis (i.e., the case that there is no vertex inside C) holds vacuously.
Suppose that there is a vertex inside C.

Case 1: C has no chord.
We first construct the inscribed graph H = HG(ve, C). Then we color all

vertices in V (H) \ {ve} red. Also, we color all boundary edges in H red. From
the definition of H, for every vertex w in V (H) \ {ve}, there is at least one
edge joining w and a vertex in V (C) \ {ve}. For each vertex v ∈ V (H) \ {ve},
we select one edge joining v and a vertex in V (C) \ {ve}, and color it blue.
By this coloring, the graph induced by the blue edges is a tree. On the other
hand, the graph induced by the red edges may not be a tree but a connected
graph (thus, we can obtain a tree as a subgraph). Every vertex in V (H) \ {ve}
is colored red and is an end-vertex of the blue tree. Hence, we can correctly
augment the trees outside C to have the vertices of H while preserving their
completely independentness. If H is a tree, then the augmented trees have all
vertices inside C.

Now suppose that H is not a tree. Then we consider the block-cut-vertex
tree T of H. The vertex set of T consists of cyclic blocks, cut-vertices and end-
vertices in H. For X,Y ∈ V (T ), there is an edge between X and Y iff X is a
cyclic block and Y is a cut-vertex contained in X, or neither X nor Y is a cyclic
block such that X and Y are adjacent in H. If ve is an end-vertex in H, then
let Z = ve. Otherwise, let Z be the cyclic block containing ve. We regard Z as
the root of T .

For each cyclic block, we apply the inductive hypothesis. Before applying such
inductive augmentation, we do the following manipulation. For each forbidden
vertex vf in C and for each x ∈ Vcl(vf , C), if ve is not contained in the boundary
of the clipped region of x with respect to vf , then we set x as a forbidden vertex.
There are four cases with respect to this manipulation.

Case 1.1: The configuration is Type 1. Since the forbidden vertex vf is ad-
jacent to ve in C, there is no clipped region in Rcl(vf , C) such that ve is not
contained in the boundary. Thus, we do nothing in the manipulation in this case.

Case 1.2: The configuration is Type 2 or Type 3. Similarly to the case 1.1,
we do nothing with respect to the forbidden vertex adjacent to ve. Thus, it is
sufficient to try the manipulation only for the forbidden vertex not adjacent
to ve.

Case 1.3: The configuration is Type 4. There are two adjacent forbidden
vertices that are not adjacent to ve. For two adjacent vertices w1, w2 in C,
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Rcl(w1, C) ⊆ Rcl(w2, C), or Rcl(w2, C) ⊆ Rcl(w1, C). Therefore it is sufficient
to try the manipulation only for one forbidden vertex.

Case 1.4: The configuration is Type 5. In this case, the entering vertex is
adjacent to the isolated forbidden vertex. Similarly to the case 1.3, it is sufficient
to try the manipulation only for one forbidden vertex.

Therefore, in any type of configuration, we set new forbidden vertices in H
with respect to at most one forbidden vertex in C. Hence, the new forbidden
vertices in H are on the same path from the root in T . As a result, in any
cyclic block of H, at most two forbidden vertices are newly set. In particular, if
a cyclic block has two forbidden vertices, then one forbidden vertex is its parent
cut vertex in T .

Next, for each vertex X in T , we do the following manipulation from the root
(in depth-first or breadth-first order). If X is either an end-vertex or a cut vertex,
then we do nothing. Suppose that X is a cyclic block of H. Let C(X) denote
the cycle surrounding X. If X is the root, then we set ve as a forbidden vertex
in C(X). Otherwise, we set the parent cut vertex as a forbidden vertex in C(X).
(Such a vertex may have already been set as a forbidden vertex by the former
manipulation.) Then we select a vertex in C(X) adjacent to a forbidden vertex as
the entering vertex and recolor it blue, and uncolor one edge in C(X) incident to
it. Since all edges in C(X) have been colored red, uncoloring one edge in the cycle
does not make the graph induced by the red edges disconnected. Since there are
at most two forbidden vertices in C(X), the configuration of the entering vertex
and forbidden vertices in C(X) is one of Types 1,2,3. Hence, by the induction
hypothesis, we can correctly augment the two completely independent trees to
have all vertices inside C(X).

After we have done such augmentation for X, if a child cut vertex Y of X
in T have been recolored, then we consider the clipped regions R1, R2, . . . , Rl

of Y which do not contain ve as a boundary vertex. We set Y and all vertices
in NG(Y,C) (NG(Y,C) \ {ve} if ve ∈ NG(Y,C)) as forbidden vertices. Then,
in each C(Ri), the number of forbidden vertices is three such that the forbid-
den vertices are consecutive. Note that if there was a forbidden vertex which
is a proper boundary vertex of Ri, then Y must have been set as a forbidden
vertex and cannot be recolored. Also note that C(Ri) has no chord. Hence,
unless |V (C(Ri))| = 3, we can select a proper boundary vertex of Ri as the
entering vertex so that the configuration of the entering vertex and forbidden
vertices in C(Ri) becomes Type 4, and by the induction hypothesis, we can aug-
ment the two completely independent trees to have all vertices inside C(Ri). If
|V (C(Ri))| = 3, then there is no vertex inside C(Ri) (i.e., we do not have to
do anything), since G is 4-connected. After we have done such augmentation for
C(R1), C(R2), . . . , C(Rl), we delete the subtree rooted at Y from T .

Case 2: C has a chord.
In this case, we consider the block-chord tree S. The vertex set of S consists

of chordless subcycles and chords in 〈V (C)〉G. For X,Y ∈ V (S), there is an edge
between X and Y iff X is a chordless subcycle and Y is a chord contained in X.

Let Z be a chordless subcycle which contains the entering vertex and a for-
bidden vertex. (Note that at least one forbidden vertex is adjacent to the entering
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vertex in C.) We regard Z as the root of S and for each vertex X in S, we do
the following manipulation from the root (in depth-first or breadth-first order).
If X is a chord, then we do nothing. Suppose that X is a chordless subcycle.
Also, suppose that X is the root. Then the configuration of the entering vertex
and forbidden vertices is one of Types 1,2, and 3. Similarly to Case 1, we can
correctly augment the completely independent trees. Suppose that X is not the
root. Let Y be the parent vertex of X in S. That is, Y is a chord contained in X.
Since the configuration type of C is one of Types 1,2,3, the number of forbidden
vertices in C is at most two. Since there is at least one forbidden vertex in Z,
there is at most one forbidden vertex in X except for the vertices of Y .

Case 2.1: One vertex in Y has blue color, and the other vertex in Y has red
color. (Note that we do not apply any manipulation for a chord, however, since
a chord is contained in a subcycle, the vertices of the chord may be recolored in
the manipulation for the subcycle.) In this case, we treat the vertex in Y with
red color as the entering vertex and the other vertex in Y with blue color as a
forbidden vertex. Thus, the configuration in X is one of Types 1,2 and 3.

Case 2.2: Both vertices in Y have blue color. In this case, we theat both the
vertices as forbidden vertices. Then, we select the entering vertex so that the
configuration type becomes one of Type 2,4, and 5.

It does not happen that both vertices in Y have red color. In Case 1, for
each cycle C(Ri) to which the induction hypothesis is applied, the entering
vertex is selected from proper boundary vertices. Thus, after we have done the
manipulation for a chordless cycle, there is no two consecutive vertices with red
color.

Therefore, in any case, we can correctly augment the trees to have all vertices
inside C.

From Lemmas 2 and 5, the following theorem is obtained.

Theorem 2. There are two completely independent spanning trees in any 4-
connected maximal planar graph.

From the proofs in Lemmas 2 and 5, an algorithm for finding two completely
independent spanning trees is induced. The algorithm can be implemented to
run in linear-time. We omit the details of such an implementation.

4 NP-Completeness Result

In this section, we present an NP-completeness result on completely independent
spanning trees.

Theorem 3. Given a graph G, the problem of deciding whether there exist two
completely independent spanning trees in G is NP-complete.

Proof. We use a reduction from NAE-3SAT (Not-All-Equal 3SAT) [3]; Instance:
a set V of variables, a collection C of clauses over V such that each clause C ∈ C
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has 3 literals. Question: Is there a truth assignment for V such that each clause
in C has at least one true literal and at least one false literal?

Let K4 denote the complete graph with four vertices. Let DK4 denote a
graph obtained from two copies of K4 by identifying one edge in one copy and
one edge in the other copy (with their two vertices). Two vertices of the identified
edge in DK4 are called side vertices. For each variable x, we prepare a graph
Gx

∼= DK4 and let V (Gx) = {vx,i | 1 ≤ i ≤ 6} such that 〈{vx,i | 1 ≤ i ≤
4}〉 ∼= 〈{vx,i | 3 ≤ i ≤ 6}〉 ∼= K4. Thus, vx,3 and vx,4 are the side vertices
of Gx. For each clause C = {a, b, c}, we prepare a graph GC

∼= K4 and let
V (GC) = {vC,a, vC,b, vC,c, v

∗
C}.

Now we construct the following graph H for a given instance (V, C) of NAE3-
SAT, where V and C are the set of variables and the set of clauses, respectively.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

V (H) = (∪C∈CV (GC)) ∪ (∪x∈VV (Gx)) ∪ {vB , vR},
E(H) = (∪C∈CE(GC)) ∪ (∪x∈VE(Gx))

∪{{vC,a, vx,3} | C ∈ C, a ∈ C, a = x}
∪{{vC,b, vx,4} | C ∈ C, b ∈ C, b = x̄}
∪{{vx,3, vB}, {vx,4, vB}, {vx,3, vR}, {vx,4, vR} | x ∈ V}.

We show that (V, C) is NAE satisfiable iff there are two completely independent
spanning trees in H.

Suppose that there is a truth assignment t for V such that each clause in C
has at least one true literal and at least one false literal. According to the truth
assignment t, we construct two trees TB , TR as follows. We color all edges in TB

blue and all edges in TR red.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (TB) = V (TR) = V (H) \ {v∗C | C ∈ C},
E(TB) = (∪x∈V,t(x)=1(E1(Gx) ∪ {{vx,3, vC,a} | a ∈ C ∈ C, a = x} ∪ {vx,3, vB})

∪(∪x∈V,t(x)=0(E0(Gx) ∪ {{vx,4, vC,a} | a ∈ C ∈ C, a = x̄} ∪ {vx,4, vB})
∪{{vx∗,i, vR} | (t(x∗) = 1 and i = 3) or (t(x∗) = 0 and i = 4)},

E(TR) = (∪x∈V,t(x)=1(E0(Gx) ∪ {{vx,4, vC,a} | a ∈ C ∈ C, a = x̄} ∪ {vx,4, vR})
∪(∪x∈V,t(x)=0(E1(Gx) ∪ {{vx,3, vC,a} | a ∈ C ∈ C, a = x} ∪ {vx,3, vR})
∪{{vx∗,i, vB} | (t(x∗) = 1 and i = 4) or (t(x∗) = 0 and i = 3)},

where x∗ is any fixed variable in V, and

E1(Gx) = {{vx,1, vx,2}, {vx,2, vx,3}, {vx,3, vx,4}, {vx,3, vx,5}, {vx,5, vx,6}},
E0(Gx) = {{vx,1, vx,3}, {vx,1, vx,4}, {vx,2, vx,4}, {vx,4, vx,5}, {vx,4, vx,6}}.

Note that 〈E1(Gx)〉 and 〈E0(Gx)〉 are completely independent. Also, it is easily
checked that TB and TR are completely independent. For each clause C, there
are three edges joining a vertex in GC and a vertex in a graph associated by
a variable. For these three edges, at least one edge is colored blue and at least
one edge is colored red, since t is a truth assignment for V such that each clause
in C has at least one true literal and at least one false literal. Without loss of
generality, we can assume that vC,a and vC,b are incident to blue edges, and vC,c

is incident to a red edge. Then, we color {vC,a, vC,b}, {v∗C , vC,a}, {vC,b, vC,c}
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blue, and {vC,c, vC,a},{vC,c, v
∗
C},{v∗C , vC,b} red. By the similar coloring for each

clause graph, TB , TR can be augmented to spanning trees while preserving their
completely independentness.

Conversely, suppose that there are completely independent spanning trees
T ′

B , T ′
R in H. We color all edges and all internal vertices in T ′

B and T ′
R by blue

and red, respectively. Now, consider Gx for any variable x. It does not happen
that both side vertices of Gx have the same color. If both side vertices have
the same color, then the tree with the other color cannot be connected. By the
similar reason, each side vertex must be colored.

For any clause graph GC , where C = {a, b, c}, there is a blue path from v∗C
to vB , and there is a red path from v∗C to vR. This means that there exists a
vertex vC,B in {vC,a, vC,b, vC,c} such that it has blue color and is adjacent to
a blue side vertex in a variable graph, and also there exists a vertex vC,R in
{vC,a, vC,b, vC,c} such that it has red color and is adjacent to a red side vertex
in a variable graph.

Now we define an assignment t′ as follows. If vx,3 is colored blue then let
t′(x) = 1, otherwise t′(x) = 0. Then vC,B corresponds to a true literal, and vC,R

corresponds to a false literal. Therefore, t′ is a truth assignment for V such that
each clause in C has at least one true literal and at least one false literal.

5 Conclusion

In this paper, we have shown that there are two completely independent spanning
trees in any 4-connected maximal planar graph. Our proof induces a linear-
time algorithm for finding such trees. Also, we have proved that the problem
of deciding whether there exist two completely independent spanning trees in a
given graph is NP-complete.

It remains unknown whether our result can be generalized to 4-connected
planar graphs.
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Abstract. The drawing of hierarchical graphs is one of the main areas of
research in the field of Graph Drawing. In this paper we study the prob-
lem of partitioning the node set of a directed acyclic graph into layers –
the first step of the commonly accepted Sugiyama algorithm for drawing
directed acyclic graphs as hierarchies. We present a combinatorial opti-
mization approach to the layering problem; we define a graph layering
polytope and describe its properties in terms of facet-defining inequali-
ties. The theoretical study presented is the basis of a new branch-and-cut
layering algorithm which produces better quality drawings of hierarchical
graphs.

1 Introduction

The problem we study in this paper is related to the visualization of hierarchical
relations between objects in a system. This problem arises in many applications
and recently it has become more important because of the fast development of
the software industry and the rapid growth of the World Wide Web and the
corresponding need to visualize it (in the process of browsing, in the results
of search engines, as a web-master tool, etc.). A hierarchy is a directed acyclic
graph (DAG) the edges of which are drawn to point unidirectionally, i.e. they
form a unidirectional flow. Although there are alternative concepts for visual
representing of DAGs, a commonly accepted and used one is to require that all
the edges point in the same direction. An example of a hierarchical drawing of a
DAG is shown in Figure 1. Virtually every contemporary graph drawing package
provides an implementation of an algorithm for drawing DAGs as hierarchies and
usually this is the algorithm of Sugiyama et al. [11] which has become a standard
tool for drawing hierarchical graphs.

The original idea of Sugiyama et al. is to draw a DAG in three separate and
independent steps. Firstly the nodes of the DAG are separated into layers so
that all the edges point unidirectionally, then the nodes are ordered within the
layers, trying to improve the quality of the drawing through the minimization
of edge crossings, and finally, x and y coordinates are assigned to the nodes
and the shape of lines, which represent the edges of the DAG are determined.
At each of the three steps a separate algorithm is applied which solves the
corresponding problem according to certain aesthetic criteria important for the
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Fig. 1. An example drawing of a DAG as a hierarchy.

final drawing, such as specific dimensions of the drawing, representations of the
edges as straight lines, minimization of the number of edge crossings etc. In
their initial publication Sugiyama et al. [11] and later Eades and Sugiyama [2]
provided a number of independent algorithms which can be applied at each of
the three steps. Since then many researchers have proposed new algorithms for
the three steps, although most of the research effort has focused on the second
step, the reduction of edge crossings (see, for instance, Jünger et al. [8] and
Healy and Kuusik [6]). In this paper we present a theoretical study of the first
step of the Sugiyama algorithm with the aim of developing an algorithm for
partitioning the nodes of a DAG into layers which has equivalent quality to the
existing algorithms for the second step of the Sugiyama algorithm.

An algorithm that partitions the nodes of a DAG into layers so that all
edges point unidirectionally is known as a layering algorithm. A layering algo-
rithm must find a layering of a DAG subject to certain aesthetic criteria. While
these may be subjective, some are generally agreed upon [2]: the drawing should
be compact; large edge spans should be avoided; and, the edges should be as
straight as possible. Compactness can be achieved by specifying bounds W and
H on the width and the height of the layering respectively. Short edge spans
are desirable aesthetically because they increase the readability of the drawing
but also because the forced introduction of dummy nodes at the places where
edges cross layers complicates the next steps of the Sugiyama algorithm. Fur-
ther, these dummy nodes may also permit additional bends on edges since edge
bends mainly occur at dummy nodes.

At present there are three layering algorithms which find layerings of a DAG
subject to some of the above aesthetic criteria. They all have polynomial running
time: the longest path algorithm finds a layering with minimal height [2]; the
Coffman-Graham algorithm finds a layering of width at most W and height
h ≤ (2 − 2/W )hmin, where hmin is the minimum height of a layering [1]; and
the ILP algorithm of Gansner et al. finds a layering with minimum number of
dummy nodes [4]. An upper bound on the width of the layering can be specified
only in the Coffman-Graham algorithm. In the classical version of the Coffman-
Graham algorithm the width of a layer is considered to be the number of real
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nodes (each assumed to be of unit width) the layer contains while neglecting
the widths of the introduced dummy nodes. The algorithm can be modified to
take into account the true widths of the real nodes, but the width of the final
drawing may still be much greater than expected. We contend that the widths
of dummy nodes introduced by the layering algorithm to the width of a layer
– especially if they derive form “thick” edges – contribute to a layer’s width,
and taking account of them would express the width of the final drawing more
accurately. However, layering a graph taking into account simply the width in
the traditional sense and the height constraints is an NP -hard problem since
the Precedence Constrained Multiprocessor Scheduling problem can be reduced
straightforwardly to it [2].

Thus, the goal of this work is to partition the nodes of a DAG into layers
subject to specified maximum dimensions, reporting so if no layering within the
given bounds exists. The dimensions of the layering should be true in that the
width of dummy nodes should not be assumed to be negligible and the layering
should minimize the sum of the edge spans. We call this optimization problem
WHS-Layering. This problem is closely related to the Precedence Constrained
Multiprocessor Scheduling problem and to the Capacitated Clustering problem.
To the best of our knowledge there is no exact solution technique developed
for the former problem. For the latter problem a branch-and-cut algorithm by
Ferreira et al. [3] and a branch-and-price algorithm by Mehrotra and Trick [9]
have been proposed.

In related work [7] we performed a series of experiments that compared each
of the previously described algorithms with an Integer Linear Programming for-
mulation on a benchmark set of graphs. This work demonstrated that the ILP
model gave solutions of superior quality, at the expense of longer running time.
This paper provides a theoretical basis for that formulation by proving that three
families of inequalities are facet-defining; thus, the proposed model is a reason-
ably efficient description of the set of feasible layerings. Further, these facets can
be used to find solutions more quickly in a branch-and-cut algorithm.

In the next section we introduce some formal definitions and then in Sec-
tion 3 we take a combinatorial optimization approach to the layering problem
describing the graph layering polytope as a tool for constructing an exact lay-
ering algorithm subject to the aesthetics discussed above. Section 4 draws the
main conclusions of our work.

2 Preliminaries

Definition 1. Given a DAG G = (V,E), where each node v ∈ V has a pos-
itive width wv, a layering of G is a partition of its node set V into subsets
V1, V2, . . . , Vh, such that if (u, v) ∈ E where u ∈ Vi and v ∈ Vj then i > j. A
DAG with a layering is called a layered digraph.

Definition 2. The height of a layering is the number of layers, h; traditionally
the width of layer Vk is defined as w(Vk) =

∑
v∈Vk

wv and the width of a layered
digraph is w = max1≤k≤h w(Vk).
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Layered digraphs are conventionally drawn so that all nodes in layer Vk lie on
the horizontal line y = k. A layering algorithm is an algorithm which fixes the
y coordinate of each node, and ensures that all edges point downwards (i.e.
unidirectionally). The span of an edge (u, v) with u ∈ Vi and v ∈ Vj is i − j.
When edges span multiple layers, it is common to introduce dummy nodes with
in- and out-degree 1 in the intermediate layers.

We denote by d−(v) and d+(v) the in- and out-degree of node v ∈ V , respec-
tively. For G = (V,E) with unitary edge lengths, define lp(v) to be the length of
the longest path from any node u to v where d−(u) = 0. Similarly, define ls(v) to
be the longest path from v to any node u where d+(u) = 0. That is, the values
lp(v) and ls(v) refer, respectively, to the length of the longest path from any
predecessor to v and to the length of the longest path from v to any successor.
Suppose the node set V of G must to be partitioned into at most H layers.
Then for each node v ∈ V there is a set of consecutive layers where potentially
the node can be placed if all the edges are required to point downwards. The
following three definitions describe this set.
Definition 3. The roof of node v is the number of highest layer node v can be
placed in. We denote the roof of v by ρ(v), i.e. ρ(v) = H − lp(v).

Definition 4. The floor of v is the lowest level node v can be placed in. We
denote the floor of v by ϕ(v), i.e. ϕ(v) = ls(v) + 1.

Definition 5. The layer span of node v is L(v) = {k ∈ N : ϕ(v) ≤ k ≤ ρ(v)}.
That is, L(v) refers to the set of layers in which node v can be placed if all the
edges are required to point downwards.

The roof and the layer span of node v depend on the upper bound on the
number of layers H. We do not include H in the notation of ρ(v) and L(v),
because normally it is clear what is the value of H from the context.

Let G = (V,E) be a DAG the nodes of which are to be partitioned into
at most H > 0 layers V1, V2, . . . , VH of width at most W > 0. We construct a
layering DAG or LDAG LH

G = (VL, EL) as follows. For each v ∈ V and each
k ∈ L(v) there exists a node λvk ∈ VL that corresponds to node v ∈ V placed in
layer Vk. The pair (λuk, λvl) ∈ EL if and only if (u, v) ∈ E.

Property 1. Let LH
G be an LDAG of G = (V,E), H > 0. If (u, v) ∈ E then

ϕ(u) > ϕ(v) and ρ(u) > ρ(v).

Property 2. Let LH
G be an LDAG of G = (V,E), |V | = n, |E| = m, H > 0. Then

|VL| = O(n2) and |EL| = O(mn2).

Definition 6. The set F ⊆ VL partially represents G if

– λuk ∈ F , λvl ∈ F and k �= l implies u �= v;
– all the edges of LH

G [F ], i.e. the subgraph of LH
G induced by F , point down-

wards.

We call F a partial layering of G.
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Definition 7. F ⊆ VL (fully) represents G if F partially represents G and for
each node v ∈ V there is a node λvk ∈ F for some k.

Note that if F partially represents G then LH
G [F ] is a layered digraph, where

each node v ∈ V is represented by at most one node of LH
G .

3 The Directed Acyclic Graph Layering Polytope

In this section we describe the layering problem as an optimization problem over
an independence system taking into account all the aesthetic criteria discussed
above as well as the contribution of the dummy nodes to the width of the layering.

3.1 The Layering Problem as an Optimization Problem

Let G = (V,E) be a DAG the nodes of which are to be partitioned into at most
H > 0 layers V1, V2, . . . , VH of width at most W > 0 and let LH

G = (VL, EL)
be the corresponding LDAG. The pair (VL, I), where I is the family of all the
subsets of VL which partially represent G and induce layered digraphs of width
at most W , is an independence system. The problem of finding a layering of G
on at most H layers of width not greater than W and minimum total sum of
edge spans can be expressed as an optimization problem over the independence
system (VL, I) as follows: min{C(F ) : F ∈ I}, where C(F ) =

∑
i∈F c(i) and

c(i) is a weight associated with each node i ∈ VL.
We need such a weight function C with co-domain R, so that C(F ) reaches

its minimum at a set F which induces a layered digraph with minimum total sum
of edge spans. If x is the incidence vector of a subset of VL then the expression

∑
(u,v)∈E

⎛⎝ ρ(u)∑
k=ϕ(u)

kxuk −
ρ(v)∑

k=ϕ(v)

kxvk

⎞⎠ =
∑
v∈V

ρ(v)∑
k=ϕ(v)

k
(
d+(v)− d−(v)

)
xvk

represents the sum of edge spans of LH
G [F ]. If we set c(λvk) = k (d+(v)− d−(v))

then the minimum of the weight function would correspond to a layering with
minimum total sum of edge spans. But the minimum can potentially be reached
at a partial layering which does not represent G. To ensure that the minimum
will be reached at a set that represents G we set c(λvk) = k (d+(v)− d−(v))−M ,
where M is an appropriately large positive number, for instance, M = H × |E|.
Then the optimization problem over (VL, I) takes the form

min

{ ∑
λvk∈F

[
k
(
d+(v)− d−(v)

)−M
]

: F ∈ I
}

We call the polytope associated with the family of subsets I, the graph lay-
ering polytope and we denote it by GLP(LH

G ,W ).

Theorem 1. The dimension of the graph layering polytope GLP(LH
G ,W ) with

G = (V,E) is |VL| =
∑

u∈V (ρ(u)−ϕ(u)+1), i.e. it is full dimensional. For each
node λvk of LH

G the inequalities xvk ≥ 0 define facets of GLP(LH
G ,W ).
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Proof. This theorem is a trivial corollary of the properties of independence sys-
tems. The properties of independence systems can be found in [5].

Each independence system has a unique system of minimal dependent sets
called circuits. If D = {D1, D2, . . . , D|D|} is the system of circuits of (VL, I),
then the same optimization problem can be expressed as the linear program

min
{
cT y : y ∈ conv

{
Ax ≤ b : x ∈ {0, 1}|VL|

}}
where c : VL → Z, and c(λvk) = k(d+(v)−d−(v))−M . A is the incidence matrix
of the members of D with VL and b = (b1, b2, . . . , b|D|), where bi = |Di| − 1 for
i = 1, . . . , |D|. The inequalities Ax ≤ b are called rank inequalities.

In the next three subsections we take a detailed look at the circuits of the
graph layering polytope GLP(LH

G ,W ).

3.2 Assignment Circuits

If (VL, I) is the independence system described above then each node of G
corresponds to at most one node of LH

G [F ] for each F ∈ I. This property gives
a set of circuits of the type Da = {λvk, λvl}, k �= l, which we call assignment
circuits. The rank inequality for such a circuit is xvk +xvl ≤ 1. We can combine
all the rank inequalities related to the node v ∈ V in one inequality, which is
stronger than all of them

ρ(v)∑
k=ϕ(v)

xvk ≤ 1 (1)

This is obviously a valid inequality of GLP(LH
G ,W ), because each set in I par-

tially represents G.

Theorem 2. The assignment inequalities (1) are facet defining for the graph
layering polytope GLP(LH

G ,W ).

Proof. Let G = (V,E) be a DAG the nodes of which are to be partitioned into at
most H > 0 layers V1, V2, . . . , VH of width at most W > 0; let LH

G = (VL, EL) be
the corresponding LDAG. It is enough to find |VL| affinely independent subsets
of VL which partially represent G, induce layered digraphs of width at most W ,
and whose incidence vectors satisfy (1) with equality. (In our case it suffices
to look for linearly independent subsets as the supporting hyperplanes do not
contain the origin.) Consider the sets Fk = {λvk} for all ϕ(v) ≤ k ≤ ρ(v) and the
sets Ful = {λul, λvk} for all u �= v and ϕ(u) ≤ l ≤ ρ(u), with k = ϕ(v) in case
(u, v) ∈ E and k = ρ(v) otherwise. Each of these |VL| sets partially represents
G (see Property 1), have width at most equal to the width of the widest node of
G, and their incidence vectors give linearly independent incidence vectors which
satisfy (1) with equality.
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3.3 Direction Circuits

The requirement that all the edges point unidirectionally leads to a set of di-
rection circuits each including two nodes connected by an edge which does not
point downwards. For instance, if (λuk, λvl) ∈ EL is an edge that does not
point downwards, i.e. k ≤ l, then Dd = {λuk, λvl} is such a circuit. The rank
inequality which corresponds to it is xuk + xvl ≤ 1. We can generalize these
rank inequalities by stronger inequalities, which we call strong relative-ordering
(SRO) inequalities, as follows.

k∑
i=ϕ(u)

xui +
ρ(v)∑
i=k

xvi ≤ 1 (2)

for each k ∈ L(u)∩L(v) and for each edge (u, v). The number of SRO inequalities
is
∑

(u,v)∈E max{0, ρ(v)− ϕ(u) + 1}.
Theorem 3. Let G = (V,E) be a DAG and (u, v) ∈ E is a non-transitive
edge. Then the SRO inequality (2) with k ∈ L(u) ∩ L(v) is facet-defining for
GLP(LH

G ,W ) for any W > 0.

Proof. We apply sequential lifting (see [10] for details about the technique of
sequential lifting) starting with nodes λuk and λvk.

Step 1. Consider LH
G [{λuk, λvk}] - the subgraph of LH

G , which contains only
the nodes λuk and λvk and the edge between them. Then obviously

xuk + xvk ≤ 1 (3)

is a facet defining for GLP(LH
G [{λuk, λvk}],W ). Sequentially lifting (3) with λuj ,

j = ϕ(u) . . . , k− 1 and λvj , j = k + 1, . . . , ρ(v) leads to the inequality (2) which
defines a facet of GLP(LH

G [{λuj : ϕ(u) ≤ j ≤ k} ∪ {λvj : k ≤ j ≤ ρ(v)}],W ).
Step 2. If node w ∈ V is incident neither to u nor to v then we lift xwj with

a zero coefficient. Thus we conclude that (3) defines a facet of GLP(LH
G [F ],W )

for any H > 0 and W > 0 and F = {λuj : ϕ(u) ≤ j ≤ k} ∪ {λvj : k ≤ j ≤
ρ(v)} ∪ {λwj : w is incident neither to u nor to v, j ∈ L(w)}.

Step 3. Then consider λwj , where w is either u or v and node λwj has not
been considered yet in a previous step. Let, for simplicity of notation, w = u.
Then k+1 ≤ j ≤ ρ(u). If node u is placed in layer Vj then node v can be placed
in layer Vk and thus lifting variable xwj we add it to the facet-defining inequality
with a zero coefficient.

Step 4. Now consider node λwj with w /∈ {u, v} and w incident to at most
one of the nodes u and v. If node w is placed in layer Vj exactly one of the
variables {xuj : ϕ(u) ≤ j ≤ k}∪ {xvj : k ≤ j ≤ ρ(v)} can be equal to 1 and thus
we lift xwj with a zero coefficient.

Step 5. The last and most complicated case is when λwj is a node with w
incident to both u and v. The four drawings shown in Figure 2 represent all the
possible cases of relations between u, v and w. The drawings in Figures 2(a) and
2(b) represent cases which cannot occur under the conditions of the theorem,
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because there is a cycle in the case (a) and edge (u, v) is transitive in case (b).
If j �= k then we can apply zero lifting to xwj . We can also apply zero lifting in
any of the cases shown in Figures 2(c) and 2(d).

w

u

v

(a)

w

u

v

(b)

w

u

v

(c)

w

u

v

(d)

Fig. 2. The four possible cases of relations between nodes u, v and w if there is an
edge (u, v) and w is incident to both u and v.

In the five steps above we have lifted all the variables, thus showing that (2)
defines a facet of GLP(LH

G ,W ).

Note that the strong relative ordering inequalities for all the non-transitive
edges are sufficient to ensure that all the edges of the layered digraph point
downwards.

3.4 Capacity Circuits

The upper bound W on the width of the desired layering gives rise to the set of
capacity circuits which partially represent G, but the layered digraph induced
by them have width greater than W . If any of the nodes of such a circuit is
removed then the remainder of the set induces a layered digraph of width less
than or equal to W . This side of the graph layering polytope has proved to be
the most difficult to describe by facet defining inequalities. This is predictable
since the layering problem with unrestricted width of the layering is polynomially
solvable, as has been shown by the algorithm of Gansner et al. We identify two
types of non-trivial valid inequalities of GLP(LH

G ,W ) related to the imposed
width bound. The first we call path-augmented layer (PAL) inequalities and
they have the following form.

r∑
i=1

xvik +
mp∑
i=1

xup
i k +

ms∑
i=1

xus
i k ≤ r − 1 (4)

for

– all r-tuples {v1, v2, . . . , vr} of pairwise independent nodes (without a direct
path between any two of them) which cannot be placed together into the
same layer without causing the width of the layering to exceed the upper
bound W ;
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– mp ≥ 0 and nodes up
1, . . . , u

p
mp

form a directed path (up
mp

, . . . , up
1) where up

1

is a common immediate predecessor to each of v1, . . . , vr;
– ms ≥ 0 and nodes us

1, . . . , u
s
ms

form a directed path (us
1, . . . , u

s
ms

) where us
1

is a common immediate successor to each of v1, . . . , vr;
– k ∈

(⋂r
i=1 L(vi)

)⋂(⋂mp

i=1 L(up
i )
)⋂(⋂ms

i=1 L(us
i )
)
.

Theorem 4. Let (4) be a PAL inequality for the DAG G such that there are
no transitive edges with endpoints among nodes v1, v2, . . . , vr; up

1, . . . , u
p
mp

and
us

1, . . . , u
s
ms

. Further, assume that r ≥ 2, mp + ms ≥ 2r − 2 and the sum of the
widths of each r nodes is at most W . Then (4) is facet-defining for the layering
polytope associated with G.

Proof. As in the proof of Theorem 3 we construct |VL| subsets of VL which
partially represent G, induce layered digraphs of width at most W , satisfy (4) as
an equality and whose incidence vectors are linearly independent. We construct
the sets in four steps.

Step 1. For each node λvik we can choose the set {λv1k, . . ., λvi−1k, λvi+1k, . . .,
λvrk}. Suppose, for simplicity of notation, that λv1k, λv2k, . . . , λvrk correspond
to the first r components of an incidence vector of a subset of VL. Then the sets
described above give the following matrix of incidence vectors.

A =

⎛⎜⎜⎜⎜⎜⎝
0 1 1 . . . 1 0 0 . . . 0
1 0 1 . . . 1 0 0 . . . 0
1 1 0 . . . 1 0 0 . . . 0
...

...
...

...
...

...
...

...
...

1 1 1 . . . 0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠
When r ≥ 2 the rank of A is r, because∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1
...

...
...

...
...

1 1 1 . . . 0

∣∣∣∣∣∣∣∣∣∣∣
= (−1)r−1(r − 1) �= 0

In other words the incidence vectors of the r subsets chosen above are linearly
independent.

Step 2. Consider the nodes λup
1k, λup

2k, . . . , λup
mp k and λus

1k, λus
2k, . . . , λus

ms
k.

Since we have assumed that there is no transitive edges with endpoints among
these nodes, we can construct the sets {λup

i k, λv1k, . . . , λvr−1k} for i = 2, . . . ,mp

and {λus
i k, λv1k, . . . , λvr−1k} for i = 2, . . . ,ms and another two sets Fp and Fs

as follows.

Fp = {λup
1k}∪ {λup

i k : i = 3, 5 . . . , 2!mp/2"− 1}∪ {λus
i k : i = 2, 4, . . . , 2ms/2�};

Fs = {λus
1k}∪{λus

i k : i = 3, 5, . . . , 2!ms/2"−1}∪{λup
i k : i = 2, 4, . . . , 2mp/2�};
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|Fp| = 1 + !mp/2" − 1 + ms/2�
= !mp/2"+ ms/2�
≥ !mp/2 + ms/2"
≥ r − 1�
= r − 1.

Similarly |Fs| ≥ r − 1. Thus we can always choose a subset of Fs and a subset
of Fp with exactly r − 1 elements. It is easy to see that the incidence vectors of
the sets constructed at this step are linearly independent.

Step 3. Consider λxl ∈ VL which does not appear in any of the sets we have
already constructed. Then the following cases are possible.

– If x is one of v1, ..., vr, say x = vr for simplicity of notation, or if there is
no edge between x and any of the nodes v1, . . . , vr then we choose the set
{λxl, λv1k, . . . , λvr−1k}.

– If (x, vi) ∈ E for some i = 1, 2, . . . , r and l > k, t.e. layer l is above layer k
then we can choose the same set {λxl, λv1k, . . . , λvr−1k}

– If (x, vi) ∈ E for some i = 1, 2, . . . , r and l ≤ k then we construct the set
F = {λxl} ∪ {λus

i k : i = 1, 3, . . . 2!ms/2" − 1} ∪ Fx, where

Fx ⊆ {λup
1k, λup

2k, . . . , λup
mp k}

with no edge between any two nodes in Fx, node x not represented by any
node in Fx, and |Fx| ≥ mp/2�. Fx is always possible to construct because
• if x �= up

i for each i = 1, . . . ,mp then there is no edge of the type (x, up
i ),

because otherwise the edge (x, vi) would be transitive. If x is one of up
i

then there is only one such edge which is a part of the path;
• there can be no more than one edge of the type (up

i , x), because if there
is another one, say (up

j , x), then either of them would be transitive.
Hence

|F | = 1 + !ms/2"+ mp/2� ≥ 1 + ms/2 + mp/2� = 1 + r − 1� = r

If |F | > r then we can always choose a subset with exactly r elements,
leaving λxl and any other r − 1 nodes.

– If (vi, x) ∈ E for some i = 1, 2, . . . , r then we can do constructions analogous
to the constructions in the previous two cases.

The second group of inequalities, related to the capacity circuits, are the
same SRO inequalities described above, but this time for nodes u and v which
are not related by an edge and where we have established that u cannot be
placed above v (or vice-versa) because it will lead to the existence of a layer of
width greater that W .

Theorem 5. Let G = (V,E) be a DAG, u and v are two independent nodes
(without a directed path between them) and u has to be placed above v in order
to have a layering of width not greater than W . Then the SRO inequality (2)
with k ∈ L(u) ∩ L(v) is facet-defining for GLP(LH

G ,W ) for any W > 0.
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Proof. The proof is available upon request. We omit it from this paper, because
it follows the same scheme as the proof of Theorem 3.

4 Conclusions

We have defined the layering problem for DAGs as a formal optimization prob-
lem over an independence system and have identified a number of facet-defining
inequalities of the graph layering polytope. In a related paper [7] we presented
an experimental comparison of the three existing layering algorithms on over
5911 example DAGs and an Integer Linear Programming (ILP) layering algo-
rithm; this paper provides a theoretical basis for the ILP model and results re-
ported there. The results clearly showed that our approach lead to better quality
drawings albeit with longer running time. The solution method employed there
was CPLEX’s canned branch-and-bound ILP solver and it allowed us to solve
medium-sized problems (100 vertices) with little difficulty.

In this work we establish that three families of inequalities of that model are
indeed facet-defining and now it is possible to implement a competitive branch-
and-cut algorithm. The preliminary results of this work are quite encouraging
and suggest that we can provide more finely tuned graph layouts while keeping
running time within an acceptable bound.

References

1. E. G. Coffman and R. L. Graham. Optimal scheduling for two processor systems.
Acta Informatica, 1:200–213, 1972.

2. P. Eades and K. Sugiyama. How to draw a directed graph. Journal of Information
Processing, 13(4):424–437, 1990.

3. C. E. Ferreira, A. Martin, C. C. De Souza, R. Weismantel, and L. A. Wolsey.
Formulations and valid inequalities for the node capacitated graph partitioning
problem. Mathematical Programming, 74:247–266, 1996.

4. E. R. Gansner, E. Koutsofios, S. C. North, and K.-P Vo. A technique for draw-
ing directed graphs. IEEE Transactions on Software Engineering, 19(3):214–230,
March 1993.

5. M. Grötschel and M. W. Padberg. Polyhedral theory. In E. L. Lawler, J. K.
Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, editors, The Traveling Sales-
man Problem: A Guided Tour of Combinatorial Optimization, Series in Discrete
Mathematics, pages 251–305. John Wiley & Sons, 1985.

6. P. Healy and A. Kuusik. The vertex-exchange graph: A new concept for multi-
level crossing minimization. In J. Kratochv́ıl, editor, Graph Drawing: Proceedings of
7th International Symposium, GD ’99, volume 1731 of Lecture Notes in Computer
Science, pages 205–216. Springer-Verlag, 1999.

7. P. Healy and N. S. Nikolov. How to layer a directed acyclic graph. In P. Mutzel,
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1 Introduction

The minimum vertex cover problem is the problem of finding in a given graph
a smallest possible set of vertices that covers at least one vertex of each edge.
The decision version of the minimum vertex cover problem, VC, is one of the
standard NP-complete problems [GJ79]. To cope with the intractability that
appears to be inherent to this problem, various heuristics for finding minimum
vertex covers have been proposed. Two of the most prominent such heuristics
are the edge deletion heuristic and the maximum-degree greedy heuristic, see,
e.g., [PS82,Pap94]. These algorithms run in linear time and, depending on the
structure of the given input graph, may find a minimum vertex cover, or may
provide a good approximation of the optimal solution.
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two heuristics considered behave quite differently: the edge deletion heuristic
always approximates the size of a minimum vertex cover within a factor of 2 and
thus achieves the best approximation ratio known, whereas the maximum-degree
greedy heuristic, in the worst case, can have an approximation ratio as bad as
logarithmic in the input size. The latter result follows from the early analysis of
the approximation behavior of the greedy algorithm for the minimum set cover
problem that was done by Johnson [Joh74], Lovász [Lov75], and Chvátal [Chv79]
(who studied the weighted version of minimum set cover). Note that the vertex
cover problem is the special case of the set cover problem, restricted so that
each element occurs in at most two sets. More recently, building on the work of
Lund and Yannakakis [LY94], Feige [Fei98] showed that, unless NP has slightly
superpolynomial-time algorithms, the set cover problem cannot be approximated
within (1− ε) lnn, where ε > 0 and ln denotes the natural logarithm.

In this paper, we study the problem of recognizing those input graphs for
which either of the two heuristics can approximate the size of a minimum vertex
cover within a constant factor of r, where r ≥ 1 is a fixed rational number.
Let SED

r and SMDG
r , respectively, denote this recognition problem for the edge

deletion heuristic and for the maximum-degree greedy heuristic. Our main results
are:

Theorem 3 For each rational number r with 1 ≤ r < 2, SED
r is PNP

‖ -complete.
Theorem 6 For each rational number r ≥ 1, SMDG

r is PNP
‖ -complete.

Here, PNP
‖ denotes the class of problems that can be decided in polynomial

time by parallel (i.e., truth-table) access to NP. Papadimitriou and Zachos [PZ83]
introduced this class under the name PNP[O(log n)], where “[O(logn)]” denotes
that at most logarithmically many Turing queries are made to the NP or-
acle. Hemaspaandra [Hem89] proved that PNP[O(log n)] = PNP

‖ , and in fact
many more characterizations of PNP

‖ are known [KSW87,Wag90]. Other nat-
ural PNP

‖ -complete problems can be found in the papers by Krentel [Kre88],
Wagner [Wag87], and Hemaspaandra et al. [HHR97,HR98].

The type of recognition problem studied in this paper was investigated for
other problems and other heuristics as well. Bodlaender, Thilikos, and Ya-
mazaki [BTY97] defined and studied the analogous problem for the independent
set problem and the minimum-degree greedy heuristic, which they denoted by Sr.
They proved that Sr is coNP-hard and belongs to PNP. Closing the gap between
these lower and upper bounds, Hemaspaandra and Rothe [HR98] proved that
Sr is PNP

‖ -complete. As in [HR98], we obtain PNP
‖ -hardness by reducing from a

problem (namely, VCgeq, see Section 2) that can be shown to be PNP
‖ -complete

using the techniques of Wagner [Wag87]. Also, we show that the vertex cover
problem, restricted to those input graphs for which the heuristics considered can
find an optimal solution, remains NP-hard. We then lift this NP-hardness lower
bound to PNP

‖ -hardness, which proves our main results. This lifting requires a
padding technique such that the given approximation ratio r is precisely met.
In particular, to achieve PNP

‖ -hardness of SMDG
r for each rational number r ≥ 1,

we modify a construction by Papadimitriou and Steiglitz [PS82] that they use to
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analyze the worst-case approximation behavior of the maximum-degree greedy
heuristic.

2 Two Heuristics for the Vertex Cover Problem

We use the following notation. Fix the two-letter alphabet Σ = {0, 1}. Σ∗ is
the set of all strings over Σ. Let 〈·, ·〉 : Σ∗ × Σ∗ → Σ∗ be a standard pairing
function. For any set L, let |L| denote the number of elements of L.

All graphs considered in this paper are undirected nonempty, finite graphs
without multiple or reflexive edges. For any graph G, let V (G) denote the set of
vertices of G, and let E(G) denote the set of edges of G. For any vertex v ∈ V (G),
the degree of v (denoted by degG(v)) is the number of vertices adjacent to v in G;
if G is clear from the context, we omit the subscript and simply write deg(v).
Let max-deg(G) = maxv∈V (G) deg(v) denote the maximum degree of the vertices
of graph G. Let G and H be two disjoint graphs. The disjoint union of G and
H is defined to be the graph U = G ∪H with vertex set V (U) = V (G) ∪ V (H)
and edge set E(U) = E(G) ∪ E(H). The join of G and H is defined to be
the graph J = G  ! H with vertex set V (J) = V (G) ∪ V (H) and edge set
E(J) = E(G) ∪ E(H) ∪ {{x, y} | x ∈ V (G) ∧ y ∈ V (H)}.

For any graph G, a subset C ⊆ V (G) is a vertex cover of G if for all edges
{v, w} ∈ E(G), {v, w} ∩ C �= ∅. A vertex cover is said to be a minimum vertex
cover of G if it is of minimum size. For any graph G, let mvc(G) denote the
size of a minimum vertex cover of G. The vertex cover problem (VC, for short;
see [GJ79]) is defined to be the set of all pairs 〈G, k〉 such that G is a graph, k
a positive integer, and mvc(G) ≤ k.

All hardness and completeness results in this paper are with respect to the
polynomial-time many-one reducibility, denoted ≤p

m . For sets A and B, we say
A≤p

m B if and only if there exists a polynomial-time computable function f such
that for all inputs x ∈ Σ∗, x ∈ A if and only if f(x) ∈ B.

We consider the following two heuristics (see, e.g., [PS82,Pap94]) for finding
a minimum vertex cover of a given graph:

Edge Deletion Heuristic (ED): Given a graph G, the algorithm outputs a
vertex cover C of G. Initially, C is the empty set. Nondeterministically choose
an edge {u, v} ∈ E(G), add both u and v to C, and delete u, v, and all edges
incident to u and v from G. Repeat until there is no edge left in G.

Maximum-Degree Greedy Heuristic (MDG): Given a graph G, the algo-
rithm outputs a vertex cover C of G. Initially, C is the empty set. Nondeter-
ministically choose a vertex v ∈ V (G) of maximum degree, add v to C, and
delete v and all edges incident to v from G. Repeat until there is no edge
left in G.

As mentioned in the introduction, these two heuristics have a quite different
approximation behavior. While the worst-case ratio of the MDG algorithm is log-
arithmic in the input size [Pap94,Joh74], the ED algorithm always approximates
the optimal solution within a factor of 2. Thus, despite its extreme simplicity, the
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edge deletion heuristic achieves the best approximation ratio known for finding
minimum vertex covers [Pap94].

The central question raised in this paper is: How hard is it to determine for
which graphs G either of these two heuristics can approximate the minimum
vertex cover of G within a factor of r, for a given rational number r ≥ 1? Let
min-ed(G) (respectively, min-mdg(G)) denote the minimum size of the output
set of the ED algorithm (respectively, of the MDG algorithm) on input G, where
the minimum is taken over all possible sequences of nondeterministic choices the
algorithms can make. For any fixed rational r ≥ 1, SED

r (respectively, SMDG
r ) is

the class of graphs for which ED (respectively, MDG) can output a vertex cover
of size at most r times the size of a minimum vertex cover. Formally,

SED
r = {G |G is a graph and min-ed(G) ≤ r ·mvc(G)};

SMDG
r = {G |G is a graph and min-mdg(G) ≤ r ·mvc(G)}.

We will prove that for each fixed rational number r with 1 ≤ r < 2, SED
r

is PNP
‖ -complete, and that for each fixed rational number r ≥ 1, SMDG

r is PNP
‖ -

complete. To this end, we give reductions from the problem VCgeq, which is
defined by

VCgeq = {〈G,H〉 |G and H are graphs such that mvc(G) ≥ mvc(H)}.
It is known that VCgeq is PNP

‖ -complete, cf. Wagner [Wag87]. A reduction from
any problem in PNP

‖ to VCgeq that in addition has some useful properties (see
Lemma 1 below) can easily be obtained using the techniques of Wagner [Wag87];
see [SV00, Thm. 12] for an explicit proof of Lemma 1.

Lemma 1. (cf. [Wag87,SV00]) For any set X ∈ PNP
‖ , there exists a

polynomial-time computable function f that reduces X to VCgeq in such a way
that for each x ∈ Σ∗, f(x) = 〈G,H〉 is an instance of VCgeq and

x ∈ X =⇒ mvc(G) = mvc(H);
x �∈ X =⇒ mvc(G) < mvc(H).

3 Hardness of Recognizing When the Edge Deletion
Heuristic Can Approximate Minimum Vertex Covers

Lemma 2 below states that the vertex cover problem restricted to graphs in SED
1

is NP-hard. The proof of Lemma 2 can be found in the full version [HRS01] of
this paper. The reduction g from Lemma 2 will be used in the proof of the main
result of this section, Theorem 3. Define the problem

VC-SED
1 = {〈G, k〉 |G ∈ SED

1 and k ∈ N+ and mvc(G) ≤ k}.
Lemma 2. There is a polynomial-time many-one reduction g from VC to VC-SED

1

transforming any given graph G into a graph H ∈ SED
1 such that

mvc(H) = 2(mvc(G) + |V (G)|). (1)

Hence, VC-SED
1 is NP-hard.
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Theorem 3. For each rational number r with 1 ≤ r < 2, SED
r is PNP

‖ -complete.

Proof. It is easy to see that SED
r is in PNP

‖ . To prove PNP
‖ -hardness, let X be

an arbitrary set in PNP
‖ , and let f be the reduction from X to VCgeq stated in

Lemma 1. Fix any rational number r with 1 ≤ r < 2, and let � and m be integers
such that r = �

m . Note that 1 ≤ m ≤ � < 2m.
For any string x ∈ Σ∗, let f(x) = 〈G1, G2〉. Since we can add isolated vertices

to any graph G without altering mvc(G), we may without loss of generality
assume that |V (G1)| = |V (G2)|. Let g be the reduction from Lemma 2 that
transforms any given graph G into a graph H ∈ SED

1 such that Equation (1)
holds. Let H1 = g(G1) and H2 = g(G2). Thus, both H1 and H2 are in SED

1 , and
for i ∈ {1, 2}, we have mvc(Hi) = 2(mvc(Gi) + |V (Gi)|).

We will define a graph Ĥ and an integer k ≥ 0 such that:

min-ed(Ĥ) = r(m ·mvc(H2) + 2km); (2)

mvc(Ĥ) = m ·mvc(H1) + 2km. (3)

The reduction mapping any given string x (via the pair 〈G1, G2〉 obtained
according to Lemma 1 and via the pair 〈H1, H2〉 obtained according to Lemma 2)
to the graph Ĥ such that Equations (2) and (3) are satisfied will establish that
X ≤p

m SED
r . In particular, from these equations, we have that:

– mvc(H2) = mvc(H1) implies min-ed(Ĥ) = r ·mvc(Ĥ), and
– mvc(H2) > mvc(H1) implies min-ed(Ĥ) > r ·mvc(Ĥ).

Note that, due to Lemma 1, mvc(H2) ≥ mvc(H1).

H1
2 H2

2 H2
1H1

1
· · · · · ·

L R

· · ·

indep. set I2
indep. set I1

��

H�
2 Hm

1

a1 a2 ak·�

b1 b2 bk·�

Fig. 1. The graph Ĥ constructed from H1 and H2.

Look at Figure 1 for the construction of Ĥ from H1 and H2. The graph
Ĥ consists of two subgraphs, L and R, that are joined by the join operation,
plus some additional vertices and edges that are connected to R. Formally, let
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H1
1 , H

2
1 , . . . , H

m
1 be m pairwise disjoint copies of H1, and let H1

2 , H
2
2 , . . . , H

�
2 be

� pairwise disjoint copies of H2. Let k = �|V (H2)|+m|V (H1)|. Let I1 and I2 be
independent sets such that L contains exactly k(2m− �) vertices and R exactly
k� vertices. (This is possible, because k(2m− �)− �|V (H2)| is not negative, since
2m − � ≥ 1, and k� −m|V (H1)| is not negative, since � ≥ 1.) Let ei = {ai, bi}
(1 ≤ i ≤ k�) be additional edges. Every vertex ai is adjacent to exactly one
vertex in R, and each vertex in R is adjacent to exactly one vertex ai. ai and bi

are not adjacent to any other vertices.

1. We first determine min-ed(Ĥ). Let Ê be a fixed minimum-size output set
of the ED algorithm on input Ĥ, i.e., min-ed(Ĥ) = |Ê|. Since Ê is a vertex
cover of Ĥ, Ê must contain ai or bi for each i ∈ {1, . . . , k�}. Since the ED-
algorithm can delete only edges, and Ê is a minimum-size output set, it
follows that Ê contains all vertices ai, all vertices from R, and no vertex bi.
Let CL be a minimum-size output set of the ED-algorithm on input L. By
construction of L, |CL| = � · min-ed(H2). Thus, since H2 ∈ SED

1 , |CL| =
� ·mvc(H2).
Define Ê′ = V (R)∪CL∪

⋃k�
i=1{ai}. It is easy to see that Ê′ is a minimum-size

output set of the ED algorithm on input Ĥ. Hence,

min-ed(Ĥ) = 2k� + � ·mvc(H2)
= r(2km + m ·mvc(H2)).

This proves Eq. (2).
2. We now determine mvc(Ĥ). Let Ĉ be a fixed minimum vertex cover of Ĥ,

i.e., mvc(Ĥ) = |Ĉ|. Distinguish the following two cases.

Case 1: V (R) ⊆ Ĉ. In this case, Ĉ contains all vertices from R, at least
one of ai or bi for each i, 1 ≤ i ≤ k�, and a minimum vertex cover of L.
Hence,

mvc(Ĥ) = 2k� + � ·mvc(H2).

Case 2: V (L) ⊆ Ĉ. In this case, Ĉ contains all vertices from L, each vertex
ai, 1 ≤ i ≤ k�, and a minimum vertex cover of R. Hence,

mvc(Ĥ) = k(2m− �) + k� + m ·mvc(H1)
= 2km + m ·mvc(H1).

Since mvc(H1) ≤ mvc(H2), m ≤ �, and 2km ≤ 2k�, it follows that

mvc(Ĥ) = 2km + m ·mvc(H1).

This proves Eq. (3). 
�
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4 Hardness of Recognizing
When the Maximum-Degree Greedy Heuristic
Can Approximate Minimum Vertex Covers

Lemma 4 below states that the vertex cover problem restricted to graphs in
SMDG

1 is NP-hard. The proof of Lemma 4 can be found in the full version [HRS01]
of this paper; it is reminiscent of a proof by Bodlaender et al. [BTY97, Thm. 4],
who show that the independent set problem restricted to graphs for which the
minimum-degree greedy heuristic can find an optimal solution is NP-hard. The
reduction g from Lemma 4 will be used in the proof of the main result of this
section, Theorem 6. Define the problem

VC-SMDG
1 = {〈G, k〉 |G ∈ SMDG

1 and k ∈ N+ and mvc(G) ≤ k}.

Lemma 4. There is a polynomial-time many-one reduction g from VC to
VC-SMDG

1 transforming any given graph G into a graph H ∈ SMDG
1 such that

mvc(H) = mvc(G) + |E(G)|(max-deg(G) + 1). (4)

Hence, VC-SMDG
1 is NP-hard.

Lemma 5 below will be used in the proof of Theorem 6. The proof of Lemma 5
can be found in the full version [HRS01] of this paper. The construction of the
graph G in this lemma is a modification of a construction given by Papadim-
itriou and Steiglitz [PS82, p. 408, Fig. 17-3], which shows that the worst-case
approximation ratio of the MDG heuristic can be as bad as logarithmic in the
input size, and so grows unboundedly. Similar constructions for achieving the
worst-case approximation behavior of the greedy heuristic solving the more gen-
eral minimum set cover problem were given by Johnson [Joh74], Lovász [Lov75],
and Chvátal [Chv79].

Lemma 5. For all positive integers n1, n2, δ, and μ satisfying

μ(lnμ− 2 ln(δ + 2)− 1) ≥ n1 + n2, (5)

there exists a bipartite graph G with the following properties:

1. V (G) = V ∪ Ṽ such that V ∩ Ṽ = ∅ and both V and Ṽ are independent sets,
where
– V = {u1, u2, . . . , un1 , w1, w2, . . . , wμ, z1, z2, . . . zn2} and
– Ṽ = {ũ1, ũ2, . . . , ũn1 , w̃1, w̃2, . . . , w̃μ}.

2. {{ui, ũi} | 1 ≤ i ≤ n1} ∪ {{wi, w̃i} | 1 ≤ i ≤ μ} ⊆ E(G).
3. Every vertex ũi, where 1 ≤ i ≤ n1, has degree 1.
4. For each induced subgraph S of G that can be obtained by deleting ver-

tices from V such that V ∩ V (S) �= ∅, it holds that maxv∈V ∩V (S) degS(v) >
maxv∈Ṽ degS(v) + δ.
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Theorem 6. For each rational number r ≥ 1, SMDG
r is PNP

‖ -complete.

Proof. It is easy to see that SMDG
r is in PNP

‖ . To prove PNP
‖ -hardness of SMDG

r ,
let X be an arbitrary set in PNP

‖ , and let f be the reduction from X to VCgeq
stated in Lemma 1. For any string x ∈ Σ∗, let f(x) = 〈G1, G2〉.

It is convenient to consider the special case of r = 1 and the case of r > 1
separately in the proof of Theorem 6. We start by proving that SMDG

1 is PNP
‖ -

complete. We will define a graph Ĝ and an integer q ≥ 0 such that:

min-mdg(Ĝ) = mvc(G2) + q; (6)

mvc(Ĝ) = mvc(G1) + q. (7)

The reduction mapping any given string x (via the pair 〈G1, G2〉 obtained
according to Lemma 1) to the graph Ĝ such that Equations (6) and (7) are
satisfied will establish that X ≤p

m SMDG
1 . In particular, from these equations, we

have that:

– mvc(G2) = mvc(G1) implies min-mdg(Ĝ) = mvc(Ĝ), and
– mvc(G2) > mvc(G1) implies min-mdg(Ĝ) > mvc(Ĝ).

Note that, due to Lemma 1, mvc(G2) ≥ mvc(G1).
We now describe the construction of Ĝ. Let g be the reduction from Lemma 4

and let H2 = g(G2). Thus, H2 is in SMDG
1 and, by Equation (4),

mvc(H2) = mvc(G2) + |E(G2)|(max-deg(G2) + 1). (8)

Since one can add isolated vertices to any graph G without affecting the values
of mvc(G) or min-mdg(G), we may without loss of generality assume that

|V (H2)| = |V (G1)|+ |E(G2)|(max-deg(G2) + 1). (9)

��H2

a1 a2

· · ·

aj

b1 b2 bj

L R = G1

Fig. 2. The graph Ĝ constructed from G1 and H2.

Look at Figure 2 for the construction of Ĝ from G1 and H2. The graph Ĝ
consists of two subgraphs, L and R, that are joined by the join operation, plus
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some additional vertices and edges that are connected to L. Formally, choose
2j new vertices ai and bi, 1 ≤ i ≤ j, where j is a fixed integer large enough
such that the degree of each vertex in R is larger than the maximum degree of
the vertices in L. Note that the degree of each vertex in R must remain larger
than the degree of any vertex in L even after some vertices have been removed
from R.

Let B be the bipartite matching with the vertex set V (B) = {ai | 1 ≤ i ≤
j} ∪ {bi | 1 ≤ i ≤ j} and the edge set E(B) = {{ai, bi} | 1 ≤ i ≤ j}. Let R = G1,
and let L be the graph with the vertex set V (L) = {ai | 1 ≤ i ≤ j} ∪ V (H2)
and the edge set E(L) = E(H2). The graph Ĝ is defined by forming the join
L  ! R, i.e., there are edges connecting each vertex of L with each vertex of R,
plus attaching the vertices bi, 1 ≤ i ≤ j, to L by adding the j edges from E(B).

We first consider min-mdg(Ĝ). By our choice of j, each vertex in R has
a degree larger than the degree of any vertex not in R. Hence, on input Ĝ,
the MDG algorithm first deletes all vertices from R. Subsequently, it can find a
minimum vertex cover of H2, which has size mvc(G2)+|E(G2)|(max-deg(G2)+1)
by Equation (8), and eventually it can choose, say, the vertices ai, 1 ≤ i ≤ j, to
cover the edges of B. Hence,

min-mdg(Ĝ) = |V (G1)|+ mvc(G2) + |E(G2)|(max-deg(G2) + 1) + j

(9)
= mvc(G2) + |V (H2)|+ j.

We now consider mvc(Ĝ). Since every vertex cover of Ĝ must contain all vertices
of L or all vertices of R to cover the edges connecting L and R, it follows from
Equations (8) and (9) that:

mvc(Ĝ) = min{|V (G1)|+ mvc(H2) + j, |V (H2)|+ j + mvc(G1)}
= min{mvc(G2) + |V (H2)|+ j, mvc(G1) + |V (H2)|+ j}.

Since mvc(G2) ≥ mvc(G1), it follows that

mvc(Ĝ) = mvc(G1) + |V (H2)|+ j.

Hence, setting q = |V (H2)|+ j, Equations (6) and (7) are satisfied, which com-
pletes the proof that SMDG

1 is PNP
‖ -complete.

We now turn to the proof that SMDG
r is PNP

‖ -complete for r > 1. Fix any
rational number r = �

m , where � and m are integers with 1 ≤ m < �. Without loss
of generality, we may assume that gcd(�−m,m) = 1, where gcd(a, b) denotes the
greatest common divisor of the integers a and b. Recall that the pair 〈G1, G2〉 =
f(x) of graphs is obtained using the reduction f from X to VCgeq according to
Lemma 1; hence, mvc(G2) ≥ mvc(G1).

We will define a graph Ĝr and integers p, q ≥ 0 such that:

min-mdg(Ĝr) = r(p ·mvc(G2) + q); (10)

mvc(Ĝr) = p ·mvc(G1) + q. (11)
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The reduction mapping any given string x (via the pair 〈G1, G2〉 obtained
according to Lemma 1) to the graph Ĝr such that Equations (10) and (11) are
satisfied will establish that X ≤p

m SMDG
r . In particular, from these equations, we

have that:

– mvc(G2) = mvc(G1) implies min-mdg(Ĝr) = r ·mvc(Ĝr), and
– mvc(G2) > mvc(G1) implies min-mdg(Ĝr) > r ·mvc(Ĝr).

We now describe the construction of Ĝr:

– Let g be the reduction from Lemma 4 and let H2 = g(G2). Thus, H2 ∈ SMDG
1

and Equation (8) holds:

mvc(H2) = mvc(G2) + |E(G2)|(max-deg(G2) + 1).

– Let G1
1, G

2
1, . . . , G

m
1 be m pairwise disjoint copies of G1, and let

H1
2 , H

2
2 , . . . , H

�
2 be � pairwise disjoint copies of H2.

– Let Ũ =
⋃�

i=1 H
i
2 be the disjoint union of these copies of H2, and rename

the vertices of Ũ by V (Ũ) = {ũ1, ũ2, . . . , ũ�·|V (H2)|}.
– Let Z =

⋃m
i=1 G

i
1 be the disjoint union of these copies of G1, and rename

the vertices of Z by V (Z) = {z1, z2, . . . , zm·|V (G1)|}.
– To apply Lemma 5, choose n1 = � · |V (H2)|, n2 ≥ m · |V (G1)|, and δ =

max-deg(H2)+1, where the exact value of n2 will be specified below. Choose
the constant μ so as to satisfy Equation (5):

μ(lnμ− 2 ln(δ + 2)− 1) ≥ n2 + n1.

– Given the constants n1, n2, δ, and μ, define Ĝr to be the bipartite graph
G from Lemma 5 extended by the edges between the ũi vertices that were
added above to represent the structure of the copies of H2, and extended
by the edges between the zj vertices that were added above to represent the
structure of the copies of G1. That is, unlike G, the graph Ĝr is no longer a
bipartite graph. Formally, the vertex set of Ĝr is given by

V (Ĝr) = V (G) = V ∪ Ṽ , where
V = {u1, u2, . . . , un1 , w1, w2, . . . , wμ, z1, z2, . . . zn2} and

Ṽ = {ũ1, ũ2, . . . , ũn1 , w̃1, w̃2, . . . , w̃μ},

and the edge set of Ĝr is given by E(Ĝr) = E(G) ∪ E(Ũ) ∪ E(Z), where
E(G) is constructed as in the proof of Lemma 5.

This completes the construction of Ĝr. We now prove Equations (10)
and (11).

1. We first consider min-mdg(Ĝr). By construction, for each vertex v in Ṽ , we
have

degĜr
(v) ≤ degG(v) + max-deg(H2) < degG(v) + δ. (12)
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Let S be any induced subgraph of Ĝr that can be obtained by deleting
vertices from V such that V ∩ V (S) �= ∅. Property 4 of Lemma 5 and Equa-
tion (12) imply that

max
v∈V ∩V (S)

degS(v) > max
v∈Ṽ

degS(v).

Hence, on input Ĝr, the MDG algorithm starts by choosing the n1 + μ+ n2

vertices from V , which isolates each vertex w̃i ∈ Ṽ and leaves � isolated copies
of H2. Subsequently, since H2 ∈ SMDG

1 , the MDG algorithm can choose a
minimum vertex cover in each of these � copies of H2. By Equation (8),

mvc(H2) = mvc(G2) + |E(G2)|(max-deg(G2) + 1),

and hence,

min-mdg(Ĝr) = n1 + μ + n2 + �(mvc(G2) + |E(G2)|(max-deg(G2) + 1)).

2. We now consider mvc(Ĝr). Define the set C = Ṽ ∪D, where D with |D| = m·
mvc(G1) is a minimum vertex cover of Z. It is obvious from the construction
of Ĝr that C is a minimum vertex cover of Ĝr. Hence,

mvc(Ĝr) = n1 + μ + m ·mvc(G1).

To complete the proof, we have to choose n2 ≥ m · |V (G1)| such that Equa-
tions (10) and (11) are satisfied for suitable integers p and q. Setting p = m and
q = n1 + μ and requiring

n1 + n2 + μ + � · |E(G2)|(max-deg(G2) + 1) = r(n1 + μ) (13)

or, equivalently,

m · n2 + m · � · |E(G2)|(max-deg(G2) + 1)) = (�−m)n1 + (�−m)μ (14)

satisfies Equations (10) and (11). Our assumption that gcd(�−m,m) = 1 implies
that Equation (14) has integer solutions in the variables n2 and μ. It is easy to
see that one such solution, say (n2, μ), simultaneously (a) satisfies Equation (5),
(b) satisfies that both n2 and μ are polynomially bounded in the size of the input
of the reduction being described, and (c) can be computed efficiently [CF89]. This
completes the proof of the theorem. 
�
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1 Introduction and Basic Concepts

Games played on finite graphs were first introduced by McNaughton in [6]. Mc-
Naughton, using the ideas of the paper by Gurevich and Harrington [3], proved
that winners in his games have finite state winning strategies. Later based on
McNaughton games, Nerode, Remmel and Yakhnis in a series of papers (see [7]
and [8], for example) developed foundations of concurrent programming by iden-
tifying distributed concurrent programs with finite state strategies and studied
complexities of finding winners in McNaughton games. Dinneen and Khoussainov
use McNaughton games for modelling and studying structural and complexity-
theoretical properties of update networks (see [1]). Later in [2] Bodlaender, Din-
neen and Khoussainov generalize the study of update networks by introducing
the concept of relaxed update network. They proved that it is possible to detect
in polynomial time whether or not a given game represents a relaxed update
network. In this paper we continue the line of research of the above mentioned
work and begin with the following definition from [6]:

Definition 1. A game Γ is a tuple (S
⋃
A,E,W,Ω), where:

1. The sets S and A are disjoint and finite, where S is the set of positions for
Survivor and A is the set of positions for Adversary,

2. The set E of edges is such that E ⊆ A × S
⋃
S × A and for all s ∈ S and

a ∈ A there are a′ ∈ A and s′ ∈ S for which (s, a′), (a, s′) ∈ E,
3. The set W is a subset of S

⋃
A and Ω ⊆ 2W .

The graph G = (V,E), where V = S ∪ A, is called the system or the graph
of the game, the pair (W,Ω) is the specification, and each set U ∈ Ω is a
winning set.

In game Γ , a play (from p0) is an infinite sequence π = p0, p1, . . . such that
(pi, pi+1) ∈ E, i ∈ ω. Consider the set Inf(π) consisting of those positions p ∈W
that appear infinitely often in play π. Survivor wins the play if Inf(π) ∈ Ω;
otherwise, Adversary wins. The histories of the play π are its finite prefixes. The
set H(S) consists of all histories of all plays whose last positions are in S. The set
H(A) is defined similarly. A strategy for Survivor is a function f : H(S) → A

L. Kučera (Ed.): WG 2002, LNCS 2573, pp. 270–281, 2002.
c© Springer-Verlag Berlin Heidelberg 2002
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such that (qn, f(u)) ∈ E for all u = q0 . . . qn ∈ H(S). A strategy for Adversary
is defined similarly.

Let f be a strategy for a player and p be a position. Consider all the plays
that begin from p which are played when the player follows the strategy f . We
call these plays consistent with f from p.

Definition 2. The strategy f of a player is a winning strategy from position
p if all plays consistent with f from p are won by the player. In this case we
say that the player wins the game from p. To decide game Γ means to find
all the positions q in the game from which Survivor wins. We denote this set of
position by Win(S). The set Win(A) is defined similarly1.

In [6] McNaughton proved that there is an algorithm that decides any given
McNaughton game. McNaughton’s algorithm is quite inefficient, however. In
[7] Nerode, Remmel and Yakhnis improved McNaughton algorithm by showing
that it takes O(|W |!2|W ||W ||E|) time to decide a given game Γ . Thus, a natural
question arises as to under which conditions, put either on the specifications or
the systems, the games can be decided more efficiently. Here is a list of some
results and definitions related to this question.

A natural specification is to require Survivor to update every node of the
system infinitely often. This is formalized as follows.

Definition 3. A game Γ is an update game if W = V and Ω = {V }. If
Survivor wins this game, then we call this game an update network.

Update games can be decided in polynomial time as shown in [1]:

Theorem 1. There exists an algorithm that given a game decides in O(|V ||E|)
time whether or not the game is an update network.

We use this theorem (most of the time without a reference to it) in obtaining
several results of this paper. The proof of this theorem is based on finding certain
structural properties of update networks. In [2] Theorem 1 has been generalized.

Definition 4. A game Γ is a relaxed update game if U
⋂
V = ∅ for all

distinct U, V ∈ Ω. If Survivor wins this game, then we call Γ a relaxed update
network.

In [2], similar to the notion of rank defined in Gurevich-Harrington [3], certain
natural concepts (such as forcing) are introduced for the investigation of relaxed
update games, and the following theorem is proved:

Theorem 2. There exists an algorithm that given a game decides in O(|V |2|E|)-
time whether or not the game is a relaxed update network.
1 Any McNaughton game Γ is a Borel game. Hence, by the known result of Martin,

Γ is determined (see [5]). Therefore Win(S)
⋃

Win(A) = S
⋃

A.
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In this paper our goal is three fold. Firstly, we generalize the theorems above
by greater exploiting the ideas of the proofs of Theorem 1 and Theorem 2. Sec-
ondly, we give other types of natural specifications when the winners can be
determined in polynomial time with a parameter. Finally, we study the inter-
actions between efficent winning strategies, complexity of finding such strate-
gies, and the structural properties of the underlying graphs for games with an
emphasis to update games. We also briefly consider the relationship between
McNaughton games and temporal logic.

2 Preliminary Results

Given a game Γ and a subset X ⊆ V , a node v is in the set REACH(S,X) if
Survivor can force every play starting at v into X after a finite number of steps.

Lemma 1. [2] The set REACH(S,X) can be computed in O(|V |+ |E|) time.

Proof. We build a set R, that will eventually be REACH(S,X). Initially, R = X.
If a node x ∈ S has an edge to a node in R, then x is added to R. If a node
x ∈ A has only edges to nodes in R, then x is added to R. From every node
in R Survivor can force plays to go to a node in X. When no nodes can be
added to R anymore, then REACH(S,X)=R. Adversary has a strategy to stay
inside V \REACH(S,X) when game begins in a node from V \REACH(S,X).
The procedure of constructing REACH(S,X) can be implemented in O(|V |+|E|)
time, by giving each node not in X a counter, that is initially 1 for nodes owned
by Survivor and its outdegree for nodes owned by Adversary. Whenever we add
a node v to R, we subtract 1 from the counters of each node with an edge to v;
when a counter becomes 0 then the node is also added to R. 
�

Let v �∈ REACH(S,X). Iteratively define the set AVOID(v,A,X): ini-
tially, AVOID(v,A,X)={v}. For x ∈ A∩AVOID(v,A,X) we add a neighbor
y of x into AVOID(v,A,X) if (x, y) ∈ E and y �∈ REACH(S,X). For x ∈
S∩AVOID(v,A,X) we add all neighbors of x into AVOID(v,A,X). From
Lemma 1 we obtain the following:

Lemma 2. The set AVOID(v,A,X) has the following properties:

1. AVOID(v,A,X) can be constructed in O(|V |+ |E|) time.
2. AVOID(v,A,X) ∩ REACH(S,X) = ∅.
3. Adversary has a strategy such that when a play visits a node in

AVOID(v,A,X) then all nodes visited afterwards are in AVOID(v,A,X).
4. For all s in AVOID(v,A,X) ∩ S and all a ∈ A if (s, a) ∈ E then a is in

AVOID(v,A,X).

Note that the sets REACH(A,X) and AVOID(v, S,X) can be defined in a
similar matter. We will now need some notations that will be used later. The
strategy for a player P to force the plays into X from a node v will be denoted
by ForceP,v

X . Similarly, the strategy that keeps out all the plays from v to enter
the set X will be denoted AvoidP,v

X .
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3 Games with Separable Winning Sets

Given a system we would not like the system to enter useless states during a
computation. This naturally suggests that the specification (W,Ω) of the game
to be such that W = S

⋃
A. Another natural assumption on the specification

is that each winning condition U to be distinguishable from all other winning
condition U ′ in Ω. We formalize this as follows:

Definition 5. Game Γ is fully separated if W = S
⋃
A and for each U ∈ Ω

there is a sU , called separator, such that sU ∈ U but sU �∈ U ′ for all U ′Ω
distinct from U .

Thus, the separator sU for U ∈ Ω can be thought as a certificate of the
winning set U . Now our goal is to provide a polynomial time algorithm that
decides fully separted games. We use techniques developed in [1] and [2].

Definition 6. [2] A winning set U ∈ Ω is S-closed if it satisfies the following
conditions:

1. For each s ∈ U ∩ S there is an a ∈ U ∩A such that (s, a) ∈ E.
2. For each a ∈ U ∩A and all s such that (a, s) ∈ E we have s ∈ U .

Thus, this definition informally tells us the following. If a play arrives to a
node v in an S-closed set U then Survivor is able to always keep all the plays
after v inside U no matter what the oppenent does. Here is a lemma which is
true for any McNaughton game and therefore is of independent interest:

Lemma 3. Let Γ be a McNaughton game. Then if Survivor wins Γ from a
position p then one of the winning sets U in Ω must be S-closed.

Proof. In order to prove the lemma, we assume the opposite and then construct a
winning strategy for Adversary thus contradicting the assumption of the lemma.

Since each U ∈ Ω is not S-closed, there is a pU ∈ U that satisfies one of the
following conditions:

1. pU ∈ S and for all a ∈ A if (pU , a) ∈ E then a �∈ U .
2. pU ∈ A and there is an s such that (pU , s) ∈ E and s �∈ U .

We call pU a witness. Here is a strategy for Adversray. Let p0, . . . , pn be
a finite play. If pn is not a witness and pn ∈ A then Adversray moves to any
node s such that (pn, s) ∈ E. Assume that pn is a witness. Let U0, . . . , Uk−1 be
all winning sets in Ω for which pn is a witness. Note that if pn ∈ S then for
every a such that (pn, a) ∈ E we have a �∈ U0 ∪ . . . ∪ Uk−1. Assume now that
pn ∈ A. Let i be the number of times pn appears in the finite play p0, . . . , pn.
Then Adversray moves to any s that does not belong to Ui+1(mod(k)). The basic
idea is that, once pn is reached, Adversary leaves the sets U0, . . . , Uk−1 turn by
turn making in a cyclic manner.

We claim that the strategy described is a winning strategy for Adversary.
Indeed let π = p0, p1, . . . be a play consistent with the strategy. Assume that
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In(π) = U and U ∈ Ω. Let n be the first position after which no nodes outside of
U appear in π. Then since a witness pU appeares in In(π) infinitely many times
it must be the case that pU appears in π after position n. Hence, by the definition
of the strategy we described, there is a position j > n such that pj �∈ U . This
contradicts with the choice of n. The lemma is proved. 
�

We now need the following lemma that characterizes update networks (see
Definition 3) in terms of the sets REACH(S,X).

Lemma 4. Survivor wins an update game Γ if and only if x ∈ REACH(S, {y})
for all x, y ∈ V .

Proof. Assume that x ∈ REACH({y}) for all x, y ∈ V . List all the nodes
v0, . . . , vn. Survivor cycles by forcing the plays to visit v0, then v1, etc. This
shows that Survivor wins the game Γ .

Assume that there exists x, y such that x �∈ REACH(S, {y}). Then Adversray
uses the strategy AvoidA,x

y as soon as a play is at the node x. By by Part 3 of
Lemma 2 Adversary wins the game. The lemma is proved. 
�

The next lemma gives another sufficient condition for Adversary to win a
fully separated game.

Lemma 5. Let Γ be a fully separated game Γ such that every U ∈ Ω satisfies
one of the following properties:

1. U is not S-closed,
2. U is S-closed and Adversary wins the update game (U, {U}).

Then Adversray wins the game Γ .

Proof. By the lemma above, if U ∈ Ω is an S-closed set and (U, {U}) is not an
update network then there exists a pair xU , yU such that xU �∈ REACH(S, {yU}).
If U is not S-closed then we take a witness pU for U as in the proof of Lemma
3. Now we construct the following strategy g for Adversray. Let p0, . . . , pn be a
finite play such that pn ∈ A. Let pi be the last separator seen in the finite play
and pi = sU for some U ∈ Ω. There are three cases to consider.

Case 1. The set {pi, . . . , pn} is not a subset of U then Adversary chooses any
pn+1 for which (pn, pn+1) ∈ E.

Case 2. The set {pi, . . . , pn} is a subset of U and U is S-closed. In this case
Adversary follows AvoidA,xU

yU
strategy.

Case 3. The set {pi, . . . , pn} is a subset of U and U is not S-closed. Then if
pn = pU then Adversray chooses pn+1 such that pn+1 �∈ U and (pn, pn+1) ∈ E.

Let π = p0, p1, . . . be a play consistent with g. Assume that Inf(π) = U and
U ∈ Ω. Let n be the first position after which no nodes outside of U appear in π.
Then since the separator sU appeares infinitely many times in In(π) it must be
the case that sU appears in π after position n. Hence, either Case 2 or Case 3 is
applied. In Case 2, Adversary wins as the node yU will not be visited infinitely
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often, and hence Inf(π) �= U which is a contradiction. In Case 3, we will have
a contradiction with the choice of position n. The lemma is proved. 
�

We are now ready to prove the following theorem whose proof uses the lem-
mas proved above as well as Theorem 1.

Theorem 3. There exists an algorithm that decides any given fully separated
game Γ in O(|V |2|E|) running time.

Proof. Let p be the node from which all the plays begin. We describe the
following algorithm Procedure(Γ, p):

1. For each U ∈ Ω, find whether or not U ∈ Ω is S-closed. If each U ∈ Ω is
not S-closed then Adversary wins the game from p.

2. For each S-closed U ∈ Ω find whether or not the game (U, {U}) is an update
network.

3. Let X be the union of all U ∈ Ω so that (U, {U}) is an update network and
U is S-closed. If X = ∅ then Adversary wins the game from p.

4. If p ∈ REACH (S,X) then Survivor wins the game from p.
5. If p �∈ REACH (S,X) then construct the game Γ1 = (V1, E1,W1, Ω1) as

follows. The set V1 of nodes is AVOID(p,A,X), the set E1 is the restriction
of E to V1, the set W1 is V1, and Ω1 consists of all U ∈ Ω such that U ⊂ V1.
Note that |V1| < |V |. Run Procedure(Γ1, p).

It is not hard to see that the algorithm runs in O(|V |2|E|) time. This proves
the theorem. 
�

4 Games with Linear Winning Conditions

Let Γ be a game. The winning conditions set Ω is a partially ordered set in which
the partial order is defined by means of the set-theoretic inclusion. We call it the
partial order associated with the game Γ . The previous section deals with
those winning conditions whose associated partial orders form antichains, that
is U �⊆ V for all distinct U, V ∈ Ω. In this section, we investigate a dual case by
considering games whose associated partial orders are linearly ordered.

Definition 7. A game Γ is a linear game if the set Ω forms a linear order
U1 ⊂ U2 ⊂ . . . ⊂ Un and W = V . We call n the length of the winning
conditions.

Our goal is to show that linear games can be decided in polynomial time if the
length of the winning conditions is fixed. We begin with an example.

Example 1. Consider the game Γ = (S ∪A,E,W,Ω), where:

1. S = {s1, s2, . . . , sn}, A = {a1, a2. . . . , an}, W = S ∪A,
2. E = {(si, ai) | 1 ≤ i ≤ n}∪{(ai, si+1) | 1 ≤ i ≤ n−1}∪{(ai, s1) | 1 ≤ i ≤ n},
3. Ω = {Ui | 1 ≤ i ≤ n}, where Ui = {s1, a1, . . . , si, ai}.
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In this game Survivor wins the whole game. It is worth to note that Adversary
wins each of the game whose winning conditions set is a proper subset of Ω. The
basic reason for this is that Survivor has no choice at any given node si ∈ S but
to move to ai.

We need some notations, definitions, and lemmas for our next theorem. Let
X, Y be a subset of nodes in a given game. Then REACH(S,X, Y ) is the set
of all nodes v such that Survivor can force every play starting at v into X after
a finite number of steps and staying inside Y . As in Lemma 1 it can be shown
that the set REACH(S,X, Y ) can be computed in O(|V |+ |E|) time.

Let Γ = (V,E,Ω) be a game with the winning conditions Ω = {U1 ⊂
U2 ⊂ . . . Un}. Assume that n > 1. For each i < n consider the linear game
Γi = (V,E,Ωi), where Ωi = {U1 ⊂ U2 ⊂ . . . Ui}. Here is a simple lemma whose
proof is left to the reader.

Lemma 6. 1. Survivor wins the game Γ1 from position p if and only if p ∈
REACH(S,U1), the set U1 is S-closed, and Survivor wins the update game
(U1, {U1}).

2. If Survivor wins the game Γi from p then Survivor wins games Γj from
position p for all j ≥ i. 
�
For each i < n consider the set Xi consisting of all positions p from which

Survivor wins the game Γi. By the second part of the lemma above we have the
sequence X1 ⊆ X2 ⊆ . . . ⊆ Xn−1. Assume that Xn−1 �= ∅. For every position
p �∈ REACH(S,Xn−1), consider the set AVOID(p,A,Xn−1). Now note that since
U1 ⊆ U2 ⊆ . . . ⊆ Un and Xn−1 �= ∅ it must be the case that U1 ⊆ Xn−1.
Therefore Inf(π) �∈ Ω for any play π inside AVOID(p,A,Xn−1). We conclude
that the following lemme is true:

Lemma 7. Assume that Xn−1 �= ∅. Then Survivor wins the game Γ from posi-
tion p if and only if p ∈ REACH(S,Xn−1). 
�

An important point of this lemma is that the original game can be reduced
to a smaller linear game in case Xn−1 �= ∅.

Next we consider the case when Xn−1 = ∅.
Lemma 8. Assume that Xn−1 = ∅. Then if Survivor wins the game Γ from
position p then p ∈ REACH(S,Un) and Un is S-closed.

Proof. Clearly p ∈ REACH(S,Un). Assume that Un is not S-closed. There is a
x ∈ Un that satisfies one of the following conditions:

1. x ∈ S and for all a ∈ A if (x, a) ∈ E then a �∈ U .
2. x ∈ A and there is an s such that (x, s) ∈ E and s �∈ U .

We describe a strategy for Adversary. Let h = p0 . . . pn with p0 = p be a finite
play with pn ∈ A. We consider several cases.
Case 1. pn = x. Then Adversary moves outside of Un.
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Case 2. pi �= x for all i = 1, . . . , n. In this case Adversary plays his winning
strategy in game Γn−1 from p0.
Case 3. Let pi = x and x �∈ {pi+1, . . . , pn}. In this case Adversary plays his
winning strategy in game Γn−1 from pi+1.

Assume that π is a play consistent with the strategy described above. If x
occurs in π finitely many times then there is a position pi in the play after which
the play becomes consistent with Adversray’s winning strategy in game Γn−1

from position pi. Hence Inf(π) �∈ Ω since x �∈ Inf(π) and Xn−1 = ∅. If x occurs
infinitely often then Inf(π) has an element outside of Un. Thus, the strategy is
a winning strategy for Adversray. 
�

Assume that Xn−1 = ∅. Let x, y ∈ Un be such that x �∈ REACH(S, {y}, Un).
Consider the set AVOID(x,A, {y}). We can define a new game denoted by Γ (x, y)
such that the graph of the game is AVOID(x,A, {y}), and the set Ω(x, y) of
winning conditions are those U ∈ Ω which are subsets of AVOID(x,A, {y}).
Note that if Ω(x, y) is the empty set then x is a winning position of Adversary
in the original game. Also, Γ (x, y) is a linear game and the length of its winning
conditions is strictly less than n. Here is our next lemma.

Lemma 9. Assume that Xn−1 = ∅. Survivor wins the linear game Γ from posi-
tion p if and only if p belongs to REACH(S,Un), Un is S-closed and one of the
following two conditions is satisfied:

1. Survivor wins the update game (Un, {Un}).
2. For any pair x, y ∈ Un of nodes if x �∈ REACH(S, {y}, Un) then Survivor

wins the game Γ (x, y) from p while staying inside Un.

Proof. Assume that Survivor wins the game Γ from position p. Clearly it must
be the case that p ∈ REACH(S,Un). Now assume that none of the conditions
is true. We need to describe a winning strategy for Adversary. By the assump-
tion, there must exist x0, y0 ∈ Un such that x0 does not belong to the set
REACH((S, {y0}) and Adversray wins the game Γ (x0, y0) while staying inside
Un. We fix x0 and y0. Here is now a strategy for Adversary. Let h = p0, . . . , pm

be a finite play from p.
Case 1. pi = x0 for some i ≤ m and all nodes in h after pi are in Un. In this case
Adversary follows his winning strategy (from position pi) in game Γ (x0, y0).
Case 2. Suppose that Case 1 does not hold and all nodes in h are in Un. In
this case Adversary follows his winning strategy (from position p) in game
(V,W, {U1, . . . , Un−1}).
Case 3. pi �∈ Un for some i ≤ m and no node in h after pi is x0. In this case
Adversary follows his winning strategy (from position pi) in game (V,W, {U1, . . . ,
Un−1}).

We need to show that this described strategy is a winning strategy for Adver-
sary. Let π = p0, p1, p2, . . . be a play, where p = p0, consistent with the strategy.
Assume that pi = x0 for some i so that pj ∈ Un for all j > i. Then Adversary fol-
lows his winning strategy in Γ (x0, y0). Note that y0 �∈ Inf(π). We conclude that
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Inf(π) �∈ Ω. Assume that pi �= x0 for all pi after some pj �∈ Un. Then the play is
consistent with the Adversary’s winning strategy in game (V,W, {U1, . . . , Un−1)
after pj . Hence Inf(π) �∈ {U1, . . . , Un−1}. Since x0 �∈ Inf(π) we conclude that
Inf(π) �= Un. Assume that x0 and y0 appears infinitely often in π. This means
π contains infinitely many nodes outside of Un. Hence Inf(π) �∈ Ω. Thus, the
strategy is winning strategy for Adversary. This is a contradiction.

Now assume that one of the two conditions is satisfied and p ∈ REACH
(S,Un). Clearly if the first conditions is true then Survivor wins the game. As-
sume that the first condition is not satisfied. Let p = x0, x1, . . . , xk be the list of
all nodes in Un. Survivor’s strategy is as follows. Initially i = 0 and the current
position is p. If the current position q of a play is in REACH((S, {xi+1(mod(k)), Un)
then Survivor forces the play into xi+1(mod(k)). As soon as xi+1(mod(k)) is reached
i is set to i + 1(mod(k)) and the current position is xi+1(mod(k)). If the current
position q is not in REACH((S, {xi+1(mod(k)), Un}) then Survivor plays his win-
ning strategy inside Γ (xi, xi+1(mod(k))) while staying in Un. We need to show
that this is a winning strategy for Survivor. Let π = p0p1p2 . . . (with p0 = p) be
a play consistent with the strategy. Let U = Inf(π) be the infinity set of the play.
Assume that xi+1(mod(k)) �∈ U for some i. This means that there is a position n
in the play π such that all xj with j > n belong to AVOID(xi, A, xi+1(mod(k))).
Since Survivor plays his winning strategy inside the game Γ (xi, xi+1(mod(k))) the
set U must belong to Ω. 
�

From the lemmas above and Theorem 1 we now can derive the following
result about complexity of deciding linear games.

Theorem 4. There exists an algorithm that decides any linear game G with
winning conditions {U1, . . . , Un} in O(|V |2·n−1|E|) running time. In particular,
if n is fixed then deciding linear games with n winning conditions can be done
in a polynomial time.

Proof. We analyze the case when n = 2. We use the lemmas above. Constructing
X1 and checking if p ∈ REACH(S,X1) takes at most O(|V ||E|)-time.

Assume that X1 = ∅. Cheking that p ∈ REACH(S,U2) and (U2, {U2}) is an
update network takes at most (|V ||E|)-time.

Let us now compute the time needed to check the second condition in the
lemma above. It is not hard to see that for each y ∈ U2 the set AVOID(A, {y})=
V \ REACH(S, {y}) can be constructed in O(|E|+ |V |)-time (see Lemma 2). For
each x ∈ AVOID(A, {y}) checking if Survivor wins Γ (x, y) inside U2 takes at
most O(|AVOID(x,A, {y})||E|)-time. Therefore, by varying x, y we see that the
total time does not exceed O(|V |2× |V ||E|). This proves the theorem for n = 2.

The rest can be done by using recursion and the use of the previous lemmas.
The theorem is proved. 
�

5 No-memory Strategies, Complexity, and Structure

The goal in this section is twofold. On the one hand we show that finding efficient
strategies in McNaughton games, even in a simple case such as games with one
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winning set, is an untractible problem. On the other hand, we show how efficient
winning strategies can be used to extract structural properties of the underlying
graphs. In this section we consider games Γ in which Ω = {U} and U = S.

Argueably the most simple strategies are the ones that depend on the current
node of a play and not any other part of its history. We single out such strategies
in the following definition.

Definition 8. A strategy for Survivor is a no-memory strategy if it is in-
duced by a function f : S → A such that (s, f(s)) ∈ E for all s ∈ S.

Thus if f is a no-memory strategy and h is a finite play whose last symbol
last(h) is in S then Survivor’s next move is f(last(h)). The next definition gives
us a tool to analyze the structure of graph games.

Definition 9. A cycle a0, s0 . . . , an, sn in game graph G is a forced cycle if
(ai, s) ∈ E implies s = si for all 0 = 1, . . . , n.

Here is our theorem that shows the interaction between no-memory win-
ning strategies in update games and the structural properties of the underlying
graphs.

Theorem 5. Let Γ = (V,E,W, {S}) be a game whose graph is G and W = S.
Then Survivor has a no-memory winning strategy if and only if all the vertices
of S belong to a forced cycle.

Proof. Assume that the graph S is in a forced cycle a0, s0 . . . , an, sn. Then
the mapping si → ai+1(mod(n+1)) establishes a no-memory winning strategy for
Survivor.

Assume that in game Γ Survivor has a no-memory winning strategy f . Con-
sider a play π = s0, a0, s1, a1, . . . consistent with f . Thus f(si) = ai for all i.
Since f is a no-memory winning strategy we have Inf(π) = S. In this play
there exist positions i and i + m such that si = si+m, m > 0, and no two Sur-
vivors nodes between positions i and i + m coincide. It is not hard to see that
si, ai, . . . , ai+m contains all the nodes from S as otherwise f would not be a
winning strategy. Moreover, in this list if k �= t then ak �= at. Indeed, say k < t
and ak = at. Then Adversary by always moving from ak into sk+1 would win
against strategy f . This would contradict the assumption that f is a winning
strategy. Thus, si, ai, . . . , ai+m−1, si+m is in fact a forced cycle. The theorem is
proved.

The ideas of the proof of the theorem can now be used to show the following
hardness result:

Corollary 1. The problem of finding whether or not Survivor has a no-memory
winning strategy in a given game is NP -hard.

Proof. We reduce the problem of finding a Hamiltonian path in a directed graph
to the problem of interest. Let G = (V ′, E′) be a directed graph. Construct the
following game Γ (G) = (S ∪A,E,W,Ω):
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1. S = V ′, A = {a(v,w) | (v, w) ∈ E′}.
2. E = {(s, a(s,w)) | s ∈ S, a(s,w) ∈ A} ∪ {(a(v,s), s) | a(v,s) ∈ A, s ∈ S}.
3. W = V ′ and Ω = {V ′}.

Basically, we subdevide each edge (v, w) of the original graph G by introducing
new Adversary’s node a(v,w) that is connected to v and w. Clearly, the construc-
tion of Γ (G) is linear on the size of the graph G. Note that the winning here is
defined as follows. Survivor wins a play if the set of all the nodes of W in the
play that appear infinitely often coincide with S. Moreover, it is easy to see that
G has a Hamiltonian cycle if and only if Survivor has a non-memory winning
strategy in Γ (G). The corollary is proved. 
�

6 Games and Temporal Logic

We now say a few words in relation to connections with temporal logic. There are
several ways to think about these games using the language of temporal logic.
For example, one way to think about the specifications (W,Ω) is to identify them
with classes of formulas of temporal logic. Formally, this can be established as
follows as it is done in [4]. Given a system (S

⋃
A,E), form propositions of

temporal logic by identifying each p ∈ S ∪ A as an atomic proposition. In the
inductive step, if φ and ψ are propositions then their Boolean combinations and
the expressions Gφ and Fφ are also propositions. Semantics for these propsitions
are the runs of the system (S

⋃
A,E). Let π = p0, p1, p2, . . . be a run and φ be

formula. Let πi be the sequence pi, pi+1, . . .. One now can define what it means
φ to be true on π, denoted by π |= φ, by induction as follows. If p0 = p then
π |= p. The case for Boolean connectives is defined naturally. For φ = Fψ, π |= φ
if πi |= ψ for some i. For φ = Gψ, π |= φ if πi |= ψ for all i. Thinking of G as
“globally” and of F as “future”, we can represent specifications (W,Ω) in the
language of temporal logic. Thus, given a system (S

⋃
A,E) and a specification

φ we can now ask whether or not the system satisfies φ. The satisfaction can be
expressed in terms of winning. Namely, the system satisfies φ if Survivor has
a strategy so that in every play π consistent with the strategy the formula φ
is true. For example, for the system (S

⋃
A,E) with nodes {p0, . . . , pn−1}, the

specification (p0 ∨ . . . ∨ pn)&(&0≤i≤n−1G(pi → Fpi+1(mod n))) tells us that
Survivor must visit every node infinitely often. This is in fact a specification of
update networks in terms of temporal logic. Thus, one can study the following
natural questions:

1. (Model checking complexity) Given a system, what is the time complexity of
finding whether or not a given temporal formula is staisfied in the system?

2. (Implementation complexity) Given a formula φ, what is the complexity of
finding whether or not a given system satisfies φ?

3. (Combined complexity) What is the complexity of finding, given a formula
φ and the system A, that A satisfies φ?

For details on research on the relationship between verification and specifi-
cations of systems, temporal logic and games see Vardi [9].
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7 Conclusion

The results of this paper can be generalized. For example, in fully separated
games or in linear games the condition W = S

⋃
A can be removed. Techniques

for such a generalization can be found in [2]. We expect that it is possible to
decide linear games more efficiently than the time bound presented in Theorem
4. We think that the methods and techniques developed in this paper, papers
[1] and [2] give sufficient tools for a deep study of games from computational,
algebraic and logical points of view. One can hope to provide fast algorithms
for deciding those games in which the winning configurations can be decided
efficiently, e.g. when the number of winning conditions is fixed. Section 5 shows
that interesting results can be obtained in relation to implementing winning
strategies by finite automata. This is a topic of our future papers. Note that
apart from Corolloary 1 neither in this nor in any of the previous papers [1]
[2] the topic on complexity of extracting winning strategies has been discussed.
To our knowledge the only paper that deals with this issue explicetly is one by
Nerode, Remmel, and Yakhnis [7]. A fruitful direction is related to the study of
connections with temporal logic briefly described in the last section. One can
also study the effect of the topology of the systems on finding the winners and
winning strategies. As it is seen, much more is needed to be done.
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Abstract. We present new fixed parameter algorithms for the face

cover problem on plane graphs. We show that if a plane graph has a
face cover with at most k faces then its treewidth is bounded by O(

√
k).

An approximate tree decomposition can be obtained in linear time, and
this is used to find an algorithm computing the face cover number in
time O(c

√
kn) for some constant c. Next we show that the problem is in

linear time reducible to a problem kernel of O(k2) vertices, and this ker-
nel can be used to obtain an algorithm that runs in time O(c

√
k + n) for

some other constant c. For the k–disjoint cycles problem and the k-

feedback vertex set problem on planar graphs we obtain algorithms
that run in time O(c

√
k log kn) for some constant c. For the k-feedback

vertex set problem we can further reduce the problem to a problem ker-
nel of size O(k3) and obtain an algorithm that runs in time O(c

√
k log k+n)

for some constant c 1.

1 Introduction

Many problems of practical interest tend to be NP-hard when viewed from classi-
cal computation complexity theory. People are unlikely to find polynomial-time
to solve them. There are several ways to coping with this apparent difficulty.
Approximation algorithms are frequently chosen to deal with computational in-
tractability. In other words, if a problem was once classified as NP-hard, people
often try to design and analyze an approximation algorithm for it. In the recent
ten years, parameterized complexity has opened a new road of attack against
computational intractability.
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Definition 1. Consider an algorithm for an instance of a parameterized prob-
lem (I, k) where I is the problem instance and k is the parameter. The algorithm
is called uniformly polynomial if it runs in time O(f(k)|I|c) where |I| is the size
of I, f(k) is an arbitrary function, and c is a constant. A parameterized prob-
lem is fixed parameter tractable, (FPT), if it admits a uniformly polynomial
algorithm.

Parameterized complexity was introduced some ten years ago [13]. There are
by now numerous algorithms known for fixed parameter tractable problems. For
planar domination, part of the stumbling history is reflected in [14,13,2]. A
stunning breakthrough with a catalytic impact was made with the discovery of
sub-exponential solutions (i.e., O(c

√
kn)) for various domination problems on

planar graphs [7,1,3,4,10]. It is shown [8] that for all MAX SNP-hard problems
(such as dominating set) finding exact solutions in sub-exponential time is
not possible unless W[1]=FPT. Planar dominating set (and various other
problems) has no EPTAS running in time O(2o(

√
1
ε )p(n)) unless W[1]=FPT [9].

In this paper we focus on face cover, feedback vertex set, and disjoint

cycle problems. We start by considering the face cover problem. Consider a
plane graph G = (V,E). That is, a specific plane drawing of a planar graph in
the plane. The different regions inferred by this drawing as well as the subsets
of vertices which can be coupled by curves fully contained within these regions
are called the faces of the graph.

Definition 2. Consider a plane graph G. A face cover is a set F of faces such
that every vertex x is incident with at least one element of F . The number of
faces in a minimum face cover is called the face cover number and this is denoted
by fc(G).

It is not hard to see that the face cover problem is NP-complete by a reduction
from vertex cover. In [17] it is shown that the problem remains NP-complete
for plane triangulations. In this paper we present new algorithms for the pa-
rameterized face cover problem when restricted to plane graphs. A solution
for the k–face cover problem is given in [13] which runs in time O(12kn).
Subsequently, a new algorithm for this problem was described in [1]. Their so-
lution could be implemented to run in time O(c

√
kn + n2) for some constant

c. In Section 2 we further improve upon these results by giving first a simple
algorithm solving the problem in time O(c

√
kn), where c is of similar size as in

the algorithm of [1]. Then, in Section 3 we show that it is possible to reduce
a problem instance I to a problem kernel I ′, i.e., an equivalent instance which
is bounded in size by some function of the parameter k. In this case we show
that it is possible to reduce the problem in linear time to a problem kernel of
size O(k2). This then, together with the previously mentioned algorithm imme-
diately implies the existence of an algorithm that runs in time O(c

√
k + n) for

some constant c. In Section 4 we turn to the feedback vertex set problem.
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Definition 3. A feedback vertex set, (fvs) of a graph G is a set X of vertices
such that every cycle of G passes through at least one vertex of X. For a graph
G we let cc(G) denote the cardinality of a minimum feedback vertex set.

Computing the cardinality of a minimum fvs is NP-complete for planar graphs.
This is easy to see by a reduction from vertex cover. Notice that “being
acyclic within k vertices” is a minor closed property, (since being acyclic is
minor closed [16]). Hence fvs is fixed parameter tractable for graphs in general.
A concrete algorithm to solve the k-feedback vertex set problem in O((2k+
1)kn2) time is described in [13]. It is remarked that the problem can be solved
alternatively in time O((17k4)!(n+m)). For descriptions of algorithms with these
timebounds see [5,13].
In this paper we restrict ourselves to planar graphs and we show that for that
case noticeably faster algorithms exist. Specifically, in Section 4, we show the
existence of an algorithm that runs in O(c

√
k log kn) time. Furthermore, in Sec-

tion 5 we show that it is possible to reduce the problem to a problem kernel of
size O(k3) in linear time. This then implies the existence of an algorithm that
runs in time O(c

√
k log k + n) for some constant c.

In Section 6 we turn our attention to the disjoint cycles problem on planar
graphs.

Definition 4. A cycle packing in a graph G is a set of vertex disjoint cycles.
For a graph G we let cp(G) stand for the cardinality of a maximum cycle packing.

Notice that the k-disjoint cycles problem is NP-complete (also for planar
graphs) because it contains partition into triangles as a special case. The
problem was shown to be fixed parameter tractable in [5,13]. In Section 6 we
show that the k-disjoint cycles problem can be solved in time O(c

√
k log kn) when

restricted to planar graphs. Unfortunately, for this problem we were thus far
unable to find a reduction to a problem kernel.

2 A Treewidth Algorithm for the Face Cover Number

Definition 5. A dominating set D in a graph G is a set of vertices such that
every vertex not in D has at least one neighbor in D.

Definition 6. A tree decomposition (S, T ) for an undirected graph G = (V,E)
is a pair where T is a tree and S is a set of subsets of vertices, called bags.
S is in 1-1 correspondence with the nodes of the tree T such that the following
conditions are satisfied:

1. Every vertex is contained in at least one bag,
2. Both end vertices of every edge are contained in at least one bag,
3. For every vertex x of the graph, if x appears in bags Si and Sj then it appears

in every bag corresponding to the vertices which lie on the path in the tree T
between the nodes i and j.
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The width of a tree decomposition (S, T ) is the maximum cardinality of a bag
Si minus one, over all nodes in the tree T . The treewidth of the graph is the
minimum width over all possible tree decompositions of the graph. For a graph
G, let tw(G) denote the treewidth of G.
Computing treewidth for graphs in general is NP-complete, however the problem
is FPT. Moreover there exists a linear time algorithm to check if a graph has a
bounded treewidth [7,19].
We use the result of [1]. (For general information on minors and treewidth we
refer to [12].)

Theorem 1. If a planar graph G has a dominating set of size at most k then
the treewidth of G is at most δ

√
k for some constant δ. There is a linear time

algorithm that finds a tree decomposition of this width.

Remark 1. The best upperbound known to us at present is δ < 6
√

34 [1].

Lemma 1. If fc(G) ≤ k then tw(G) = O(
√
k).

Proof. Consider a set of at most k faces in a plane embedding of G such that
every vertex lies on at least one of these faces. Put a new vertex in each of these
faces and take edges from these new vertices to all the vertices of the boundary.
The new graph H has now a dominating set consisting of the k new vertices.
Hence the treewidth of H is O(

√
k). But H is a supergraph of G and hence also

the treewidth of G can be only O(
√
k). 
�

The k–face cover problem for G can be solved in time O(c
√

kn) as follows.
It is easiest to start with the construction of an auxiliary plane graph H. Place
new, say blue, vertices in every face of the plane graph G. Add edges from every
blue vertex to the vertices on the boundary of the face containing it.
We first show that the treewidth of H is also O(

√
k).

Theorem 2. tw(H) ≤ 4tw(G) + 1 2.

Proof. Consider a tree decomposition D = (S, T ) for G with width �−1 (� ≥ 1).
(So every bag of S has at most � vertices.)
Consider an isolated vertex x of G. We may assume that x has a private bag in
D containing only x. We add the blue vertex of the face that contains x to this
bag. Consider an edge e of G. Add the (at most 2) blue vertices that are adjacent
to both endpoints of e to all the bags of S that contain both endpoints of e. If
we relocate the nodes in T of which the bags contain isolated vertices properly,
D changes subsequently into a tree decomposition for H (we prove this below).
Furthermore, we claim that every bag has now at most 4� − 2 = 4tw(G) + 2
vertices.
We prove this claim by induction on the number of nodes of T . Assume first that
T has only one node. Then G has � vertices. Since G is planar, the number of faces
2 Conjecture 1. tw(H) ≤ tw(G) + 4.
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is at most 3�−2 (by Euler’s formula: φ = 1+η+m−n ≤ 1+�+3(�−1)−� = 3�−2,
where φ, η, m, and n are the number of faces, components, edges, and vertices of
G, respectively). Hence, adding all the blue vertex to the one bag of D increases
the cardinality with at most 3�− 2 vertices.
Suppose that T has at least two nodes and consider any edge (x1, x2) of T . This
edge divides T into two new trees, say T1 and T2. We let Di = (Si, Ti) be the
decomposition induced by Ti. Let Vi be the set of vertices that appear in bags
of Si and let Gi = G[Vi] be the subgraph of G induced by Vi, i = 1, 2. We
may assume that each Vi is a proper subset of V : Assume that each vertex of
V occurs in some node of T1 but some edge (x, y) is not contained in any bag
of S1. Then the edge must appear in some bag in T2 and hence both x and y
appear in the bags of x1 and x2, hence (x, y) is contained in a bag of S1 which
is a contradiction.
If some face F of G has some but not all vertices in V1 we consider the graph
obtained from G by “short–cutting” F: If α and β are two non-adjacent vertices
of F in V1 and if the clockwise path between α and β contains no other vertices
in V1 then we add an edge (α, β) to G1 and also to G2. (Notice that α and β
must also be vertices of G2 since they are both incident with at least one edge
which is not in any bag of D1. Hence, both α and β are elements of the bags
at x1 and x2.) We draw the new edge in the plane embedding inside F. Let G′

1

and G′
2 be the graphs obtained from G1 and G2 by adding all these short–cuts.

Notice that each G′
i is a plane graph.

We claim that Di is a tree decomposition for G′
i for i = 1, 2. Indeed, if (α, β) is

a short–cut of F then α and β must both be in the bags of x1 and x2 since they
are elements of V1 and both are incident with at least one edge which is not in
any bag of D1.
Add blue vertices to all faces of G′

i and let Hi be the new graph (i = 1, 2). By
induction we know that Di changes into a tree decomposition for Hi with at
most 4� + 2 vertices per bag when we add the blue vertices of Hi to every bag
that contains an adjacent edge of G′

i, since Di is a tree decomposition for G′
i.

Finally, notice that since all short–cuts appear in x1 and x2, we may identify
separate blue vertices belonging to the same face F in G. Like this we obtain a
tree decomposition for H of width at most 4tw(G) + 1. 
�
For actually constructing a tree decomposition for H the same method as indi-
cated in [1] can be used.
One day, time and space will permit us to describe an algorithm that computes
a minimum cardinality set of blue vertices dominating all other vertices. For
dominating set it is well known that, given a tree decomposition with width
�, this problem can be solved in time O(3�n) (see, e.g., [18]) 3. We obtain:

Theorem 3. There exists an algorithm which runs in time O(c
√

kn) which de-
cides either that fc(G) > k or determines the exact value of fc(G).
3 We can make our graph bipartite by removing all original edges between red vertices.

This can be used to reduce the time complexity to O(2�n) (see [1]).
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3 Reduction of Face Cover to a Problem Kernel

We work again with the plane graph H obtained from G by placing new, blue,
vertices inside the faces of G and by creating edges from these blue vertices to all
vertices on the boundary of the face. Call the old vertices of G red. We search for
a “blue dominating set”, i.e., a set of blue vertices dominating all red vertices.
If the plane graph G has a pendant vertex then the face that contains this vertex
is fated to be in the face cover. Hence, in H we can put the blue vertex in the face
cover and remove all red neighbors from the graph. The target blue domination
number of the remaining graph decreases by one. Henceforth, we assume that G
has no pendant vertices.
Consider a vertex x of degree 2. In general, this vertex belongs to 2 faces (or
otherwise it is a cut-vertex that belongs to only 1 face). At least one of the
faces incident with x should be in the cover. Notice that we may assume that
every induced path contains at most one subdivision vertex. Let H∗ be the
graph obtained from H by replacing subsets of red subdivision vertices on the
same “carrier–edge” by 1 representative. Let G∗ be the graph obtained from
G by removing pendant vertices and “dissolving” all vertices of degree 2 (i.e.,
removing the vertex and putting an edge between its neighbors if there was
none). Hence H∗ is a subdivision of G∗ with at most one subdivision vertex per
edge in G∗.

Lemma 2. Suppose that G consists of two disjoint components. Then consider
the face between the two components. In each component choose two adjacent
vertices (a vertex if a component is a singleton) and link the two components by
two edges between these vertices. Choose the new links such that the new face
has at most four edges. In case there is a cut-vertex or a bridge, add an extra
edge in a similar way. These operations do not change the face cover number of
G.

Proof. Adding an edge in the plane graph cannot decrease the face cover number.
Observe that, if the face between the two components is chosen in an optimal
face cover, then in the new graph this face without the square or triangle will
serve equally well. 
�
A graph in which every vertex has degree at least 3 will be called rich. Hence, we
may assume that the graph G∗ is biconnected and rich and H∗ is a subdivision
of G∗ with at most one subdivision vertex per edge in G∗.

Lemma 3. Let F be a face of the biconnected and rich graph G∗ with more than
4k vertices. Then F must be in any face cover with k faces.

Proof. Assume G∗ has a face cover with at most k faces and assume that F takes
no part in it. Since every vertex of F has degree at least 3, each of these has at
least one neighbor outside F.
Consider a component C of G∗−F with at least 2 vertices. First let |N(C)| = 2.
If C has at least 2 vertices with 2 neighbors in F then C has a vertex which is
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not on the outerface of G∗[C ∪ F]. Otherwise C contains a cycle since G is rich.
In any case, it follows that G∗[C ∪ F] contains at least one vertex that is not on
the outerface and hence C accounts for at least one finite face which must be in
the cover.
Moreover, if a component C has at least 3 neighbors in F (which is the case if
C has only one vertex), it must have at least ! |N(C)|

2 − 1" faces in the cover,
since every second vertex of F of this neighborhood which is not on the outside,
accounts for a face in the cover. (This can be easily seen by contracting the
component C to a single vertex.) It follows that F can be split up in sets of 4
vertices each adding at least one face to the cover, the “worst case” being that
every component has 4 neighbors in F. 
�

Corollary 1. If H∗ has a face F with more than 8k vertices then F must be in
any face cover with k faces.

Proof. Assume F is a face of H∗ with more than 8k vertices. Since every edge of
G∗ has at most one subdivision vertex, it follows that F grounds a face with more
than 4k vertices in G∗. If H∗ would have a face cover without F as a member,
than a similar statement would hold true for G∗. 
�
Consider now the following process: As long as there is a face in H∗ with more
than 8k vertices, then put the blue face-vertex in the face cover and remove all
its red neighbors from the graph. In the new graph we now look for a face cover
with k− 1 faces. Subsequently reduce the graph as described above (getting rid
of red pendants, dissolving vertices of degree 2). Assume this process stops at
the ith instance. Then in the remaining graph every face has at most 8(k − i)
vertices, and in this graph we look for a face cover with at most k − i faces.
Hence if we have more than 8(k − i)2 vertices, there must be a vertex which is
not covered by any element in the face cover. Like this, we come to rest with a
kernel of at most 8k2 vertices, or we have to conclude that no face cover with k
elements can exists.
It’s quite easy to see (but rather laborious to describe) that the reduction to the
problem kernel can be performed in linear time. If we subsequently apply the
algorithm of Section 2 we obtain:

Theorem 4. There exists an algorithm that runs in time O(c
√

k + n) which
solves the k–face cover problem.

4 A Treewidth Algorithm for Feedback Vertex Set

Recall the following result:

Lemma 4. Every rich planar graph has a face of length at most 5.

Proof. Assume every face has length at least 6. Let φ be the number of faces.
Counting the number of faces and incident edges in two ways we obtain: 2m ≥ 6φ.
According to Euler’s theorem m− n + 2 = φ ≤ m

3 . Hence 2m ≤ 3n− 6. On the
other hand, since every vertex has degree at least 3, 2m ≥ 3n. 
�
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This result implies the existence of a bounded search tree algorithm (see [13]) for
planar fvs (ideally running in time O(5kn)): Reduce the graph until every vertex
has degree at least 3, and repeatedly find faces of length at most 5, building a
bounded search tree. In this section we improve this to O(c

√
k log kn).

Theorem 5. Let G be a planar graph with cc(G) ≤ k. Then tw(G) = O(
√
k).

Proof. Assume that G has a fvs W of cardinality k. We show that there is a
planar supergraph H of G such that W is a dominating set in H.
Consider a plane embedding of G. Since every face is a cycle, it must contain at
least one vertex of W . For every face, fix one such vertex in W and add edges
between every other vertex of the face and this vertex of W . Call this graph H.
Observe that the set W is a dominating set in the planar graph H. By Theorem 1
H has treewidth O(

√
k), and since G is a subgraph of H, also G has treewidth

O(
√
k). 
�

We describe a fairly standard algorithm computing a fvs using a tree decom-
position. Let � − 1 be the width of this tree decomposition (i.e., every bag of
this decomposition has at most � vertices). Let the pair (T,S) designate the
tree decomposition of G where T is a rooted tree T and S = {Si | i ∈ V (T )}
a collection of subsets of V (G) called bags, each corresponding uniquely with a
node in T .
Let Gi be the subgraph of G induced by the union of bags corresponding with
nodes in the subtree of i ∈ V (T ). Let Xi = V (Gi) − Si. Consider a fvs W in
Gi. Let W ◦ = W ∩Xi. Removal of W ◦ from Gi turns Gi[Xi] into a forest. We
characterize this forest and its joints to Si by a pattern defined by the following
rules (pattern dicta):

1. Contract every component of the forest to a single vertex thus converting
it into an independent set. Disregard loops that turn up in the process.
However, the contractions might create multiple edges between vertices of
the independent set and vertices of Si.

2. If a vertex of Si is incident with some multiple edge then create a loop
incident with this vertex and remove the multiple edge.

3. Remove vertices of the independent set which are adjacent to at most one
vertex in Si.

4. Replace multiple copies of vertices in the independent set that are adjacent
to the same pair of vertices in Si by two copies.

Definition 7. Call the obtained independent set I and let F be the union of the
set of obtained edges and loops between vertices of I and Si and the edges of
G[Si]. The graph P = (I ∪ Si, F ) is called a pattern.

Lemma 5. The number of different patterns is O(c� log �) for some constant c.
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Proof. Consider a pattern P = (I ∪ Si, F ). Since the class of planar graphs is
closed under taking minors the graph P is planar. Call two vertices of I equivalent
if they have the same neighbors in Si. Let H be the of vertices of I with at least
three neighbors in Si and let L = I −H. Notice that |H| ≤ 2� since the number
of edges between H and Si is at least 3|H| but at most 2(|H|+�). (If the number
of vertices in a planar graph without triangles is at least 3 then the number of
edges is even bounded by 2n− 4.)
“Dissolving” a vertex of L is the removal of the vertex and creating an edge
between its neighbors if these were non-adjacent. Now |L| ≤ 2(3� − 6) since
dissolving the vertices of L in P [I ∪ Si] gives a planar graph with at most �
vertices which has at most 3� − 6 edges and each equivalence class in L has at
most two elements.
It follows that the number of different pattern is bounded by the number of
different bipartite planar graphs with O(�) vertices in each colour class. The
bound follows since a planar graph has only a linear number of edges. 
�

We may assume that the tree decomposition (T,S) of width �− 1 is in standard
form. That is, each node of T is one of 4 different types. A node p is a start

node if p is a leaf of the tree different from the root. Node p is an introduce

node if it has exactly one child q and the bag at node p has one more vertex
x than the bag at node q, i.e., Sp = Sq + x. Node p is a forget node if if it
has exactly one child q and the bag Sp contains one vertex x less than Sq, i.e.,
Sp = Sq − x. Finally, a node p is a join node if it has two children q and r and
Sp = Sq = Sr.
We proceed by describing how to obtain a table of patterns for each node in
the tree decomposition from the tables of patterns at the children of that node.
With each pattern we store the age of it. The age A(P ) of a pattern P is the
minimum cardinality of a feedback vertex set W ◦ in Xi giving rise to this pattern.
A pattern is feasible if its age is at most k. We store the different feasible patterns
with their ages.

start nodes. Let p be a start node. In this case there is only one pattern
Pp = G[Sp]. The age of this pattern is A(Pp) = 0.

join nodes. Let p be a join node with children q and r. Consider pairs of
patterns Pq and Pr with A(Pq) + A(Pr) ≤ k. Reduce the union of the two
patterns according to pattern dictum 4. Update the age of this pattern by
taking the minimum of the currently stored ages (if at all) and A(Pq)+A(Pr).

forget nodes. Let p be a forget node with child q and let x ∈ Sq−Sp. Consider
a feasible pattern Pq = (Iq ∪Sq, Eq) for node q. We consider two evolutions.
First consider the case where x becomes part of the feedback vertex set.
Then x disappears from the pattern Pq and the remaining pattern is updated
according to the pattern dicta 3 and 4. The age of the resultant pattern is
updated by taking the minimum of its current age (if at all) and A(Pq) + 1.
Consider the scenario in which x is not added to the feedback vertex set.
This can lead to a feasible pattern for node p if and only if x is not incident
with a loop of Pq. Apply the pattern dicta in order to obtain the new pattern.
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The age of the resulting pattern is updated by taking the minimum of its
current age and A(Pq).

introduce nodes. Let p be an introduce node with child q and let x ∈ Sp−Sq.
Every pattern for q translates straightaway into a pattern for p. The two
patterns have the same age.

Correctness of the procedure described above is evident, and we obtain:

Theorem 6. There exists an algorithm which runs in time O(c
√

k log kn) for
some constant c that solves the k-feedback vertex set problem.

5 Crystallization of Feedback Vertex Set

Consider a connected planar graph G = (V,E). The reduction algorithm is de-
fined as follows: Delete pendant vertices from G and dissolve vertices of
degree 2; i.e., delete such a vertex but add an edge between its two neighbors if
these were not connected already.

Proposition 1. If H is obtained from a connected planar graph G by the re-
duction algorithm, then H is a planar rich graph and cc(H) = cc(G).

Lemma 6. Let G be a biconnected, plane, and rich graph. Let F be a fvs. If
some vertex x has degree s then either x ∈ F or there are at least s

2 vertices of
F on faces around x or contained in the interior of some of these faces.

Proof. Let x �∈ F and let x have neighbors x0, . . . , xs−1 in some clockwise order-
ing. Let Fi be the face incident with x, xi, xi+1 (indices taken modulo s). Notice
that since G is biconnected, all these faces are different. If every vertex of F
is incident with at most 2 faces we are done. So assume some vertex α ∈ F is
incident with at least 3 faces.
Assume first that α is incident with every face Fi. (This takes care of the base
case s = 3 as well.) Since every vertex has degree at least three, each xi must
have some neighbor leading to some cycle inside Fi or Fi−1. Hence, either xi ∈ F
(which also takes care of the case that xi = α for some i) or there is some element
of F in Fi or in the interior of Fi (or similar with Fi−1), connected by a path
with xi. A well–chosen path like that avoids x, α, xi±1 and cannot be extended
to xi±1 since it would “cut” Fi (or Fi−1) into two faces. It follows that in this
case at least s vertices of F are incident with faces around x or contained in the
interior of some Fi.
Assume that α misses at least one Fi and let s > 3 (the degree of α is at least 4).
For simplicity picture x, x0, xs−1 on the outerface and assume that α is incident
with F0 and Fi but is not incident with any face Fi+1, . . . ,Fs−1. Let O be the
outerface of F0 ∪ Fi and consider the subgraph H induced by O and all vertices
of G placed in the interior of O. If some vertex of O has degree 2 in H then
dissolve it.
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Remark 2. This dissolving process could destroy one face (when all vertices of O\{x, α}
have degree 2 in H) since we don’t allow multiple edges. If this is the case, we consider
the outerface O

′ of F0 ∪ Fi−1 plus the interior of Fi which is connected to O
′ instead.

In essence this doesn’t change the vindication. For the argument’s sake, assume that
the degree of x remains i + 2 in H.

By induction, we have at least i+2
2 vertices of F left in H (including α) since x

has degree i + 2 in H.
Now consider the subgraph H ′ induced by O and all vertices that lie outside O.
Without loss of generality, assume that x has degree s− i in H ′. Since only α is
counted twice, we find at least i+2

2 + s−i
2 − 1 = s

2 vertices of F . 
�

Corollary 2. If G is a biconnected, planar, and rich graph and if some vertex
x of G has degree at least 2k + 1 then x is contained in any fvs of cardinality
at most k.

We now proceed to show how to deal with the general case. Assume G is a
connected planar graph and apply the reduction algorithm. Call the new graph
again G. Let x be a cut-vertex of G. If x is incident with some biconnected
component B of G such that x has degree at least 2k + 1 in B then Corollary 2
says that x must be in any feedback vertex set of cardinality at most k. Hence,
in that case we can remove x from the graph and search for a feedback vertex
set of cardinality at most k − 1 in G− x.
Assume that x is a cut-vertex but x has degree at most 2k in any biconnected
component of G. If x is incident with at least k+1 biconnected components with
at least 3 vertices, then again we know that x must be in any feedback vertex
set of cardinality k since every such biconnected component adds at least one to
the number of cycles having only x in common.
Finally assume that x is a cut-vertex such that the degree of x at most 2k in any
biconnected component, and x incident with at most k biconnected components
with at least 3 vertices. If x is incident with some bridge, then we can remove
this bridge from G (without its end-vertices) and proceed with the two compo-
nents. Hence we may assume that x is a cut-vertex which is incident only with
biconnected components with at least 3 vertices. In that case the degree of x is
at most k(2k) = 2k2.
The following lemma of H. J. Voss [20] will prove to be quite handy.

Lemma 7. If H is a rich graph, then for any feedback vertex set F of H,
|V (H)| ≤ |F |(Δ + 1)− 2, where Δ = Δ(H) is the maximal degree in H.

Let G′ be the graph obtained from G after the previous reductions. Applying
Voss’ Lemma to G′ yields V (G′) = O(k3) since the degree of G′ is O(k2).
Applying the algorithm of Section 4 to the kernel G′ we now obtain our main
result:

Theorem 7. There exists an O(c
√

k log k + n) algorithm for the k-feedback

vertex set problem on planar graphs for some constant c.
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6 Disjoint Cycles

Theorem 8. Let G be a planar graph. Then cc(G) ≤ 5 cp(G).

Proof. Start with an empty set F and repeatedly take the following steps until
not a single one is apt.

Firstly, repeatedly, remove pendant vertices from G until G has no more ver-
tices of degree ≤ 1.

Secondly, repeatedly, remove vertices of degree 2 that have neighbors which
are not adjacent and connect its two neighbors by an edge.

Thirdly, assume G has a vertex of degree 2 and the two neighbors are con-
nected by an edge. Then put the triangle in F and take it out of G.

Fourthly, and finally, assume that G has no more vertices of degree ≤ 2. Then
G has a face with length at most 5 by Lemma 4. Choose such a face F and
put all its vertices in F . Take F out of G.

Let C be a chordless cycle of G. As long as C has length at least 4 and contains
degree 2 vertices these are removed in the second step. If C ends up with 3
vertices and one of them has degree 2, then the third step ensures that C contains
a vertex which is put in the feedback vertex set. If C has only vertices of degree
at least 3 then none of its vertices is removed from the graph without it being
put in the feedback vertex set (in the third or fourth phase). This shows that F
is a feedback vertex set in G.
Notice that whenever vertices are put in the set F all the vertices of a cycle of
length at most 5 are removed from the graph. For each cycle that is removed at
most 5 vertices are put in F . This shows that F contains at most 5 times the
maximum number of vertex disjoint cycles of G. 
�
The next theorem is now an immediate consequence of Theorem 8 and Theo-
rem 5.

Theorem 9. Let G be a planar graph with cp(G) ≤ k. Then tw(G) = O(
√
k).

With a similar technique as for k-feedback vertex set we can now obtain:

Theorem 10. There exists an algorithm running in time O(c
√

k log kn) which
checks if a planar graph G has k vertex disjoint cycles.

Clearly, for any graph G, cc(G) ≥ cp(G). In general it was shown in [15,20] that
there exist family of graphs G with cc(G) = Θ(cp(G) log cp(G)). We feel fairly
confident that there is a much tighter link for planar graphs

Conjecture 2. 4 For planar graphs G, cc(G) ≤ 2 cp(G).

Notice that the factor 2 would be optimal as shown by the wheel graphs. We
show that the conjecture is true for outerplanar graphs
4 Jones’ conjecture.
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Theorem 11. Let G be an outerplanar graph. Then cc(G) ≤ 2 cp(G).

Proof. Without loss of universality we may assume that G is 2-edge connected.
Recall that G can be thought of as a tree of cycles, i.e., G can be constructed
by the following process.

1. Start with an arbitrary cycle.
2. Repeatedly, take a new cycle C and identify either a vertex or an edge of

C with a vertex or an edge in the existing graph. The vertex or edge which
is being identified with a vertex or edge in the existing graph is called the
attachment of Ci. The cycle C1 has an empty attachment.

Let [C1, . . . , C�] be the sequence of cycles in this construction of G. Consider the
following algorithm constructing two sets CC and CP.

Firstly, set CC = CP = ∅.
secondly, starting with i = � working backwards down to i = 2:

If no vertex of Ci is in CC then we put Ci in the set CP and the vertices of
the attachment in CC.

Remove all vertices of Ci from the graph except those of its attachment.
Finally, if C1 has no vertex in CC then put one arbitrary vertex of C1 in CC

and add C1 to CP.

It’s a flimsy gain that |CC| ≤ 2 |CP|, since every attachment consists of at most 2
vertices. One moment’s reflection shows that the cycles in CP are vertex disjoint
since each of those has at least one vertex in CC. Hence |CP| ≤ cp(G). We show
that CC hits all cycles in G. Assertion of this claim proves the theorem since
cc(G) ≤ |CC| ≤ 2 |CP| ≤ 2 cp(G). Let X be any cycle in G. Notice that the
vertex set of X must be the union of vertex sets of some constituents cycles in
the tree of cycles. Hence X must contain all vertices of some constituent cycle.
All constituent cycles receive at least one vertex in CC during the computation
of CC. 
�

Define cc(k) = max{cc(G) | cp(G) ≤ k}. It was shown by Erdös and Pósa
that cc(k) = Θ(k log k). Bollobás proved cc(1) = 3 ([11], see also [20]). Other
unpublished proofs were given by Pósa and by Sachs (see [15,20]). Voss showed
that cc(2) = 6 and 9 ≤ cc(3) ≤ 12 [20,21].
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15. Erdös, P. and L. Pósa, On independent circuits contained in a graph, Canad. J.
Math. 17, (1964), pp. 347–352.

16. Fellows, M. R. and M. A. Langston, Nonconstructive tools for proving polynomial
time decidability, J. ACM 35, (1988), pp. 727–739.

17. Mohar, Bojan, Face covers and the genus problem for apex graphs, Journal of
Combinatorial Theory, Series B 82, (2001), pp. 102–117.

18. Telle,Jan Arne and Andrezj Proskurowski, Efficient sets in partial k-trees, Discrete
Applied Math. 44, (1993), pp. 109–117.

19. Kloks, T., Treewidth-Computations and approxmations, Springer-Verlag, LNCS
842, 1994.

20. Voss, H. J., Some properties of graphs containing k independent circuits, Proc.
Colloq. Tihany , Academic Press, New York, 1968, pp. 321–334.
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Abstract. Finding a l ine ar o rde ring o f t h e ve rt ic e s o f a grap h is a c o mmo n pro b -
l e m arising in dive rse appl ic at io ns. In t h is pape rwe pre se nt a l in e ar-t ime al go ri t h m
f o r t h is pro b l e m, b ase d o n t h e mul t i-s c al e paradigm. Expe rime nt al re sul t s are sim-
il ar t o t h o se o f t h e b e st k no wn appro ac h e s, wh il e t h e running t ime is signific an t l y
b e t t e r, e nab l ing it t o de al wit h muc h l arge r grap h s. T h e pape r c o nt ains a ge n-
e ra l mul t i-sc al e c o nst ruc t io n, wh ic h may b e use d f o r a b ro ade r range o f o rd e ring
pro b l e ms.

1 Introduction

M any c o mput at io nal t ask s invo l ve t h e c o mb inat o rial pr o b l e m o f o rd e ring t h e ve rt ic e s o f
a graph so as t o o pt imize c e rt ain o b je c t ive f un c t io ns. T h e re ade r is re f e rr e d t o [3] f o r a
de t ail e d surve y.We c o nc e nt rat e h e re o n a c o mmo n varian t o f t h e pr o b l e m, k no wn as the
minimum linear arrangement problem (MinLA), wh ic h c o nsist s o f pl ac ing t h e n ve rt ic e s
o f t h e graph at po sit io ns 1 . . . n o n a l ine , so as t o minimize t h e sum o f t h e e dge l e ngt h s.
Put dif f e re nt l y, give n n pins, so me o f wh ic h are c o nn e c t e d b y wir e s, we want t o fix t h e
pins in a l ine ar s e que nc e o f h o l e s so as t o minimize t h e t o t al wir e l e ngt h . T h is varian t
arise s in VL S I de sign, grap h drawing, mo de l ing n e rvo us ac t ivi t y in t h e c o rt e x and j o b
sc h e dul ing; s e e [3].As is t h e c ase wit h many o rde ring pro b l e ms, M in L A is NP-h ard and
t h e c o rr e spo nding d e c isio n pro b l e m is NP-c o mpl e t e [4 ].

In t h is pap e r,we de vise a l ine ar-t ime h e urist ic al go ri t h m f o r t h e M in L A pr o b l e m.Our
e xpe rime nt s wit h it sh o w it s at t rac t ive ne ss in t e rms o f o ut put qual it y and ac t ual running
t ime . T h e al go ri t h m e mb o die s a no ve l mul t i-sc al e sc h e me f o r t h e M in L A pr o b l e m,wh ic h
we h ave c o nst ruc t e d t o fit many l ine ar o rde ring t ask s. H e nc e , i t c o ul d h ave appl ic at i o ns
b e yo nd t h e M inL A pro b l e m.

2 The Minimum Linear Arrangement Problem

L e t G(V,E) b e a grap h , wh e re V = {1 . . . n} is t h e se t o f n ve rt ic e s, and E is t h e se t
o f we igh t e d e dge s, wit h wij b e ing t h e we igh t o f e dg e 〈i, j〉 ∈ E. T h ro ugh o ut t h e pape r
we assume , wit h o ut l o ss o f ge ne ral it y, t h at G is c o nne c t e d, o t h e rwise t h e pr o b l e m we
de al wit h c an b e so l ve d ind e pe nd e nt l y f o r e ac h c o nn e c t e d c o mpo ne nt .

Definition 2 1 A l inear arrangemen t of G is a bijection π : V −→ {1, . . . , n}. Equiv-
alently, π is simply a permutation of V . We call π(i) the l oc at ion of vertex i.

L . Kuˇc e ra ( Ed.) : WG 2 0 0 2 , L NC S 2 5 7 3, pp. 2 96 –30 9, 2 0 0 2 .
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Definition 2 2 The c ost of the arrangement π is defined to be:

LAπ(G)
def
=

∑
〈i,j〉∈E

wij · |π(i)− π(j)|

T h e o b je c t ive o f t h e M inL A pro b l e m is t o find a pe rmut at io n π t h at minimize s
LAπ(G).

2 .1 Algorithms

Fo r c e rt ain c l asse s o f “we l l -st ruc t ure d" graph s, suc h as t re e s, grids and h ype r-c ub e s,
t h e re e xis t po l yno mial t ime al go rit h ms f o r so l ving t h e M in L A pro b l e m. H o we ve r, t h e
ge ne ral pro b l e m is NP-h ard. T h us mo st re se arc h invo l ve s appro ximat io n and h e uris t ic
al go rit h ms. H e re we b rie fly de sc rib e so me re l e van t al go ri t h ms.

DynamicProgramming. Using dynamic pro gramming,we c anfind t h e e xac t minimum
l ine ar arrang e me nt in t ime O(2n · |E|) and spa c e O(2n), wh ic h is b e t t e r t h an t h e naive
Θ(n!) al go ri t h m t h at sc ans al l po ssib l e pe rmut at io ns. T h e c o mpl e xi t y o f t h is al go ri t h m
mak e s it use l e ss f o r al l , b ut ve ry smal l graph s. H o we ve r, t h is al go ri t h m wil l se rve us l at e r
o n f o r re o rde ring smal l sub graph s. T h e al go rit h m is b ase d o n t h e f ac t t h at t h e minimum
l ine ar arrang e me nt pro b l e m po sse sse s a “l o c al it y pro pe rt y", t o t h e e f f e c t t h at t h e b e st
o rde ring o f a se t o f ve rt ic e s S t h at pl ac e d t o t h e righ t o f t h e ve rt ic e s in t h e se t L and t o
t h e l e f t o f t h o se in R, is inde pe nd e nt o f t h e int e rnal o rde ring o f L and R. T h is al go ri t h m
is de sc ri b e d ( al o ng wit h a pro o f o f t h e l o c al it y pro pe rt y) in t h e f ul l ve rsio n o f t h is pape r
[1 0 ].

Spectral Sequencing. S pe c t ral inf o rmat io n h as b e e n suc c e ssf ul l y app l ie d t o ve rt e x o r-
de ring pr o b l e ms, s e e e .g., [1 ,6 ]. S e que nc ing t h e ve rt ic e s is d o ne b y so rt ing t h e m ac c o rd-
ing t o t h e ir c o mpo ne nt s in t h e Fie dl e r ve c t o r, wh ic h is t h e se c o nd smal l e st e ig e nval ue o f
t h e L apl ac ian mat rix asso c iat e d wit h t h e graph . Fo rt unat e l y, c o mput at io n o f t h e Fie dl e r
ve c t o r c an b e c arri e d o ut ve ry rapidl y using a mul t i-sc al e me t h o ds o f [2 ,9].

Simulated Annealing. S imul at e d ann e al ing [8] is a po we rf ul , ge ne ral ( if sl o w) o pt i-
mizat io n t e c h nique t h at is appro priat e f o r t h e M inL A pr o b l e m. It re pe at e dl y mo difie s
t h e o rde ring as f o l l o ws: Give n t h e c urre nt c andidat e o rd e ring π, a n e w c andida t e π̂ is
ge ne rat e d t h at is c l o se t o π. If LAπ̂ � LAπ , t h e ne w o rd e ring π̂ is ado pt e d. Ot h e rwise ,
π̂ may st il l b e ado pt e d, b ut wit h a pro b ab il it y t h at de c re ase s as t h e pr o c e ss pro c e e ds.

Pe t it [1 1 ] h as c o nduc t e d e xt e nsive t e st s o f many a l go ri t h ms f o r t h e M in L A pr o b l e m,
o n se ve ral c l ass e s o f graph s. We quo t e h is c o nc l usio n:

“... t h e b e st h e urist ic t o appro ximat e t h e M inL A pr o b l e m o n sparse grap h s is
S imul at e d Anne al ing wh e n me asuring t h e qual it y o f t h e so l ut io ns. H o we ve r,
t h is h e uris t ic is e xt re me l y sl o w wh e re as S pe c t ral S e que nc ing give s re sul t s no t
t o o f ar f ro m t h o se o b t aine d b y S imul at e d Ann e al ing, b ut in muc h l e ss t ime . In
t h e c ase t h at a go o d appr o ximat io n suf fic e s, S pe c t ral S e que nc ing wo ul d c l e arl y
b e t h e me t h o d o f c h o ic e ." [1 1 ]

Our al go ri t h m, de sc rib e d in t h e f o l l o wing s e c t io ns, pro duc e s re sul t s wh o se qual it y
is simil ar t o t h at o f simul at e d ann e al ing, b ut it s running t ime is muc h b e t t e r.



2 98 Ye h uda Ko re n and David H are l

3 The Median Iteration
We no w de sc ri b e t h e median iteration, a rapid rando mize d al go ri t h m f o r de c re asing t h e
c o st o f a l ine ar arrang e me nt . T h e h e art o f t h e me t h o d is a c o nt inu o us re l axat io n o f t h e
M inL A pro b l e m,wh e re we al l o w ve rt ic e s t o sh are t h e same pl ac e , o r t o b e pl ac e d o n no n-
int e gral po int s. Give n a graph G(V,E), a linear placement is a f unc t io n p : V −→ R,
and it s cost is:

LPp(G) =
∑

〈i,j〉∈E

wij · |p(i)− p(j)|

No t ic e t h at a l ine ar arrange me nt , wh ic h was de fine d as a b ij e c t io n V −→ {1, . . . , n},
is a sp e c ia l c ase o f a l ine ar pl ac e me nt .

It is o b vio us t h at LPp(G) is minimal wh e n al l t h e ve rt ic e s are pl ac e d at t h e same
l o c at io n. H e nc e , t h e minimal l ine ar pl ac e me nt pro b l e m is no t in t e re st ing. Wh at wil l b e
use f ul f o r us is a c e rt ain pro c e ss o f minimizing LPp(G), wh ic h we sh al l use t o impr o ve
l ine ar arrang e me nt s. We b e gin b y de fining t h e me dian o f t h e pl ac e s o f i’s n e ig h b o rs.

Definition 31 Let G(V,E) be a graph and p a linear placement. Given some i ∈ V ,
the median of i’s neighborhood is denoted by medG

p (i).
Since medG

p (i) is a usual median, it satisfies:∑
j∈N(i),p(j)�medG

p (i)

wij �
∑

j∈N(i),p(j)>medG
p (i)

wij

∑
j∈N(i),p(j)�medG

p (i)

wij �
∑

j∈N(i),p(j)<medG
p (i)

wij

T h e main o b se rvat io n is t h e f o l l o wing:

Proposition 1 . Let G(V,E) be a graph and p a linear placement. Fix the places of all
vertices except a single i ∈ V . A location of i that minimizes the linear placement cost
is medG

p (i).

Proof. S e e t h e f ul l ve rsio n o f t h is pape r [1 0 ].

We c an n o w de fine an it e rat ive pro c e ss f o r re du c ing t h e c o st o f a l in e ar pl ac e me nt ,
b ase d o n minimizing t h e c o st asso c iat e d wit h e ac h ve rt e x se parat e l y:

Function Median Iteration ( G(V,E), p, k )
% Paramet ers:
% G(V, E) - a graph, p - a l inear pl ac ement , k - no. of sweeps
repeat k t ime s:
for e ve ry i ∈ V do
p(i) ← medG

p (i)

%When a v al id l inear arrangement is needed:
S o rt no de s ac c o rding t o re spe c t e d e nt rie s in p
for e ve ry i ∈ V do
p(i) ← 〈so rt e d pl ac e o f i〉
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S uppo se t h at t h e ini t ial val ue o f p is a val id l ine ar arrang e me nt . Wh e n k is o ve rl y
l arge , a signific ant f rac t io n o f V wil l b e pl ac e d at a singl e po in t , l e aving us ve ry l it -
t l e inf o rmat io n. But , f o r re l at ive l y smal l k, we wil l ge t many smal l c l ust e rs o f ve rt ic e s
pl ac e d t o ge t h e r. T h is pro vid e s impo rt ant inf o rmat io n ab o ut t h e gl o b al st ru c t ur e o f t h e
l ine ar arrang e me nt . H e nc e , we c an c o nst ruc t a n e w val id l in e ar arrang e me nt b y so rt ing
t h e no de s ac c o rding t o t h e ir val ue s in t h e l ine ar pl ac e me nt p. T h e de c isio n ab o ut t h e
int e rnal o rde r o f ve rt ic e s t h at are pl ac e d at t h e same po in t is rando m.

We c al l t h is me t h o d median iteration. S inc e t h e me dian c an b e c o mput e d in l in e ar
t ime , t h e t ime c o mpl e xit y is O(k · |E|) f o r t h e k swe e ps, pl us O(n log n) f o r so rt ing
t h e no de s b y t h e ir p l ac e . S inc e we t ak e k t o b e fixe d ( a t ypi c al val ue wo ul d b e k = 50) ,
t h e t o t al t ime c o mpl e xit y is O(|E| + n log n). T h e me dian i t e rat io n is a simpl e way t o
re duc e t h e c o st o f l in e ar arrange me nt . It addre sse s t h e gl o b al st ru c t ur e o f t h e o rd e ring,
wh il e mak ing l o c al de c isio ns rando ml y.

4 The Multi-scale Algorithm
T h e multi-scale ( o r, multi-level ) paradigm is a p o we rf ul ge ne ral t e c h nique t h at al l o ws f ast
e xpl o rat io n o f pro pe rt ie s re l at e d t o t h e ‘gl o b al st ruc t ur e ’ o f c o mpl e x o b je c t s, t h at de pe nd
o nmany e l e me nt swit h in. M ul t i-sc al e al go rit h ms h ave pr o ve d t o b e suc c e ssf ul in a varie t y
o f are as in ph ysic s, c h e mist ry and e ngine e ring; se e , e .g., [1 2 ]. M ul t i-sc al e t e c h nique s
t ransf o rm a h igh -dime nsio nal pro b l e m in an it e rat ive f ash io n in t o o ne s o f in c re asingl y
l o we r dime nsi o ns,via a pr o c e ss c al l e d coarsening. On t h e c o arse st sc al e t h e pr o b l e m
is so l ve d e xac t l y, f o l l o wing wh ic h a refinement pro c e ss st art s, wh e re b y t h e so l ut io n is
pro gre ssive l y pro je c t e d b ac k int o h igh e r and h igh e r dime nsio ns, updat e d appr o pria t e l y
at e ac h sc al e , unt il t h e o riginal pro b l e m is re pro du c e d. A mul t i-sc al e al go ri t h m must
b e t ail o re d f o r t h e part ic ul ar pro b l e m at h and, so t h at t h e c o arse ning pr o c e ss k e e ps t h e
e ss e nc e o f t h e pro b l e m un c h ang e d.

In t e rms o f it s us e f o r de al ing wit h graph -t h e o re t ic o pt imizat io n pr o b l e ms, t h e mul t i-
sc al e appro ac h is wide l y use d f o r graph -part it io ning, s e e , e .g., [7 ]. M o re re c e nt l y, Wal -
sh aw [1 3] h as use d t h is appro ac h f o r t h e T S P and ve rt e x-c o l o ring pr o b l e ms. We h ave
use d i t f o r t h e re l at e d pro b l e m o f drawing grap h s ae st h e t ic al l y [5 ,9].

4.1 Segment Graphs

One o f t h e mo st pro mine nt re quire me n t s o f a go o d mul t i-sc al e al go ri t h m is t h at it k e e p
t h e inh e re nt st ruc t ure o f t h e pro b l e m un c h ang e d during c o arse ning. In o ur c ase , t h e f o rm
o f t h e M inL A pro b l e m, as d e sc rib e d in S e c t io n 2 ,wil l no t b e pr e se rve d during r e aso nab l e
no t io ns o f c o ars e ning, b ut we c an de fine a mo re ge ne ral pr o b l e m t h at is pre se rve d during
c o ars e ning, and it wil l c o nt ain t h e o riginal pro b l e m as a spe c ial c ase . In f ac t , t h is g e ne ral
pro b l e m e me rge s na t ural l y f ro m t rying t o find an arrange me nt f o r a mo re ge ne ral e nt it y,
t h at we sh al l c al l an s-graph, wh e re t h e s st ands f o r segment.

Definition 41 An s-graph is a graph G(V,E), whose vertices can be thought of as
line segments; a vertex i is associated with a nonnegative real number li, denoting
its length. Each edge 〈i, j〉 is associated with two coordinates, P 〈i, j〉 and 〈i, j〉P ,
denoting the positions of its endpoints inside vertices i and j, respectively. Clearly we
have, 0 �P 〈i, j〉 � li and 0 � 〈i, j〉P � lj .
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Fig. 1 sh o ws an e xampl e o f an s-graph . T h is is a 3-c l ique ( a t riang l e ) , so t h e ve rt e x
se t is {1, 2, 3}. T h e ve rt e x l e ng t h s are l1 = 3, l2 = 4, l3 = 2. We ig h t s o f t h e e dge s
are w13 = 2, w12 = 4, w23 = 3. Final l y, t h e c o o rdinat e s o f t h e e dge s are P 〈1, 3〉 =
1, 〈1, 3〉P = 0, P 〈1, 2〉 = 2, 〈1, 2〉P = 1, P 〈2, 3〉 = 2, 〈2, 3〉P = 1.

Fig. 1 .An s-graph .

In a l ine ar arrang e me nt o f an s-graph , we pl ac e t h e ve rt ic e s o n a l in e , in suc h a way
t h at no t wo o f t h e m int e rse c t . S inc e we se e k an arrange me nt wit h sh o rt e dge s, we c an
saf e l y rul e o ut unuse d gaps b e t we e n c o nse c ut ive ve rt ic e s. ( T h o ugh , in t h e figure s we
h ave pl ac e d smal l gaps b e t we e n c o nse c ut ive ve rt ic e s, t o mak e t h e drawings c l e are r.)
H e nc e , we de fine a l in e ar arrange me nt o f an s-graph as f o l l o ws:

Definition 42 Let G be an s-graph. A linear arrangement of G is a bijection π :
V −→ {1, . . . , n}. The location of vertex i is denoted by pπ

G(i), and it satisfies pπ
G(i) =∑

j,π(j)<π(i) lj . We will often omit the G in pπ
G(i).

In Fig. 1 we ar e sh o wing a l ine ar arrange me nt f o r wh ic h t h e o rd e r o f ve rt ic e s is
de t e rmine d b y t h e b ije c t io n: π(1) = 1, π(2) = 2, π(3) = 3. T h e e xac t l o c at io ns o f t h e
ve rt ic e s are : pπ(1) = 0, pπ(2) = 3, pπ(3) = 7.

Definition 43 Given an s-graph G and a linear arrangement π, t he l engt h of edge
〈i, j〉, w.r.t. π, is defined to be:

lenπ
G(〈i, j〉) def

= |pπ(j) + 〈i, j〉P − pπ(i)−P 〈i, j〉|

We will often omit the G in lenπ
G(〈i, j〉).

T h us, in Fig. 1 , lenπ(〈1, 3〉) = 6, lenπ(〈1, 2〉) = 2, lenπ(〈2, 3〉) = 3.
We no w ge ne ra l ize t h e no t io n o f t h e c o st o f a l ine ar arrange me nt ( se e De f . 2 2 ) , t o

h andl e s-graph s:

Definition 44 Given an s-graph G, the c ost of the linear arrangement π is defined to
be :

LAπ(G)
def
=

∑
〈i,j〉∈E

wij · lenπ(〈i, j〉)

Give n a re gul ar graph G ( no t an s-graph ) , if we se t t h e l e ngt h o f e ac h ve rt e x t o b e 1
and f o r e ve ry 〈i, j〉 we t ak e P 〈i, j〉 = 〈i, j〉P = 1, t h e de fini t io n o f t h e ge ne ral ize d c o st
o f a l ine ar arrang e me nt c o inc ide wit h t h e re gu l ar c ase .
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4.2 The Coarsening Process

L e t G b e an s-graph wit h n no de s.A singl e c o arse ning st e p wo ul d b e t o re pl ac e G wit h
a smal l e r s-graph GR, c o nt aining o nl y m < n no de s ( t ypi c al l y, m ≈ 1

2n ) . Of c o urse ,
t h e st ruc t ure o f GR sh o ul d b e st ro ng l y l ink e d t o t h at o f G, so t h at in s o me c ru c ial way
b o t h wil l de sc ri b e appro ximat e l y t h e same e nt it y, b ut o n di f f e re nt sc al e s. M o re o ve r, a
go o d l ine ar arrang e me nt o f GR sh o ul d c o rre spo nd t o a g o o d arrange me nt o f G.

Our at t it ude t o c o arse ning is t o pl ac e re st ric t io ns o n t h e po ssib l e arrang e me nt s. T h e se
wil l re duc e t h e se arc h spa c e , so t h at t h e re st ric t e d pro b l e mwil l b e o f a “l o we r dime nsio n",
and wil l invo l ve a smal l e r graph . We wil l re quire t h at c e rt ain pairs o f ve rt ic e s b e pl ac e d
adjac e nt l y, in t h e h o pe t h at t h e ywil l e nd up b e ing f airl y c l o se in t h e minimal arrang e me nt
o f G. In t h is o pt imist ic sit uat io n t h e re is a so l ut io n in t h e re s t ri c t e d sub spac e t h at is qui t e
c l o se t o t h e o pt imal so l ut io n, up t o so me l o c al re fine me nt t h at do e s no t c h ange t h e gl o b al
st ruc t ure o f t h e arrange me nt b ut af f e c t s o nl y l o c al po rt io ns t h e re o f .

Restricting the Search Space. We wo ul d l ik e t o b e ab l e t o re st ri c t t h e se arc h spac e in a
way t h at sat isfie s t wo c o nflic t ing g o al s: First , t h e de gr e e s o f f re e do m sh o ul d b e signifi-
c ant l y re duc e d, e nab l ing r e pre se nt at io n b y a muc h smal l e r grap h . S e c o nd, t h e minimal
arrange me nt sh o ul d b e af f e c t e d o nl y l o c al l y, wh il e pre se rving i t s g l o b al st ru c t ur e .

We h ave f o und a way t h at at t e mpt s t o ac h ie ve t h e se t wo se e ming l y c o mpe t ing g o al s.
C o nside r an init ial arrange me nt π, c o nst ruc t e d b y so me f ast al go ri t h m l ik e spe c t ral
se que nc ing o r me dian i t e rat io n. Fo r simpl ic it y, assume t h at t h e numb e r o f ve rt ic e s n is
e ve n. Fo r e ve ry pair o f ve rt ic e s v1, v2 suc h t h at π(v1) = 2i−1 and π(v2) = 2i f o r so me
i � 1, int ro duc e a r e st ric t io n t h at re quire s any f e asib l e l in e ar arrang e me nt ϕ t o sat isf y
ϕ(v2) = ϕ(v1) + 1. T h e re st ric t e d pr o b l e m is t o arrange n/2 restricted vertex pairs.
H e nc e , t h e size o f t h e restricted search space is (n/2)!wh il e t h e size o f t h e o rigina l se arc h
spac e was n!. If n is o dd, c h o o se at rando m so me o dd k, wit h 1 � k � n, and r e st ri c t
c o nse c ut ive pairs in t h e se rie s π−1(1), . . . , π−1(k−1), π−1(k+1), . . . , π−1(n).Ve rt e x
π−1(k) is n o t re st ri c t e d. If t h e init ial arrange me nt π was no t t o o f ar f ro m t h e minimal
arrange me nt , t h e re st ric t io ns just int ro du c e d af f e c t t h e so l ut io n o nl y l o c al l y, as de sire d.

T h ro ugh o ut t h is se c t io n, we il l ust rat e t h e c o arse ning pr o c e ss using t h e s-grap h G,
sh o wn in Fig. 2 . Al l it s e dg e s h ave we igh t 1 . We arb it rari l y o rd e r t h e ve rt ic e s b y t h e ir
name s and de no t e t h is l ine ar arrange me nt b y π. As t h e re ade r c an ve ri f y, it s c o st is
LAπ(G) = 43. We sh o ul d re mark t h at , in g e ne ral , smart e r o rd e rings, su c h as t h at
pro duc e d b y t h e me dian it e rat io n, wo rk muc h b e t t e r t h an an arb it rary ini t ial izat io n.

As a c o nse que nc e o f t h e init ial l ine ar arrange me nt π, t h e se t o f re st ri c t e d ve rt e x
pairs in t h e e xampl e is R = {(1, 2), (3, 4), (5, 6), (7, 8)}. T h is r e st ri c t s e ve ry l in e ar
arrange me nt t o pl ac e ve rt e x 2 imme diat e l y af t e r ve rt e x 1 , ve rt e x 4 imme diat e l y af t e r
ve rt e x 3, and s o o n.

We no w sh o w h o w t o f o rmul at e t h e re st ric t e d pro b l e m as a l in e ar arrang e me nt pr o b -
l e m o n a muc h smal l e r graph .

The Coarsening Step. Give n an s-graph G(V,E) and a se t R ⊂ V ×V o f re st ri c t e d ve rt e x
pairs,we c o nst ruc t a c o arse r graph GR(V R, ER), su c h t h at t h e re is a 1 -1 c o rr e spo nde nc e
b e t we e n l ine ar arrang e me nt s o f GR and l ine ar arrange me nt s in t h e re st ri c t e d se arc h spac e
o f G. GR is pr o duc e d b y c o nt rac t ing pairs o f re st ric t e d ve rt ic e s.Ve rt e x l e ngt h s and e dge
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Fig. 2 . L ine ar arrang e me nt o f t h e graph G. Eve ry ve rt e x is o f l e ngt h 1 .

we igh t s ar e pre se rve d, b y ac c umul at ing t h e m. Po sit io ns o f t h e ne w e dge s are c al c ul at e d
b y ave raging t h o se o f o l d e dg e s.

H e re is t h e f o rmal c o nst ruc t io n o f GR. T o e ase t h e t e c h ni c al it ie s,we wil l b e assuming
t h at if 〈i, j〉 /∈ E, t h e n wij = 0 and P 〈i, j〉 = 〈i, j〉P = 0. Al so , f o r simpl ic it y, we
assume t h at n is e ve n, s o t h at e ve ry v ∈ V appe ars in a singl e re st ri c t e d pair.

– T h e c o ars e ve rt e x se t V R is simpl y t h e se t o f re st ri c t e d ve rt e x pairs, R.
– T h e l e ngt h o f a c o arse ve rt e x (v1, v2) is l(v1,v2) = lv1 + lv2

– T h e c o ars e e dge se t is de fine d as f o l l o ws:

ER =

⎧⎪⎪⎨⎪⎪⎩〈(v1, v2), (v3, v4)〉

∣∣∣∣∣∣∣∣
(v1, v2), (v3, v4) ∈ V R,
(v1, v2) �= (v3, v4),
〈v1, v3〉 ∈ E o r 〈v1, v4〉 ∈ E
o r 〈v2, v3〉 ∈ E o r 〈v1, v4〉 ∈ E

⎫⎪⎪⎬⎪⎪⎭
– T h e we igh t o f a c o arse e dg e 〈(v1, v2), (v3, v4)〉 , de no t e d as usual b y w(v1,v2)(v3,v4),

is wv1v3 + wv1v4 + wv2v3 + wv2v4 .
– T h e po si t io ns o f t h e e ndp o int s o f t h e c o arse e dg e 〈(v1, v2), (v3, v4)〉 are t h e we ig h t e d

ave rage s o f t h e e ndp o int s o f t h e c o rre spo nding fine e dge s:

P 〈(v1, v2), (v3, v4)〉 =
(∑

i∈{v1,v2},j∈{v3,v4} wij ·P 〈i,j〉)+lv1 ·(wv2v3+wv2v4 )

wv1v3+wv1v4+wv2v3+wv2v4

〈(v1, v2), (v3, v4)〉P =
(∑

i∈{v1,v2},j∈{v3,v4} wij ·〈i,j〉P )+lv3 ·(wv1v4+wv2v4 )

wv1v3+wv1v4+wv2v3+wv2v4

Wh e n n is o dd, t h e re e xist s a singl e unr e st ric t e d ve rt e x, v, in wh ic h c ase we add a
ve rt e x (v, v) t o V R, wh e re l(v,v) = lv . De finit io ns re garding t h e e dge s adjac e nt t o (v, v)
sh o ul d b e sl igh t l y mo difie d.

H e nc e , f o r o ur e xampl e graph G, as arrange d in Fig. 2 , we wil l ge t t h e c o arse grap h
GR sh o wn in Fig 3.We de no t e t h e l ine ar arrange me nt o f GR b y ϕ. T h e re ade r c an ve ri f y
t h at it s c o st is LAϕ(GR) = 40.

T h e re is a simpl e 1 -1 c o rre spo nd e nc e b e t we e n t h e re st ri c t e d l in e ar arrang e me nt s o f
t h e fine graph G and t h e l ine ar arrange me nt s o f t h e c o arse grap h GR:

Definition 45 Let G be a graph, R a set of restricted vertex pairs, and π a restricted
linear arrangement of G. Now let ϕ be a linear arrangement of the respective coarse
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Fig. 3. T h e grap h GR t h at is o b t aine d b y c o arse ning t h e graph o f Fig. 3. T h e l e ngt h o f e ac h ve rt e x
is 2 , and we igh t s and c o o rdinat e s o f e dge s we re c al c ul at e d so as t o pr e se rve t h e in f o rma t io n o f
t h e o riginal grap h .

graph GR. The two arrangements are c orresponding if for every (v1, v2) ∈ R, we
have:

π(v1) = 1 +
∑

ϕ((i,j))<ϕ((v1,v2))

|(i, j)|

where

|(i, j)| def
=
{

2, i �= j
1, i = j

Equivalently, in the inverse direction, for every (v1, v2) ∈ R:

ϕ((v1, v2)) =
∑

(i,j)∈R, π(i)�π(v1)

1

No t ic e t h at wh e n n is e ve n (i, j) ∈ R impl ie s t h at i �= j, so we c an simpl y wri t e t h e
c o ndit io n f o r c o rr e spo nd e nc e as f o l l o ws: f o r e ve ry (v1, v2) ∈ R:

π(v1) = 2 ∗ ϕ((v1, v2))− 1

Using t h e c l o se re l at io nsh ip b e t we e n l e ng t h s o f ve rt ic e s in G and GR, we o b se rve
t h at f o r t wo c o rr e spo nding l ine ar arrange me nt s π and ϕ, t h e ac t ual l o c at io ns o f t h e
ve rt ic e s are re l at e d, f o r e ac h (v1, v2) ∈ R, b y:

pπ
G(v1) = pϕ

GR((v1, v2)) ( 1 )

It is s t raig h t f o rward t o ve rif y in o ur e xampl e t h at π and ϕ, are c o rr e spo nding l in-
e ar arrang e me nt s. No t ic e t h at : pπ

G(1) = pϕ
GR((1, 2)) = 0, pπ

G(3) = pϕ
GR((3, 4)) =

2, pπ
G(5) = pϕ

GR((5, 6)) = 4, pπ
G(7) = pϕ

GR((7, 8)) = 6.
During c o ars e ning, s e ve ral e dg e s b e c o me se l f -l o o ps, and are c anc e l e d. We c an c al -

c ul at e t h e c o st re l at e d t o t h e se l o st e dg e s:

Definition 46 Given a graph G(V,E) and a set of restricted vertex pairs R, define t he
int ernal c ost of R to be:

C(R) =
∑

〈i,j〉∈E,(i,j)∈R

wij · (〈i, j〉P + li −P 〈i, j〉)

T h e mo st impo rt an t f ac t is t h at t h e c o st s o f t wo c o rr e spo nding l in e ar arrang e me nt s
are ide nt ic al up t o adding C(R), wh ic h is inde pe nd e nt o f t h e part ic ul ar arrange me nt s.
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Lemma 1 . Let G be a graph and R a set of restricted vertex pairs. Let π and ϕ
be corresponding linear arrangements of G and GR, respectively. Then, LAπ(G) =
LAϕ(GR) + C(R).

T h e pr o o f is ra t h e r t e c h nic al and is give n in t h e f ul l ve rsio n o f t h is pape r [1 0 ].
In t h e e xampl e graph t h re e e dg e s l ie wit h in a r e st ric t e d pair, and t h e y are 〈1, 2〉, 〈3, 4〉,

〈7, 8〉. T h us, t h e int e rnal c o st is C(R) = 3. In agre e me nt wit h L e mma 1 , LAπ(G) =
LAϕ(GR) + C(R) = 40 + 3.

As c an b e se e n in Fig. 3, t h e visual c o mpl e xit y o f GR is muc h l o we r t h an t h at o f
G. In f ac t , i t is no t t o o h ard t o c o mpu t e t h e minimum l in e ar arrang e me nt ϕ∗ o f GR,
sh o wn in Fig. 4 ( a) . It s c o st is LAϕ∗(GR) = 24. Af t e r so l ving t h e pr o b l e m f o r t h e
c o arse graph , we int e rpo l at e t h e re sul t ing arrange me nt t o t h e o rigina l grap h , o b t aining
t h e c o rr e spo nding l ine ar arrange me nt π∗ o f G, as sh o wn in Fig. 4 ( b ) . In ac c o rdan c e wit h
L e mma 1 , LAπ∗(G) = LAϕ∗(GR) + C(R) = 24 + 3, a signific ant de c re ase in t h e
arrange me nt c o st , wh ic h may al so b e appre c iat e d visual l y.

We sh o ul d re mark t h at in t h e mo re ge ne ral c ase t h e c o arse grap h wo ul d s t il l b e t o o
l arge t o f ac il it at e finding it s o pt imal l ine ar arrange me nt . H e nc e , as we sh al l e xpl ain, o ur
st rat e gy is t o c o nt inue re c ursive l ywit h t h e c o arse ning pr o c e ss un t il we re ac h a re aso nab l y
smal l graph .

Fig. 4.Opt imizing t h e l ine ar arrang e me nt o f GR f ac il it at e s t h e c o nst ruc t io n o f a b e t t e r arrange me nt
f o r G.

We c o nc l ude t h at give n a se t R o f re st ric t e d ve rt e x pairs, we c an c o nst ru c t a c o arse r
graph GR wit h !n

2 " ve rt ic e s. L ine ar arrange me nt s o f GR c o rr e spo nd t o l in e ar arrang e -
me nt s in t h e re st ri c t e d se arc h spac e o f G, and h ave t h e same c o st s ( up t o adding a uni f o rm
c o nst ant ) . Fo r re aso nab l e re st ric t io ns, t h e re st ric t e d se arc h spac e c o nt ains arrang e me nt s
t h at h ave st ruc t ure simil ar t o t h o se o f t h e minimum c o st arrang e me nt s. H e nc e , we may
h o pe t h at a go o d arrang e me nt o f GR c o rre spo nds t o a re aso nab l y go o d arrang e me nt o f
G, and t h is arrang e me nt c an b e c o me a t rul y go o d o ne b y t h e l o c al re fine me nt pr o c e ss
we no w de sc ri b e .
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4.3 Local Refinement

Give n a l ine ar arrang e me nt π o f a graph G, we se e k a me t h o d t h at impr o ve s t h e qual it y
o f π. No w, in o ur appr o ac h π wil l t ypi c al l y p o sse ss a sat isf ac t o ry g l o b al st ru c t ur e , as
a re su l t o f minimizing t h e pro b l e m o n t h e re st ric t e d se arc h spac e . C o nse que nt l y, we
h ave c o nst ruc t e d a l o c al re fine me nt pro c e ss t h at spe c ial ize s in l o c al l y o pt imizing ar-
range me nt s. T h e ide a is t o t ak e e ac h k c o nse c ut ive ve rt ic e s in π and t o re arrang e t h e m
int e rnal l y suc h t h at t h e gl o b al arrange me nt c o st is minimize d. S uc h an o pt imal arrang e -
me nt is ac h ie ve d using t h e dynamic pro gramming al go ri t h m me nt io ne d in S ub se c t io n
2 .1 , in a t ime O(2k). T o impro ve t h e re sul t s t h e pro c e ss c an b e re pe at e d se ve ral t ime s.

T h e l o c al re fine me nt pro c e ss is de pic t e d in Figure 5 . T ak ing k t o b e c o nst ant ( in
o ur e xp e rime nt s we usual l y se t k = 6) , t h e t ime c o mpl e xi t y is O(|E|), and t h e spac e
re quire me nt s are al so l ine ar in t h e size o f t h e inpu t .

Function Local Refine ( G(V = {1, . . . , n}, E), π )
% Paramet ers:
% G(V, E) – an s-graph , π – a l inear arrangement of V

% Const ant s:
% interval[= 6] – number of c onsec ut iv e v ert ic es t o opt imize t oget her
% repetitions[= 5] – number of it erat ions of t he al gorit hm
% Auxil iary func t ion:
% MinLA l oc al ( G(V, E), π, j, j + k − 1) – finds best int ernal
% ordering of t he k v ert ic es pl ac ed in π[j], . . . , π[j + k − 1].
for i = 1 t o repetitions
for j = 1 t o n− interval + 1
M inL A l o c al ( G(V,E), π, j, j + interval − 1 )

end for
end for

Fig. 5 . T h e l o c al re fine me nt pro c e ss.

4.4 Putting It All Together

We c an no w put al l t h is t o ge t h e r t o o b t ain t h e mul t i sc al e al go ri t h m.

Preprocessing Stage. Prio r t o running t h e al go rit h m we want t o o b t ain, rapid l y, a re aso n-
ab l e l ine ar arrang e me nt . T o t h at e nd,we first o rde r t h e ve rt ic e s using spe c t ral se que nc ing
( se e S e c t io n 2 ) and t h e n impro ve t h e re sul t b y app l ying t h e me dian i t e rat io n.

The V-cycle. Our b asic mul t i-sc al e t o o l is t h e V-cycle, wh ic h st art s b y r e fining t h e
arrange me nt l o c al l y. T h e int e nt io n o f t h e re fine me nt is no t o nl y t o minimize t h e arrang e -
me nt c o s t , b ut t o al so impro ve t h e qual it y o f t h e c o arse ning s t e p t h at f o l l o ws it . T h e ne xt
st e p is t o c o ars e n t h e graph b ase d o n re st ric t ing c o nse c ut ive ve rt e x pairs o f t h e c urr e nt
arrange me nt . T h e pro b l e m is t h e n so l ve d in t h e re st ri c t e d so l ut io n spac e , b y running
t h e V-c yc l e re c ursive l y o n t h e c o arse graph . Onc e we h ave f o und a g o o d so l ut io n in t h e
re st ric t e d s o l ut io n spac e , we re fine it l o c al l y ( in t h e f ul l so l ut io n spac e ) .
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In t h e mo st o pt imist ic c ase , t h e o pt imal so l ut io n o n e ac h sc al e is r e ac h ab l e f ro m t h e
b e st re st ri c t e d so l ut io n b y l o c al o pt imizat io n, so t h at we are guaran t e e d t o find i t . Our
h o pe is t h at in a re al ist ic c ase a pr e t t y g o o d so l ut io n is re ac h ab l e in t h is f ash io n, wh ic h ,
o f c o urs e , de pe nds o n t h e qual it y o f t h e re fine me nt pro c e ss and o n t h e re st ri c t io ns we
impo se .

Figure 6 ( a) sh o ws t h e V-c yc l e al go rit h m. It use s se ve ral f unc t io ns. T h e first o f t h e se ,
‘c o arse n( G, π,GR, πR ) ’, re c e ive s an s-graph G and a l in e ar arrang e me nt o f it s ve rt ic e s,
π, and pro duc e s a c o arse graph GR and a l ine ar arrange me nt it s ve rt ic e s, πR. H e re , π
and πR ar e c o rr e spo nding l ine ar arrange me nt s as pe r De f . 4 5 . T h e way t o c o nst ru c t GR

and πR is d e sc ri b e d in S ub se c t io n 4 .2 . T h e f un c t io n ‘in t e rp o l at e ( GR, πR, π ) ’, r e c e ive s
a c o arse graph GR and a l ine ar arrange me nt πR, and pr o duc e s t h e c o rr e spo nding l in e ar
arrange me nt o f t h e fine graph , π.

T h e re c ursi o n in t h e V-c yc l e c o nt inu e s as l o ng as G is ‘l arge e no ugh ’, and a go o d
t e rminat io n c o ndit io n wo ul d b e wh e n t h e graph is smal l e no ugh t o f ac il it at e finding
t h e o pt imum l ine ar arrange me nt dire c t l y. In al l t h e graph s t h at we h ave t e st e d, l o c al
re fine me n t was us e l e ss af t e r mo re t h an five l e ve l s o f re c ursi o n, du e t o t h e go o d g l o b al
st ruc t ure o f t h e ini t ia l arrange me nt .

Al l t h e f unc t io ns in t h e V-c yc l e run in l ine ar t ime and spa c e , and t h e re c ursive c al l is
t o a pro b l e m o f appro ximat e l y h al f t h e size . T h us, t h e t ime and spac e c o mpl e xi t y o f t h e
V-c yc l e al go ri t h m is O(|E|).

(a) (b)

Function V-cycle ( G(V,E), π )
% Paramet ers:
% G(V, E) – an s-graph,
π – a l inear arrangement of V

L o c al Re fine ( G, π )
if G is ‘l arg e e no ug h ’ then
c o ars e n( G, π,GR, πR )
V-c yc l e ( GR, πR )
int e rpo l at e ( GR, πR, π )
L o c al Re fine ( G, π )

end if

Function MS MinLA ( G(V,E), π, k )
% Paramet ers:
% G(V, E) – an s-graph
% π – a l inear arrangement of V

% k – no. of V-c yc l e it erat ions

S pe c t ral S e que nc ing ( G, π )
M e dian It e rat io n( G, π, 4 0 )
for i = 1 t o k
M e dian It e rat io n( G, π, 1 0 )
V-c yc l e ( G, π )

end for

Fig. 6 . (a) T h e V-c yc l e ( mul t i-sc al e ) al go rit h m (b) T h e f ul l al go ri t h m.

Iterating theV-cycle. T h e V-c yc l e c an b e ne fit f ro m st art ing o ut wit h a b e t t e r arrang e me nt .
T h us, r e pe at ing t h e V-c yc l e c an impro ve it s re sul t s. In f ac t , t h is k ind o f it e rat io n is
c o mmo n in mul t i-sc al e al go rit h ms; se e [1 2 ]. It e rat ing t h e V-c yc l e c an o nl y de c re ase t h e
c o st o f t h e arrang e me nt . In f ac t , o ur e xp e rie nc e wit h t h e al go ri t h m is t h at af t e r a f e w
it e rat io ns t h e pro c e ss se e ms t o c o nve rg e , af t e r wh ic h impr o ve me nt is ve ry sl o w, if at al l .
We c an o b t ain b e t t e r re sul t s b y c arrying o ut se ve ral me dian i t e rat io ns ( e .g., 1 0 ) , b e f o re
e nt e ring e ac h ne w V-c yc l e . T h is pe rt urb s t h e arrange me nt and pr o vid e s t h e ne xt V-c yc l e
wit h a dif f e re nt st art ing p o int , t h us o ve rc o ming pr e mat ur e c o nve rge nc e . In pra c t ic e we
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gradua l l y re duc e t h e numb e r o f swe e ps o f t h e me dian it e rat io n, l e sse ning i t s e f f e c t ; se e
[1 0 ]. T h e f ul l al go ri t h m appe ars in Figure 6 ( b ) .

5 Experiments

A Case Study. We want t o de mo nst rat e t h e b e ne fit o f e mb e dding t h e l o c al re fine me nt
pro c e ss insid e t h e mul t i-sc al e sc h e me . T o t h at e nd, we h ave c h o se n t h e 1 0 -dime nsio nal
h ype r-c ub e , wh ic h c o nsist o f 1 0 2 4 ve rt ic e s and 5 1 2 0 e dge s. Wh at we h ave o b se rve d
f o r t h is e xampl e is t ypi c al o f many grap h s we h ave c o nsid e re d. T h e o pt imal l in e ar
arrange me nt o f t h is graph , π∗, c an b e c o mpu t e d e f fic ie nt l y, and i t s c o st is 5 2 37 7 6 ; se e
[1 1 ].

As t h e first st age we appl ie d spe c t ral se que nc ing t o t h e h ype r-c ub e , re sul t ing in an
arrange me nt wit h c o st 6 5 94 90 . We t h e n impro ve d t h e arrang e me nt using 4 0 me dian
it e rat io ns. T h e c o st o f t h e re sul t ing arrange me nt , π0, is 5 9995 8. We sh o ul d no t e t h at
t h is is t h e rando m part o f t h e e xp e rime nt , and o t h e r runs pro vid e qui t e di f f e re nt arrang e -
me nt s ( wh il e t h e me dian it e rat io n c o nsist e nt l y impro ve s t h e ini t ial arrang e me nt rat h e r
signific ant l y) .

We t h e n t ri e d t o impro ve π0 in t wo ways. First , we appl ie d 1 0 0 it e rat io ns o f t h e
L o c al Re fine f unc t io n ( se t t ing t h e l o c al c o nst ant repetitions t o 1 0 0 ) , and o b t aine d an
arrange me nt wit h c o st 5 931 2 0 . M o re it e rat io ns o f L o c al Re fine did n o t de c re ase t h e c o st
any f urt h e r. S e c o nd, we appl ie d a singl e V-c yc l e t o π0. During t h is, t h e L o c al Re fine
f unc t io n pe rf o rme d o nl y 5 it e rat io ns in e ac h o f it s e xe c ut io ns, t h us t h e running t ime
was muc h f ast e r. T h e re sul t o f t h is was t h e o pt imal l in e ar arrang e me nt π∗, a c l e ar
impro ve me nt .

T h is i l l ust rat e s t h e e f f e c t o f e mb e dding t h e l o c al re fine me nt pr o c e ss in t h e V-c yc l e
mul t i-sc al e sc h e me ,wh ic h impro ve s b o t h running t ime and o ut put qual it y. In ge ne ral ,
e mb e dding a l o c al re fine me nt pro c e ss in amul t i-sc al e sc h e me adds g l o b al c o nsid e rat io ns
t o t h e re fine me nt pro c e ss, b e c ause l o c al mo ve s o n a c o arse grap h e xpr e ss mo re gl o b al
o ne s o n t h e o rigina l graph . T h us, in so me se nse , t h e “wisdo m" o f a mul t i-sc al e al go ri t h m
c an b e divide d int o t wo part s: One is re l at e d t o l o c al o pt imizat io n and it re side s in t h e
l o c al o pt imizat io n pro c e ss, and t h e o t h e r d e al s wit h t h e gl o b al pr o pe r t ie s o f t h e pr o b l e m
and it re side s in t h e c o arse ning c o nst ruc t io n.

Petit’s Test Suite. We h ave impl e me nt e d t h e al go rit h m using C ++, and use o ur AC E
al go rit h m [9] f o r spe c t ral se que nc ing. T h e pro gram runs o n a 7 0 0 M H Z Pe nt ium III,
unde r Windo ws NT . We h ave t e st e d it o n a t e st suit e o f grap h s c o mpi l e d b y Pe t it [1 1 ],
c h o se n s o as t o re pre se nt se ve ral graph f amil ie s.

Pe t it c o mput e d l ine ar arrange me nt s o f t h e se grap h s using many al go ri t h ms. T h e
b e st re sul t s we re o b t aine d b y first running sp e c t ral se que nc ing, and t h e n c arrying o ut a
re fine me nt using simul at e d ann e al ing ( S A) . T h e S A pr o c e ss was run f o r C ·n2 it e rat io ns
( C > 1 is a c o nst an t re l at e d t o t h e rat e o f t e mpe rat ur e de c re ase in S A) . We c anno t
c o mpar e h is running t ime s wit h o ur dire c t l y, sin c e t h e pl at f o rms are dif f e re nt . But t o ge t
an impre ssi o n, t h e running t ime o f S A f o r t h e l arge st graph in Pe t it ’s se t , t h e wh it ak e r3,
was o ve r 1 1 h o urs. We pro vid e t h e c o st s c o mpu t e d b y S A in T ab l e 1 .

Fo r e ac h graph in t h is se t , we ran o ur mul t i-sc al e al go ri t h m ( t h at o f Figur e 6 ( b ) ) first
wit h a singl e V-c yc l e and t h e n wit h t e n ( i.e ., wit h k = 1 and k = 10) . T h e re sul t s appe ar
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Table 1 . T h e t e st suit o f Pe t it [1 1 ]. Fo r e ac h graph t h e t ab l e sh o ws t h e c o st o f t h e l ine ar arrange me nt
and t h e running t ime in se c o nds ( se para t e d b y a sl ash ) , f o r spe c t ral se que nc ing, me dian i t e rat io n,
mul t i-sc al e wit h a singl e V-c yc l e and mul t i-sc al e wit h 1 0 it e rat e d V-c yc l e s. T h e t ime s f o r mul t i-
sc al e inc l ude spe c t ra l se que nc ing, me dian it e rat io n and V-c yc l e s. T h e rig h t mo st c o l umn s h o ws
t h e c o st c o mput e d b y Pe t it using simul at e d ann e al ing ( S A) .

Graph Size Spectral Median Multi-Scale Multi-Scale Cost using
Name |V| |E| Sequencing Iteration 1 Iteration 1 0 Iterations SA

randomA1 1 0 0 0 4 97 4 1 1 5 6 890 /.0 8 1 0 2 0 0 2 8/.0 3 9381 6 8/2 .39 90 91 2 6 /2 2 .94 90 0 992
randomA2 0 0 0 2 4 7 38 7 37 7 2 37 /.2 7 7 2 84 4 97 /.4 2 6 7 5 5 0 35 /7 .0 2 6 6 0 6 1 7 4 /6 3.94 6 5 84 6 5 8
randomA3 1 0 0 0 4 982 0 1 5 2 7 96 4 5 /.38 1 6 5 4 36 6 0 /.96 1 4 7 31 0 4 0 /1 2 .1 2 1 4 4 5 7 4 5 2 /1 0 9.1 7 1 4 31 0 86 1
randomA4 1 0 0 0 81 7 7 2 1 6 7 1 2 1 /.1 1 1 95 5 837 /.0 5 1 80 7 0 38/3.1 5 1 7 6 5 2 1 7 /30 .0 4 1 7 5 32 6 5
randomG4 1 0 0 0 81 7 3 1 95 0 5 4 /.0 6 1 7 5 87 9/.0 6 1 5 4 990 /2 .1 1 1 4 95 1 3/1 8.97 1 5 0 94 0
hc1 0 1 0 2 4 5 1 2 0 5 80 91 0 /.0 2 5 4 2 4 7 6 /.0 3 5 2 37 7 6 /1 .9 5 2 37 7 6 /1 8.5 1 5 4 835 2
mesh33x33 1 0 89 2 1 1 2 35 7 5 0 /.0 4 34 1 1 8/.0 1 32 4 86 /1 .0 4 31 7 2 9/9.91 34 5 1 5
bintree1 0 1 0 2 3 1 0 2 2 5 2 992 /.0 9 6 1 1 4 /0 4 2 4 6 /.88 395 0 /7 .96 4 0 6 9
3elt 4 7 2 0 1 37 2 2 4 2 90 86 /.4 3 394 2 38/.1 1 385 5 7 2 /6 .5 5 37 3 4 6 4 /6 1 .2 4 37 5 387
airfoil1 4 2 5 3 1 2 2 89 35 2 897 /.37 31 2 387 /.1 1 30 5 1 91 /6 .5 3 2 91 7 94 /6 1 .0 2 2 8897 7
whitaker3 980 0 2 8989 1 2 5 96 0 7 /.92 1 2 385 5 7 /.2 8 1 2 2 6 90 2 /1 3.86 1 2 0 5 91 9/1 2 7 .7 9 1 1 997 7 7
c1 y 82 8 1 7 4 9 1 0 32 2 4 /.0 2 7 1 35 9/.0 1 6 6 836 /.92 6 4 934 /8.88 6 385 8
c2 y 980 2 1 0 2 95 34 6 /.0 3 84 2 5 9/.0 1 82 0 7 0 /1 .1 2 80 1 4 8/1 0 .81 7 95 0 0
c3y 1 32 7 2 84 4 1 7 5 7 0 0 /.0 4 1 4 5 33 2 /.0 2 1 37 1 31 /1 .5 8 1 2 7 31 5 /1 5 .3 1 2 4 7 0 8
c4y 1 36 6 2 91 5 1 33 0 4 4 /.0 5 1 2 4 5 7 6 /.0 2 1 2 1 4 6 0 /1 .6 2 1 1 84 37 /1 5 .5 7 1 1 7 2 5 4
c5 y 1 2 0 2 2 5 5 7 1 4 4 6 0 3/.0 4 1 1 5 2 39/0 .0 2 1 0 92 80 /1 .39 1 0 4 0 7 6 /1 3.33 1 0 2 7 6 9
gd95 c 6 2 1 4 4 5 99/.0 2 5 95 /0 5 0 9/.0 8 5 0 9/.6 1 5 0 9
gd96 a 1 0 7 6 1 6 7 6 1 7 0 7 0 0 /.0 4 1 2 2 5 6 7 /.0 1 1 1 5 5 2 5 /1 .2 4 1 0 6 6 6 8/1 1 .94 1 0 4 6 98
gd96 b 1 1 1 1 93 1 836 /0 1 82 5 /.0 1 1 4 35 /.1 1 1 4 34 /.98 1 4 1 6
gd96 c 6 5 1 2 5 7 0 1 /0 6 0 1 /0 5 2 2 /.0 6 5 1 9/.6 5 1 9
gd96 d 1 80 2 2 8 36 91 /0 2 80 7 /.0 1 2 4 38/.1 6 2 4 2 0 /1 . 5 3 2 393

in T ab l e 1 , wh ic h al so pro vid e s t h e re sul t s o f spe c t ral se que nc ing and me dian i t e rat io n
— t h e first st age o f t h e al go rit h m. T h e qual it y o f o ur re sul t s af t e r 1 0 V-c yc l e it e rat io ns is
c o mpara b l e t o t h at o f Pe t it ’s S A, b ut o ur running t ime is signific ant l y b e t t e r. T h e re sul t s
may b e f urt h e r impro ve d b y e xe c ut ing mo re it e rat io ns and/o r b y in c re asing t h e val ue o f
t h e c o nst ant interval in t h e f un c t io n L o c al Re fine . H o we ve r, t h e rat e o f impr o ve me nt
wo ul d b e sl o w.

6 Discussion

We h ave pre se nt e d a mul t i-sc al e al go rit h m f o r t h e minimum l in e ar arrange me nt pr o b -
l e m. It pro duc e s arrang e me nt s o n a par wit h t h e b e st k no wn al go ri t h ms, b ut re quir e s
signific ant l y l e ss t ime , al l o wing i t t o de al wit h muc h l arge r grap h s ( as sh o wn in [1 0 ]) .

T h e h e art o f t h e al go rit h m is a n o ve l c o nst ruc t io n o f a h ie rarc h y o f c o arse graph s,
c o rre spo nding t o inc re asingl y re st ric t e d part s o f t h e o rigina l pr o b l e m.A l o c al re fine me nt
sc h e me b e c o me s c o nside rab l y impro ve dwh e n e mb e dde d in t h e mul t i-sc al e c o nst ru c t io n.
In f ac t , t h e mul t i-sc al e c o nst ruc t io n is inde pe nd e nt o f t h e spe c ific re fine me nt h e uris t ic ,
and we b e l ie ve t h at o t h e r h e urist ic s c o ul d b e ne fit f ro m b e ing e mb e dde d in suc h a mul t i-
sc al e sc h e me . Al so , variant s o f t h e pro po se d mul t i-sc al e c o nst ru c t io n c an b e use d f o r
o t h e r ve rt e x o rde ring pr o b l e ms, suc h as b andwidt h o r c ut wid t h minimizat io n [3].

An int e re st ing pro pe rt y o f o ur mul t i-sc al e c o nst ruc t io n h as t o do wit h t h e way we
b uil d c o ars e graph s. T h e c o mmo n appr o ac h t o c o arse ning is b ase d so l e l y o n t h e grap h ’s
st ruc t ure . M o st f re que nt l y suc h a c o arse ning is p e rf o rme d b y c o nt rac t ing a se t o f e dge s,
suc h as t h o se t h at part ic ipat e in a maximal mat c h ing ( se e , e .g. [7 ]) . In c o nt rast , o ur
appro ac h t o c o ars e ning re l ie s o n a sp e c ific so l ut io n o f t h e pr o b l e m, o n wh ic h we impo se
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se ve ral re st ri c t io ns. Wh e n we h ave a gl o b al l y g o o d appro ximat e so l ut io n, o ur appr o ac h
h as t h e advant age o f ut il izing t h e wisdo m o f t h is so l ut io n f o r p e f o rming a c o arse ning t h at
f o rc e s r e aso nab l e re st ric t io ns. On t h e o t h e r h and, c o arse ning b ase d o n grap h st ru c t ur e is
mo st o f t e n ve ry l o c al in nat ure , andmay impo se gl o b al l y b ad re st ri c t io ns, l ik e id e nt if ying
ve rt ic e s t h at sh o ul d b e ve ry dist ant in t h e o pt imal so l ut io n. S e e al so [1 3].

T h e me dian i t e rat io n pro c e ss we h ave pro po se d se e ms t o h ave val ue in i t s o wn rig h t .
It is ac t ual l y an e xt re me l y f ast me t h o d f o r d e c re asing t h e c o st o f an arrange me nt , using
a c o nt inuo us re l axat io n o f t h e o riginal pro b l e m. In [1 0 ] it was appl ie d suc c e ssf ul l y t o
graph s wit h mil l io ns o f e dg e s.
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Abstract. The b-chromatic number b(G) of a graph G = (V, E) is the
largest integer k such that G admits a vertex partition into k independent
sets Xi (i = 1, . . . , k) such that each Xi contains a vertex xi adjacent
to at least one vertex of each Xj , j = i. We discuss on the tightness of
some bounds on b(G) and on the complexity of determining b(G). We
also determine the asymptotic behavior of b(Gn,p) for the random graph,
within the accuracy of a multiplicative factor 2 + o(1) as n →∞.

1 Introduction

A b-coloring of a graph G by k colors is a proper coloring of the vertices of G
such that in each color class there exists a vertex having neighbors in all the
other k− 1 color classes. Such a vertex will be called a color-dominating vertex .
The b-chromatic number b(G) of a graph G is the maximum k for which G has
a b-coloring by k colors.

The b-chromatic number was introduced in [6]. The motivation, similarly as
for the previously studied achromatic number (cf. e.g., [1,2,3,5,8]), comes from
algorithmic graph theory. Suppose one colors a given graph properly, but in an
arbitrary way. After all vertices are colored, one would wish to perform some
simple operations to reduce the number of colors. The simplest operation at
hand is recoloring all vertices in one color class with another color, i.e., unifying
two color classes. In an achromatic coloring there is an edge between any two
color classes, and hence such recoloring is impossible. The achromatic number
of a graph is thus the worst case number of colors that may be needed to color
the graph under the above described heuristics.
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A slightly more involved operation would take one color class and recolor its
vertices, but not necessarily each with the same color. Obviously, such recoloring
is impossible if each color class contains a color-dominating vertex. Hence the
b-chromatic number of the graph serves as the tight upper bound for the number
of colors used by this more sophisticated coloring heuristics.

From this point of view, both complexity results and tight bounds for the
b-chromatic number are interesting. We strengthen some complexity results of
[7] and present several new bounds on the b-chromatic number, including a tight
(upto a small multiplicative constant) bound on the b-chromatic number of the
random graph. To state the results we need to recall the upper bound presented
already in [6].

Assume that the vertices v1, . . . , vn of G are ordered such that d(v1) ≥
d(v2) ≥ . . . ≥ d(vn), where d(x) denotes the degree of x. Let

t(G) := max {i | d(vi) ≥ i− 1}

be the maximum number i such that G contains at least i vertices of degree
≥ i− 1. Obviously, t(G) ≤ Δ(G) + 1 where Δ(G) denotes the maximum degree
of G.

Proposition 1. ([6,7]) For every graph G, χ(G) ≤ b(G) ≤ t(G).

This upper bound is tight. For example, consider a split graph G (i.e., a graph
G = (V,E) which has a partition V = I ∪ C (I ∩ C = ∅) such that I is
an independent set in G and C builds a clique in G. It is easy to see that
b(G) = t(G) = χ(G). On the other hand, b(G) may be arbitrarily far from t(G),
shown e.g., by the complete bipartite graph Kn,n [6].

Our paper is organized as follows. In the next section we present some results
showing that under certain sufficient conditions the upper bound t(G) for the
b-chromatic number is met. The proofs are based on the idea of precoloring some
vertices which should then play the role of the color-dominating vertices, and
extending the precoloring to the entire graph by making use of results on list
colorings and graph choosability.

In Sections 3 and 4 we present our complexity results. First we show a char-
acterization of graphs having b-chromatic number 2 (note that such graphs are
necessarily bipartite). This characterization yields a polynomial time algorithm
to decide b(G) = 2. Thus two-b-colorability, similarly to ordinary bi-colorability,
is an easy problem. However, b-colorbility defines a problem more difficult than
ordinary colorability. We prove that the problem to decide whether there is a
b-coloring by t(G) colors is NP -complete even for connected bipartite graphs
and t(G) = Δ(G)+1, thus strengthening NP-completeness results of [7,10]. This
result shows that already for bipartite graphs, b-colorability becomes a difficult
problem.

Finally, in Section 5, we study the behaviour of ‘typical’ graphs and we
succeed in taming the b-chromatic number with respect to ordinary chromatic
number. We prove that for every constant edge probability p (0 < p < 1) the
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b-chromatic number of the random graph Gn,p asymptotically is not larger than
twice its chromatic number.

2 Precoloring of Color-Dominating Vertices

For a given graph G denote by dist(v, w) the number of edges in a shortest path
connecting v and w. If v and w belong to different components of a disconnected
graph G then dist(v, w) = ∞. For the sake of brevity, we write Δ = Δ(G) if it
is clear what graph G we have in mind.

Theorem 1. Let G be a graph containing vertices v1, . . . , vΔ+1 such that d(vi)
= Δ for all i and dist(vi, vj) ≥ 4 for all i �= j. Then b(G) = Δ + 1.

Proof. We shall construct a b-coloring of G by Δ+1 colors. For all i = 1, . . . , Δ+
1, color vertex vi by color i and its neighborhood by colors {1, . . . , Δ + 1} \ {i}
such that all Δ colors are used in the neighborhood. So far this coloring is a
proper coloring, because the distance constraint implies that there are no adja-
cent vertices with the same color, and each of the vertices vi is color-dominating.
Furthermore the precoloring can easily be extended to a coloring of the entire
graph by the greedy algorithm. Note that every vertex has degree at most Δ
and we have Δ + 1 available colors. Thus b(G) = Δ + 1.

An easy example for the graphs considered in Theorem 1 is the disconnected
graph G consisting of t + 1 stars K1,t. The idea can also be used to prove the
following result on d-regular graphs.

Corollary 1. Let G be a d-regular graph (d ≥ 2) with at least d4 vertices.
Then b(G) = d + 1.

Proof. We intend to find d+ 1 vertices v1, . . . , vd+1 where dist(vi, vj) ≥ 4 for all
i �= j. Take an arbitrary vertex v1 and remove it together with its first, second
and third neighborhood from the graph. The number of removed vertices is at
most 1 + d + d(d− 1) + d(d− 1)2 = d3 − d2 + d + 1 < d3. Continue in this way
removing vertices v2, . . . , vd and the corresponding neighborhoods. The number
of removed vertices altogether is smaller than d4, and there remains at least one
vertex vd+1. Furthermore dist(vi, vj) ≥ 4 for all i �= j. Applying Theorem 1 we
obtain b(G) = Δ + 1 = d + 1.

For d = 2 it is easy to see that only the graphs consisting of one or two
4-cycles have b-chromatic number 2 whereas all other 2-regular graphs have b-
chromatic number 3. So far there was no problem to extend the precoloring
because we had Δ + 1 available colors. If we would like to find a b-coloring by
fewer colors the situation becomes more complicated. An example of a result
describing such situation is below. Denote by girth(G) the girth of G that is the
length of a shortest cycle in G.

Theorem 2. Let G be a planar graph of girth at least 5, and t ≥ 4 an integer.
If G contains t vertices v1, . . . , vt such that d(vi) ≥ t−1 for all i = 1, . . . , t and
dist(vi, vj) ≥ 5 for all i �= j, then b(G) ≥ t.
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Proof. Again we try to find a b-coloring by t colors precoloring the vertices
v1, . . . , vt and the neighborhoods such that vi is colored by i and all the other
colors occur in its neighborhood. Such a precoloring is possible in a proper way
because we have t ≥ 4 available colors, G is planar and dist(vi, vj) ≥ 5.

Now we claim that every non-colored vertex has at most one colored neighbor.
This is true because of the girth- and the distance constraints. Thus for every
non-colored vertex there are at least t− 1 ≥ 3 available colors. Thomassen [11]
proved that every planar graph of girth at least 5 is 3-choosable. Thus it is
possible to extend the precoloring to the entire graph.

3 Bipartite Graphs

The main result of this section is a characterization of bipartite graphs for which
the lower bound on the b-chromatic number is attained.

Lemma 1. Let G be a connected bipartite graph with bipartition classes A and
B. If G has a b-coloring with k ≥ 3 colors, then one bipartition class contains
vertices of all k colors and the other class contains vertices of at least k − 1
colors.

Proof. For k ≥ 3, at least 2 color-dominating vertices belong to one biparti-
tion class, say A. Thus all the k colors have to occur in B. If there is a color-
dominating vertex in B then it has neighbors of k − 1 different colors in A,
otherwise all color-dominating vertices belong to A, that is A contains vertices
of all the k colors.

Now we are in a position to characterize all bipartite graphs with b(G) = 2
and b(G) > 2, respectively. Let N(v) = {w ∈ V (G) | vw /∈ E(G), v �= w} denote
the non-neighborhood of the vertex v.

Theorem 3. Let G be bipartite and G1, . . . , Gr its connected components of
sizes at least 3. Then b(G) > 2 if and only if

1. r = 1 and A ⊆ ⋃v∈B N(v) or B ⊆ ⋃v∈A N(v) where A and B are the
bipartition classes of G1, or

2. r = 2 and at least one of G1, G2 is not complete bipartite, or
3. r ≥ 3.

Proof. Note that components with at most two vertices do not play a role for
a b-coloring by at least 3 colors because they cannot contain color-dominating
vertices.

First, let r = 1. Assume B ⊆ ⋃v∈A N(v). We shall show that there is a
b-coloring by at least 3 colors. Consider an arbitrary vertex w1 of B. By as-
sumption, there is a vertex v1 ∈ A such that v1 is not adjacent to w1. Color v1

and N(v1) ⊆ B by 1. There has to be at least one uncolored vertex w2 in B,
otherwise G1 is disconnected. Color w2, a vertex v2 ∈ A\v1 which is not adjacent
to w2 and the non-neighborhood of v2 by 2. There is at least one uncolored ver-
tex in G1 otherwise we have a second partition of V (G1) into two independent
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subsets, which is not possible for a connected graph. Continue the coloring in
the same way until all vertices of B are colored. If there are uncolored vertices
in A, color all of them by an additional color. Thus, the number k of colors used
is at least 3. At least k − 1 color classes contain vertices of both A and B. If
the coloring is a b-coloring we are done. Otherwise there is a color class without
a color-dominating vertex. Recolor the vertices of this color class obtaining a
proper coloring with k − 1 colors. Note that again at least k − 2 color classes
have vertices in both classes A and B. Continue in this way until a b-coloring
is obtained. Note that it is not possible to obtain a coloring by 2 colors because
in this case G1 is disconnected, a contradiction to the assumption. Hence the
result is a b-coloring of G1 with at least 3 colors and it can be easily extended
to a b-coloring of the entire G.

Now, assume there is a b-coloring of G, and hence of G1, which uses k ≥ 3
colors. Then by Lemma 1 at least one of the classes A and B contains vertices
of all k colors. Without loss of generality, let vi ∈ A be a vertex of color i for
i = 1, . . . , k. Obviously, we have B ⊆ ⋃k

i=1 N(vi).

Now, let r = 2. Assume G1 has color classes A and B, and is not complete
bipartite. Let v ∈ A and w ∈ B be non-adjacent vertices in G1. Color v and w
by color 1, all vertices of A \ {v} by color 2 and all vertices of B \ {w} by color
3. Because of the connectivity of G1 there is a color-dominating vertex of color
2 in A and a color-dominating vertex of color 3 in B. Furthermore color one of
the classes of G2 by 1, and the other class by 2 and 3 in such a way that there
is a color-dominating vertex of color 1 in G2.

Now assume G1 and G2 are complete bipartite and there is a b-coloring by
at least 3 colors. Thus at least one of them contains at least two dominating
vertices, say G1 contains dominating vertices of colors 1 and 2. If they belong
to the same independent set of G1 then colors 1 and 2 have to occur also in the
other set, thus the coloring is not a proper one. If they belong to distinct vertex
classes then color 3 has to occur in both classes, a contradiction. Thus each Gi

i = 1, 2 contains at most one dominating vertex and b(G) = 2.

For r ≥ 3 a b-coloring by 3 colors is obvious.

Kouider and Mahéo [7] noticed that there are graphs which have a b-coloring
with k colors, no b-coloring with k+1 but again a b-coloring with k+2 colors. In
fact, the gap between the integers for which a b-coloring exists may be arbitrarily
large.

Proposition 2. For every n there is a graph G having a b-coloring by k colors
if and only if k = 2 or k = n.

Proof. Using Lemma 1, it is easy to see that the graph G obtained from the
complete bipartite graph Kn,n by removing a perfect matching has the required
property.

It is also true that the gap between the b-chromatic number of a graph and
an induced subgraph can be arbitrarily large (and interestingly, the subgraph
having the larger b-chromatic number).
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Proposition 3. For every n, there is a graph G and an induced subgraph H
of G such that b(H)− b(G) > n.

Proof. The graph G obtained from the complete bipartite graph Kn+4,n+4 by re-
moving a matching of n+3 edges has b-chromatic number 2 because of Theorem
3. On the other hand G contains subgraphs Hk obtained from the complete bi-
partite graph Kk,k by removing a perfect matching for all k = 3, . . . , n+3 where
b(Hk) = k as mentioned in the proof of Proposition 2. Thus b(Hn+3) − b(G) =
n + 3− 2 = n + 1

By the infinite analogues of the latter construction we obtain:

Proposition 4. For every infinite cardinal κ there exists a graph G with
b(G) = 2, from which the removal of two vertices yields an induced subgraph
H such that b(H) = κ.

4 Algorithmic Aspects

In this section we deal with the complexity of deciding whether a b-coloring by
a given number of colors exists, or whether the b-chromatic number is at least
a given number. The main result of this section is the NP -completeness of the
problem to decide whether there is a b-coloring by t(G) colors even for connected
bipartite graphs and t(G) = Δ(G) + 1. Thus it is not possible to find a “nice”
characterization for bipartite graphs with b(G) = Δ(G) + 1.

We consider the following problems:

b-Coloring

Instance: Graph G = (V,E), integer k
Question: Is there a b-coloring of G by k colors?

b-Chromatic Number

Instance: Graph G = (V,E), integer k
Question: Is b(G) ≥ k?

Note that b-Coloring ∝ b-Chromatic Number , but it is not obvious at
first sight how knowing b(G) would help to decide if G has a b-coloring using
exactly k colors. Irving and Manlove [6] proved that b-Chromatic Number is
NP-complete in general. In fact they proved that it is NP-complete to decide
whether there is a b-coloring by t(G) colors. However, their construction does
not answer what happens in the special case t(G) = Δ(G) + 1. We answer this
question, even for bipartite graphs.

Theorem 4. b-Coloring is NP-complete for k = t(G) even for connected
bipartite graphs and t(G) = Δ(G) + 1.

Proof. Obviously, b-Coloring belongs to NP. To prove its NP-completeness
we present a reduction from the following problem: Given a 3-regular bipartite
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graph G = (V,E) with V = A ∪ B, is there a coloring of B by 3 colors such
that every vertex of A has a neighbor of each color?. NP-completeness of this
problem can be easily derived from 3-edge-colorability of 3-regular graphs, which
is known to be NP-complete [4].

Take a 3-regular bipartite graph with k − 3 vertices in A. Construct a new
bipartite graph H in the following way. Let v1, v2, . . . , vk−3 be vertices of A and
N(v1) = {w1, w2, w3} ⊆ B the neighborhood of v1. Add independent vertex sets
V1, V2, V3 each of cardinality at least k − 4 to A and join wi with all vertices of
Vi, i = 1, 2, 3. Furthermore add an independent vertex subset W = {w4, . . . , wk}
to B and join vi with all vertices of W \ {wi+3} for all i = 1, . . . , k − 3. If k is
assumed to be Δ + 1 then |Vi| = k − 4 for i = 1, 2, 3.

We claim that H has a b-coloring by k colors if and only if G allows a feasible
3-coloring of the bipartition class B.

Assume G has such a 3-coloring and, without loss of generality, c(wi) = i
for i = 1, 2, 3. Color V1, V2, V3 such that wi is a color-dominating vertex of color
i for i = 1, 2, 3. Furthermore c(vi) = c(wi+3) = i + 3 for i = 1, . . . , k − 3, and
c(v) = k for all remaining vertices of A. Consequently vi is a color-dominating
vertex of color i + 3 and so we have a b-coloring of H by k-colors.

Now assume that H has a b-coloring by k colors. Then w1, w2, w3, v4, . . . , vk

are the dominating vertices because all the other vertices have degree smaller
than k−1. Without loss of generality, let c(wi) = i for i = 1, 2, 3 and c(vi) = i+3
for i = 1, . . . , k − 3. Note that d(vi) = k − 1 for i = 1, . . . , k − 3. It follows that
W = {w4, . . . , wk} must be colored by k − 3 different colors. Assume there is a
vertex of W colored by 1, say c(w4) = 1. Then no vertex of W is colored by 4
and there has to be at least one vertex of (B \W ) \ {w1, w2, w3} colored by 4.
Recolor the graph setting c′(w4) = 4, c′(w) = 1 for w ∈ B with c(w) = 4 and
c′(v) = c(v) for all the other vertices. The new coloring is again a b-coloring
with k color-dominating vertices because every vi, i = 2, . . . , k − 3, is adjacent
to w4 and has a neighbor colored by 4 in the original coloring. Moreover, in the
neighborhood of v1 nothing changes. If there are vertices in W colored by 2 or 3,
change the coloring in an analogous way. Thus the vertices of B \W are colored
by 1, 2, 3 such that each vertex of v1, . . . , vk−3 has a neighbor of each color in W
giving a feasible 3-coloring of G.

On the other hand, some problems concerning b-coloring and b-chroma-

tic number can be decided in polynomial time. The following assertions follow
immediately from Theorem 3 and its proof :

Corollary 2. For k = 3, b-Chromatic Number is polynomial for bipartite
graphs.

Corollary 3. b-Coloring is polynomial for bipartite graphs G with t(G) ≤ 3.
A corresponding b-coloring can also be found in polynomial time.

The following lemma gives a sufficient condition for the existence of a b-
coloring by 3 colors.
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Lemma 2. Let G be a connected bipartite graph and V = A ∪B the partition
of V into independent subsets. If there is a pair of vertices v1, v2 belonging to
the same subset A or B without a common neighbor, then G has a b-coloring
by 3 colors.

Proof. Assume v1, v2 ∈ A do not have a common neighbor. Color v1 by 1, v2 by
2, all vertices of B not adjacent to v1 by 1 and all remaining vertices of B by 2.
The remaining vertices of A are colored by 3. Obviously this coloring is a proper
coloring. Because of the connectedness of G there has to be a dominating vertex
in each color.

From the above lemma and a result of Mohar, Tuza and Woeginger (cf. [9]),
a further result on planar bipartite graphs can be deduced.

Lemma 3. For k=3, b-Coloring is polynomial for connected planar bipartite
graphs.

Proof. We use Lemma 2 to construct a coloring. If the assumption of the lemma
is fulfilled then we use the coloring given in the proof of that lemma.

If the assumption of Lemma 2 is not fulfilled then every pair of vertices
belonging to the same class A or B has at least one common neighbor.

We claim that in a b-coloring of G by 3 colors there has to be a cyclically
colored 6-cycle (that is the consecutive colors on the cycle are 1, 2, 3, 1, 2, 3).
At least 2 dominating vertices belong to the same class, say v1, v2 ∈ A where
vi is the dominating vertex of color i (i = 1, 2). Then they have a common
neighbor colored by 3. Furthermore, v1 has a neighbor w2 colored by 2 and v2

has a neighbor w1 colored by 1. These two vertices w1 and w2 have a common
neighbor, colored by 3. Thus, these 6 vertices build a cyclically colored 6-cycle.

Consequently, we have to check whether G contains a 6-cycle and for every
6-cycle we have to decide whether a cyclical coloring of it can be extended to the
entire graph. For a given 6-cycle it is possible to decide in linear time whether
such an extension exists [9]. If there is no 6-cycle or there is no 6-cycle with a
possible coloring extension of a cyclical coloring then no b-coloring by 3 colors
exists.

Maybe one can generalize this method to find a b-colorings by 3 colors not
only in this case. The problem is to extend the precoloring of the 6-cycle.

5 Random Graphs

Let p be a real number, 0 < p < 1. We denote by Gn,p the random graph with
n vertices and edge probability p. Let q = 1− p.

Theorem 5. For every fixed edge probability p ( 0 < p < 1),

( 1
2 − o(1))

n log 1
q

log n
≤ b(Gn,p) ≤ (1 + o(1))

n log 1
q

log n

with probability 1− o(1) as n→∞.
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Proof. The lower bound immediately follows from the basic fact that Gn,p con-
tains no independent sets of size larger than (2 logn)/log 1

q , almost surely. (The
counting argument is practically the same as the one for p = 1

2 given in the
classical proof of Erdős.)

To prove the upper bound, let k be arbitrary. We estimate the probability P
of the event that Gn,p admits a b-coloring by k colors. We will prove that P → 0
holds whenever k exceeds the bound given in the theorem.

Assume that V = V1 ∪ · · · ∪ Vk is a b-coloring by k colors. For every pair i, j
(1 ≤ i < j ≤ k) consider dominating vertices vi ∈ Vi and vj ∈ Vj . Domination
implies that either the edge vivj is present or vivj is not an edge and there is
an edge from vi to Vj \ {vj} and from vj to Vi \ {vi}. Note that the first case
applies whenever min (|Vi|, |Vj |) = 1. An upper bound on P is

P ≤
∑

|V1|=n1,...,Vk|=nk
n1+...+nk=n

k∏
i=1

q(
ni
2 )

︸ ︷︷ ︸
A

k∏
i=1

ni︸ ︷︷ ︸
B

∏
i<j

(p + q(1− qni−1)(1− qnj−1))︸ ︷︷ ︸
C

Here A is the probability that each Vi is independent, B is the number of ways
to select the dominating vertices vi ∈ Vi, and C is the probability of domination
between Vi and Vj .

We estimate the sum above in the following way. There are at most kn

k! color
partitions of the n vertices into at most k classes, that is less than

en log k−k log k+k

by the Stirling formula. It is also clear that

A = e−
1
2

∑k

i=1
ni(ni−1) log 1

q , B = e
∑k

i=1
log ni

Moreover, the terms in C can be written as

p + q − qni − qnj + qn1+n2−1 = (1− qni)(1− qnj ) + p
q q

n1+n2

In order to obtain an upper bound on C, we take the estimate√
(1− qni)(1− qnj )

for all pairs i, j. This is an upper bound indeed, that can be verified by analyzing
the behavior of the function

f(x, y) = (1− x)(1− y) + p
qxy −

√
(1− x)(1− y)

over the domain [0, q] × [0, q]. It is a matter of routine to check that fixing
any one of the variables x and y, the function becomes a convex real function.
Consequently, f(x, y) ≤ 0 on the entire domain because f(0, 0) = f(q, q) = 0
and f(0, q) = f(q, 0) = p−√p ≤ 0.
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We make some further simplification on the terms of C as follows:

∏
i<j

C ≤
k∏

i=1

(1− qni)
k−1
2 <

k∏
i=1

e−
k−1
2 qni = e−

k−1
2

∑
qni

(Here we applied the fact that 1− x < e−x for x > 0.)
Combining the estimates above, we obtain

P ≤ exp (n log k− k log k + k−1
2

k∑
i=1

ni(ni − 1) log 1
q︸ ︷︷ ︸

A′

+
k∑

i=1

log ni︸ ︷︷ ︸
B′

−k − 1
2

∑
qni︸ ︷︷ ︸

C′

)

Since the corresponding functions are convex and concave, respectively, we
further obtain

(A’)
log 1

q

2

∑k
i=1 ni(ni − 1) ≥ log 1

q

2 n(n
k − 1)

(B’)
∑k

i=1 log ni ≤
∑k

i=1 log n
k = k(logn− log k)

(C’)
∑

qni ≥ kqn/k, thus C ′ ≤ −k(k−1)
2 qn/k

Substituting the above estimates yields

P ≤ exp (n log k − k log k + k−
log 1

q

2
n(

n

k
− 1)︸ ︷︷ ︸

A′′

+k(logn− log k)︸ ︷︷ ︸
B′′

−k(k − 1)
2

q
n
k︸ ︷︷ ︸

C′′

)

In the case that k = cn, the significant part is the last one; namely C ′′ gives
that P tends to 0 as n gets large. On the other hand, assuming k = o(n) we
have that both k and k log n are o(n log k). Therefore, it will suffice to compare

n log k and k2

2 q
n
k . Writing k in the form k =

c n log 1
q

log n we have

q
n
k = e−

n
k log 1

q = n− 1
c

Thus, if c > 1 then k2q
n
k grows at least as fast as n1+c′ for some constant c′ > 0.

It follows that P = o(1) as n→∞, unless k ≤ (1+ o(1))
n log 1

q

log n . This implies the
validity of the theorem.

6 Conclusion

From the complexity point of view, we have mainly presented results on the
b-chromatic number of bipartite graphs, giving a full characterization (yielding
a polynomial time decision algorithm) of bipartite graphs of b(G) = 2. We have
further shown that deciding b(G) = Δ + 1 is NP-complete even for bipartite
graphs, thus strengthening the results of [7,10].
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Note that we can decide in polynomial time if b(G) ≥ 3 for a bipartite graph
G. However, the following is open:

Question 1: Can one decide in polynomial time whether a bipartite graph allows
a b-coloring using exactly 3 colors?

Question 2: Is the more general b-Coloring problem polynomial for planar
bipartite graphs?

We have seen examples of graphs of arbitrarily large gaps in the set of k’s
for which there exists a b-coloring using exactly k colors. We find the following
question quite interesting:

Question 2: For which sets of integers S do there exist graphs G = G(S) such
that G admits a b-coloring by k colors if and only if k ∈ S ?

Finally, we have determined the b-chromatic number of the random graph,
almost surely. This result shows that despite the anomality examples and hard-
ness results, for typical graphs the b-chromatic number is not much larger than
the ordinary chromatic number. In this sense it would be interesting to determine
the b-chromatic number (or bounds on it) for random bipartite graphs.
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Abstract. An instance of the maximum coverage problem is given by
a set of weighted ground elements and a cost weighted family of subsets
of the ground element set. The goal is to select a subfamily of total cost
of at most that of a given budget maximizing the weight of the covered
elements.
We formulate the problem on graphs: In this situation the set of ground
elements is specified by the nodes of a graph, while the family of cover-
ing sets is restricted to connected subgraphs. We show that on general
graphs the problem is polynomial time solvable if restricted to sets of
size at most 2, but becomes NP-hard if sets of size 3 are permitted. On
trees, we prove polynomial time solvability if each node appears in a
fixed number of sets. In contrast, if vertices are allowed to appear an
unbounded number of times, the problem is NP-hard even on stars. We
finally give a polynomial time algorithm for the special case where a star
is covered by paths.
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The budgeted maximum coverage problem is defined as follows: An instance spec-
ifies a set X = {x1, . . . , xn} of ground elements with weight function w : X → R+

0

and a family F ⊆ 2X of covering sets with associated costs c : F → R+
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The unit cost variant of the problem (where c ≡ 1) is known as the maximum
coverage problem (see e. g. [6] for a survey). A straightforward reduction from
the Vertex Cover problem shows that the unweighted maximum coverage
problem is NP-hard even if each ground element appears in no more than two
sets.

The problem with general cost function c �≡ 1 has been investigated by
Khuller et al. [8]. The authors give an approximation algorithm with perfor-
mance (1 − 1/e) ≈ 0.63 and show that this is best possible unless NP ⊆
DTIME(NO(log log N)).

There is an alternative definition of the budgeted maximum coverage problem
used by Ageev et al. [1, 2]: “Given ground elements I, a family F ⊆ 2I with
weights w : F → R+

0 , and an integer p ∈ N, find a subset X ⊆ I of the ground
elements with |X| = p which maximizes the total weight of the sets from F
intersecting X.” Comparing the two definitions, is appears that the role of ground
elements and sets is interchanged. Notice that a set of size k in the definition of
Ageev et al. transforms into a ground element appearing in k sets in the definition
employed by Khuller et al. We will stick to the notation used by Khuller et al. [8]
throughout the paper.
Definition 1 (Budgeted Maximum Graph Cover problem)
An instance of Budgeted Maximum Graph Cover (GC for short) is given by
an undirected simple graph G = (V,E) with node weight function w : V → R, a
weighted family F = {S1, . . . , S|F |} of connected subgraphs Si with cost function

c : F → R+
0 , and a budget value B ∈ N. The goal is to find a subcollection F ′ ⊆ F

of subgraphs of total cost

c(F ′) :=
∑

S∈F ′
c(S) ≤ B ,

such that the total weight w(F ′) covered by the subcollection, defined by

w(F ′) :=
∑

v∈⋃
S∈F ′ S

w(v) ,

is maximized.

We assume without loss of generality that each of the subgraphs does not
violate the budget constraint, i. e., c(S) ≤ B for all S ∈ F . By GCunit we denote
the set of instances where all sets have cost 1. For any natural number k, we
use “k-GC” to denote the fact that every member of the family F has at most
k nodes. Also, for a graph class Γ , we use “Γ -GC” to denote that each member
of the family belongs to the graph class Γ . Further, the notion “GC on Γ” means
that the input graph G is restricted to graph class Γ . A covering set S ∈ F with
|S| = 1 is called a singleton.

2 Maximum Graph Coverage on General Graphs

This section considers problem GCunit on general graphs. We first address the
case of 2-GCunit (where each set has cardinality at most 2) and give a polyno-
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mial time algorithm based on matching techniques. We then show hardness of
k-GCunit for k ≥ 3.

2.1 GCunit with Covering Sets of Size 2

Given an instance of problem 2-GCunit, we claim that we can assume without
loss of generality that each set has cardinality exactly 2. This can be verified
easily: for each singleton S = {v} ∈ F we can insert a dummy node v′ with zero
weight into the graph, add a dummy edge joining v and v′ and replace S by
S′ := {v, v′}. We thus obtain an equivalent instance of 2-GCunit whose optimal
value equals the optimal value of our original instance. Thus, for the remainder
of the section we will assume that we are only given sets of size 2. Due to this
observation, each set S ∈ F corresponds to an edge in G. We will also assume
in the sequel that G does not contain “useless edges”, that is, edges which are
not sets from F . The following lemma shows that the graph cover problem can
be reduced to a matching problem with a cardinality constraint:

Lemma 2 (Budget constrained covering)
Problem 2-GCunit with input graph G = (V,E) and budget constraint B is
equivalent to the problem of finding a maximum weight matching in a graph
with 2|V | vertices and |E|+|V | edges subject to the constraint that the matching
contains exactly B edges.

Proof. Consider the graph H consisting of all vertices and edges in G and, in
addition, for each vertex v ∈ V a new vertex v′, called the “mate” of v, which is
joined to v by an edge of weight w(v) (hence the only neighbor of a mate note v′

is v itself). The weight of an edge (u, v) in H which originates from the edge
(u, v) ∈ E is set to w(u) + w(v).

Let S = {S1, . . . , SB} denote an optimal solution for the given instance of
2-GC on graph G, which covers a total weight of W ∗. Observe that without loss
of generality we can assume that the edge set S decomposes into node disjoint
stars, i. e., there is no path of length 3 formed by the edges from S.

We construct a matching in H of weight at least W ∗ which uses exactly
B edges. View the sets {S1, . . . , SB} as edges in H and denote by HS the sub-
graph of H containing all vertices of H and the edges in S. Obviously, if each
vertex in HS has degree at most one, then the edges in S form a matching. In
this case, since no two edges in S share a common endpoint, the weight covered
by the sets in S equals that of the corresponding matching.

It remains to handle the case where there are vertices of degree greater than 1
in HS . Let v ∈ H be such a vertex, u be one of its neighbors in HS . Then the
degree of u equals 1, otherwise there would be a path of length 3. Hence we can
replace edge (v, u) by edge (u, u′) thus decreasing the degree of v by one. By
repeating this replacement procedure, we end up with a matching in graph H.
It is easy to observe that the total weight of the edges in this matching equals
the weight of the nodes covered by S.

Conversely, let HS be an arbitrary matching in H of total weight W , consist-
ing of B edges. Obviously, the total weight of the nodes from G incident on edges
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from HS equals W . To construct a valid covering, replace each edge (v, v′) of HS

incident on a mate node v′ by an arbitrary edge incident on v. This is possible,
since otherwise v would be an isolated node in G. Obviously, this replacement
operation does not shrink the set of covered nodes from G. �

The following statement can be found as an exercise in [10, Problem 11.5c].

Lemma 3 (Cardinality constrained matching)
The problem of finding a maximum weight matching containing exactly k edges
can be solved in polynomial time. �

From Lemma 2 and Lemma 3 we can immediately conclude:

Theorem 4 (Solving 2-GCunit)
Problem 2-GCunit can be solved in polynomial time. �

2.2 GCunit with Covering Sets of Larger Size

The results of the previous section for 2-GCunit are now complemented by a
hardness result which shows that the problem is NP-hard when the bound on
the size of the sets increases.

Theorem 5 (Hardness of k-GCunit)
Problem k-GCunit is NP-hard for any fixed k ≥ 3, even when restricted to
k-path-GCunit on bipartite graphs.

Proof. We use a reduction from 3-Dimensional Matching which is well
known to be NP-complete (see [4, Problem SP1]). The reduction shows the hard-
ness of 3-path-GC on bipartite graphs and easily extends to any fixed k ≥ 3.

An instance of 3-Dimensional Matching is given by a set M ⊆W×X×Y ,
where W , X, and Y are disjoint sets having the same number q of elements. The
question posed is, whether M contains a matching of size q, i.e., a subset M ′ ⊆M
such that |M ′| = q and no two elements of M ′ agree in any coordinate.

We construct the natural bipartite graph G with vertex set W ∪X ∪ Y and
edge set W ×X ∪X × Y . For any triple (w, x, y) ∈M the collection F contains
a the set S = {w, x, y} which forms a path in G. The budget is set to B := q.
It is easy to see that M contains a matching if and only if there is a cover in G
with q sets from F which covers the whole graph. �

3 Maximum Graph Coverage on Paths and Cycles

In view of the results of Section 2 we consider restricted families of host graphs.
Probably the simplest case is the restriction of the input graph to being a path.
By a straightforward reduction from Knapsack one can show that the problem
is still NP-hard. On the other hand, the unit cost variant GCunit on a path is
solvable in polynomial time using a dynamic programming approach. Moreover,
applying a scaling technique yields a fully polynomial approximation scheme for
GC on a path [9].
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4 Maximum Graph Coverage on Trees

The following result shows that GC on trees is intractable as long as the cover
sets of the instance are allowed to be (very simple shaped) trees themselves.

Theorem 6 (Hardness of GCunit on trees)
GCunit is NP-hard, even when the underlying graph is a star and all vertices
have weight 1.

Proof. The claim follows from a straightforward reduction from Exact Cover

by 3-Sets (X3C, see [4, Problem SP2]). Use the set X of ground elements of
the X3C instance as the node set of the graph, and augment the node set by a
new center node. Construct a star by connecting each node by an edge to the
center. Each covering set defines in the star graph a sub-star with 3 rays in an
obvious manner. The budget is set to B := |X|/3. �

Due to this result, we will restrict the investigation to path shaped covering
sets in the following section.

4.1 Path-GCunit on Stars

In this section we consider problem path-GCunit on stars, which can be equiv-
alently formulated as problem 3-path-GCunit on stars. We derive a polynomial
time algorithm based on the algorithm for 2-GCunit given in Section 2.

Lemma 7
On stars, any instance of path-GCunit can be solved by solving at most |F |/2+1�
instances of 2-GCunit, where |F | is the number of cover sets.

Proof. Let (G = (V,E), F ) be the input graph and covering family. Denote
by v0 the center node of the star shaped graph G. First assume that F contains
no singletons. Obviously, each set contains the center node v0. Moreover, we can
assume that each set has cardinality 3: this can be achieved by adding a dummy
node of weight zero to the star and augmenting all sets of cardinality 2 by that
dummy node.

Since node v0 is contained in each set and thus covered anyway, we can
remove v0 from each set of the family F . This yields an instance of 2-GCunit

which is solvable in polynomial time according to Theorem 4 (see Figure 1 for
an illustration). The solution for (G,F ) is obtained afterwards by adding the
center node and incrementing the total weight by w(v0).

We now handle the case where family F contains singletons. Then, any opti-
mal solution either consists solely of singletons (which can be chosen by a simple
greedy algorithm) or the center node v0 is covered by at least one non-singleton.
If we know in advance that some non-singleton S0 is part of the optimal solution,
we can reset the weight of the nodes from set S0 to zero, decrease budget B by 1,
augment all sets including the singletons to sets of cardinality 3 and solve the
remaining instance as described above. In order to determine such a set S0, we
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Fig. 1. Transformation of GCunit on a star (left) to 2-GCunit on a general graph (right).
An arbitrary covering set S = {v1, v2, v0} is transformed to edge (v1, v2). Node v′ is an
additional dummy node of weight zero.

can perform the test for all of the at most |F | − 1 non-singleton sets and take
the best solution.

The following observation shows how to reduce the number of tests. Assume
that S0 ∈ F is a non-singleton set of maximal weight, i. e., w(S0) ≥ w(S) for all
S ∈ F . Let S0 = {v0, x0, y0}. Let F ∗ ⊆ F be an arbitrary solution. We claim that
we can transform F ∗ into a solution F ′ which covers both nodes x0 and y0 and
satisfies w(F ′) ≥ w(F ∗): Assume that node x0 is not covered by F ∗. If node y0 is
covered by some set S1 ∈ F ∗, then w(S1) ≤ w(S0), and replacing S1 by S0 yields
solution F ′ without decreasing the total weight. Otherwise, the same argument
holds even for an arbitrarily chosen set S1. This proves the claim.

To this end, let κ be the number of non-singleton sets of maximal weight,
let S1, . . . , Sκ be the collection of that sets, where Si = {v0, x2i−1, x2i}. Denote
by n(xi) the number of sets from family F which contain node xi. The number
of sets from F which share all of its points with {v0, x1, . . . , x2κ} is bounded
from above by min{2κ2, F}. An averaging argument shows that there is a foot
x∗ ∈ {x1, . . . , x2κ} which is covered by no more than

1
2κ

2κ∑
i=1

n(xi) ≤ 1
2κ

(|F |+ min{2κ2, |F |}) ≤ min
( |F |

2κ
+ k,

|F |
k

)
sets from F . Observe that this number attains its maximum value |F |/2 + 1 for
k = 1. Since we can assume that foot x∗ is contained in an optimal solution,
it suffices to perform the test on at most |F |/2 + 1� instances as described
above. �

Corollary 8
Problem path-GCunit on stars is solvable in polynomial time. �

4.2 GCunit on Trees with Elements of Bounded Frequency

Recall Theorem 6 which shows that GCunit on trees is hard to solve. Observe
that the instance used in that reduction contains elements which appear in many
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(or all) covering sets. We show that bounding the frequency of elements changes
the complexity of the problem significantly.

Let I = (G,F ) be an instance of GCunit, where G = (V,E) is a tree. For
arbitrary node v ∈ V , denote by

φv := |{S ∈ F : v ∈ S }|

the frequency of v, i. e., the number of covering sets containing v. By φ(F ) :=
maxv∈V φv we denote the maximum frequency of the family F . The remainder
of this section is devoted to proving the following result:

Theorem 9 (Solving GCunit on trees)
For any fixed b ∈ N, problem tree-GCunit on trees restricted to instances with
bounded frequency φ(F ) ≤ b and polynomially bounded weight function w (i. e.,
w(x) ∈ O(poly|X|) for all ground elements x ∈ X) can be solved in polynomial
time.

We recall the notion of a tree-decomposition (see e.g. [3]):

Definition 10 (Tree-Decomposition, Treewidth)
A tree-decomposition of a graph G = (V,E) is a pair D = (S, T ) where S =
{Xi : i ∈ I } is a collection of subsets of V and T is a tree with node set
isomorphic to S, such that the following three conditions are satisfied:

(i)
⋃

i∈V (T ) Xi = V ,

(ii) for all edges (u, v) ∈ E, there exists a subset Xi ∈ S containing both
vertices u and v,

(iii) for each vertex v ∈ V , the set of nodes { i : v ∈ Xi } forms a subtree
of T .

The width of the tree-decomposition D is defined to be maxi∈I |Xi| − 1. The
treewidth tw(G) of a graph G is the minimum width of a tree-decomposition
of G.

In the following, we describe GCunit on trees as an integer linear program.
Then we define the interaction graph on that program, which describes the
correspondence between variables, and we use a result from [5] to show that
this interaction graph is of bounded treewidth. This allows us to apply a result
from [11] providing a polynomial time algorithm for (a class of) integer linear
programs whose interaction graphs are of bounded treewidth.

To this end, let Z be a set of variables and C be a set of constraints on Z.
The bipartite graph BP(Z, C) associated with (Z, C) (also called the constraint
graph) is the bipartite graph with color classes Z and C, where z ∈ Z is adjacent
to C ∈ C if and only if variable z appears in constraint C. The interaction
graph IG(Z, C) for (Z, C) is defined to be the graph with vertex set Z, where
two vertices are adjacent if and only if they have a common neighbor in the
constraint graph.
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We consider the following integer linear program formulation of GCunit:

(IP) maximize
∑
v∈V

w(v) · yv

subject to yv ≤
∑

S∈F :v∈S

xS for all v ∈ V (1)∑
S∈F

xS ≤ B (2)

yv ∈ {0, 1} for all v ∈ V

xS ∈ {0, 1} for all S ∈ F

By (IP’) we denote the program which is derived from (IP) by omitting the
budget constraint (2).

The following two theorems show that in order to prove that program (IP) is
solvable in polynomial time, it suffices to show that it can be re-formulated in an
equivalent form which has an associated bipartite graph of bounded treewidth.

Theorem 11 ([11])
Let p be a polynomial. Let Z be a set of variables taking values from the domain
{0, . . . ,K}, where K ∈ O(p(|Z|)), and let C be a set of constraints on Z. Then,
for any fixed k ∈ N and any nonnegative vector c = (cz)z∈Z ∈ {0, . . . , p(|Z|)}Z ,
the integer program of maximizing

∑
z∈Z cz · z subject to the constraints C,

restricted to those instances where the interaction graph for (Z, C) has bounded
treewidth at most k, can be solved in time KO(k). �

Theorem 12 ([5])
Let Z be a set of variables and C be a set of constraints on Z. Suppose that each
constraint contains at most k variables. Let BP(Z, C) be the bipartite graph
associated with (Z, C) and IG(Z, C) be the interaction graph. Then,

tw(IG(Z, C)) ∈ O(k · tw(BP(Z, C))) �

As a first step, we consider the bipartite graph of (IP’).

Lemma 13
The bipartite graph of (IP’) with node set introduced by variables x and y and
constraints (1) has treewidth of at most φ(F ) + 1.

Proof. We construct a tree decomposition (S, T ) of the bipartite graph of (IP’)
as follows (see Figure 2 for an illustration). The tree T in the decomposition is a
copy of the tree G in the given instance I = (G,F ) of GCunit on trees. For each
vertex v ∈ T we define the set Xv := {yv, xS1 , . . . , xSφv

, Cv}, where S1, . . . , Sφv

are the subtrees in F containing v and Cv is the constraint from (1) for vertex v.
The collection S is defined by S := {Xv | v ∈ V }.

We now argue that (S, T ) is in fact a tree-decomposition. It is obvious that
conditions (i) and (ii) of Definition 10 are satisfied. Also, condition (iii) clearly
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Fig. 2. Original graph G (left), constraint graph BP (center), tree decomposition of
BP (right).

holds for the yv and Cv vertices, each of which appear in exactly one set. To see
that condition (iii) also holds for the xS-vertices in the bipartite graph, observe
that xS appears exactly in those sets Xv with v ∈ S, that is, on the sets attached
to those vertices v which form the subtree S.

Since the maximum cardinality of a set Xv is at most φ(F ) + 2, the width of
decomposition (S, T ) is bounded by φ(F ) + 1. �

The previous construction shows that if we restrict GCunit on trees to those
instances where φ(F ) is fixed, the constraints (1) will result in a constraint
graph with bounded treewidth. However, the budget constraint (2) in its original
formulation has |F | variables and a straightforward use will cause the treewidth
of the constraint graph of (IP) to become unbounded. Our goal is now to replace
constraint (2) by an equivalent set of new constraints and variables such that a
(slightly relaxed) bound on the treewidth will be preserved.

To this end, we first transform the tree-decomposition (S, T ) of (IP’) pre-
sented in Lemma 13 into a new tree-decomposition (S ′, T ′) with the following
properties:

1. Tree T ′ is a rooted binary tree.
2. For each variable xS , there is a leaf {xS} in T ′.
3. The width of (S ′, T ′) is not larger than that of (S, T ).

The second property is achieved by connecting a new node {xS} to an arbitrary
node which already contains xS . The root can be chosen arbitrarily. If the tree
is non-binary, then split each inner node with d > 2 children into a chain of d−1
nodes and connect each of the former sons to one of the new nodes (see e.g.
[3]). Notice that this construction preserves treewidth. Moreover, the number
of nodes in the tree remaines linear in the number of nodes of the underlying
graph, hence the construction can be carried out in polynomial time.

Let r be the root of T ′. The depth of a node w in T ′ is defined to be the
number of edges on the unique path from r to w. For two vertices u and w in T ′

their lowest common ancestor lca(u,w) is defined to be the node of largest depth
which is both an ancestor of u and w in T ′.
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Fig. 3. Modification of tree decomposition. The width increases by at most 4.

We now define a set A of new variables and a set C of new constraints guided
by the tree T ′ as follows (see Figure 3). Initially, both A and C are empty. We
maintain a set L of pairs (α, vertex(α)) where α is a variable and vertex(α) is
a vertex in T ′. Initially, L := { (xS , leaf(xS)) : S ∈ F }, where leaf(xS) is an
arbitrary leaf in T ′ containing solely variable xS .

As long as |L| > 1, we choose two variables α and β from L with the property
that the lowest common ancestor w of vertex(α) and vertex(β) has maximum
depth among all possible pairs of variables represented by L. Let γ be a new
variable. We add γ to A. We remove (α, vertex(α)) and (β, vertex(β)) from L,
and add (γ,w) to L. We add the new constraint Cγ : α + β = γ to C.

Let P be the unique path between vertex(α) and vertex(β) in T ′ (which
passes through their lowest common ancestor w). For all nodes u ∈ P we add α,
β, γ, and Cγ to the set Xu from the tree decomposition. Then the procedure is
iterated. Notice that the size of L decrease by one in each iteration.

If |L| = 1, i. e., L contains only one single element, say L = {(δ, vertex(δ)},
we finally add the constraint Cδ : δ ≤ B to C. We also add Cδ to Xvertex(δ).

Let (S ′′, T ′) denote the tree T ′ together with the modified sets Xu at ter-
mination of the above procedure. The following statement follows immediately
from the construction described above:

Lemma 14 (Tree decomposition)
The pair (S ′′, T ′) is a valid tree-decomposition for the bipartite graph associated
with the original variables xS and yv, the new variables A and the constraints (1)
together with the new constraints C. �

Lemma 15 (Width of tree decomposition)
The width of the tree-decomposition (S ′′, T ′) is at most φ(F ) + 9.

Proof. We show that each vertex in T ′ participates in at most two paths where
labels are added. Since each step adds at most four new labels, and the treewidth
of the initial graph was bounded by φ(F )+1 (Lemma 13), this shows the claim.

Let w be an arbitrary node in T ′. Denote by Pi (i = 1, 2, . . .) the paths
through w, by vertex(αi) and vertex(βi) their endpoints, and by wi their topmost
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Table 1. Overview of the complexity of problem GC. Results in parentheses follow
from the explicit result stated in that column.

unit cost general cost

on paths on trees on general graphs

1-GC (P) (P) (P) NP-hard (even on
paths) [[9] ]

2-GC (P) P [Theorem 4] P [Theorem 4]

3-GC (P) (unknown) NP-hard
[Theorem 5]

path-GC P [[9] ] (unknown) (NP-hard) FPAS on paths
[[9] ]

tree-GC (not defined) P (with restricted
frequency)

[Theorem 9]

(NP-hard)

NP-hard
(even on stars)

[Theorem 6]

node, i. e., wi := lca(vertex(αi), vertex(βi)). If w participates in three or more
paths, then either there is a pair i �= j such that w = wi = wj or such that w �= wi

and w �= wj .
Assume that w = wi = wj . Let vertex(αi), vertex(αj) be the nodes in the left

subtree of w. Then, the lowest common ancestor of these two nodes is a strict
descendant of w, a contradiction.

Consider the case w �= wi and w �= wj . Each of the paths Pi, Pj starts in a
node in the subtree below w, say in vertex(αi) and vertex(αj). Hence, the lowest
common ancestor of these nodes is w or a descendant of w. This contradicts the
fact that both w1 and w2 are (strict) ancestors of w. �

Lemma 16 (Constraints)
The set C of new constraints is equivalent to the single constraint (2).

Proof. The claim can be shown by an easy induction on the number of itera-
tions. Observe the invariant that at each time the sum of all variables represented
by the set L equals the bound B. �

Proof (of Theorem 9). From Lemma 14 and Lemma 16 we can conclude that
(S ′′, T ′) is a tree-decomposition of the bipartite graph of an equivalent formu-
lation of problem (IP). Lemma 15 shows that this decomposition is of bounded
treewidth. Theorem 9 now follows from Theorem 11 and Theorem 12. �
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5 Conclusion and Open Problems

Table 1 gives an overview of the variants of the maximum graph coverage problem
investigated in this paper. It turns out that the unit-cost problem is easy to solve
on paths, while on trees we can expect polynomial time algorithms only for the
case of bounded frequency. The most interesting open questions which remain
are to settle the complexities of the problems path-GCunit and k-path-GCunit

for fixed k ∈ N on trees (without any restriction on the frequency).
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Abstract. In the problem of Online Call Admission in Optical Net-
works, briefly called Oca, we are given a graph G = (V, E) together
with a set of wavelengths W and a finite sequence σ = r1, r2, . . . of calls
which arrive in an online fashion. Each call rj specifies a pair of nodes to
be connected and an integral demand indicating the number of required
lightpaths. A lightpath is a path in G together with a wavelength λ ∈ W .
Upon arrival of a call, an online algorithm must decide immediately and
irrevocably whether to accept or to reject the call without any knowledge
of calls which appear later in the sequence. If the call is accepted, the
algorithm must provide the requested number of lightpaths to connect
the specified nodes. The essential restriction is the wavelength conflict
constraint: each wavelength is available only once per edge, which implies
that two lightpaths sharing an edge must have different wavelengths.
Each accepted call contributes a benefit equal to its demand to the overall
profit. The objective in Oca is to maximize the overall profit.
Competitive algorithms for Oca have been known for the special case
where every call requests just a single lightpath. In this paper we present
the first competitive online algorithms for the more general case in which
the demand of a call may be as large as |W |.

1 Introduction

In current telecommunication networks, the wavelength division multiplexing
technique (WDM) enables the provider to send several optical signals in par-
allel over the same glass fiber cable by assigning different wavelengths to them.
However, the optical signals are converted back into electronic form at inter-
mediate nodes in order to switch them. This so-called “o-e-o-conversion” limits
the speed of the connections. In next generation’s fully optical networks, optical
signals are no longer converted back into electronic form at intermediate nodes
but switched optically. This requires a change in the underlying mathematical
model, because the wavelength on which a signal enters the network remains
unchanged until the signal reaches its destination.

A connection in a fully optical network is modeled as a lightpath, that is, a
path together with a wavelength. Since each wavelength is available only once
� Research supported by the German Science Foundation (DFG, grant GR 883/10)
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per fiber, simultaneously routed lightpaths which use the same fiber must have
different wavelengths. This crucial restriction is called the wavelength conflict
constraint.

1.1 Problem Definition

An instance of the Online Call Admission Problem in Optical Networks (Oca)
consists of an undirected graph G = (V,E) together with a set of χ eligible
wavelengths W = {λ1, . . . , λχ} and a finite request sequence σ = r1, r2, . . . , rm

of calls. Each of the wavelengths in W is available once per edge. A lightpath is
a pair (P, λ), where P is a path in G and λ is one of the wavelengths in W . In
the sequel, we will use the terms wavelength and color interchangeably.

A call rj = (sj , tj , bj) specifies the nodes sj ∈ V and tj ∈ V to be connected
as well as the required number bj ∈ N of lightpaths, that is, its demand. Upon
arrival of a new request rj = (sj , tj , bj), an algorithm for Oca must decide
whether to route or to reject rj . If the call is accepted, the algorithm must
provide the requested number bj of lightpaths, thereby obeying the wavelength
conflict constraint. Once accepted, a call can not be preempted: the lightpaths
used for the call can not be changed or removed anymore. Each accepted call rj

contributes a profit equal to its demand bj to the total profit obtained by an
algorithm. The overall goal of Oca is to maximize the overall profit, that is, the
total accepted demand.

An online algorithm for Oca must base its decision for call rj without knowl-
edge of calls ri with i > j. A standard tool to measure the quality of an online
algorithm alg is competitive analysis, where one compares for each input se-
quence σ the profit alg(σ) obtained by alg to the optimal profit achievable on
that sequence, denoted by opt(σ).

Definition 1.1 (Competitive Deterministic Algorithm). A deterministic
online algorithm alg for Oca is c-competitive if for any request sequence σ the
inequality alg(σ) ≥ 1

c · opt(σ) holds.

A randomized online algorithm is a probability distribution over a set of de-
terministic online algorithms. Thus, the objective value produced by a random-
ized algorithm is a random variable. In this paper we analyze the performance
of randomized online algorithms against an oblivious adversary. An oblivious
adversary knows the online algorithm’s probability distribution, but can not see
the outcomes of the random choices made by the online algorithm and therefore
has to generate a request sequence in advance. We refer to [4] for details on the
various adversary models.

Definition 1.2 (Competitive Randomized Algorithm). A randomized on-
line algorithm ralg for Oca is defined to be c-competitive against an oblivious
adversary if for any request sequence σ the inequality E [ralg(σ)] ≥ 1

c · opt(σ)
holds.

The competitive ratio of an algorithm is defined to be the infimum over all c
such that the algorithm is c-competitive.
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1.2 Previous Work

If the set of eligible wavelengths W contains only a single wavelength, the prob-
lem of providing lightpaths reduces to the problem of finding edge disjoint paths
in the given graph, which we will refer to as Online Edge Disjoint Path Alloca-
tion (Oedpa). Competitive algorithms for Oedpa are known for special graphs
like lines, trees, and meshes. The currently best competitive ratios of randomized
algorithms against an oblivious adversary for these topologies are !log n" for the
line with n nodes [2, 1], 2 logn and O(logD) for a tree with n nodes and with
diameter D, respectively, [2, 1, 6] and O(logn) for the n× n-mesh [5, 6].

So far, Oca with χ = |W | > 1 wavelengths has been investigated only for the
special case in which each call has demand one, i.e., bj = 1 for all j. Awerbuch
et al. ( [1]) developed the competitive algorithm ffc (First-Fit-Coloring), which
is based on a “virtual” online algorithm for Oedpa.

Theorem 1.3 (Awerbuch et al. [1]). Let slave be a c-competitive algorithm
for Oedpa. Then there is a (c + 1)-competitive algorithm ffc for the special
case of Oca where each call requires one lightpath.

Note that the competitive ratio of ffc does not depend on the number of
eligible wavelengths in the network and differs from that of the subroutine used
for Oedpa only by an additive constant of 1.

1.3 Our Contribution

We present the first competitive algorithms for the general case of Oca in which
the demand of a call may be greater than 1. We assume, however, that no call
asks for more than χ lightpaths. This assumption is reasonable since accepting
a call of demand higher than χ (if at all possible) would plug up the network
immediately. In particular, on trees this assumption means no restriction. Notice
that a call of demand b is different from b calls each of demand 1, since the
online algorithm must either accept the whole call and provide the requested b
lightpaths or reject the call; it is not allowed to route a call partially.

The first of our algorithms, Copy-Coloring (cc), is deterministic and works
for Oca in general graphs. As the ffc algorithm cc uses an algorithm for Online
Edge Disjoint Path Allocation as a subroutine. However, as demands may now
be as high as χ, cc’s competitive ratio contains χ as a linear factor. Notice
that the known lower bound of n − 1 for deterministic Oedpa algorithms can
be generalized to a χ(n− 1) lower bound for deterministic algorithms for Oca.
This shows that any deterministic algorithm has to put up with χ as a linear
factor is in its competitive ratio. In particular, on trees, cc is optimal in the
class of deterministic algorithms. An improved ratio in which χ is incurred only
logarithmically, is achieved by our randomized algorithm First-fit-coloring-scaled
(ffcs) for the case that the underlying topology is a tree. The analysis of ffcs

relies on the uniqueness of the path which connects two nodes of a tree. Note
that all results carry over to the case of a directed network, with a minor change
of the constant in the ratio of ffcs.



336 Sven Oliver Krumke and Diana Poensgen

Table 1. Results in Online Call Admission in Optical Networks. The parameter ΓG

is defined as max{Γs,t | s, t ∈ V }, where Γs,t denotes the maximum number of edge
disjoint paths connecting s and t.

Topology competitive ratio competitive ratio known
using generic
c-competitive

using best known
competitive

lower bounds
for Oedpa

algorithm for Oedpa algorithm for Oedpa (Oca with χ = 1)

arbitrary network
with n nodes,
χ wavelengths

c · χ · ΓG

(Theorem 2.1)
O(χ log n)
on n× n meshes

deterministic: n− 1
randomized: n1−log4 3

[3]
tree with n nodes,
χ wavelengths

12(c + 1)(�log χ�+ 1)
(Theorem 3.2)

(24 log n + 2) ·
(�log χ�+ 1)

deterministic: n− 1
randomized: �log n

2
�
[1]

line with n nodes,
χ wavelengths

8(c + 1)(�log χ�+ 1)
(Corollary 3.7)

(8�log n�+ 8) ·
(�log χ�+ 1)

deterministic: n− 1
randomized: �log n

2
�
[1]

Table 1 gives an overview of our results together with the known lower bounds
for Oedpa from the literature.

2 A Deterministic Algorithm for General Graphs

Let the graph G = (V,E) together with the set of eligible wavelengths W =
{λ1, . . . , λχ} be given in an arbitrary instance of Oca. Remember that the
Oedpa problem can be considered to be a special case of Oca in which there
is only one eligible wavelength (and calls have demand 1). The deterministic
online algorithm Copy Coloring (cc) uses an algorithm for Oedpa as a subrou-
tine. This algorithm, called slave in the sequel, works on the instance of Oedpa

given by the graph G and a single wavelength.

Algorithm Copy Coloring
Let slave be an online algorithm for Oedpa. Upon arrival of a call rj =
(sj , tj , bj), hand the “sized down” call r̃j = (sj , tj , 1) to slave.
If slave rejects r̃j , reject rj . If slave accepts r̃j and routes it on path P ,
then accept rj and route its demand using the lightpaths (P, λ1), . . . ,
(P, λbj ).

It is easy to see that cc yields a valid solution. Recall that each call has
demand at most χ. If we view the graph G together with its set of χ eligible
colors as χ copies G1, . . . , Gχ of G, each in a different color, then slave creates
a feasible routing for the accepted calls from the modified sequence in G1. By
construction, cc routes an accepted call with demand bj along the same path
P which slave chooses, using its first bj wavelengths in order to obtain the
required number of lightpaths. Therefore, in each Gi only a subset of the paths
routed in G1 is established. Consequently, we have a feasible routing in each
color, i.e., the wavelength conflict constraint is satisfied.
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The weakness of cc is obvious: even if a call could easily be routed by using
one of the wavelengths of higher index, it might be rejected because it can not
be routed in G1 anymore. In the worst-case, the sequence contains only calls
with demand 1, and the algorithm never uses any of the wavelengths λ2, . . . , λχ.
However, if we modify the algorithm such that it may use other wavelengths
if λ1 is not available anymore, the analysis becomes intractable. Let ΓG :=
max{Γs,t | s, t ∈ V }, where Γs,t denotes the maximum number of edge disjoint
paths connecting s and t. nodes in the given network.

Theorem 2.1. Let G be a graph with χ eligible wavelengths, and let ΓG :=
max{Γs,t | s, t ∈ V }, where Γs,t denotes the maximum number of edge disjoint
paths connecting s and t. If slave is a c-competitive algorithm for Oedpa, then
cc is (c · χ · ΓG)-competitive on G.

Proof. By algk we denote the algorithm alg which has only the first k colors
of W at its disposal (and can therefore only handle sequences of calls with
demand at most k). In particular, opt1 is the optimal offline algorithm for
Oedpa on the given graph G and optχ is the optimal offline algorithm for
Oca with χ eligible wavelengths. Let σ(q) be the sequence obtained from σ by
changing the demand of each call to q. Note that the maximum number of edge
disjoint paths connecting any two nodes in G is bounded by ΓG.

Given a sequence σ of calls, consider the maximum number of calls in σ(1)

that can be routed simultaneously in one color (i.e., by edge disjoint paths).
By definition this number equals opt1(σ(1)). Since slave is c-competitive for
Oedpa, we have slave(σ(1)) ≥ 1

c · opt1(σ(1)).
Let rj be a call which is routed by the optimal offline algorithm optχ on

lightpaths (P1, λi1), . . . , (Pbj
, λibj

). Each of the lightpaths will be referred to as
a fragment of rj . Let optχ(i, σ) denote the share of profit that opt = optχ

gains by call fragments routed in color i. Clearly, this number is bounded from
above by ΓG · opt1(σ(1)). As a consequence, we have that

optχ(σ) =
χ∑

i=1

opt(i, σ) ≤ χ · ΓG · opt1(σ(1)) ≤ χ · ΓG · c· slave(σ(1)),

where the last inequality follows from the competitiveness of slave for Oedpa.
Clearly, cc makes as least as much profit on σ as the slave algorithm it uses
makes on σ(1). Therefore,

optχ(σ) ≤ χ · ΓG · c · cc(σ),

which shows the claim of the theorem.

At first glance, the competitive ratio of cc does not seem to be very good.
However, the following theorem shows that without restrictions the bound achie-
ved by cc is essentially the best which we can expect for deterministic algo-
rithms.
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Theorem 2.2. On a line with n nodes, no deterministic algorithm for Oca can
be c-competitive with c < χ(n− 1).

Proof. The worst case sequence is a straightforward generalization of the known
lower bound construction from [3] for Oedpa on the line with n nodes. Let
the nodes be numbered by v1, v2, . . . , vn from left to right. The adversary first
issues a request r1 = (v1, vn, 1). It is straightforward to see that any deterministic
algorithm which achieves a finite competitive ratio must accept r1. The adversary
then presents the n − 1 requests (v1, v2, χ), (v2, v3, χ), . . . , (vn−1, vn, χ), none of
which the deterministic online algorithm can accept.

3 An Improved Randomized Algorithm for Trees

We now present the randomized algorithm First-Fit-Coloring-Scaled (ffcs) and
analyze its performance on trees and the line. For these graph classes ffcs

achieves an exponential improvement in the competitive ratio compared to the
deterministic algorithm cc from the previous section.

We derive ffcs as a probability distribution over a set of !logχ" + 1 deter-
ministic algorithms which we denote by ffcs

i, i = 0, . . . , !logχ". Recall that
σ(q) is the sequence obtained from sequence σ by changing the demand of each
call to q, and that algk is the algorithm alg working on a graph having k wave-
lengths at its disposal. If the subscript is omitted, we always refer to the original
problem in which we are given the graph G together with χ eligible wavelengths.

Algorithm First-Fit-Coloring-Scaled
Partition the set of possible calls into !logχ"+1 classes as follows: Class
K0 contains all calls with demand 1. For i = 1, . . . , !logχ", class Ki

contains those calls whose demand is in (2i−1, 2i].
Choose i ∈ {0, . . . , !logχ"} uniformly at random and from this point on,
use the deterministic algorithm ffcs

i.
ffcs

i If call rj = (sj , tj , bj) does not belong to class Ki, reject rj . Oth-
erwise size the demand of rj down to 1 and hand the modified call
r̃j = (sj , tj , 1) over to ffc�χ/2i, that is the version of ffc which
works on G but has only

⌊
χ/2i

⌋
wavelengths {w1, . . . , w�χ/2i} at its

disposal.
If ffc�χ/2i rejects modified call r̃j , then reject rj . If ffc�χ/2i ac-
cepts the modified call r̃j and routes in on path P in wavelength wk,
accept the original call rj and route it on the lightpaths
(P, λ(k−1)2i+1), (P, λ(k−1)2i+2), . . . , (P, λ(k−1)2i+bj

).

Proposition 3.1. ffcs produces a valid routing for the calls.

Proof. Let i be the value of the random choice by ffcs. If a call rj = (sj , tj , bj)
is accepted by ffcs, it must belong the class class Ki, implying that bj ≤ 2i,
and the sized-down call r̃j = (sj , tj , 1) must be accepted by ffc�χ/2i.
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The algorithm ffc�χ/2i produces a valid routing in the graph G for the set
of accepted calls from σ(1). Since each wavelength wk of ffc�χ/2i corresponds
to a set λ(k−1)·2i+1, . . . , λk·2i of 2i wavelengths in the original graph, it follows
that all accepted calls (which, as mentioned, have all demand at most 2i) can in
fact be routed as specified without violating the wavelength conflict constraint.

Theorem 3.2. Suppose that the following two conditions are satisfied:

(i) Each algorithm ffc�χ/2i uses a c-competitive algorithm for the Oedpa

problem as a subroutine.
(ii) For any input sequence π with the property that b

2 < bj ≤ b for all re-
quests rj = (sj , tj , bj) ∈ π the estimate

optχ(π) ≤ c′ · b · opt�χ/b(π(1))

holds. Then, the randomized algorithm ffcs (with χ wavelengths at its disposal)
achieves a competitive ratio of

2c′(c + 1)(!log(χ)"+ 1)).

Proof. Let σ be an arbitrary call sequence. We have to show that the expected
profit of ffcs satisfies

E [ffcs(σ)] ≥ 1
2c′(c + 1)(!log(χ)"+ 1)

· opt(σ). (1)

Since ffcsχ chooses i ∈ {0, . . . , !logχ"} uniformly at random and then uses the
deterministic algorithm ffcs

i we can rewrite the left hand side of (1) as

E [ffcs(σ)] =
1

!log(χ)"+ 1
·
	log χ
∑

i=0

ffcs
i(σ). (2)

Recall that the deterministic algorithm ffcs
i rejects all calls which do not be-

long to class Ki. Thus, it only gains profit on calls from Ki, and we have that
ffcs

i(σ) = ffcs
i(σ|Ki

), where σ|Ki
is the subsequence of σ which consists of

calls belonging to Ki. Using this equality gives us

E [ffcs(σ)] =
1

!log(χ)"+ 1
·
	log χ
∑

i=0

ffcs
i(σ|Ki

). (3)

Let P ∗
i (σ) denote that share of the total optimal profit which is gained with

calls in Ki, that is,
P ∗

i (σ) =
∑

r∈σ|Ki
r is accepted by opt

when given input σ

bj .

Therefore, optχ(σ)=
∑	log χ


i=0 P ∗
i (σ). We now compare ffcs

i(σ|Ki
) to P ∗

i (σ).
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How big can the share of opt’s profit gained from Ki be? P ∗
i (σ) gets largest

if opt uses all its resources for calls from Ki, which would be the optimal profit
gained if only the sequence σ|Ki was given. Therefore, P ∗

i (σ) ≤ opt(σ|Ki), and
this yields

opt(σ) =
	log χ
∑

i=0

P ∗
i (σ) ≤

	log χ
∑
i=0

opt(σ|Ki
). (4)

Hence, it suffices to upper bound the profit opt(σ|Ki
) in terms of ffcs

i(σ|Ki
).

To this end we estimate the profit gained by the deterministic algorithm ffcs
i

on the sequence σ|Ki
. By construction, ffcs

i accepts those calls whose modified
version is accepted by ffc�χ/2i. As ffc�χ/2i gets profit 1 for each accepted
call (it was given calls whose demand was sized down to 1), the number of
accepted calls equals ffc�χ/2i((σ|Ki)

(1)). Since ffcs
i gets profit bj ≥ 2i−1 for

each accepted call, we obtain that

ffcs
i(σ|Ki

) ≥ 2i−1 · ffc χ

2i �((σ|Ki
)(1)).

We now apply Theorem 1.3 about the competitiveness of ffc to ffc χ

2i �. This
results in

ffcs
i(σ|Ki

) ≥ 2i−1 · 1
c + 1

· opt χ

2i �((σ|Ki
)(1)). (5)

Observe that all the demands in σ|Ki
are within a factor of two. Hence, we can

use assumption (ii) with π = σ|Ki and b = 2i to obtain:

opt χ

2i �((σ|Ki
)(1)) ≥ 1

c′2i
· optχ(σ|Ki

). (6)

Plugging (6) into (5) and using this result in (3) gives

E [ffcs(σ)] ≥ 1
!log(χ)"+ 1

	log χ
∑
i=0

1
2c′(c + 1)

· optχ(σ|Ki). (7)

The claim of the theorem now follows from (4).

Theorem 3.2 bounds the competitive ratio of ffcs in terms of (i) the com-
petitive ratio c of a virtual online algorithm for Oedpa, and (ii) the ratio c′

between the optimal offline profit optχ(π) and b times the optimal offline profit
on a scaled sequence π(1) with fewer wavelengths χ/b�.

In the sequel we address the existence of the second ratio c′ for the case of
trees and, as a special case, for the line.

3.1 Call Coloring on Trees

Note that on trees, the problem of finding a feasible routing for a given set of calls
reduces to the problem of path coloring, since each call uniquely determines the
path to be used. Therefore, we will also speak of call coloring or path coloring.
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Fig. 1. An example in which χ/b colors do not suffice to color all given paths (χ =
6, b = 2).

Lemma 3.3. Let G be a tree. Let π be a call sequence such that the demand bj

of each call in π satisfies b
2 < bj ≤ b. Then

optχ(π) ≤ 6 · b · optχ
b �(π

(1)).

Proof. We prove the claim in three steps. We first consider the special case in
which (a) bj = b for all j, and (b) b divides χ. For this special case we show that

optχ(π) ≤ 3
2
· b · optχ

b �(π
(1)). (8)

We then show that we can drop the two assumptions one by one, losing factor 2
in each of the two steps.

Assume that conditions (a) and (b) hold. Let S be the set of calls from
sequence π by which the optimal profit on the left hand side in (8) is achieved.
Then optχ(π) = |S|·b, since by assumption (a), the demand of each call equals b.
If we were able to show that the calls in S(1), i.e., the paths corresponding to
the calls in S(1), can be colored with χ

b colors, this would imply that the set
S(1) ⊂ π(1) could be accepted and routed feasibly by any algorithm which has
χ
b colors at its disposal, yielding profit |S| = |S(1)|. Since the optimal offline
algorithm can do only better, we would obtain optχ

b
(π(1)) ≥ |S| = 1

b ·optχ(π).
Unfortunately, it is in general not possible to color all the calls in S(1) by

χ
b colors. This is illustrated by Figure 1. It shows a star T and a set of 13 calls
(i.e.paths) on T . It is possible to assign b = 2 different colors to each of the
given paths such that two intersecting paths have disjoint color sets and only
χ = 6 colors are used overall. Alas, it is impossible to assign 1 color to each of
the paths using only 3 = χ/b colors such that intersecting paths have different
colors.

However, we will show that at least two third of the calls in S(1) can be
colored using χ/b colors. To this end, we define the maximum (unweighted) load
of a set of paths in a graph to be the maximum number of paths which have an
edge in common.
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Theorem 3.4 ( [7]). There is a feasible routing of requests of maximum load L
per link of undirected trees using no more than 3

2L wavelengths. 
�
We seek to apply Theorem 3.4. We know that there is a feasible routing for the

calls in S, that is, each call in S is assigned b lightpaths (the uniquely determined
path together with b different colors), using at most χ different colors in total.
On each edge, the maximum load of the whole set of lightpaths established
to route S is hence bounded from above by χ. Therefore, the maximum load of
paths (calls) in S(1) is bounded from above by χ

b , as each call in S(1) corresponds
to one path whereas a call in S corresponds to b lightpaths.

Applying Theorem 3.4 yields that there is a coloring of the calls in S(1) using
3
2 · χ

b colors. If we consider those χ
b among the 3

2 · χ
b colors from the coloring

which accommodate the most calls, a simple averaging argument gives us that
they accommodate a set M (1) ⊂ S(1) of calls of cardinality at least 2

3 · |S(1)|. The
optimal algorithm on χ/b colors might even accept a larger set of calls from π1,
so since |S| = |S(1)| and b divides χ, we can conclude that

opt�χ
b (π(1)) = optχ

b
(π(1)) ≥ |M (1)| ≥ 2

3
· |S| = 2

3b
· optχ(π),

which is exactly what we claimed in (8).
Now assume that only condition (b) holds, that is, b divides χ, but the

demand bj of a call may take any integral value between b
2 and b, i.e., b

2 < bj ≤ b.
Consider the routing defined by optχ(π). If we provide χ additional colors, we
could duplicate this routing, i.e., provide 2bj lightpaths for each accepted call rj .
In particular, since b− bj < bj , we can accommodate b− bj additional lightpaths
for each of the accepted calls if we provide χ additional colors. We thus get a
valid solution for the sequence π(b) in the graph with 2χ wavelengths. This lets
us conclude that optχ(π) ≤ opt2χ(π(b)). As b divides χ, it also divides 2χ, and
since the demand of each call in πb equals b, we can apply inequality (8). We
obtain

optχ(π) ≤ opt2χ(πb)
(8)

≤ 3
2
· b · opt 2χ

b
(π(1)) ≤ 3

2
· b · 2 · optχ

b
(π(1))

= 3 · b · optχ
b
(π(1)),

where the last inequality holds as optχ/b can accept at least those calls from
π(1) which were accepted by opt2χ/b and routed in the “fuller” half of the 2χ

b
colors used.

We finally show that we can drop the condition (b) ‘b divides χ’ using the
part we just proved for the second inequality in the following chain:

optχ(π) ≤ opt2·χ
b �·b(π) ≤ 3 · b · opt2·χ

b �(π
(1)) ≤ 2 · 3 · b · optχ

b �(π
(1)).

The first inequality simply holds because χ ≤ 2 · ⌊χ
b

⌋ · b , the last by the same
reasoning as before: the “fuller” half of the 2 · ⌊χ

b

⌋
colors accommodates at least

half of the calls.
This completes the proof of the lemma.
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Corollary 3.5. If there is a c-competitive algorithm for Oedpa on trees, then
ffcs achieves a competitive ratio of 12(c+1)(!logχ"+1) for routing in χ wave-
lengths. 
�

Using one of the 2 logn-competitive algorithms for Oedpa on trees with
n vertices from [2, 1, 6], this results in a (24 logn + 2)(!logχ" + 1)-competitive
algorithm for Oca on the same graph class.

3.2 Call Coloring on Paths

In case that the underlying graph is a simple path, a slightly better result than
the one in Lemma 3.3 can be achieved.

Lemma 3.6. Let G be a path. Let π be a call sequence such that the demand bj

of each call in π satisfies b
2 < bj ≤ b. Then

optχ(π) ≤ 4 · b · optχ
b �(π

(1)).

Proof. As before, we first consider the case that all demands satisfy bj = b for
all j and that b divides χ. For this case, we show that

optχ(π) = b · optχ
b �(π

(1)). (9)

As shown in the proof of Lemma 3.3, dropping the two assumptions above costs
us a factor of 2 each. This yields the desired result. It remains to prove (9). It
is straightforward to see that optχ(π) ≥ b · optχ

b �(π
(1)). We will now show

that the inequality also holds the other way around, namely that optχ(π) ≤
b · optχ

b �(π
(1)).

Let A ⊆ π be the set of calls accepted by optχ on input π. Consider the
following auxiliary graph H with vertex set corresponding to the calls in A: we
insert one (interval-) vertex for each of the b call fragments of each accepted
call. Two vertices in H are adjacent if the corresponding call fragments share an
edge. Clearly, H is an interval graph with maximum clique size ω(H) ≤ χ.

We consider the subgraph H ′ obtained from H by removing for each call r ∈
A all but one of the b vertices representing its call fragments and their adjacent
edges. Hence, the vertices in H ′ correspond to a subset of the calls in π(1).
Clearly, ω(H ′) = ω(H)/b ≤ χ/b. Since interval graphs are perfect, we can color
the vertices in H ′ using at most ω(H ′) = χ/b colors. Thus, the coloring of the
calls in A translates into a solution for the π(1)-instance in which as many calls
(of profit 1) are accepted by optχ

b
on π(1) as calls (with profit b) are accepted

by optχ on π.

Corollary 3.7. If there is a c-competitive algorithm for Oedpa on the line,
then ffcs achieves a competitive ratio of 8(c + 1)(!logχ" + 1) for routing in
χ wavelengths. 
�
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Abstract. In this paper we study the Forest Wrapping Problem (FWP)
which can be stated as follows: given a connected graph G = (V, E), with
|V | = n, let π0 be a partition of G into K (not necessarily connected)
components, find a connected partition π∗ of G that wraps π0 and has
maximum number of components.
The Forest Wrapping problem is NP-complete on grid graphs while is
solvable in O(n log n) time on ladder graphs. We provide a two-phase
O(n2) time algorithm for solving FWP on outerplanar graphs.

Keywords: Outerplanar graphs, Connected partition, Steiner Forest,
Maximum Split Clustering.

1 Introduction

Given a connected graph G = (V,E), with |V | = n, a partition of G into K
components is a partition of the set V of its vertices into K subsets. A partition
is connected if each subset induces a connected subgraph in G. Moreover, a
partition π of G wraps a partition π′ if each component of π′ is included in some
component of π [4].

In this paper we study the Forest Wrapping Problem (FWP) which can be
stated as follows: let π0 be a partition of G into K (not necessarily connected)
components, find a connected partition π∗ of G that wraps π0 and has maximum
number of components, that is, the minimum number of unions between compo-
nents must be performed. Notice that, for each connected partition π there exists
a spanning forest F of G such that each tree in F corresponds to a component
of π and viceversa. Therefore, each solution of FWP is a spanning forest of G.
The FWP is strictly related to the Steiner Forest Problem [1]: given a connected
and undirected graph G = (V,E), a cost function on the edges c : E → Z+ and
a collection of disjoint subsets of V , T1, . . . , TK , find a minimum cost forest in
which each pair of vertices belonging to the same Tk is connected. Indeed, if the
edge costs are all equal, the Steiner Forest Problem is the same as the FWP.

The FWP arose in the literature connected to the Maximum Split Problem
with connectivity constraints on graphs [2,3]. In [3] the authors showed that the
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Maximum Split Problem on a graph G can be solved by solving a sequence of
Forest Wrapping Problems. They also proved that the Forest Wrapping Problem
is NP-complete on grid graphs, while in [4] it is proved that FWP is solvable
in O(n log n) time on grid graphs with two rows and an arbitrary number of
columns (ladder graphs). FWP finds a natural application in telecommunication
networks design [6].

We provide a two-phase O(n2) time algorithm for solving FWP on outer-
planar graphs. First, all pairs of components which must be necessarily joined
in a connected partition are identified and joined (pre-processing phase). In a
second phase a connected partition of G with maximum number of components
is found.

The remainder of the paper is organized as follows. Section 2 provides some
definitions and properties of outerplanar graphs and the procedure for the pre-
processing phase. Section 3 is devoted to the FWP algorithm.

2 Definitions and Properties

An outerplanar graph G(V,E), with |V | = n and |E| = m, is a planar graph
where all the vertices lie on the outer cycle Cycle(G). Without loss of generality,
we suppose that G is biconnected. Otherwise, the optimal solution of FWP in
G can be found by solving a sequence of FWP on each biconnected component
of G.

We assign a number i, i = 1, ..., n, to each vertex of G, such that each vertex
is adjacent to at least one vertex j with j > i and to at least one vertex j′ with
j′ < i. The only exceptions are the vertices numbered 1 and n.

Since the dual graph of an outerplanar graph G is a tree T , it is always
possible to assign a number h, h = 1, ..., H, to each face of G (i.e., each vertex
of the dual graph) such that each face h is adjacent exactly to one face with a
number grater than h except for face H which is the outer face of G. The chord
separating face h and a face h′, with h′ > h, will be referred to as the gate of
face h and its vertices will be called the ends of the gate. We denote by ih� the
left end of the gate, that is the vertex with the lower number, and by ihr the
right end. Notice that iH� = 1 and iHr = n.

We root the dual tree in face H, and denote it by TH . Each face h corresponds
to a vertex of TH and the gate of face h corresponds to the edge connecting h
to its parent in TH . We denote by Th the subtree of TH rooted in h. We will
refer to the gate connecting Th to TH\Th as the gate of subtree Th. A subtree
Th′ nested in Th is a subtree of Th rooted in face h′.

In the following we denote by π0 the initial partition of the FWP, and we
define feasible partition a connected partition wrapping π0.

For each component C of a partition π, let I(C) and T (C) be the smallest and
largest numbered vertices of C, respectively. Since each vertex i belongs to only
one component, we introduce a label C(i) such that if i belongs to component
C ′, then C(i) = C ′.

We define C an expanding component with respect to face h if it has vertices
both in Th and in TH\Th.
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Given a graph G, let C ′ and C ′′ be two different components of the initial
partition π0. A partition π′ separates C ′ and C ′′ if C ′ and C ′′ are included into
two different components of π′ [4].

We will now introduce some definitions and results which are useful to un-
derstand the pre-processing phase.

Definition 1. Two components C ′ and C ′′ of π0 overlap in G if there is no
feasible partition π′ which separates C ′ and C ′′.

Given a component C, let PC be a path in Cycle(G) which connects all the
vertices which belong to C.

Definition 2. Given an outerplanar graph G, two components C ′ and C ′′ of π0

alternate in Cycle(G) if two vertex-disjoint paths PC′ and PC′′ do not exist.

Definition 3. A set of q components, C1, C2, . . . , Cq, produces a chain of alter-
nancies if there is a permutation i1, i2, . . . , iq, such that each pair of consecutive
components Cij

and Cij+1 alternate. Components Ci1 Ciq
are called the extremi-

ties of the chain Ci1 , Ci2 , . . . , Ciq
which, hereafter, will be denoted by (Ci1 , Ciq

).

Remark 1. Two components C ′ and C ′′ of π0 overlap in Cycle(G) if and only
if they alternate or are the extremities of a chain of alternancies.

Theorem 1. Two components C ′ and C ′′ of π0 overlap in G if and only if they
overlap in Cycle(G).

Proof. Since Cycle(G) is a connected subgraph of G, it follows immediately
that two components which overlap in G necessarily overlap in Cycle(G). On
the other hand, assume that C ′ and C ′′ overlap in Cycle(G) and suppose by
contradiction that they do not overlap in G. In such case the following is true:

a) C ′ and C ′′ alternate or are the extremities of a chain of alternancies, (C ′, C ′′)
(by Remark 1)

b) there is a connected partition π of G in which C ′ and C ′′ are separated (by
definition).

Since a) holds, then there are two cases:
If C ′ and C ′′ alternate, then since b) holds, there must be two chords, (s, t)

and (u, v), which connect the elements of C ′ and of C ′′ in π, respectively. By
hypothesis, C ′ and C ′′ overlap in Cycle(G), therefore vertices s, t, u, v and Cy-
cle(G) form a subgraph of G homomorphic to k4. This is impossible because G
is an outerplanar graph [5].

If C ′ and C ′′ are the extremities of a chain of alternancies, then there is at
least a pair of alternating components Cik

, Cik+1 in (C ′, C ′′) which are separated
in π. Using the same reasoning as above, G contains a subgraph homomorphic
to k4, which implies that G cannot be outerplanar. 
�
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2.1 The Pre-processing Phase

To solve the FWP we need a pre-processing phase which merges every pair of
overlapping components. Pre-processing can be performed in O(n log n) time by
using a procedure similar to the one provided in [4]. Notice that, according to
Remark 1 and Theorem 1, the search for overlapping components in G can be
restricted to the search of all the alternancies in Cycle(G).

Let us consider Cycle(G) and the n− 1 paths which can be obtained by re-
moving each one of its edges.

Remark 2. If two components C ′ and C ′′ alternate in Cycle(G), then they
alternate in each of the n − 1 possible paths generated by removing an edge in
Cycle(G).

In particular, Remark 2 holds if edge (1,n) is removed, hence we denote by
P (G) the resulting path. Notice that two components C ′ and C ′′ alternate in
P (G) if I(C ′) < I(C ′′) and there exists at least one vertex i belonging to C ′

such that I(C ′′) < i < T (C ′′). The pre-processing algorithm is briefly described
below.

algorithm PRE-PROCESSING
input: A cycle with n vertices; a partition π0 in K components;
I(C) and T (C) for each component C
output: A partition π1 with no overlapping components
begin

S:=∅
for i = 1 to n do

if (T (C(i)) > I(C(i))) then
if (T (C(i)) = i) then

remove C(i) from S
else

if C(i) /∈ S then put C(i) in S
find C ′ such that
T (C ′) = min(C∈S)T (C)
if (T (C(i)) > T (C ′)) then

merge components C(i) and C ′

end for
end

Theorem 2. PRE-PROCESSING algorithm finds and merges all the overlap-
ping components of Cycle(G) in O(n log n) time.

Proof. The algorithm scans the vertices of Cycle(G) from 1 to n and for each i,
updates the set S containing the labels of the components C ′ such that I(C ′) < i
and T (C ′) > i. The algorithm checks if C(i) alternates or not with another
component in S by comparing T (C(i)) with min(C∈S) T (C). By using an heap,
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this can be done for all i in O(n log n) time. Merging all the components can
be done in O(n log n) time if each time we merge two components we move the
elements of the smaller component into the bigger one. 
�
By running the pre-processing phase on Cycle(G) we obtain a partition π1 - not
necessarily connected - without overlapping components which wraps π0.

3 The Algorithm for the FWP on Outerplanar Graphs

In this section we describe the algorithm for the FWP which starts after the
partition π1 is obtained from the pre-processing phase.

Definition 4. A feasible solution π(h) of the subtree Th satisfies the following
two properties:

1) all non expanding components are connected;
2) all the vertices of an expanding component belong to component C(ih� ) or to

component C(ihr ). It also may happen that C(ih� ) = C(ihr ).

Given π(h), we denote by q(π(h)) the minimum number of unions to reach
a connected partition of G starting from π(h).

An optimal solution of the subtree Th is a feasible solution of Th obtained
with the minimum number of unions. Notice that an optimal solution of TH is
also an optimal solution for FWP in G.

Remark 3. Let π(h) be a feasible solution of Th such that the ends of the
gate of face h belong to the same component and let π′(h) be a feasible solution
of the same tree where the ends of the gate belong to different components, then
q(π(h)) ≤ q(π′(h)).

Proposition 1. Given two feasible solutions π′(h) and π′′(h) of Th, then

|q(π′(h))− q(π′′(h))| ≤ 1.

Proof. Suppose that q(π′′(h)) > q(π′(h)). By Remark 3, this occurs only if in
π′′(h) the ends of the gate of face h belong to different components. Let π(h) be
the solution obtained from π′′(h) by merging these two components. By Remark
3, q(π(h)) ≤ q(π′(h)). Since q(π′′(h)) is the minimum number of unions to reach
a connected partition of G starting from π′′(h), q(π(h)) + 1 ≥ q(π′′(h)). Then,
q(π′′(h)) ≤ q(π′(h)) + 1. 
�
After having identified all the faces of G, the idea of the algorithm is to visit TH

bottom-up minimizing the number of unions in each Th, h = 1, . . . , H. Propo-
sition 1 will be useful to prove that minimizing the number of unions in each
subtree Th leads to an optimal solution of G.

In each subtree Th we have three cases: the optimal solution is unique; there
are multiple optimal solutions among which at least one with the ends of the gate
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Fig. 1. The removed edges in face h.

of face h belonging to the same component; there are multiple optimal solutions
and all of them have the ends of the gate belonging to different components. In
the first two cases we solve the subtree Th definitively, by considering either the
unique solution or a solution with the ends of the gate belonging to the same
component. Then, we prune the subtree Th from TH . In the third case Th will
be visited again when solving a subtree Th′ in which Th is nested.

Remark 4. There exists an optimal solution of Th in which at least one edge
of face h is removed, that is, it does not belong to the corresponding optimal
spanning forest in Th (see Fig.1). Notice that, if the removed edge is the gate
of a subtree Th′ nested in Th, and Th′ has not been pruned, then, in Th we are
removing both this edge and at least one edge in Th′ (see Fig.2).

Following Remark 4, we solve a subtree Th by removing one edge of Cycle(G)
at a time from ih� to ihr . More precisely, according to the numeration of the vertices
of G (i = 1, ..., n), in face h we remove all the edges (i− 1,i) of Cycle(G), while
in a subtree Th′ nested in Th we remove only those edges which correspond to an
optimal solution of Th′ . Once an edge has been removed, we count the number
of unions necessary to connect all the components in Th from i to ihr and from
i− 1 to ih� , separately.

In the following we outline the pseudo-code of the FW-ALGORITHM. In
order to implement the algorithm we introduce a circular list necessary to scan
the graph. For each vertex i, a pair of pointers, next(i) and previous(i), is
defined. At the beginning of the algorithm next(n) = 1 and previous(1) = n,
while next(i) = i + 1, i = 1, ..., n− 1 and previous(i) = i− 1, i = 2, ..., n. Each
time a face h is visited, next(i) and previous(i) update as follows: according to
the numeration of the vertices in G, next(i) points to the first vertex j > i in Th

which belongs to an expanding component C(j) �= C(i), if no such vertex exists,
next(i) points to ihr . On the other hand, previous(i) refers to the first vertex
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j < i in Th which belongs to an expanding component C(j) �= C(i), if no such
vertex exists, previous(i) points to ih� .

K more circular lists are necessary to visit the sequence of vertices belonging
to each component and to efficiently perform the merging operation between two
components.

In the algorithm U∗ denotes the minimum number of unions to obtain a
connected partition π2 which wraps π1.
algorithm FW-ALGORITHM
input: A biconnected outerplanar graph G with n vertices,
the tree TH and a partition π1 with no overlapping components
output: A connected partition π2 which wraps π1

with the minimum number of unions U∗

begin
starting from the leaves and proceeding bottom-up in TH ,
for each subtree Th do

let i = ih�
while (i < ihr ) do

if (i = ih
′

� ) for some nested subtree Th′ then
while (i < ih

′
r ) do

according to the numeration of the vertices of G
remove the last edge of the path from i to next(i)
find a feasible partition of Th and the corresponding
number of unions Ui (see Remark 4)
update i = next(i)

end
else

remove edge (i, next(i))
find a feasible partition of Th and the corresponding
number of unions Ui (see Remark 4)
update i = next(i)

end
end
let Uh = mini{Ui}
let Sh be the set of the removed edges providing optimal solutions of Th

if (|Sh| = 1 or there is a solution in Sh with the ends of the gate
belonging to the same component) then

prune Th and perform the unions of the optimal solution of Th

end
update the circular lists for the vertices in Th

end
let U∗ =

∑
h Uh

choose an element in SH and perform the unions
end

The algorithm searches for a connected partition of Th by iteratively removing
an edge. In particular, two cases are possible: the removed edge is in face h or
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Fig. 2. The removed edges in a subtree Th′ .

it is in a nested subtree Th′ . In both cases two paths formed by only edges
of face h, are determined, one lying on the right and the other on the left of
the removed edge. Denote them by Pright and Pleft, respectively. When the
algorithm removes edge (i, next(i)) in face h, Pright is the path from next(i)
to ihr and Pleft is from i to ih� . On the other end, if the removed edge is in a
nested subtree Th′ , Pright is the path from ih

′
r to ihr and Pleft is from ih

′
� to ih�

(see Remark 4). Consider path Pright, since the components do not overlap, it
is possible to find a sequence of vertex-disjoint subpaths [a, b] of Pright in which
all the vertices must be necessarily connected. For each subpath the procedure
counts (without performing) the number of unions to connect the components
in all the subpaths [a, b] of Pright. It must be noticed that the procedure counts
the number of unions between components from vertex a to vertex b, except
for those unions which have been already counted in some subtree Th′ with
a ≤ ih

′
� < ih

′
r ≤ b. The procedure works in a similar way when Pleft is considered.

In order to scan Pright the algorithm uses the circular list next(.), while to scan
Pleft it uses the circular list previous(.). Finally, Ui is the sum of all the unions
performed on Pright and Pleft.

After Th has been visited, Sh is the set of the removed edges which provide
optimal solutions of Th and Uh is the minimum number of unions. Notice that,
each removed edge in Sh corresponds to a sequence of subpaths from ih� to ihr
which can be efficiently stored by exploiting the pointers next(.). In fact, when
i = ih

′
� , according to the definition, next(i) allows to easily identify the sequence

of the edges which correspond to optimal solutions of Th′ . On the other hand,
if Th is pruned next(ih� ) = ihr , previous(ihr ) = ih� and the procedure merges
all the components in each subpath from ih� to ihr . Therefore, before visiting
the next subtree, pointers next(i) and previous(i) need to be updated for each
ih� ≤ i ≤ ihr .
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At the end, once TH has been visited, SH corresponds to the set of the optimal
solutions of FWP on G. The optimal partition π2 can be found by selecting an
element of SH and performing the corresponding unions.

Theorem 3. FW-ALGORITHM always finds a connected partition π2 which
wraps π1 by performing the minimum number of unions.

Proof. Suppose that for each h = 1, ..., H there is a unique optimal solution
π2(h) in Th. Since π2(h) gives the minimum number of unions, any other feasible
solution π′(h) performs at least one more union. By Proposition 1, the minimum
number of unions needed to obtain a feasible solution for TH starting from π2(h)
is greater than the minimum number of unions for TH starting from π′(h) of at
most one. Therefore, the optimal solution of TH can be obtained by a sequence
of optimal solutions in Th, h = 1, ..., H.

Suppose that in Th there is a set of optimal solutions. By Proposition 1, there
is at least one which will be used to minimize the number of unions in TH . If one
of them has C(ih� ) = C(ihr ), then by Remark 3, it can be chosen as the (unique)
optimal solution of Th. Otherwise, all the optimal solutions will be reconsidered
and the choice among them will depend on the optimal solutions of the ancestors
of face h in TH . Starting from the leaves of TH , FW-ALGORITHM finds an
optimal solution of Th, for each h = 1, ..., H. According to Remark 4, FW-
ALGORITHM finds an optimal solution of Th by enumerating all the feasible
solutions obtained when an edge of Th is removed. If the removed edge is the
gate of a nested subtree Th′ , and in Th′ there are multiple optimal solutions, the
algorithm visits Th′ and removes only those edges which correspond to optimal
solutions of Th′ . Hence, an optimal solution of Th, h = 1, ..., H, is obtained by
starting from optimal solutions of the subtrees nested in Th. 
�
Theorem 4. FW-ALGORITHM finds an optimal solution in time O(n2).

Proof. Let th ≤ n be the number of vertices of G in subtree Th and let nh be
the number of vertices of face h. When solving Th, in order to find the sequence
of subpaths [a, b] of Pright and Pleft, the algorithm visits at most nh vertices
for each removed edge. Since in Th at most th edges can be removed, the time
complexity to find an optimal solution of Th is thnh. Then, the time complexity
to find an optimal solution in TH is

∑H
h=1 thnh ≤ n

∑H
h=1 nh = O(n2).

Merging component C with L vertices and a component C ′ with L′ < L
vertices requires the following two operations: update the lists which scan the
sequence of vertices belonging to components C and C ′, and update the label
C(i) = C ′ to C(i) = C for all vertices i belonging to C ′. The first operation
requires O(1) time, since C and C ′ do not overlap, while the latter can be done
by following a strategy similar to the one used in the pre-processing phase. Hence,
in TH merging all the components of an optimal solution takes O(n log n) time.

The time needed to update next(.) and previous(.) in Th is O(th), since
the procedure needs to visit Cycle(G) from ihr to ih� and from ih� to ihr , respec-
tively. Therefore, in TH the time complexity to update next(.) and previous(.)
is
∑H

h=1 th = O(n2). Hence, the overall time complexity of FW-ALGORITHM
is O(n2). 
�
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Abstract. We consider the problem of recognizing whether a simple
undirected graph is a P4-comparability graph. This problem has been
considered by Hoàng and Reed who described an O(n4)-time algorithm
for its solution, where n is the number of vertices of the given graph.
Faster algorithms have recently been presented by Raschle and Simon
and by Nikolopoulos and Palios; the time complexity of both algorithms
is O(n + m2), where m is the number of edges of the graph.
In this paper, we describe an O(n m)-time, O(n+m)-space algorithm for
the recognition of P4-comparability graphs. The algorithm computes the
P4s of the input graph G by means of the BFS-trees of the complement of
G rooted at each of its vertices, without however explicitly computing the
complement of G. Our algorithm is simple, uses simple data structures,
and leads to an O(n m)-time algorithm for computing an acyclic P4-
transitive orientation of a P4-comparability graph.

Keywords: Perfectly orderable graph, comparability graph, P4-compa-
rability graph, recognition, P4-component, P4-transitive orientation.

1 Introduction

We consider simple non-trivial undirected graphs. Let G = (V,E) be such a
graph. An orientation of G is an antisymmetric directed graph obtained from G
by assigning a direction to each edge of G. An orientation (V, F ) of G is called
transitive if it satisfies the following condition: −→ab ∈ F and −→bc ∈ F imply

−→
ac∈ F ,

for all a, b, c ∈ V , where by
−→
uv or

←−
vu we denote an edge directed from u to v

[8]. An orientation of a graph G is called P4-transitive if it is transitive when
restricted to any P4 (chordless path on 4 vertices) of G; an orientation of such a
path abcd is transitive if and only if the path’s edges are oriented in one of the
following two ways: −→ab, ←−bc and −→cd, or ←−ab, −→bc and ←−cd.

A graph which admits an acyclic transitive orientation is called a compara-
bility graph [7,8,9]; Figure 1(a) depicts a comparability graph. A graph is a P4-
comparability graph if it admits an acyclic P4-transitive orientation [11,12]. In
light of these definitions, every comparability graph is a P4-comparability graph.
However, the converse is not always true; the graph depicted in Figure 1(b) is a
P4-comparability graph but it is not a comparability graph (it is often referred to
as a pyramid). The graph shown in Figure 1(c) is not a P4-comparability graph.
The class of P4-comparability graphs was introduced by Hoàng and Reed, along
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(a) (b) (c)

Fig. 1. (a) a comparability graph; (b) a P4-comparability graph (which is not compa-
rability); (c) a graph which is not P4-comparability.

with the classes of the P4-indifference, the P4-simplicial, and the Raspail graphs,
and all four classes were shown to be perfectly orderable [12].

The class of perfectly orderable graphs was introduced by Chvátal in the
early 1980s [4]; it is a very important class of graphs since a number of prob-
lems which are NP-complete in general can be solved in polynomial time on its
members [2,8,10]; unfortunately, it is NP-complete to decide whether a graph
is perfectly orderable [15]. Chvátal showed that the class of perfectly order-
able graphs contains the comparability and the triangulated graphs [4]. It also
contains a number of other classes of perfect graphs which are characterized
by important algorithmic and structural properties, such as, the classes of 2-
threshold, brittle, co-chordal, weak bipolarizable, distance hereditary, Meyniel ∩
co-Meyniel, P4-sparse, etc. [3,8]. Finally, since every perfectly orderable graph is
strongly perfect [4], the class of perfectly orderable graphs is a subclass of the
well-known class of perfect graphs.

Algorithms for many different problems on almost all the subclasses of per-
fectly orderable graphs are available in the literature. The comparability graphs
in particular have been the focus of much research which culminated into ef-
ficient recognition and orientation algorithms [3,8,14]. On the other hand, the
P4-comparability graphs have not received as much attention, despite the fact
that the definition of the P4-comparability graphs is a direct extension of the
definition of comparability graphs [6,11,12,17].

Our main objective in this paper is to study the recognition problem on
the class of P4-comparability graphs. This problem along with the problem of
producing an acyclic P4-transitive orientation have been addressed by Hoàng
and Reed who described an O(n4)- and an O(n5)-time algorithm respectively
for their solution [11,12], where n is the number of vertices of the input graph.
Improved results on these problems were provided by Raschle and Simon [17].
Their algorithms work along the same lines, but focus on the P4-components
of the graph; both algorithms run in O(n + m2), where m is the number of
edges of the input graph. Recently, Nikolopoulos and Palios described different
O(n+m2)-time algorithms for these problems [16]. Their approach relies on the
construction of the P4-components by means of BFS-trees of the input graph.
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In this paper, we present an O(nm)-time recognition algorithm for P4-com-
parability graphs, where n and m are the number of vertices and edges of the
input graph. The algorithm computes the P4s of the input graph G by means
of the BFS-trees of the complement of G rooted at each of its vertices, without
however explicitly computing the complement of G. Instrumental for the algo-
rithm are the observations that the complement of a P4 is also a P4 and that for
a graph G, the number of vertices in all the levels, but the 0th and the 1st, of
the BFS-tree of the complement of G rooted at a vertex v does not exceed the
degree of v in G. The proposed recognition algorithm is simple, uses simple data
structures and requires O(n + m) space. Along with the result in [16], it leads
to an O(nm)-time algorithm for computing an acyclic P4-transitive orientation
of a P4-comparability graph.

2 Theoretical Framework

We consider simple non-trivial undirected graphs. Let G = (V,E) be such a
graph. A path in G is a sequence of vertices (v0, v1, . . . , vk) such that vi−1vi ∈ E
for i = 1, 2, . . . , k; we say that this is a path from v0 to vk and that its length
is k. A path is called simple if none of its vertices occurs more than once; it is
called trivial if its length is equal to 0. A simple path (v0, v1, . . . , vk) is chordless
if vivj /∈ E for any two non-consecutive vertices vi, vj in the path. Throughout
the paper, the chordless path on n vertices is denoted by Pn. In particular, a
chordless path on 4 vertices is denoted by P4.

Two P4s are called adjacent if they have an edge in common. The transitive
closure of the adjacency relation is an equivalence relation on the set of P4s of a
graph G; the subgraphs of G spanned by the edges of the P4s in the equivalence
classes are the P4-components of G. With slight abuse of terminology, we consider
that an edge which does not belong to any P4 belongs to a P4-component by
itself; such a component is called trivial. A P4-component which is not trivial is
called non-trivial; clearly a non-trivial P4-component contains at least one P4.

The definition of a P4-comparability graph requires that such a graph admits
an acyclic P4-transitive orientation. However, Hoàng and Reed [12] showed that
in order to determine whether a graph is a P4-comparability graph one can
restrict one’s attention to the P4-components of the graph. What they proved
([12], Theorem 3.1) can be paraphrased in terms of the P4-components as follows:

Lemma 1. [12] Let G be a graph such that each of its P4-components admits
an acyclic P4-transitive orientation. Then G is a P4-comparability graph.

Our recognition algorithm relies on the following important lemma in order
to achieve its stated time complexity.

Lemma 2. Let G be an undirected graph and let TG(v) be the BFS-tree of the
complement G of G rooted at a vertex v. Then, the number of vertices in all the
levels of TG(v), except for the 0th and the 1st, does not exceed the degree of v
in G.
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Proof. Clearly true, since the vertices in all the levels of TG(v), except for the
0th and the 1st, are vertices which are not adjacent to v in G.

3 Recognition of P4-Comparability Graphs

The algorithm works by constructing and orienting the P4-components of the
given graph, say, G, and then by checking whether they are acyclic (Lemma 1).
The P4-components are constructed as follows: the algorithm considers initially
m (partial) P4-components, one for each edge of G; then, it locates the P3s of all
the P4s of G, and whenever the edges of such a P3 belong to different (partial)
P4-components it unions and appropriately orients these P4-components. Since
we are interested in a P4-transitive orientation of each P4-component, the edges
of such a P3 need to be oriented either towards their common endpoint or away
from it.

As stated earlier, the P4s of the
graph G are computed by means of
processing the BFS-trees of the com-
plement G of G rooted at each of
its vertices. It is important to observe
that if abcd is a P4 then its comple-
ment is the P4 bdac and it belongs to
the complement G of G. Let us con-
sider the BFS-tree TG(b) of G rooted
at b. Since bdac is a P4 of G, the ver-
tices b, d, and a have to belong to the
0th, 1st, and 2nd level of TG(b) respec-
tively; the vertex c belongs to the 2nd
or 3rd level, but not to the 1st, since

b

dd

aa c

c

Level 1

2

3

Fig. 2. The two positions of the P4 bdac
in the BFS-tree T

G
(b).

c is not adjacent to b in G. These two cases are shown in Figure 2.
The algorithm is described in more detail below. We consider that the input

graph is connected; the case of disconnected graphs is addressed in Section 3.3.
Additionally, we assume that initially each edge of G belongs to a P4-component
by itself and is assigned an arbitrary orientation.

P4-comparability Graph Recognition Algorithm. Input: a connected graph G
on n vertices and m edges. Output: yes, if G is a P4-comparability graph;
otherwise, no.

1. Initialize to 0 all the entries of an array M [ ] which is of size n;
2. For each vertex v of the graph G, do

2.1 compute the sets L1, L2, and L3 of vertices in the 1st, 2nd, and 3rd level
respectively of the BFS-tree of the complement G rooted at v;

2.2 partition the set L2 into subsets of vertices so that two vertices belong
to the same subset iff they have (in G) the same neighbors in L1;

2.3 for each vertex x in L2, do
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2.3.1 for each vertex w adjacent to x in G, do
M [w] ← 1; {mark in M [ ] the neighbors of x in G}

2.3.2 for each vertex y in L3 do
if M [y] = 0
then {xvy is a P3 in a P4 of G}

If the edges xv and vy belong to the same P4-component and
do not both point towards v or away from it, then the P4-
component cannot admit a P4-transitive orientation and we
conclude that the graph G is not a P4-comparability graph.
If the edges xv and vy belong to different P4-components, then
we union these components into a single component and if the
edges do not both point towards v or away from it, we invert
(during the unioning) the orientation of all the edges of the
unioned P4-component with the fewest edges.

2.3.3 for each vertex y in L2 do
if M [y] = 0 and the vertices x and y belong to different partition
sets of L2 (see Step 2.2)
then {xvy is a P3 in a P4 of G}

process the edges xv and vy as in Step 2.3.2;
2.3.4 for each vertex w adjacent to x in G, do

M [w] ← 0; {clear M [ ]}
3. After all the vertices have been processed, we apply topological sorting

on the directed graph spanned by the directed edges associated with each
of the non-trivial P4-components; if the topological sorting succeeds then
the component is acyclic, otherwise there is a directed cycle. If any of
the P4-components contains a directed cycle, then the graph is not a P4-
comparability graph.

For each P4-component, we maintain a linked list of the records of the edges in
the component, and the total number of these edges. Each edge record contains a
pointer to the header record of the component to which the edge belongs; in this
way, we can determine in constant time the component to which an edge belongs
and the component’s size. Unioning two P4-components is done by updating the
edge records of the smallest component and by linking them to the edge list of
the largest one, which implies that the union operation takes time linear in the
size of the smallest component. As mentioned above, in the process of unioning,
we may have to invert the orientation in the edge records that we link, if the
current orientations are not compatible.

Correctness of the Recognition algorithm. The correctness of the algo-
rithm follows (i) from the fact that in Steps 2.3.2 and 2.3.3 it processes precisely
the P3s participating in P4s of the input graph G (Lemmata 3 and 4) and that it
assigns correct orientations on the edges of these P3s, (ii) from the correct con-
struction of the P4-components by unioning partial P4-components whenever a
P3 is processed whose edges belong to more than one such partial components,
and (iii) from Lemma 1 in conjunction with Step 2 of the algorithm.
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Note that the initial assignment of 0 to all the entries of the array M [ ] and
the clearing of all the set entries at Step 2.3.4 of the algorithm guarantee that
the only entries of the array which are set at any iteration are precisely those
corresponding to the vertices adjacent in G to the vertex processed at Step 2.3.

Lemma 3. Every P3 in a P4 of the input graph G is considered at Steps 2.3.2
or 2.3.3 of the recognition algorithm.

Proof. Let abcd be a P4 of the graph G; we will show that the P3 abc is considered
at Step 2.3.2 or 2.3.3 of the recognition algorithm. Since the algorithm processes
each vertex v of G in Step 2 and considers the BFS-tree of G rooted at v, it
will process b, it will consider the BFS-tree TG(b) of G rooted at b, and it will
compute the sets L1, L2, and L3 of vertices in the 1st, 2nd, and 3rd level of
TG(b) respectively. Let us consider the two cases of Figure 2. In the first case,
the vertices a and c belong to the 2nd and 3rd level of TG(b) respectively and
they are adjacent in G. Thus, a ∈ L2 and c ∈ L3. Moreover, since a and c are
adjacent in G, then a and c are not adjacent in G. Hence, M [c] = 0 when x = a
in Step 2.3. Therefore, the P3 abc is considered in Step 2.3.2 when x = a and
y = c. In the second case of Figure 2, the vertices a and c belong to the 2nd level
of TG(b), they are adjacent in G, and a is adjacent to d ∈ L1 in G whereas c is
not. Thus, a ∈ L2, c ∈ L2 and M [c] = 0 when x = a in Step 2.3, and the vertices
a and c belong to different sets in the partition of the vertices in L2 depending
on the vertices in L1 to which they are adjacent in G. Therefore, the P3 abc is
considered in Step 2.3.3 when x = a and y = c.

Lemma 4. The sequence (x, v, y) of vertices considered at Steps 2.3.2 and 2.3.3
of the recognition algorithm is a P3 in a P4 of the input graph G.

Proof. Let us first consider Step 2.3.2; in this case, the vertices x and y are in
the 2nd and 3rd level of TG(v) respectively. Then, the path vpxxy is a P4 in G,
where px is the parent of x in TG(v). This implies that xvypx is a P4 in G and
xvy is a P3 in a P4 of G. Let us now consider Step 2.3.3. Then, the vertices x
and y are in the 2nd level of the BFS-tree TG(v) of G rooted at v. Moreover,
since M [y] = 0, then x and y are not adjacent in G, that is, they are adjacent in
G. Finally, the fact that x and y do not belong to the same partition set of L2,
implies that there is a vertex in the 1st level of TG(v) which is adjacent to one
of them in G and not to the other one. Suppose that this vertex is z and that it
is adjacent to x; the case where z is adjacent to y and not to x is similar. Then,
the path vzxy is a P4 in G, which implies that xvyz is a P4 in G. Clearly, xvy
is a P3 in a P4 of G.

Before analyzing the complexity of the recognition algorithm, we explain in
more detail how Steps 2.1 and 2.2 are carried out.

3.1 Computing the Vertex Sets L1, L2, and L3

The computation of these sets can be done by means of the algorithms of
Dahlhaus et al. [5] and Ito and Yokoyama [13] for computing the BFS-tree of the
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complement of a graph in time linear in the size of the given graph. Both algo-
rithms require the construction of a special representation of the graph. However,
we will be using another algorithm which computes the vertices in each level
of the BFS-tree of the complement of a graph (i.e., it effectively implements
breadth-first search on the complement) in the above stated time complexity.
The algorithm is very simple and uses the standard adjacency list representa-
tion of a graph. It works by constructing each level Li+1 from the previous one,
Li, based on the following lemma.

Lemma 5. Let G be an undirected graph and let Li be the set of vertices in the
i-th level of a BFS-tree of G. Consider a vertex w which does not appear in any
of the levels from the 0th up to the k-th. Then w is a vertex of the (k + 1)-st
level if and only if there exists at least one vertex of Lk which is not adjacent to
w in G.

Proof. The vertex w is a vertex of the (k+1)-st level if and only if it is adjacent
in G to at least one vertex in Lk. The lemma follows.

We give below the description of the algorithm.

Algorithm for computing the BFS-tree of a vertex v in the complement of a given
graph G.

1. Initialize to 0 all the entries of the array Adj[ ] which is of size n;
2. Construct a list L0 containing a single record associated with the vertex v

and a list S containing a record for each of the vertices of G except for v;
3. i← 0;

While the list Li is not empty, do
3.1 initialize the list Li+1 to the empty list;
3.2 for each vertex u in Li do

for each vertex w adjacent to u in G do
increment Adj[w] by 1;

3.3 for each vertex s in S do
if Adj[s] < |Li|
then remove s from S and add it to the list Li+1

else Adj[s] ← 0;
3.4 increment i by 1;

The correctness of the algorithm follows from Lemma 5. Note that the set S
contains the vertices which, until the current iteration, have not appeared in any
of the computed levels. Moreover, because of Steps 1 and 3.3, the entries of the
array Adj[ ] corresponding to the vertices in S are equal to 0 at the beginning of
each iteration of the while loop in Step 3. In this way, the test “Adj[s] < |Li|”
correctly tests the number of vertices of Li which are adjacent to the vertex s
in G against the size of Li. Finally, it must be noted that when the while loop
of Step 3 terminates, the list S may very well be non-empty; this happens when
the graph G is disconnected.
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Suppose that the input graph G has n vertices and m edges. Clearly, Steps
1 and 2 take O(n) time. In each iteration of the while loop of Step 3, Steps 3.1
and 3.4 take constant time, while Step 3.2 takes O(

∑
u∈Li

dG(u)) time, where
dG(u) denotes the degree of the vertex u in G. Step 3.3 takes time linear in the
current size of the list S; the elements of S can be partitioned into two sets:
(i) the vertices which end up belonging to Li+1, and (ii) the vertices for which
the corresponding entries of the array Adj[ ] are equal to |Li|. The number of
elements of S in the former set does not exceed |Li+1|, while the number of
elements in the latter set does not exceed the sum of the degrees (in G) of the
vertices in Li. Thus, Step 3.3 takes O(|Li+1|+

∑
u∈Li

dG(u)) time.
Therefore, the time taken by the algorithm is

O(n) +
∑

i

(
O(1) + O

(
|Li+1|+

∑
u∈Li

dG(u)
))

= O(n) + O

(∑
i

(
1 + |Li+1|

))
+ O

(∑
i

∑
u∈Li

dG(u)
)

= O(n) + O(n) + O(m).

The inequalities
∑

i |Li| ≤ n and
∑

i

∑
u∈Li

dG(u) ≤ ∑
u dG(u) = 2m hold

because each vertex belongs to at most one level of the BFS-tree. Moreover, the
space needed is O(n + m). Consequently, we have:

Theorem 1. Let G be an undirected graph on n vertices and m edges, and v
be a vertex of G. Then, the above algorithm computes the vertices in the levels
of the BFS-tree of the complement G of G rooted at v in O(n + m) time and
O(n + m) space.

3.2 Partitioning the Vertices in L2

It is not difficult to see that the partition of the vertices in L2 depending on their
neighbors in G which are in L1 is identical to the partition of the vertices in L2

depending on their neighbors in G which are in L1. This is indeed so, because the
subset of vertices in L1 which are adjacent (in G) to a vertex x ∈ L2 is L1−Nx,
where Nx is the subset of L1 containing vertices which are adjacent (in G) to x.
But then, if for two vertices x and y the sets Nx and Ny are equal then so do
the sets L1 − Nx and L1 − Ny, whereas if Nx �= Ny then L1 − Nx �= L1 − Ny.
Therefore, in the algorithm we will be working with neighbors in G instead of
neighbors in G.

The algorithm initially considers a single set (list) which contains all the
vertices of the set L2. It then processes each vertex, say, u, of the set L1 as
follows: For each set of the current partition, we check if none, all, or only some
of its elements are neighbors of u in G; in the first and second case, the set is
not modified, in the third case, it is split into the subset of neighbors of u in G
and the subset of non-neighbors of u in G. After all the vertices of L1 have been
processed, the resulting partition is the desired partition.
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Algorithm for partitioning the set L2 in terms of adjacency to elements of the
set L1.

1. Initialize to 0 the entries of the arrays M [ ] and size[ ] which are of size n;
insert all the vertices in L2 in the list LSet[1] and set size[1]← |L2|;
k ← 1; {k holds the number of sets}

2. for each vertex u in L1 do
2.1 for each vertex w adjacent to u in G do

M [w] ← 1; {mark in M [ ] the neighbors of u in G}
2.2 k0 ← k;

for each list LSet[i], i = 1, 2, . . . , k0, do
2.2.1 traverse the list LSet[i] and count the number of its vertices which

are neighbors of u in G (use the array M [ ]); let � be the number of
these vertices;

2.2.2 if � > 0 and � < size[i]
then {split LSet[i]; create a new set}

increment k by 1;
traverse the list LSet[i] and for each of its vertices w which is
a neighbor of u in G (use M [ ]), delete w from LSet[i] and
insert it in LSet[k];
size[k] ← �;
decrease size[i] by �;

2.3 for each vertex w adjacent to u in G do
M [w] ← 0; {clear M [ ]}

3. for each list LSet[i], i = 1, 2, . . . , k, do
traverse the list LSet[i] and for each of its vertices set the corresponding
entry of the array Set[ ] equal to i;

Note that thanks to the array Set[ ], checking whether two vertices x and
y belong to the same partition set of L2 reduces to testing whether the entries
Set[x] and Set[y] are equal.

The correctness of the algorithm follows from induction on the number of the
processed vertices in L1. At the basis step, when no vertices from the set L1 have
been processed, all the elements of the set L2 belong to the same set, as desired.
Suppose that after processing i ≥ 0 vertices from L1, the resulting partition of L2

is correct with respect to the processed vertices. Let us consider the processing
of the next vertex, say, u, from L1: then, only the sets which contain at least
one vertex which is adjacent (in G) to u and at least one vertex which is not
adjacent (in G) to u should be split, and indeed these are the only ones that
are split; the splitting produces a subset of neighbors of u in G and a subset of
non-neighbors of u (Step 2.2.2). Note that because of Steps 1, 2.1, and 2.3, the
array M [ ] is clear at the beginning of each iteration of the for loop in Step 2,
so that in Step 2.2 the marked entries are precisely those corresponding to the
neighbors of the current vertex u in G.

Step 1 of the algorithm clearly takes O(n) time. Steps 2.1 and 2.3 take
O(dG(u)) time, where dG(u) is equal to the degree of u in G. Step 2.2.1 takes
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O(|LSet(i)|) time and so does Step 2.2.2, since deleting an entry from and in-
serting an entry in a list can be done in constant time, and the remaining op-
erations take constant time. Therefore, Step 2.2 takes time linear in the total
size of the lists LSet[i] which existed when u started being processed; since
the lists contained the vertices in L2 and none of these lists was empty, we
conclude that Step 2.2 takes O(|L2|) time. Then, Step 2 can be executed in
O(
∑

u(dG(u) + |L2|)) = O(m + n|L2|) time. Step 3 takes time linear in the to-
tal size of the final lists LSet[i], i.e., O(|L2|) time. Thus the entire partitioning
algorithm takes O(m+n |L2|) time. Since all the initialized lists LSet[i] contain
at least one vertex from L2 and since these lists do not share vertices, then the
space complexity is O(n + |L2|) = O(n).

The results of the paragraph are summarized in the following theorem.

Theorem 2. Let G be an undirected graph on n vertices and m edges, and let
L1 and L2 be two disjoint sets of vertices. Then, the above algorithm partitions
the vertices in L2 depending on their neighbors in G which belong to L1 in
O(m + n |L2|) time and O(n) space.

Time and Space Complexity of the Recognition algorithm. Clearly,
Step 1 of the algorithm takes O(n) time. In accordance with Theorems 1 and 2,
Steps 2.1 and 2.2 take O(n+m) = O(m) and O(m+n |L2|) time respectively in
the processing of each one of the vertices of G, while Steps 2.3.1 and 2.3.4 take
O(n) time. If we ignore the cost of unioning P4-components, then Steps 2.3.2 and
2.3.3 require O(1) time per vertex in L3 and L2 respectively; recall that testing
whether two vertices belong to the same partition set of L2 takes constant time.
If we take into account Lemma 2, we have that |L2| ≤ dG(v) and |L3| ≤ dG(v)
where dG(u) denotes the degree of vertex u in G. Therefore, if we ignore P4-
component unioning, the time complexity of Step 2 of the algorithm is

T2 =
∑

v

(
O
(
m + ndG(v)

)
+
∑

x

O
(
dG(v) + dG(x)

))
.

If we observe that x belongs to L2, we conclude that x assumes at most dG(v)
different values. Thus,

T2 = O

(∑
v

m + n
∑

v

dG(v)
)

+ O

(∑
v

∑
x

(
dG(v) + dG(x)

))
= O(nm) + O(nm) + O

(∑
v

(
d2

G(v) +
∑

x

dG(x)
))

= O(nm) + O

(∑
v

d2
G(v)

)
+ O

(∑
v

∑
x

dG(x)
)

= O(nm)

since
∑

v d
2
G(v) ≤ n

∑
v dG(v) = O(nm) and

∑
v

∑
x dG(x) ≤ ∑v 2m = 2nm.

Now, the time required for all the P4-component union operations during the
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processing of all the vertices is O(m logm) [1]; there cannot be more than m− 1
such operations (we start with m P4-components and we may end up with only
one), and each one of them takes time linear in the size of the smallest of the
two components that are unioned.

Finally, constructing the directed graph from the edges associated with a
non-trivial P4-component and checking whether it is acyclic takes O(n + mi),
where mi is the number of edges of the component. Thus, the total time taken by
Step 2 is O

(∑
i(n+mi)

)
= O(nm), since there are at most m P4-components and∑

i mi = m. Thus, the overall time complexity is O(n+ nm+m logm+ nm) =
O(nm); note that logm ≤ 2 logn = O(n).

The space complexity is linear in the size of the graph G: the array M [ ] takes
linear space, both Steps 2.1 and 2.2 require linear space (Theorems 1 and 2), the
set L1 is represented as a list of O(n) size, the sets L2 and L3 are represented as
lists having O(dG(v)) size each, and the handling of the P4-components requires
one record per edge and one record per component. Thus, the space required is
O(n + m).

Therefore, we have proven the following result:

Theorem 3. It can be decided whether a connected undirected graph on n ver-
tices and m edges is a P4-comparability graph in O(nm) time and O(n + m)
space.

3.3 The Case of Disconnected Input Graphs

If the input graph is disconnected, we compute its connected components and
work on each one of them as indicated above. In light of Theorem 3 and since
the connected components of a graph can be computed in time and space linear
in the size of the graph by means of depth-first search [1], we conclude that
the overall time complexity is O(n + m) +

∑
i O(ni mi) = O(n

∑
mi) = O(nm)

and the space is O(n + m) +
∑

i O(ni + mi) = O(n + m) since
∑

i ni = n and∑
i mi = m.

Theorem 4. It can be decided whether an undirected graph on n vertices and
m edges is a P4-comparability graph in O(nm) time and O(n + m) space.

4 Concluding Remarks

In this paper, we presented an O(nm)-time and linear space algorithm to rec-
ognize whether a graph on n vertices and m edges is a P4-comparability graph.
The algorithm exhibits the currently best time and space complexity to the best
of our knowledge, and is simple enough to be easily used in practice. Along with
the work of [16], it leads to an O(nm)-time algorithm for computing an acyclic
P4-transitive orientation of a P4-comparability graph, thus improving the upper
bound on the time complexity for this problem as well. We also described a
simple algorithm to compute the levels of the BFS-tree of the complement G of
a graph G in time and space linear in the size of G.
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The obvious open question is whether the P4-comparability graphs can be
recognized and/or oriented in o(nm) time. Moreover, it is worth investigating
whether taking advantage of properties of the complement of the input graph
can help establish improved algorithmic solutions for other problems as well;
note that breadth-first and depth-first search on the complement of a graph can
be executed in time linear in the size of the graph.
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Abstract. In an orthogonal drawing of a plane graph, any edge is drawn
as a sequence of line segments, each having either a horizontal or a ver-
tical direction. A bend is a point where an edge changes its direction. A
drawing is called a bend-minimum orthogonal drawing if the number of
bends is minimum among all orthogonal drawings. This paper presents
a linear-time algorithm to find a bend-minimum orthogonal drawing of
any given plane 3-graph, that is, a plane graph of maximum degree three.

Keywords: Graph, Algorithm, Graph Drawing, Orthogonal Drawing,
Bend.

1 Introduction

In this paper we deal with “orthogonal drawings” of “plane 3-graphs.” A plane
graph is a planar graph with a fixed planar embedding. For an integer i, an i-
graph is a graph of the maximum degree i. Figure 1(a) depicts a plane 3-graph.
An orthogonal drawing of a plane graph G is a drawing of G with the given
embedding such that each vertex is mapped to a point, each edge is drawn as a
sequence of alternate horizontal and vertical line segments, and any two edges
do not cross except at their common end. A point where an edge changes its
direction in a drawing is called a bend of the drawing. Figure 1(d) depicts an
orthogonal drawing of the graph in Fig. 1(a) with four bends, which are indi-
cated by dotted circles in Fig. 1(d). Orthogonal drawings have attracted much
attention due to their numerous practical applications in circuit schematics, data
flow diagrams, entity relationship diagrams, etc. [DETT99, S84, T87]. A plane
3-graph often appears in practical applications like circuit schematics, and it is
desired to find an orthogonal drawing with a small number of bends, because a
bend corresponds to a “via” or “through-hole,” and increases the fabrication cost
of VLSI [L90, S84]. We hence wish to find a bend-minimum orthogonal drawing,
that is, an orthogonal drawing with the minimum number of bends. The draw-
ing in Fig. 1(d) is indeed a bend-minimum one since there is no drawing with at
most three bends.
� This work is supported by JSPS grants.

L. Kučera (Ed.): WG 2002, LNCS 2573, pp. 367–378, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



368 Md. Saidur Rahman and Takao Nishizeki

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��

��
��
��
��

��
��
��
��

��
��
��
��

��

��

��
��
��
��

��
��
��
��

G

v

v

v

u

u v

1
2

2

3 3

4

4

u

C 1 2C

u 1 ��
��
��
��

�
�
�
�

�����
�
�
�

����

�
�
�
�

�
�
�
�

��
��
��
��

H 2

v
2

�
�
�
�

��

��

H 3

v
4

H 1
u 3

u 2

u 4

u
1

( b )

2
v

D ( H  )2

v

D ( H  )3

4

u u

u

1 2

u 4

3

D ( H  )1 ( c )

b e n d

v

v

v

u v

1

4

2

3 3

u 2

u 4

C 1 C 2

1u

( d )( a )

Fig. 1. (a) A plane 3-graph G, (b) three biconnected components H1, H2 and H3, (c)
orthogonal drawings of H1, H2 and H3, and (d) a bend-minimum orthogonal drawing
of G.

Garg and Tamassia [GT97] presented an algorithm to find a bend-minimum
orthogonal drawing of any plane 4-graph G; if a plane graph has a vertex of
degree 5 or more, then there is no orthogonal drawing. Their algorithm [GT97]
takes time O(n7/4

√
log n) if G has n vertices. More efficient algorithms are known

for restricted classes of plane 3-graphs. Rahman, Nakano and Nishizeki [RNN99]
gave a linear-time algorithm for triconnected cubic plane graphs, and Nakano
and Yoshikawa [NY01] extended the algorithm to a linear-time algorithm for
biconnected cubic plane graphs. In a cubic graph, every vertex has degree 3.
Hence, any cubic graph is a 3-graph. On the other hand, Rahman, Naznin and
Nishizeki [RNN02] obtained a necessary and sufficient condition for a plane 3-
graph to have an orthogonal drawing without bends, and gave a linear-time
algorithm to find such a drawing if it exists.

In this paper we give a linear-time algorithm to find a bend-minimum orthog-
onal drawing of any plane 3-graph. The complexity of our algorithm is better
than the complexity O(n7/4

√
log n) of the algorithm in [GT97] and is optimal

within a constant factor although the algorithm in [GT97] works for plane 4-
graphs. The class of plane 3-graphs is larger than the classes of triconnected or
biconnected cubic plane graphs for the linear algorithms in [RNN99, NY01]. Our
algorithm is also a generalization of the algorithm in [RNN02].

The outline of our algorithm is as follows. We first decompose a given plane 3-
graph G to biconnected components as illustrated in Figs. 1(a) and (b). We then
find “optimal” orthogonal drawings of all components as illustrated in Fig. 1(c).
(An “optimal” drawing of a component is an orthogonal drawing of the compo-
nent which satisfies a trivial necessary condition for an orthogonal drawing of
G and uses the minimum number of bends, as defined in Section 2.) We finally
combine the drawings of all components to a bend-minimum orthogonal drawing
of G as illustrated in Fig. 1(d). The key idea is to reduce the problem of finding
an “optimal” orthogonal drawing of a biconnected component to the problem of
finding an orthogonal drawing without bends by inserting “dummy” vertices of
degree 2 to appropriate edges.

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 presents our main result on bend-minimum orthogonal drawings of
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plane 3-graphs. Section 4 presents an algorithm to find an “optimal” orthogonal
drawing of “bad cycles” in a biconnected component of a plane 3-graph G.
Finally Section 5 is a conclusion.

2 Preliminaries

In this section we give some definitions.
Let G = (V,E) be a connected simple graph of vertex set V and edge set E.

Let n be the number of vertices in G. The degree of a vertex v is the number of
neighbors of v in G. A vertex of degree 2 in G is called a 2-vertex of G. If every
vertex of G has degree three, then G is called a cubic graph. The connectivity
κ(G) of a graph G is the minimum number of vertices whose removal results in
a disconnected graph or a single-vertex graph K1. We say that G is k-connected
if κ(G) ≥ k. We call a vertex of G a cut vertex in G if its removal results in a
disconnected graph.

We call a maximal biconnected subgraph of G a biconnected component of
G. We call an edge (u, v) a bridge of G if the deletion of (u, v) results in a
disconnected graph. Any graph can be decomposed to biconnected components
and bridges. The graph G in Fig. 1(a) has three biconnected components H1,
H2 and H3 depicted in Fig. 1(b), and has four bridges (u1, v1), (u2, v2), (u3, v3)
and (u4, v4).

A graph is planar if it can be embedded in the plane so that no two edges
intersect geometrically except at a vertex to which they are both incident. A
plane graph is a planar graph with a fixed embedding. A plane graph divides
the plane into connected regions called faces. We regard the contour of a face as
a cycle formed by the edges on the boundary of the face. We denote the contour
of the outer face of G by Co(G), or simply by Co if there is no confusion.

For a simple cycle C in a plane graph G, we denote by G(C) the plane
subgraph of G inside C (including C). We say that cycles C and C ′ in a plane
graph G are independent if G(C) and G(C ′) have no common vertex. An edge
of G which is incident to exactly one vertex of a cycle C and located outside C
is called a leg of the cycle C. The vertex of C to which a leg is incident is called
a leg-vertex of C. Every leg-vertex in a plane 3-graph has degree 3. A cycle C in
G is called a k-legged cycle of G if C has exactly k legs in G and there is no edge
which joins two vertices on C and is located outside C. In Figs. 1(a) and 1(d)
a 4-legged cycle C1 is shaded, and a 9-legged cycle C2 is drawn by thick lines.

Each cycle C in a plane graph G is drawn as a rectilinear polygon in any
orthogonal drawing D of G. The polygon is denoted by D(C). A (polygonal)
vertex of the rectilinear polygon is called a corner of the drawing D(C). Thus a
corner is either a vertex of G or a bend of D, and has an interior angle 90◦ or
270◦. A corner of an interior angle 90◦ is called a convex corner of D(C), while
a corner of an interior angle 270◦ is called a concave corner. A vertex v on C is
called a non-corner of D(C) if v is not a corner of D(C). Thus any vertex on C
is a convex corner, a concave corner, or a non-corner of D(C).

Let C be a cycle in G, and let v be a vertex on C which is a cut vertex in G.
We call v an outcut vertex for C in G if v is a leg-vertex of C in G, otherwise we
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call v an incut vertex for C in G. Any outcut vertex for C is not a concave corner
of D(C) in any orthogonal drawing D of G; otherwise, the leg of C could not be
drawn as a horizontal or vertical line segment. Similarly, any incut vertex for C
is not a convex corner. Thus any orthogonal drawing D of G has the following
property.

(p1) If v is an outcut vertex for a cycle C then v is either a convex corner or a
non-corner of D(C), and if v is an incut vertex for a cycle C then v is either
a concave corner or a non-corner of D(C).

Thus (p1) is a trivial necessary condition for an orthogonal drawing D(G)
of G. For any subgraph H of G, the drawing D(H) of H in D(G) has Property
(p1). In the plane graph G in Fig. 1(a), vertices u2 and u3 are outcut vertices
for the outer cycle Co(H1) of a biconnected component H1, and u1 is an incut
vertex for Co(H1). Vertex u4 is an outcut vertex for the shaded cycle C1, but is
an incut vertex for the cycle C2 drawn by thick lines. The orthogonal drawing
D(H1) of H1 in Fig. 1(c) has Property (p1), because outcut vertices u2 and u3

for a cycle are convex corners of the drawing of the cycle, incut vertex u1 for a
cycle is a non-corner of the drawing of the cycle, and incut or outcut vertex u4

for a cycle is a non-corner of the drawing of the cycle.
An orthogonal drawing D(H) of a biconnected subgraph H is called an op-

timal one if D(H) has Property (p1) and has the minimum number b(H) of
bends among all orthogonal drawings of H with Property (p1).

3 Bend-Minimum Orthogonal Drawing

In this section we present our main result on the bend-minimum orthogonal
drawing of a plane 3-graph.

Our idea is to decompose the plane graph G into biconnected components
and bridges as illustrated in Figs. 1(a) and (b), and then find an optimal orthog-
onal drawing D(H) of each biconnected component H as illustrated in Fig. 1(c).
A bridge is drawn as either a horizontal or a vertical line segment. Finally we
obtain a bend-minimum orthogonal drawing of G by combining the drawings of
all biconnected components and bridges without introducing new bends, as il-
lustrated in Fig. 1(d). The difficulty is that we cannot directly use the algorithm
for biconnected cubic plane graphs in [NY01] to find an optimal drawing of a
biconnected component, because a biconnected component is not always cubic
and a drawing obtained by the algorithm in [NY01] does not always have Prop-
erty (p1). We reduce the problem of finding an optimal drawing of a biconnected
component to the problem of finding an orthogonal drawing of the component
without bends by inserting “dummy” vertices of degree 2 to appropriate edges.

Rahman et al. [RNN02] have obtained a necessary and sufficient condition
for a biconnected plane subgraph H of a plane 3-graph G to have an orthogonal
drawing which is optimal and has has no bend, i.e., b(H) = 0. We now present
the condition. Let Co(H) contain four or more 2-vertices of H, and let x, y, z
and w be any four of them which clockwise appear on Co(H) in this order. Then
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an orthogonal drawing D(H) of H is called an optimal no-bend drawing for x,
y, z and w if D(H) satisfies the following three conditions (i), (ii) and (iii).

(i) D(H) has Property (p1);
(ii) D(H) has no bend, and hence b(H) = 0; and
(iii) D(H) intersects none of the four quadrants, the first quadrant with the

origin at x, the fourth quadrant with the origin at y, the third quadrant
with the origin at z, and the second quadrant with the origin at w, after
rotating the drawing if necessary.

Figure 2 illustrates an optimal no-bend drawing, where the four quadrants are
shaded. Clearly x, y, z, and w must be convex corners of the drawing D(Co(H))
of the outer cycle Co(H) of H, and the drawing D(H) should intersect neither
the horizontal open halfline with left end at x nor the vertical halfline with the
lower end at x, and so on for y, z, and w. Vertices x, y, z and w may be leg-
vertices in G, and then the leg will be drawn as a straight line-segment on an
open halfline with an end on them.

Let H be a biconnected plane subgraph of G, and let C be a cycle in H. We
say that a vertex v on C is good for C if v is a 2-vertex of H and is not an incut
vertex for C in G. Only a good vertex for C can be drawn as a convex corner of
the rectilinear polygon D(C) in an optimal orthogonal drawing D(H).

We are now ready to present the condition in [RNN02].
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Fig. 2. An optimal no-bend drawing of H for x, y, z and w.

Lemma 1. Let G be a connected plane 3-graph, let H be a biconnected plane
subgraph of G, and let x, y, z and w be 2-vertices of H which clockwise appear
on Co(H) in this order. Then H has an optimal no-bend drawing for x, y, z and
w if and only if the following (a), (b) and (c) hold:

(a) all the vertices x, y, z and w are good for the cycle Co(H) in G;
(b) there are at least two good vertices for every 2-legged cycle C in H; and
(c) there are at least one good vertex for every 3-legged cycle C in H.

Furthermore the drawing above can be found in linear time.
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In this paper we call the linear algorithm in [RNN02] for finding an optimal
no-bend drawing of a biconnected subgraph H of G No-Bend-Draw.

We call a cycle C in H a bad cycle if C does not satisfy (b) or (c) in Lemma 1.
Thus a bad cycle has one of the following three types depending on the numbers
of legs and good vertices.

(t1) A 2-legged cycle C for which there is no good vertex.
(t2) A 2-legged cycle C for which there is exactly one good vertex.
(t3) A 3-legged cycle C for which there is no good vertex.

The two leg-vertices divide a bad cycle C of Type (t1) into two paths; we
call them the contour paths of C, and call C a 2-path cycle. The two leg-vertices
and the good vertex divide a cycle C of Type (t2) into three paths. Similarly
the three leg-vertices divide a cycle C of Type (t3) into three paths. We call a
cycle C of Type (t2) and (t3) a 3-path cycle, and call each of the three paths on
C a contour path.

For a bad cycle C in H, we now define a set Des(C) of bad cycles and the
hierarchical structure of bad cycles in Des(C) as follows. We call a cycle C ′ a
descendant bad cycle of C if C �= C ′, C ′ is a bad cycle, and C ′ is contained in
the subgraph H(C) of H inside C. There are two cases to consider.
Case 1: C is a 2-path cycle.

In this case, we choose any of the two leg-vertices of C as a reference vertex r
for C, and let Des(C) be the set of all descendant bad cycles of C not containing
r. A cycle C ′ ∈ Des(C) is called a child-cycle of C (with respect to r) if C ′ is
not located inside any other bad cycle in Des(C).
Case 2: C is a 3-path cycle.

In this case, let Des(C) be the set of all descendant bad cycles of C. A cycle
C ′ ∈ Des(C) is called a child-cycle of C if C ′ is not located inside of any other
bad cycle in Des(C).

We now have the following lemma, a proof of which is omitted in this extended
abstract.

Lemma 2. If C is a bad cycle in H, then the child-cycles of C are independent
of each other.

A bad cycle C in H is defined to be a maximal bad cycle of H if C is not
contained in H(C ′) for any other bad cycle C ′ in H. We can prove that all the
maximal bad cycles of H are independent of each other; the proof is similar to
that of Lemma 2 and is omitted in this extended abstract. We regard all the
maximal bad cycles as the child-cycles of the outer cycle Co(H) of H. We find
child-cycles of each maximal bad cycle and then find child-cycles of each child-
cycle recursively, and eventually we get a (hierarchical) tree structure of bad
cycles in H. The structure is represented by a “genealogical tree” TH ; the root
of TH is Co(H), the children of root Co(H) are the maximal bad cycles of H,
and so on. Because of the choices of a reference vertex r, TH may have some
variations. However, we choose an arbitrary (but) fixed one as TH . Figure 3(b)
illustrates TH for H in Fig. 3(a). Based on the genealogical tree TH we will give
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Fig. 3. (a) A biconnected component H, and (b) a genealogical tree TH .

later in Section 4 Algorithm Bad-Cycle-Draw to find an optimal orthogonal
drawings of H(C) for a bad cycle C in TH .

Using No-Bend-Draw and Bad-Cycle-Draw, we now give Algorithm Bi-
Comp-Draw for finding an optimal orthogonal drawing D(H) of a biconnected
component H of G, that is, an orthogonal drawing D(H) with Property (p1) and
the minimum number b(H) of bends. We assume for simplicity that there are
at least four good vertices for Co(H); otherwise we shall carefully insert dummy
vertices of degree 2 into edges on Co(H) as good vertices for Co(H). (Note that
these dummy vertices will appear as bends in an optimal orthogonal drawing of
H.) Then H satisfies (a) in Lemma 1 if one regards, as x, y, z and w, any four
good vertices for Co(H).

Algorithm Bi-Comp-Draw(H)
begin

1 Select any four good vertices for Co(H) as x, y, z and w.
2 if H satisfies (b) and (c) in Lemma 1 then
3 find an optimal no-bend drawing of H by No-Bend-Draw
4 else

begin
5 Find the maximal bad cycles C1, · · · , Cl of Co(H);
6 For each i, 1 ≤ i ≤ l, contract cycle Ci to a single vertex vi;
7 Let H∗ be the resulting graph; (H∗ satisfies (a)–(c) in Lemma 2.1.)
8 Find an optimal no-bend orthogonal drawing of H∗

by No-Bend-Draw;
9 Find an optimal orthogonal drawing of each H(C1), · · · , H(Cl)

by Bad-Cycle-Draw;
10 Patch the drawings D(H(C1)), · · · , D(H(Cl)) into D(H∗);
11 The resulting drawing D(H) is an optimal orthogonal drawing of H.

end
end.

Figure 4 illustrates Algorithm Bi-Comp-Draw. The biconnected compo-
nent H in Fig. 4(a) has exactly one maximal bad cycle C drawn by thick line
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Fig. 4. Illustration for Algorithm Bi-Comp-Draw.

segments. The graph H∗ in Fig. 4(b) is obtained from H by contracting H(C)
to a single vertex y∗. Figure 4(c) illustrates an optimal no-bend drawing D(H∗)
of H∗ obtained by No-Bend-Draw. The drawing in Fig. 4(d) is an optimal
orthogonal drawing D(H(C)) of the subgraph H(C) obtained by Bad-Cycle-
Draw. Figure 4(e) illustrates an orthogonal drawing D(H) of H obtained by
patching D(H(C)) into D(H∗).

We now have following lemma on Bi-Comp-Draw.

Lemma 3. Let G be a connected plane 3-graph, and let H be a biconnected
component of G. Then Algorithm Bi-Com-Draw finds an optimal orthogonal
drawing of H in linear time.

We finally give Algorithm Bend-Min-Draw to find a bend-minimum or-
thogonal drawing of a connected plane 3-graph G, as follows. First, decompose
G into biconnected components and bridges. Then find an optimal orthogonal
drawing D(H) of each biconnected component H of G by Algorithm Bi-Comp-
Draw. Each bridge is drawn as either a horizontal or vertical line segment. Then
construct a “block-cut-vertex tree” of G, and combine the drawings of all com-
ponents without introducing new bends to a bend-minimum orthogonal drawing
of G. We now have the following theorem, which is the main result of this paper.

Theorem 1. Algorithm Bend-Min-Draw finds a bend-minimum orthogonal
drawing of a connected plane 3-graph G in linear time.

4 Optimal Orthogonal Drawings of Bad Cycles

In this section we give an algorithm Bad-Cycle-Draw to find an orthogonal
drawing of H(C) for a bad cycle C in a biconnected component H of G.

We have the following two facts for any orthogonal drawing of H with Prop-
erty (p1).
Fact 4 At least two bends must appear on a 2-path cycle in H.

Fact 5 At least one bend must appear on a 3-path cycle in H.
Using Facts 4 and 5, in Section 4.1 we determine the number of bends which

are necessary for an optimal orthogonal drawing of a subgraph H(C) for a bad
cycle C. In Section 4.2 we give an algorithm Bad-Cycle-Draw for finding an
optimal orthogonal drawing of H(C).
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4.1 Classification and Assignment

We classify the contour paths of each bad cycle C in a genealogical tree TH as
a blue path or a green path or a red path in a recursive manner based on TH .
In addition, we assign an integer bc(C), called the bend count of C, to each bad
cycle C in TH . We will show later that H(C) has an optimal orthogonal drawing
and that b(H(C)) = bc(C). Furthermore we will show that

(i) for any blue path P of C, H(C) has an optimal orthogonal drawing with
two or more bends on P ,

(ii) for any green path P of C, H(C) has an optimal orthogonal drawing with
one or more bends on P ,

(iii) for any red path P of C, H(C) has an optimal orthogonal drawing with
no bend on P , and

(iv) C contains a blue path or a green path.
Let C be a bad cycle in TH , and let C1, C2, · · · , Cl be the child-cycles of C.

Assume that we have already defined the classification and the assignment for
all child-cycles of C and are going to define them for C. We have the following
four cases.
Case 1: C has no child-cycle.

If C is a 2-path cycle, then we classify the two contour paths of C as blue
paths and set bc(C) = 2. If C is a 3-path cycle, then we classify the three contour
paths of C as green paths and set bc(C) = 1.
Case 2: C is a 2-path cycle, and all child-cycles of C are 2-legged cycles.

Let x and y be the two leg-vertices of C, and let P1 and P2 be the clockwise
contour paths from x to y and from y to x, respectively. We may assume that x
is chosen as the reference vertex r.
Subcase 2a: any child-cycle of C has neither a green path on C nor a blue path
on C.

In this case we classify both the contour paths of C as blue paths and set
bc(C) = 2 +

∑l
i=1 bc(Ci).

Subcase 2b: C has a child-cycle which has a blue path on C.
In this case we set bc(C) =

∑l
i=1 bc(Ci). We classify the two contour paths

P1 and P2 of C as follows. We classify Pi as a blue path if either Pi contains
a blue path of a child cycle of C or Pi contains green paths of two or more
child-cycles. We classify Pi as a green path if Pi contains a green path of exactly
one child-cycle and does not contain a blue path of any child-cycle. We classify
Pi as a red path if Pi contains none of the blue paths and the green paths of all
child-cycles of C.
Subcase 2c: C has no child-cycle which has a blue path on C, but has a child-
cycle which has a green path on C.

If P1 contains green paths of two or more child-cycles, then we classify P1 as
a blue path and set bc(C) =

∑l
i=1 bc(Ci). In such a case we classify P2 as a blue

path if it contains green paths of two or more child-cycles, as a green path if it
contains a green path of exactly one child-cycle, and as a red path if it contains
neither a green path nor a blue path of a child-cycle.
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If P2 contains green paths of two or more child cycles, then we classify the
contour paths P1 and P2 similarly as above and set bc(C) =

∑l
i=1 bc(Ci).

If each of P1 and P2 contains a green path of exactly one child cycle, then
we classify both of P1 and P2 as green paths and set bc(C) =

∑l
i=1 bc(Ci).

Otherwise, exactly one of the two contour paths P1 and P2 contains a green
path of exactly one child-cycle. We classify it as a blue path and classify the
other contour path as a green path. In this case we set bc(C) = 1+

∑l
i=1 bc(Ci).

Case 3: C is a 2-path cycle, and has a 3-legged child-cycle.
Omitted in this extended abstract.

Case 4: C is a 3-path cycle and has one or more child-cycles.
Omitted in this extended abstract.
Using a method similar to one in [RNN99], the classification and assignments

above can be done in linear time. We can prove the following lemma by induction.

Lemma 6. For any cycle C in TH , H(C) has a set S of vertex disjoint cycles
consisting of l2 2-path cycles and l3 3-path cycles such that bc(C) = 2l2 + l3.

We have the following lemma immediately from Facts 4, 5 and Lemma 6.

Lemma 7. Any cycle C in TH satisfies b(H(C)) ≥ bc(C).

Conversely proving b(H(C)) ≤ bc(C), we have b(H(C)) = bc(C) for any cycle
C in TH . Indeed we will prove a stronger claim later in Lemmas 8 and 9.

4.2 Bad-Cycle-Draw

Let C be a 2-path cycle in TH , and let x and y be the two leg vertices of C. Since
C is in TH , C has a blue path or a green path. For a blue path P of C, an optimal
orthogonal drawing of H(C) is defined to be 2-bend optimal for P if at least two
bends appear on the blue path P and the drawing satisfies the condition (c1)
given below. For a green path P of C, an optimal orthogonal drawing of H(C)
is defined to be 1-bend optimal for P if at least one bend appears on the green
path P and the drawing satisfies the condition (c2) given below.

(c1) The drawing D(H(C)) intersects neither the second quadrant with the
origin at x nor the third quadrant with the origin at y, after rotating the
drawing and renaming the leg-vertices if necessary. See Fig. 5(a). Note that
C is not always drawn by a rectangle.

(c2) The drawing D(H(C)) intersects neither the first quadrant with the origin
at x nor the third quadrant with the origin at y, after rotating the drawing
and renaming the leg-vertices if necessary. See Fig. 5(b). Note that C is not
always drawn by a rectangle.

Let C be a 3-path cycle in TH , and let x, y and z be the three leg-vertices
of C if C is a 3-legged cycle, otherwise let x and y be the two leg-vertices and
let z be the non-incut vertex of degree 2. (We may change the name of vertices
x, y, z if necessary.) One may assume that x, y and z appear clockwise on C.
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Fig. 5. (a) A 2-bend optimal drawing of a 2-path cycle, and (b) a 1-bend optimal
drawing of a 2-path cycle.

Since C is in TH , C has a blue or green path. For a blue path P on C with ends
x and y, an optimal orthogonal drawing of H(C) is defined to be 2-bend optimal
for P if at least two bends appear on the blue path P and the drawing satisfies
the condition (c3) given below. For a green path P on C with ends x and y,
an optimal orthogonal drawing of H(C) is defined to be 1-bend optimal for P
if at least one bend appears on the green path P and the drawing satisfies the
condition (c3) given below.

(c3) The drawing D(H(C)) intersects none of the following three quadrants: the
first quadrant with origin at x, the third quadrant with origin at y, and the
second quadrant with origin at z, after rotating the drawing and renaming
the leg-vertices if necessary.

An orthogonal drawing of H(C) for a bad cycle C is simply called an optimal
drawing if it is 1-bend optimal or 2-bend optimal for a green or blue path. We
now have the following lemma.

Lemma 8. Let G be a connected plane 3-graph, and let H be a biconnected
component of G. If a cycle C in TH has a blue path P , then H(C) has an
orthogonal drawing which is 2-bend optimal for P .

Proof. We give a recursive algorithm to find an orthogonal drawing of H(C)
which is 2-bend optimal for P . Our algorithm inserts dummy vertices on some
edges of a subgraph of H and uses the algorithm No-Bend-Draw in each
recursive step. The algorithm is similar to one in [RNN99, RNN02]. We omit the
detail in this extended abstract. Q.E .D.

Lemma 9. Let G be a connected plane 3-graph, and let H be a biconnected
component of G. If a cycle C in TH has a green path P , then H(C) has an
orthogonal drawing which is 1-bend optimal for P .
Proof. We give a recursive algorithm to find a 1-bend optimal drawing of H(C)
for the green path P . The algorithm is similar to that in the proof of Lemma 8.
The details are omitted in this extended abstract. Q.E .D.
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The algorithm for finding an optimal orthogonal drawing of H(C) described
in the proofs of Lemmas 8 and 9 above is hereafter called Bad-Cycle-Draw.
We now have the following lemma on Bad-Cycle-Draw.

Lemma 10. Let G be a connected plane 3-graph and let H be a biconnected
component of G. Then Algorithm Bad-Cycle-Draw finds an optimal orthogonal
drawing of H(C) for any bad cycle C in TH in linear time.

Proof. The proof is similar to the proof of Lemma 13 in [RNN99]. Q.E .D.

5 Conclusions

In this paper we have presented a linear-time algorithm to find an orthogonal
drawing of any given plane 3-graph with the minimum number of bends. It is
remaining as a future work to find a linear-time algorithm for a plane 4-graph.

Our linear algorithm works for a plane 3-graph, that is, a planar 3-graph
with a fixed planar embedding. Di Battista et al. [DLV98] gave an algorithm
to find a bend-minimum orthogonal drawing of a planar 3-graph G in time
O(n5 log n), where the planar embedding of G is not fixed. In their algorithm
they used a “min-cost flow” algorithm of time complexity O(n2 log n) to find a
bend-minimum drawing of a plane 3-graph. Using our linear algorithm, the time
complexity of the algorithm in [DLV98] may be improved.
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Abstract. In a clustering problem one has to partition a set of elements
into homogeneous and well-separated subsets. From a graph theoretic
point of view, a cluster graph is a vertex-disjoint union of cliques. The
clustering problem is the task of making fewest changes to the edge set
of an input graph so that it becomes a cluster graph. We study the
complexity of three variants of the problem. In the Cluster Completion
variant edges can only be added. In Cluster Deletion, edges can only be
deleted. In Cluster Editing, both edge additions and edge deletions are
allowed. We also study these variants when the desired solution must
contain a prespecified number of clusters.
We show that Cluster Editing is NP-complete, Cluster Deletion is NP-
hard to approximate to within some constant factor, and Cluster Com-
pletion is polynomial. When the desired solution must contain exactly p
clusters, we show that Cluster Editing is NP-complete for every p ≥ 2;
Cluster Deletion is polynomial for p = 2 but NP-complete for p > 2;
and Cluster Completion is polynomial for any p. We also give a constant
factor approximation algorithm for Cluster Editing when p = 2.

1 Introduction

Problem Definition and Motivation: Clustering is a central optimization problem
with applications in numerous fields including computational biology (cf. [15]),
image processing (cf. [16]), VLSI design (cf. [7]), and many more. The input to
the problem is typically a set of elements and pairwise similarity values between
elements. The goal is to partition the elements into subsets, which are called
clusters, so that two meta-criteria are satisfied: Homogeneity - elements inside a
cluster are highly similar to each other; and separation - elements from different
clusters have low similarity to each other. Concrete realizations of these criteria
generate a variety of combinatorial optimization problems [8].

In the basic graph theoretic approach to clustering, one builds from the raw
data a similarity graph whose vertices correspond to elements and there is an
edge between two vertices if and only if the similarity of their corresponding ele-
ments exceeds a predefined threshold [9,8]. Ideally, the resulting graph would be
a cluster graph, that is, a graph composed of vertex-disjoint cliques. In practice,
it is only close to being such, since similarity data is experimental and, therefore,
error-prone.
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Following [2] we formalize the resulting problem as the task of changing
(adding or deleting) fewest edges of an input graph so as to obtain a clus-
ter graph. We call this problem Cluster Editing. In the related Cluster Deletion
problem (respectively, Cluster Completion) one has to remove (respectively, add)
fewest edges from an input graph so that it becomes a cluster graph. Completion
(deletion) problems arise when the data contains only false negative (positive)
errors. The above problems belong to the class of edge modification problems
(cf. [13]), in which one has to minimally change the edge set of a graph so as
to satisfy a certain property. Another variant of these problems arises when the
solution is also required to consist of a prespecified number of clusters. This vari-
ant is motivated by many real-life applications in which a partition of elements
into a known number of categories is desired (see, e.g., [6, 1]).

Previous Results: Edge modification problems were studied extensively in [13]
where earlier studies are also reviewed. Most of these problems were shown to
be NP-complete. Polynomial algorithms were given for bounded degree input
graphs. In particular, a constant factor approximation algorithm was given for
editing and deletion problems with respect to any property that can be charac-
terized by a finite set of forbidden induced subgraphs. Since a graph is a cluster
graph if and only if it is P2-free (i.e., it does not contain an induced path of two
edges), this result implies a 3d-approximation algorithm for Cluster Editing and
Cluster Deletion on input graphs with degree bounded by d.

The Cluster Editing problem was first studied by Ben-Dor et al. [2], who
presented a polynomial algorithm that solves the problem with high probability
under a stochastic data model. The complexity of the problem was left open.
Cluster Deletion was shown to be NP-complete by Natanzon [12].

Contribution of This Paper: We prove that Cluster Editing is NP-complete,
Cluster Deletion is NP-hard to approximate to within some constant factor,
and Cluster Completion is polynomial. We also study the p-Cluster versions of
these problems, in which the required graph must also be a vertex-disjoint union
of p cliques. We show that p-Cluster Editing is NP-complete for every p ≥ 2;
p-Cluster Deletion is polynomial for p = 2 but NP-complete for p > 2; and p-
Cluster Completion is polynomial for any p. We also give a 0.878-approximation
algorithm for a weighted variant of 2-Cluster Editing.

For lack of space some proofs are only sketched or omitted.

2 Preliminaries

All graphs in this paper are simple, i.e., contain no parallel edges or self-loops.
Let G = (V,E) be a graph. We denote its set of edges by E(G). For two disjoint
subsets A,B ⊆ V , we denote by EA,B (EA,B) the set of all edges (non-edges)
with one endpoint in A and the other in B. The complement graph of G is
G = (V, {(u, v) ∈ (V × V ) \ E : u �= v}). See [3] for more definitions of graphs
and hypergraphs.

A graph G = (V,E) is called a cluster graph if every connected component
of G is a complete graph. G is called a p-cluster graph if it is a cluster graph



Cluster Graph Modification Problems 381

with p connected components or, equivalently, if it is a vertex-disjoint union of p
cliques. If G is any graph and F ⊂ V ×V is such that G′ = (V,E*F ) is a cluster
graph, then F is called a cluster editing set for G (E*F denotes the symmetric
difference between E and F , i.e., (E \ F )∪ (F \E)). If in addition F ⊆ E, then
F is called a cluster deletion set for G. If F ∩ E = φ then F is called a cluster
completion set for G. p-cluster editing set, p-cluster deletion set, and p-cluster
completion set are similarly defined. We denote by P (F ) the partition of V into
disjoint subsets of vertices according to the connected components (cliques) of
G′. For a partition P = (V1, . . . , Vl) of V , we denote by NP the size of the cluster
editing set implied by P , that is,

NP ≡ |
l⋃

i=1

{(u, v) �∈ E : u, v ∈ Vi} ∪ {(u, v) ∈ E : u ∈ Vi, v ∈ Vj , i �= j}| .

The problems we study in this paper are of two types:

Problem 1 (Cluster Editing/Completion/Deletion). Given a graph G and an in-
teger k, determine if G has a cluster editing/completion/deletion set of size at
most k.

Problem 2 (p-Cluster Editing/Completion/Deletion). Given a graph G and an
integer k, determine if G has a p-cluster editing/completion/deletion set of size
at most k.

3 Cluster Editing

We prove in this section that Cluster Editing is NP-complete by reduction from
a restriction of exact cover by 3-sets:

Problem 3 (3-Exact 3-Cover (3X3C)). Given a collection C of triplets of ele-
ments from a set U = {u1, . . . , u3n}, such that each element of U is a member
of at most 3 triplets, determine if there is a sub-collection I ⊆ C of size n which
covers U .

The 3X3C problem is known to be NP-complete [4, Problem SP2].

Theorem 1. Cluster Editing is NP-complete.

Proof. Membership in NP is trivial. We prove NP-hardness by reduction from
3X3C. Let m ≡ 30n. Given an instance 〈C,U〉 of 3X3C we build a graph G =
(V,E) as follows:

V =
⋃

S∈C

{vS,1, . . . , vS,m} ∪ U ,

E = E1 ∪ E2 ∪ E3 ,

E1 = {(vS,i, u) : S ∈ C, 1 ≤ i ≤ m,u ∈ S} ,
E2 = {(vS,i, vS,j) : S ∈ C, 1 ≤ i < j ≤ m} ,
E3 = {(u, u′) : ∃S ∈ C s.t. u, u′ ∈ S} .
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In words, we build a clique of size m + 3 around each triplet S by fully con-
necting S and m additional vertices. For each triplet S ∈ C we denote VS =
{vS,1, . . . , vS,m} and call the elements of VS , S-vertices. Let q =

∑
S∈C |S| =

3|C|. Define N ≡ m(q−3n) and M ≡ |E3|−3n. We prove that there is an exact
cover of U iff there is a cluster editing set for G of size at most N + M :

(⇒) Suppose that I ⊆ C is an exact cover of U . Let F1 = {(vS,i, u) : S �∈
I, 1 ≤ i ≤ m,u ∈ S} and let F2 = {(u, u′) ∈ E3 : �S ∈ I s.t. u, u′ ∈ S}. It
is easy to verify that F = F1 ∪ F2 is a cluster editing set for G, whose size is
|F | = |F1|+ |F2| = N + M .

(⇐) Let F be an editing set of G′ of minimum size, and |F | ≤ N + M . We
shall prove that |F | = N + M and one can derive from F an exact cover of U .
Since each element of U occurs in at most 3 triplets, q ≤ 9n. Thus, |E3| ≤ q ≤ 9n
and |F | ≤ N + M ≤ 6mn + 6n = 180n2 + 6n < m

2 (m
2 − 2).

Let G′ = (V,E*F ) be the cluster graph obtained by editing G according to
F . We shall prove that for every subset S ∈ C there is a unique clique in G′

which contains VS . To this end, we first show that there is a clique KS in G′

such that |KS ∩ VS | ≥ m/2 + 3: Suppose that the vertices of VS are partitioned
among k cliques X1, . . . , Xk in G′. Let s(Xi) = |VS ∩Xi|, i = 1, . . . , k. Suppose
to the contrary that s(Xi) ≤ m/2 + 2 for all i. Therefore,

|F | ≥ 1
2

k∑
i=1

s(Xi)(m− s(Xi)) ≥ 1
2

k∑
i=1

s(Xi)(
m

2
− 2) =

m

2
(
m

2
− 2) .

A contradiction follows.
Let KS be the clique Xi for which s(Xi) is maximum (|KS ∩VS | ≥ m/2+3).

We next prove that VS ⊆ KS ⊆ VS ∪S. Let x = |KS \ (VS ∪S)|. Consider a new
partition P ′ of V , which is obtained from P (F ) by splitting KS into KS∩(VS∪S)
and KS \ (VS ∪ S). Clearly, NP (F ) − NP ′ ≥ (m/2 + 3)x − 3x = xm/2. But F
is an optimum cluster editing set. Therefore, x = 0 and KS ⊆ VS ∪ S. To see
that KS ⊇ VS , suppose to the contrary that there is some index 1 ≤ i ≤ m
such that vS,i �∈ KS . Let K ′ be the clique in G′ which contains vS,i. Let P ′′ be
a new partition of V , which is obtained from P (F ) by moving vS,i from K ′ to
KS . Then NP (F ) − NP ′′ ≥ m/2 + 3 − (m/2 − 4 + 3) = 4, a contradiction. We
conclude that for every S ∈ C there is a unique clique in G′ which contains VS

and is contained in VS ∪ S.
Let F1 = F ∩ E1. Examine an element u ∈ U which is a member of (at

least) two subsets S1, S2 ∈ C. By the previous claim, VS1 and VS2 are subsets of
distinct cliques in G′. Hence, either EVS1 ,{u} ⊆ F , or EVS2 ,{u} ⊆ F (or both).
Therefore, |F1| ≥ N . Moreover, since |F1| ≤ N + M and M ≤ 6n, each vertex
u ∈ U must be adjacent in G′ to the S-vertices of exactly one set S where u ∈ S.
Call this set the S-set of u.

Let F2 = F \ F1. For every two vertices u, u′ ∈ U such that (u, u′) ∈ E, and
the S-sets of u and u′ differ, we must have (u, u′) ∈ F2. Since each subset in
C contains 3 elements, every u ∈ U has at most 2 neighbors in U . Therefore,
|F2| ≥M , with equality iff there is a partition of U into triplets of elements, such
that the S-set of the elements in each triplet is the same. Since |F | ≤ N + M ,
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we must have |F | = N + M , and the implied partition into triplets induces an
exact cover of U . 
�

3.1 p-Cluster Editing

In this section we study the p-Cluster Editing problem. We first show that 2-
Cluster Editing is NP-complete. We then conclude that p-Cluster Editing is
NP-complete for every p ≥ 2.

To prove the hardness of 2-Cluster Editing, we define the following problem:

Problem 4 (3-Uniform Hypergraph Balanced 2-Colorability). Given a 3-uniform
hypergraph G, determine if there is a 2-coloring of G such that the number of
vertices that are colored by each color is the same.

This problem can be shown to be NP-complete by a trivial reduction from
Hypergraph 2-Colorability on 3-uniform hypergraphs, whose NP-hardness was
proven by Lovasz [11].

Theorem 2. 2-Cluster Editing is NP-complete.

Proof. Membership in NP is trivial. We reduce from 3-Uniform Hypergraph
Balanced 2-Colorability. Given a hypergraph G = (V,E), we build an instance
of 2-Cluster Editing 〈G′ = (V ′, E′), k〉 as follows: Let n and m be the number of
vertices and hyperedges, respectively, in G, and assume that V = {1, . . . , n}. Let
M ≡ 2n3. We define V ′ = ∪n

i=1Vi where Vi = {vi,j : j = 1, . . . ,M}. For a triplet
of indices 1 ≤ i < j < l ≤ n define the set Ei,j,l = {(vi,r, vj,r), (vj,r+1, vl,r),
(vl,r+1, vi,r+1)}, where r = 2(n2i + nj + l)− 1. We add edges to G′ by building
a clique around each Vi, and for every triplet of indices i < j < l such that
(i, j, l) /∈ E, we add the edges of Ei,j,l. Finally, we set k ≡ 2

(
n/2
2

)
(M2 − (n −

2)) + (n
2 )2(n− 2)−m.

The sets V1, . . . , Vn will be called clusters. We say that a partition (S, V ′ \S)
splits a cluster Vi if Vi ∩ S �= φ and Vi �⊆ S. For convenience we also define a
graph G′′ which is built like G′ except that it contains the edges Ei,j,l for every
triplet i < j < l. We now prove the correctness of this reduction, namely that
there is a balanced 2-coloring of G iff there is a 2-cluster editing set of G′ of size
at most k.

(⇒) Suppose that f :V → {0, 1} is a balanced 2-coloring of G. Let S =
∪i:f(i)=0Vi, and let F ′, F ′′ be the 2-cluster editing sets of G′ and G′′, respectively,
that correspond to the partition (S, V \ S). Since f is balanced, each side of the
partition (S, V \S) consists of n/2 clusters. We first compute the size of F ′′. For
two clusters Vi and Vj (with i < j), and for each l �= i, j, one of Ei,j,l, Ei,l,j , or
El,i,j contains exactly one edge between Vi and Vj . Therefore, there are exactly
n − 2 edges between every pair of clusters in G′′. It follows that F ′′ consists
of 2
(
n/2
2

)
(M2 − (n − 2)) edges that are not in E between clusters in the same

set in the partition (S, V \ S), and (n
2 )2(n − 2) edges in E between clusters in

different sets in the partition. Thus, |F ′′| = 2
(
n/2
2

)
(M2 − (n− 2)) + (n

2 )2(n− 2).
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We now compute the size of F ′. For each edge (i, j, l) ∈ E, the edges of Ei,j,l

in G′′ contribute two edges to F ′′ (as the clusters Vi, Vj , and Vk are not all in
the same set in the partition), while the non-existence of the edges of Ei,j,l in
G′ contributes only one edge to F ′ (between the two clusters on the same side).
It follows that |F ′| = |F ′′| −m = k.

(⇐) Suppose that F is a 2-cluster editing set of G′ of minimum size, and
|F | ≤ k. Let P (F ) = (S, V ′ \S). We first claim that (S, V ′ \S) splits no cluster.
Suppose conversely that (S, V ′ \ S) splits at least one cluster.

If (S, V ′ \ S) splits more than one cluster, then let Vi be a cluster that is
split by the partition such that |Vi ∩ S| is minimum, and let Vj be a cluster
that is split by the partition such that |Vj ∩ S| is maximum and j �= i. Denote
a = |Vi ∩ S| and b = |Vj ∩ S|. Select some vertex u ∈ Vi ∩ S and a vertex
w ∈ Vj \ S. Let S′ = S ∪ {w} \ {u}, and let F ′ be the 2-cluster editing set
that corresponds to (S′, V ′ \ S′). We will show that |F | − |F ′| ≥ 0. Note that
a vertex v ∈ Vi has at most one neighbor outside Vi. If such a neighbor exists,
denote it by nv. The number of edges in F that are incident on u is at least
(M − a) + (|S| − a − 1) (the term −1 is due to the possibility that nu exists
and nu ∈ S) and the number of edges in F that are incident on w is is at
least b + (nM − |S| − (M − b) − 1) (the term −1 is due to the possibility that
nw exists and nw ∈ V ′ \ S). The total number of edges of these two kinds is
nM−2a+2b−2. Similarly, the number of edges in F ′ that are incident on u or w
is at most a+(nM−|S|−(M−a)−1)+(M−b)+(|S|−b−1) = nM+2a−2b−2.
It follows that

|F | − |F ′| ≥ (nM − 2a + 2b− 2)− (nM + 2a− 2b− 2) = 4(b− a) ≥ 0.

If a < b, we have that |F ′| < |F |, a contradiction to the minimality of F . In the
case when a = b, namely the value of |Vl ∩ S| is equal amongst all the clusters,
we have that |F ′| = |F |. We build a set S′′ from S′ using the same process as
above, and since |Vl ∩ S′| is not equal amongst the clusters, it follows that the
2-cluster editing set F ′′ that corresponds to S′′ satisfies |F ′′| < |F ′| = |F |, and
again we arrive at a contradiction.

Now suppose that the partition (S, V ′ \ S) splits exactly one cluster, and
denote this cluster by Vi. Let a = |Vi∩S|. Out of the rest n−1 clusters, suppose
that r clusters are contained in S, and n− r− 1 clusters are contained in V ′ \S.
W.l.o.g. suppose that n−r−1 ≤ r, and since n is even we have n−r−1 ≤ r−1.
Define S′ = S \ Vi, and let F ′ be the corresponding 2-cluster editing set. For
each v ∈ Vi ∩ S, there are at least rM − 1 edges in F between v and S \ Vi,
and M − a edges between v and Vi \ S, so the number of edges in F that are
incident on v is at least rM − 1 +M − a. On the other hand, an edge in F ′ that
is incident on v is either between v and nv, or between v and (V ′ \ S) \ Vi. The
number of edges of the latter type is (n− 1− r)M , so the number of edges in F
that are incident on v is at most (n − 1 − r)M + 1 ≤ (r − 1)M + 1. It follows
that

|F | − |F ′| ≥ a (rM − 1 + M − a− ((r − 1)M + 1)) = a (2M − a− 2) > 0,

contradicting the minimality of F . Therefore, F splits no cluster.
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We now claim that the number of clusters that are contained in S is exactly
n/2. Conversely, suppose w.l.o.g. that r > n/2. Let Vi be some cluster contained
in S. Let S′ = S \ Vi and let F ′ be the corresponding 2-cluster editing set.
Similarly to the above, we have that

|F | − |F ′| ≥M((r − 1)M − 1− ((n− r)M + 1)) ≥M(M − 2) > 0,

a contradiction. Hence, S contain n/2 clusters.
Define a coloring f :V → {0, 1} by f(i) = 0 iff Vi ⊆ S. By the argument

above, f is balanced. It remains to show that f is a legal 2-coloring. For a hyper-
edge (i, j, k) ∈ E, if i, j, k have the same color then |F ∩ Ei,j,l| = 3. Otherwise,
|F ∩Ei,j,l| = 1 since two of the edges in Ei,j,l must connect vertices in clusters on
different sides of the partition (S, V ′ \S). Hence, each monochromatic hyperedge
adds two to the size of F . By the first direction of the proof, for a legal 2-coloring,
the corresponding editing set is of size exactly k, and thus no monochromatic
hyperedge is possible in f . It follows that f is a balanced 2-coloring of G. 
�

Corollary 1. p-Cluster Editing is NP-complete for any p ≥ 2.

Proof. Fix p > 2. We provide a reduction from 2-Cluster Editing. Given an input
instance 〈G = (V,E), k〉 of 2-Cluster Editing, |V | = n, we form an instance
〈G′ = (V ′, E′), k〉 of p-Cluster Editing as follows: Define V ′ = V ∪∪p−2

i=1 Vi where
Vi = {wi,j : j = 1, . . . , n2}. The edges of G′ include all the edges in E and a
clique on each Vi.

Clearly, every 2-cluster editing set of G is a p-cluster editing set of G′ (of the
same size). Conversely, suppose that F ′ is a p-cluster editing set of G′ of size at
most k, and let (S1, . . . , Sp) be the corresponding partition. We show that F ′ is
also a 2-cluster editing set for G.

If there is a set Vi such that Vi ∩ Sj �= φ and Vi �⊆ Sj for some j, then
F ′ contains EVi∩Sj ,Vi\Sj

. The number of such edges is at least n2 − 1 > k, a
contradiction. Therefore, every set Vi is contained in some set Sj . Furthermore,
every set Sj contains at most one set Vi since otherwise we have |F ′| ≥ n4 > k, a
contradiction. It follows that all edges in F ′ are incident on vertices of V , which
implies that F ′ is a 2-cluster editing set of G. 
�

3.2 A 0.878-Approximation Algorithm

We give in this section a polynomial approximation algorithm for a weighted
variant of 2-Cluster Editing which is defined as follows:

Problem 5 (Weighted 2-Cluster Editing). Given a graph G and a weight function
on vertex pairs w:E(G) ∪ E(G) → N , find in G a 2-cluster editing set with
maximum total weight of unedited vertex pairs.

Note, that the decision version of Weighted 2-Cluster Editing reduces to that
of 2-Cluster Editing when w ≡ 1 (i.e., w(e) = 1 for every e ∈ E(G) ∪ E(G)).



386 Ron Shamir, Roded Sharan, and Dekel Tsur

Let n = |V | and let Sn denote the n-dimensional unit sphere. We define the
following semi-definite relaxation of Weighted 2-Cluster Editing:

max
1
2
[
∑

(i,j)∈E

(wij(1 + vi · vj)) +
∑

(i,j) �∈E

(wij(1− vi · vj))]

s.t. vi ∈ Sn ∀i

We claim that this is indeed a relaxation of Weighted 2-Cluster Editing,
that is, for every partition P = (A,B) of G there exist vectors v1, . . . , vn ∈
Sn such that the total weight of unedited vertex pairs as implied by P is
1
2 [
∑

(i,j)∈E(wij(1 + vi · vj)) +
∑

(i,j) �∈E(wij(1− vi · vj))]. Indeed, let (A,B) be a
partition of G. Let v0 be any unit vector in Sn. For every i ∈ A set vi = v0, and
for every i ∈ B set vi = −v0. The claim follows.

Our approximation algorithm solves this semi-definite relaxation and then
rounds the solution obtained using the random hyperplane technique [5].

Theorem 3. The algorithm approximates Weighted 2-Cluster Editing with an
expected approximation ratio of at least 0.878.

Proof. Follows directly from [5, Theorem 6.1]. 
�

4 Cluster Completion

The Cluster Completion problem is trivially polynomial: The optimum solution
is obtained by simply transforming each connected component of the input graph
into a complete graph. In this section we give a polynomial algorithm for p-
Cluster Completion, for any fixed p ≥ 2.

Let G = (V,E) be an input graph with n vertices and t connected compo-
nents. If t < p we output False. We assume henceforth that t ≥ p. To find the
optimum completion set we compute partitions of the t components of G into p
sets (splitting no connected components) and choose the partition which results
in a minimum completion set. Using dynamic programming, we only need to
consider a polynomial number of partitions. Note that since we only add edges,
we seek to minimize the sum of the number of edges in each of the p sets of the
partition, or equivalently, the sum of the squared sizes of the sets.

Let C1, . . . , Ct be the cardinalities of the connected components in G. Our
algorithm will denote each possible partition by a (p− 1)-long vector of integers
which describes the sizes of the sets in the partition (the size of the last set is
the difference from n). We will maintain a set Si of the vectors that correspond
to all possible partitions of the first i connected components. The algorithm is
given in Figure 1. The actual partition can be obtained by maintaining for each
v ∈ Si a pointer to its parent vector in Si−1.

Theorem 4. The algorithm correctly solves the p-Cluster Completion problem
in O(tnp−1) time.
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S0 = {(0, . . . , 0)}
For i = 1 to t do:

Si = Si−1 ∪ {v + Ciej : v ∈ Si−1, j = 1, . . . , p− 1}
Pick in St a vector v∗ minimizing

∑p−1
i=1 v2

i + (n−∑p−1
i=1 vi)2.

Fig. 1. An algorithm for p-Cluster Completion. ej denotes a (p− 1)-dimensional unit
vector with 1 in position j.

5 Cluster Deletion

We now focus on the cluster deletion problem. We shall give a gap preserving
reduction (cf. [10]) from a restricted version of SET-COVER to Cluster Deletion.
This reduction implies that there is some constant ε > 0 such that it is NP-
hard to approximate Cluster Deletion to within a factor of 1 + ε. We begin by
introducing the SET-COVER restriction.

Problem 6 (Minimum Restricted Exact Cover (REC)). The input is a set of
elements U = {u1, . . . , ut}, and a collection C of subsets of U which satisfies the
following conditions:

– There is a constant k1 > 0 such that for each S ∈ C, |S| ≤ k1.
– There is a constant k2 > 0 such that for all u ∈ U , |{S ∈ C : u ∈ S}| ≤ k2.
– If S ∈ C and S′ ⊂ S then S′ ∈ C.

The goal is to find a sub-collection I ⊆ C of minimum cardinality, such that⋃
S∈I S = U , and the sets in I are pairwise-disjoint.

Note, that the third condition guarantees that a solution to REC always
exists (we assume that

⋃
S∈C S = U). REC can be shown to be MAX-SNP

complete by a simple L-reduction from a restriction of SET-COVER in which
the size of every set is bounded and each element occurs in a bounded number of
sets. This latter problem is known to be MAX-SNP complete [14]. Hence, there
is a constant δREC > 0 such that it is NP-hard to approximate REC to within
a factor of 1 + δREC .

Theorem 5. There is some constant ε > 0 such that it is NP-hard to approxi-
mate Cluster Deletion to within a factor of 1 + ε.

Proof. By a gap preserving reduction from REC (similar to the one in Theo-
rem 1). For an instance IREC of REC, the reduction produces in polynomial
time an instance ICD of Cluster Deletion such that opt(IREC) ≤ c implies
opt(ICD) ≤ c′ and opt(IREC) > (1 + δREC)c implies opt(ICD) > (1 + ε)c′,
where opt(I) denotes the optimal value for instance I.

We now describe the reduction. Let IREC = 〈U,C〉, and let |U | = t. Suppose
that each set in C has size at most k1, and each element occurs in at most k2 sets.
Let m = k2

1k2
δREC

and let q =
∑

S∈C |S|. We build an instance ICD = 〈G = (V,E)〉
of Cluster Deletion as follows:
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V =
⋃

S∈C

{vS,1, . . . , vS,m, wS} ∪ U ,

E = E1 ∪ E2 ∪ E3 ∪ E4 ,

E1 = {(vS,i, u) : S ∈ C, 1 ≤ i ≤ m,u ∈ S} ,
E2 = {(vS,i, vS,j) : S ∈ C, 1 ≤ i < j ≤ m} ,
E3 = {(u, u′) : ∃S ∈ C s.t. u, u′ ∈ S} ,
E4 = {(vS,i, wS) : S ∈ C, 1 ≤ i ≤ m} .

In words, for each S ∈ C we form a clique on S and a set of m new vertices,
and also connect all the new vertices to a single extra vertex wS . For each
subset S ∈ C we denote VS = {vS,1, . . . , vS,m} and call the elements of VS ,
S-vertices. Note, that |E3| ≤ (k1 − 1)k2t/2 < k1k2t/2 and q ≤ k2t. Clearly,
t/k1 ≤ opt(IREC) ≤ t. Let c be any constant such that t/k1 ≤ c ≤ t. Define
c′ ≡ (q− t+ c)m+ |E3| and ε ≡ δREC

2k1k2+δREC
. We prove that this reduction is gap

preserving:
(⇒) Suppose that opt(IREC) ≤ c. Let I ⊆ C be an exact cover of U , |I| ≤ c.

For u ∈ U denote by Iu the set in I which contains u. Let Ī = C \ I.
To obtain a cluster subgraph G′ of G we delete the following edges:

1. For all S ∈ Ī , u ∈ S delete all the edges in EVS ,{u}.
2. For all S ∈ I delete all the edges in EVS ,{wS}.
3. For all u ∈ U, u′ ∈ U \ Iu delete the edge (u, u′) if it exists.

One can easily verify that G′ is a cluster graph, and therefore, opt(ICD) ≤
(q − t + c)m + |E3| = c′.

(⇐) Suppose that opt(IREC) > (1 + δREC)c. In any cluster subgraph of G,
every u ∈ U is adjacent to the S-vertices of at most one set S ∈ C. Therefore,
opt(ICD) ≥ (q − t)m. Furthermore, there is an optimum solution F of ICD for
which the following is true: If a vertex u ∈ U is adjacent to an S-vertex in
(V,E \F ), for some S ∈ C, then F contains all the edges in EVS ,{wS}. Indeed, if
F ′ is a cluster deletion set such that u1, . . . , ur (1 ≤ r ≤ k1) are adjacent to an
S-vertex in (V,E \F ′), then F ′′ = (F ′ ∪EVS ,{wS}) \ (

⋃r
i=1 EVS ,{ui} ∪{vS,i, vS,j :

i �= j}) is also such a cluster deletion set, and |F ′′| ≤ |F ′|. Examine now F . For
each u ∈ U , either F contains all edges connecting u to vertices in V \ U , or
there is a single set S ∈ C such that EVS ,{u} ∩ F = φ and EVS ,{wS} ⊆ F . Let k
be the number of vertices u ∈ U for which the latter case applies, and let T be
the collection of all sets S such that (vS,i, u) ∈ E \F for some u ∈ U, i. It follows
that |F | ≥ (q − k + |T |)m. Since |T | ≥ opt(IREC) + (k − t) for every choice of
F , we have opt(ICD) ≥ (q − t + opt(IREC))m > (q − t + (1 + δREC)c)m. We
conclude that

opt(ICD) > (q − t + (1 + δREC)c)m = c′ + (δRECcm− |E3|)
> c′(1 +

δRECcm− |E3|
qm + |E3| ) > c′(1 +

δREC(t/k1)m− k1k2t/2
k2tm + k1k2t/2

)

= c′(1 +
2δRECm/k1 − k1k2

2k2m + k1k2
) = c′(1 +

δREC

2k1k2 + δREC
) = c′(1 + ε) .
�
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Let C1, . . . , Ct be the connected components of G.
For i = 1, . . . , t do:

If Ci is not bipartite then output False and halt.
Else find a bipartition (Ai, Bi) of Ci such that |Ai| ≥ |Bi|.

Output the set that corresponds to (A1 ∪ . . . ∪At, B1 ∪ . . . ∪Bt).

Fig. 2. An algorithm for 2-Cluster Deletion.

5.1 p-Cluster Deletion

We give in this section a polynomial algorithm for the optimization version of
2-Cluster Deletion. We then show that p-Cluster Deletion is NP-complete for
every p > 2.

Let G = (V,E) be an input graph with n vertices. W.l.o.g., G is connected,
as otherwise, either G is already a 2-cluster graph, or we output False. The
algorithm is described in Figure 2. Recall that G is the complement of G.

Theorem 6. The algorithm correctly solves 2-Cluster Deletion in O(n+|E(G)|)
time.

Proof. Since the complement of a 2-cluster graph is a complete bipartite graph,
a solution exists if and only if G is bipartite. Hence, the algorithm outputs False
iff no solution exists. Moreover, the partition produced by the algorithm has the
property that if two vertices are assigned to the same set then they are adjacent.
Therefore, the set of edges F returned by the algorithm is a 2-deletion set of G.
Hence, it suffices to prove that F is optimal.

Denote S1 = A1 ∪ . . . ∪ At and S2 = B1 ∪ . . . ∪ Bt. Clearly, F consists of
edges in G with one endpoint in S1 and the other in S2. Therefore,

|F | = |ES1,S2 | = |S1||S2| − E(G) = |S1|(n− |S1|)− E(G).

Let F ∗ be an optimal 2-deletion set of G, and let P (F ∗) = (S∗
1 , S

∗
2 ), where

|S∗
1 | ≤ |S∗

2 |. We have that |F ∗| = |S∗
1 |(n− |S∗

1 |)− E(G). For every i ≤ t, either
Ai ⊆ S∗

1 or Bi ⊆ S∗
1 and, therefore, |S1| ≤ |S∗

1 | ≤ n/2. It follows that |F | ≤ |F ∗|.
Hence, F is an optimal 2-deletion set of G.

The bottleneck in the complexity of the algorithm is computing the connected
components of G and finding a bipartition for each of them. Each of these tasks
can be performed in O(n + |E(G)|) time. 
�
Theorem 7. p-Cluster Deletion is NP-complete for any p ≥ 3.

Proof. Membership in NP is trivial. We provide a reduction from p-Coloring.
Given an input graph G = (V,E), the reduction outputs its complement G and
a bound k = |E|. A p-coloring f of G trivially translates into a p-deletion set
{(u, v) /∈ E : f(u) �= f(v)} of G of size at most k. Conversely, suppose that F is
a p-deletion set of G with |F | ≤ k, and let C1, . . . , Cp be the cliques of (V,E \F ).
The coloring f defined by f(v) = i for all v ∈ Ci is a p-coloring of G. 
�

Note that the reduction works with any k ≥ |E| and in fact shows that even
deciding whether a graph has a p-cluster deletion set is NP-hard, for p ≥ 3.
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Two Counterexamples in Graph Drawing
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Abstract. We provide counterexamples to two conjectures known in
the field of graph drawing. The first conjecture (made by J. Halton ten
years ago) asserts that the thickness of any graph of maximum degree Δ
is at most �(Δ +2)/4�. We give an existence proof that there are graphs
of the thickness �Δ/2�—this is known to be the best possible upper
bound. The second conjecture (made by F. Shahrokhi recently) proposes
a relation between the crossing number of a graph and the optimal linear
arrangement of that graph. We construct a graph which does not satisfy
this relation.

1 Halton’s Conjecture

1.1 Introduction

The thickness of a graph G, denoted by Θ(G), is the minimum number of planar
graphs, whose union is G. Thickness is one of the classical and standard measures
of non-planarity of graphs. The problem of finding the thickness of a graph can
be thought of as drawing of the graph on the smallest possible number of planes
without edge crossings. Multilayer embedding appears naturally in applications,
like printed circuit design [11] and multilayer VLSI layouts [1]. The thickness
has been determined exactly only for: complete graphs, (almost all) complete
bipartite graphs, hypercubes, and graphs of orientable genus 1 and 2. See Figure
1 with an example of a drawing of K6,7 in two planes.

Computing the thickness is NP-hard [8]. For further results on thickness, see
the survey papers [2,10]. Wessel [14] proved that⌈

δ + 1
6

⌉
≤ Θ(G) ≤

⌈
Δ

2

⌉
, (1)
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1 2 4 53 6

a b c

d e f g

1 2 4 53 6

a b c

d e f g

Fig. 1. Drawing of K6,7 in two planes

where δ and Δ are minimum and maximum vertex degrees of the graph. Halton
[7] independently proved the same upper bound, and in addition, he conjectured
a stronger upper bound:
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Θ(G) ≤
⌈
Δ + 2

4

⌉
.

In particular, Halton conjectured that any graph of maximum degree 6 has
thickness at most 2, i.e. it is biplanar. A supporting argument for the conjecture
comes from the fact that the thickness of Kn,n is !(n + 2)/4". Mutzel et al.
[10] thought that Halton’s conjecture might influence the design of integrated
circuits, since current chip designers mainly use only two layers for designing a
chip. Halton’s conjecture was restated also in the survey of Beineke [2], although
he doubted the conjecture.

We disprove Halton’s conjecture and show that the upper bound in (1) is the
best possible.

1.2 An Existence Proof

Theorem 1. For any fixed Δ ≥ 3 and sufficiently large n there exists an n-
vertex regular graph of degree Δ with thickness !Δ/2".

We have to recall some results from graph enumeration. Denise et al. [5]
proved:

Lemma 1. The number of unlabelled planar graphs on n vertices is at most
76n, for sufficiently large n.

This immediately implies:

Lemma 2. The number of labelled n-vertex planar graphs is at most 76nn!, for
sufficiently large n.

McKay [9] showed:

Lemma 3. Let R denote the set of all unlabelled Δ-regular simple n-vertex
graphs. If ε > 0, and 3 ≤ Δ = O(n1/2−ε), then uniformly

|R| = (Δn)!

(Δn
2 )!2

Δn
2 (Δ!)nn!

exp
(
−Δ2 − 1

4
+ O

(
Δ3

n

))
.

This implies that

|R| ≥ α
(Δn)!

(Δn
2 )!2

Δn
2 (Δ!)nn!

exp
(
−Δ2 − 1

4

)
, (2)

for some absolute constant α > 0 and sufficiently large n.
Let L denote the set of vertex labelled planar graphs on vertices {1, 2, ..., n},

and let U denote the set of unlabelled planar graphs on n vertices.
Now we return to the proof of Theorem 1. We assume that Δ is even. The

odd case is similar. The proof goes by contradiction, so we make the assumption
that every Δ-regular graph on n vertices has thickness at most (Δ−2)/2. Then,
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of course, the same holds for unlabelled graphs, and we will reach contradiction
by counting unlabelled graphs.

Next, based on the assumption, we will construct a partial function

F : U ×
(Δ−4)/2 times︷ ︸︸ ︷
L× · · · × L → R, (3)

which is a surjection. The existence of such a function yields that

|U | · |L|(Δ−4)/2 ≥ |R|. (4)

Observe that Lemmata 1, 2 provide upper bound for the LHS of (4), and (2)
provides lower bound for the RHS of (4). Hence we have

76n(76nn!)
Δ−4

2 ≥ α
(Δn)!

(Δn
2 )!2

Δn
2 (Δ!)nn!

exp
(
−Δ2 − 1

4

)
Regrouping terms we have an equivalent inequality:

1
α

(Δ!)n76
(Δ−2)n

2 2
Δn
2 exp

(
k2 − 1

4

)
≥ (Δn)!

(Δn
2 )!(n!)

Δ−2
2

.

Now realize that the RHS is at least n!, i.e.

1
α

(Δ!)n76
(Δ−2)n

2 2
Δn
2 exp

(
k2 − 1

4

)
≥ n!

Taking the natural logarithm of both sides we can easily see that the leading
term on the LHS is nΔ lnΔ and the leading term on the RHS is n lnn. Thus for
n >> Δ we reach a contradiction.

Finally, we construct the partial function. For every G ∈ U fix an arbitrary
numbering of the vertices with {1, 2, ..., n}. Although the numbering is arbitrary,
we use the same numbering whenever we evaluate F on a vector whose first
coordinate is G and next (Δ− 4)/2 coordinates are graphs in the other planes.
Keep F (G,H1, ..., H(Δ−4)/2) undefined, if any edge ij is present in at least two
of G,H1, ..., H(Δ−4)/2, or if the graph

K = G
⋃(

∪(Δ−4)/2
i=1 Hi

)
is not Δ-regular. If no edge occurs twice and K is Δ-regular, then set
F (G,H1, ..., H(Δ−4)/2) as the isomorphism class of K (i.e. delete labels from the
vertices).

Finally, we have to show that F is surjection. Since elements of R are isomor-
phism classes of graphs, we have to show that any J ∈ R is an image under F .
Take any labelled graph J∗ ∈ J . According to our hypothesis, J∗ is of thickness
at most (Δ− 2)/2, therefore any candidate for J∗ can be written as ∪(Δ−4)/2

i=0 Hi

with some labelled planar graphs H0, H1, ..., H(Δ−4)/2. There is a permutation π
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of the set {1, 2, 3, ..., n} such that π(H0) ∈ U and π(H0) has the labelling what
this graph has in U . Then

F

(
π(H0), π(H1), ..., π(H(Δ−4)/2)

)
= J.


�
Remark. It remains an open problem to construct explicitely Δ-regular graphs
with thickness !Δ/2".

2 Shahrokhi’s Conjecture

2.1 Introduction

The planar crossing number cr(G) of a graph G = (V,E) is the minimum number
of crossings over all drawings of G on a plane. This problem has been extensively
studied by mathematicians, computer scientists and VLSI people. It is of high
interest to compare the crossing number to other graph invariants. In [13] an
unexpected relation between the so called bipartite crossing number and the
optimal linear arrangement value was revealed. This motivated Shahrokhi to
make a conjecture which would relate similarly the (ordinary) crossing number
of a graph to the optimal linear arrangement value. Given an arbitrary graph
G = (V,E), and a bijection f : V → {1, 2, 3, ..., |V |}, called linear arrangement,
the value of this linear arrangment is∑

uv∈E

|f(u)− f(v)|;

and the optimal linear arrangement problem for G is to find f which minimizes
this value. The minimum value L(G) is called the length of the graph G.

Let us call a graph family near Δ−regular, if Δ is the maximum degree and
the ratio Δ over the minimum degree is bounded by a constant. Shahrokhi [12]
conjectured that for a near Δ−regular n−vertex graph family G = (V,E), the
following relation holds between the planar crossing number and the length:

cr(G) > α
(L(G)− γn2)Δ

logβ n
, (5)

with some absolute positive constants α, β, and γ. If such an estimation exists,
with possibly small β, it could provide a good approximation algorithm for the
crossing number for a large class of graphs. Note that ΔL(G) is an obvious
upper bound for the crossing number. So far the best approximation algorithm
for crossing numbers has an approximation factor of O(log3 n), [6].

We construct a graph G which fails the inequality (5).
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Fig. 2. A drawing of the graph G for n = 49.

2.2 Counterexample

Let r be sufficiently large integer and let k be an integer such that√
10γr ≤ k ≤ r1−ε,

for some fixed 0 < ε < 1/2. Let H denote a graph constructed from the r-vertex
path by joining vertices if their distance is at most k. Define G = H ×H, where
× denotes the Cartesian product of graphs. The graph G has n = r2 vertices
and is near regular with maximum degree Δ = 4k. Figure 2 just illustrates the
structure of such graphs for n = 49 and k = 3, without satisfying the condition
for k.

Theorem 2. The graph G does not satisfy the inequality (5).
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Proof. Place the vertices of G in the plane in an r×r grid manner and draw the
edges in a natural way (see Figure 2). One can easily check that the number of
crossings of “horizontal” edges with “vertical” edges is at most 1

4r
2k4(1 + o(1)).

The number of remaining crossings is at most r2k3. Hence cr(G) < 1
2r

2k4. Let
B(G) denote the bisection width of G, i.e. the minimum number of edges whose
removal divides G = (V,E) into two parts having at most 2

3 |V | vertices each. It
is easy to see that L(G) ≥ n

3B(G). We need to estimate B(G). Let ∂(A) denote
the edge boundary of a vertex set A in a graph, i.e. the set of edges having one
endpoint in A and the other endpoint in V − A. For a graph F = (VF , EF ),
define its isoperimetric number as

i(F ) = min
A

{
|∂(A)|
|A| : A ⊂ VF , |A| ≤ |VF |

2

}
.

It is easy to see by shifting elements in one direction that for our graph H,

i(H) ≥ min

(
2k2

r
, min
1≤i≤k

k − i

2

)
=

2k2

r
.

Chung and Tetali [4] proved that for any graph F

i(F × F ) ≥ 1
2
i(F ).

For our graph G we have

i(G) = i(H ×H) ≥ 1
2
i(H) ≥ k2

r
.

Now realize that

min
A

{ |∂(A)|
|A| : A ⊂ VG, r

2/3 ≤ |A| ≤ r2/2
}
≥ i(G) ≥ k2

r
.

This implies that any subset of vertices of G of cardinality from the interval
[r2/3, r2/2] has an edge boundary of the cardinality at least 1

3rk
2. Hence B(G) ≥

1
3rk

2 and L(G) ≥ 1
9r

3k2.
To get a contradiction it is sufficient to show that the function

f(x) =
4αx( 1

9r
3x2 − γr4)

2β logβ r
− 1

2
r2x4

is positive for x ∈ [
√

10γr, r1−ε] and sufficiently large r. In fact, one can check
that f(x) is nondecreasing in this interval and that

f(
√

10γr) > 0.


�
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Abstract. In this paper, we study a special graph colouring problem,
called the list homomorphism problem, which is a generalisation of the
list colouring problem. Several variants of the list homomorphism prob-
lem have been considered before. In particular, a complete complexity
classification of the connected list homomorphism problem for reflexive
graphs has been given before, according to which the problem is poly-
nomial time solvable for reflexive chordal graphs, and NP-complete for
reflexive non-chordal graphs. A natural analogue of this result is known
not to hold for this problem for bipartite graphs. We observe that the
notion of list connectivity in the problem needs to be modified for bi-
partite graphs. We introduce a new variant called the bipartite loosely
connected list homomorphism problem for bipartite graphs. We give a
complete complexity classification of this problem, showing that it is
polynomial time solvable for chordal bipartite graphs, and NP-complete
for non-chordal bipartite graphs. This result is analogous to the result
for the connected list homomorphism problem for reflexive graphs. We
present a linear time algorithm for the bipartite loosely connected list
homomorphism problem for chordal bipartite graphs, as well as for the
connected list homomorphism problem for reflexive chordal graphs, show-
ing that the algorithms can decide just by testing whether or not the
corresponding consistency tests succeed.

1 Introduction

In this section, we first give some definitions that we use in this paper, next we
describe the list homomorphism problem and some of its variants including our
new variant, and discuss results on these problems.

1.1 Definitions

Let G and H be graphs. A homomorphism f : G→ H, of G to H, is a mapping
f of the vertices of G to the vertices of H, such that f(g) and f(g′) are adjacent
vertices of H whenever g and g′ are adjacent vertices of G. Now, for each vertex
v of G, let L(v) be a list of vertices of H. We denote by L the entire set of lists
L(v) for the vertices v of G. A list homomorphism l : G → H, of G to H with

L. Kučera (Ed.): WG 2002, LNCS 2573, pp. 399–412, 2002.
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respect to L, is a homomorphism of G to H, such that l(v) ∈ L(v), for every
vertex v of G. If l : G → H is a list homomorphism with respect to L then we
say that l : G→ H is a list-L-homomorphism.

The consistency test for G with respect to H and L produces a set L∗ of lists
L∗(v) ⊆ L(v), for all v ∈ V (G), such that for any edge ab of G, if h ∈ L∗(a) then
there exists a vertex h′ ∈ L∗(b) such that hh′ is an edge of H, and if z ∈ L∗(b)
then there exists a vertex z′ ∈ L∗(a) such that zz′ is an edge of H; the set L∗ is
obtained in such a way that minimum number of vertices are removed from L(v),
for all v ∈ V (G). Note that there exists a list-L-homomorphism of G to H if
and only if there exists a list-L∗-homomorphism of G to H. The consistency test
we have mentioned is in essence the arc consistency test in artificial intelligence
[Mackworth, 1977]. It follows from the result of [Mackworth and Freuder, 1985]
that if H is fixed then L∗ is obtained in time linear in the size of G. We say
that the consistency test for G with respect to H and L succeeds if L∗(v) �= φ,
for all v ∈ V (G), otherwise we say it does not succeed. We shall be using the
consistency test in our proofs. The consistency test has been an important tool in
artificial intelligence and has been widely used there since a long time including
in earlier studies on constraint satisfaction problems [Montanari, 1974]. In graph
homomorphism problems, the consistency test has been increasingly used in the
last few years including in [Gutjahr, Welzl, and Woeginger, 1992], [Hell, Nesetril,
and Zhu, 1996].

If vv is an edge of a graph then vv is called a loop, and the vertex v is said
to have a loop. A graph is said to be reflexive if every vertex of the graph has
a loop, and irreflexive if none of its vertices has a loop. A graph in general is
partially reflexive, meaning that its individual vertices may or may not have
loops. A bipartite graph G is a graph whose vertex set can be partitioned into
two subsets GA and GB , such that each edge of G has one endpoint in GA and
the other endpoint in GB ; we say that (GA, GB) is a bipartition of G. Thus a
bipartite graph is irreflexive by definition.

A graph in which every two distinct vertices are adjacent is called a complete
graph. A bipartite graph, with bipartition (GA, GB), in which every vertex of GA

is adjacent to every vertex of GB is called a complete bipartite graph. For a graph
G, we use V (G) and E(G) to denote its vertex set and edge set respectively. In
the following definitions we assume that G is a graph.

If H is a subgraph of G such that E(H) contains all the edges of G that
have both endpoints in V (H), then H is called the subgraph of G induced by
V (H), and we say that H is an induced subgraph of G. A chordal graph is a
graph which does not contain any induced cycle of length greater than three. A
chordal bipartite graph is a bipartite graph which does not contain any induced
cycle of length greater than four. A clique of G is a subset of V (G) that induces
a complete subgraph of G or is empty.

A vertex v of G is said to be an isolated vertex of G, if v is not adjacent to any
other vertex v′ of G, v �= v′. If a vertex u is adjacent to a vertex v in G then u is
said to be a neighbour of v in G, and v is said to be a neighbour of u in G. The
neighbourhood of a vertex v of G, denoted as Nbr(v), is the set of all neighbours
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of v in G (note that if v has a loop then v ∈ Nbr(v)). The neighbourhood of a
set S of vertices of G, denoted as Nbr(S), is the set of all vertices of G which
have a neighbour in S.

Two vertices u and v of G are said to be connected in G, if there exists a
path from u to v in G; otherwise u and v are said to be disconnected in G. We
say that G is connected, if every pair of vertices in G is connected; otherwise we
say that G is disconnected. A component of G is a maximal connected subgraph
of G. Let S ⊆ V (G). We say that S is connected in G, if S induces a connected
subgraph of G or S = φ; otherwise we say that S is disconnected in G. We say
that two vertices x and x′ of G are connected in S, if there exists a path from x
to x′ in G all of whose vertices belong to S; otherwise we say that x and x′ are
disconnected in S. When we say that there is a path P connecting two vertices
x and x′ in S, this means that P is a path from x to x′ in G, with V (P ) ⊆ S.

We now introduce our new term which we shall use in our new variant of the
list homomorphism problem. Let (HA, HB) be a bipartition of a bipartite graph
H. Let X ⊆ HA, and Y ⊆ HB . If (Nbr(X)∩ Y )∪ (Nbr(Y )∩X) is connected in
H then we say that X ∪Y is loosely connected in H. Thus if X ∪Y is connected
in H then it is also loosely connected in H.

We may say that a set is connected, disconnected, or loosely connected with-
out explicitly mentioning the graph in which it is which may be understood
from the context. We now give below the definitions for perfect edge elimination
scheme and perfect vertex elimination scheme that we use in our algorithms in
this paper.

Suppose that Z is a bipartite graph. An edge e = ab of Z is called a bisim-
plicial edge if Nbr(a) ∪ Nbr(b) induces a complete bipartite subgraph of Z.
Let S =< e1, e2, . . . , em > be an ordering of the edges of Z, where E(Z) =
{e1, e2, . . . , em} (every edge of Z is in S). Let ei = aibi, for all i = 1, 2, . . . ,m.
We say that S is a perfect edge elimination scheme for Z, if ei is a bisimplicial
edge of the subgraph Zi of Z containing only the edges ei, ei+1, . . . , em, that
is, every vertex in Ai = {aj ∈ Nbr(bi)|j > i} is adjacent to every vertex in
Bi = {bj ∈ Nbr(ai)|j > i}, for all i = 1, 2, . . . ,m. It can be shown that every
chordal bipartite graph has a perfect edge elimination scheme. See [Golumbic,
1980] for a study on chordal bipartite graphs. In [Golumbic, 1980], another def-
inition for perfect edge elimination scheme is given. The fact that every chordal
bipartite graph has a perfect edge elimination scheme, as defined above, is also
mentioned in [Brandstadt, 1993]. According to [Brandstadt, 1993], several re-
searchers, including Tse Heng Ma and Haiko Muller, observed this result. The
author would like to thank Pavol Hell and Jing Huang for pointing this definition
of perfect edge elimination scheme.

A vertex s of G is called a simplicial vertex of G, if its neighbourhood,
Nbr(s), is a clique of G. Let S =< v1, v2, . . . , vn > be an ordering of the vertices
of G, where V (G) = {v1, v2, . . . , vn} (every vertex of G is in S). We say that
S is a perfect vertex elimination scheme for G, if vi is a simplicial vertex of
the subgraph Gi of G induced by the vertices vi, vi+1, . . . , vn, that is, the set
Xi = {vj ∈ Nbr(vi)|j > i} is a clique of G, for all i = 1, 2, . . . , n. It can be
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shown that a graph is chordal if and only if it has a perfect vertex elimination
scheme. See [Golumbic, 1980] for a study on chordal graphs.

1.2 List Homomorphism Problems and Results

Let H be a fixed graph. The list homomorphism problem for H, denoted as
LHOM-H, is the following :

Instance : A graph G and lists L(v) ⊆ V (H), for all v ∈ V (G).
Question : Does there exist a list-L-homomorphism of G to H?

Let S be a set of n different colours. Let M(v) ⊆ S, for each vertex v of a
graph G. The list colouring problem for n colours asks whether each vertex v
of G can be assigned a colour from M(v) such that no adjacent vertices are
assigned the same colour. The classic n-colourability problem is a special case
when M(v) = S, for all v ∈ V (G). Further, note that the list colouring problem
for n colours is a special case of LHOM-H when H is an irreflexive complete
graph with n vertices.

The list homomorphism problem for reflexive and irreflexive graphs H has
been studied in [Feder & Hell, 1998] and [Feder, Hell, and Huang, 1999] respec-
tively. It is shown in [Feder & Hell, 1998] that LHOM-H is polynomial time
solvable for any reflexive interval graph H, and NP-complete for any reflexive
non-interval graph H. For irreflexive graphs H, it is shown in [Feder, Hell, and
Huang, 1999] that LHOM-H is polynomial time solvable if H is the complement
of a circular arc graph of clique covering number two, and is NP-complete other-
wise. Thus the complexity of the problem LHOM-H is completely classified for
reflexive and irreflexive graphs H.

The connected list homomorphism problem for H, denoted as CL-H, is a
restriction of the problem LHOM-H where each list L(v) induces a connected
subgraph of H. This problem was introduced in [Feder & Hell, 1998]. We gener-
alise the problem CL-H as follows. Let H1, H2, . . . , Hs be the components of H.
The extended connected list homomorphism problem for H, denoted as ECL-H,
is a restriction of the problem LHOM-H where each list L(v) is such that the list
Li(v) = L(v)∩V (Hi) is connected, i.e., it is either empty or induces a connected
subgraph of Hi, for all i = 1, 2, . . . , s. Note that for each vertex v of the input
graph, Li(v) ⊆ V (Hi), for all i = 1, 2, . . . , s, and L1(v), L2(v), . . . , Ls(v) is a
partition of L(v).

It follows from [Feder & Hell, 1998] that if H is a reflexive non-chordal graph
then ECL-H is NP-complete, and if H is a reflexive chordal graph then ECL-H
is solvable in linear time. Thus we have a complete complexity classification of
ECL-H for reflexive graphs H. We also present an alternate linear time algorithm
for the problem ECL-H, when H is a reflexive chordal graph. Our main reason
for giving an alternate algorithm is to show the use of the consistency test
technique as a tool for some list homomorphism problems, and the other reason
is to provide a direct formula for finding a list homomorphism if there exists one.
In [Feder & Hell, 1998], an algorithmic way is described for finding a possible
list homomorphism.
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It follows from the result of [Hell & Nesetril, 1990] that ECL-H is NP-
complete for any non-bipartite irreflexive graph H. Further, it follows from
[Feder, Hell, and Huang, 1999] that ECL-H is NP-complete for any non-chordal
bipartite graph H also. However unlike the case for reflexive graphs, it is shown
in [Feder, Hell, and Huang, 1999] that there are chordal bipartite graphs H for
which the problem ECL-H is NP-complete. Thus we do not have a complete
complexity classification of ECL-H for bipartite graphs H.

We note that under any homomorphism of a graph G to another graph H,
if H is bipartite then it is necessary for G to be bipartite also, and all non-
isolated vertices of each subset in a bipartition of G map to the same subset
in a bipartition of H, and adjacent vertices of G map to different subsets in
the bipartition of H (the isolated vertices of G can map to any subset in the
bipartition of H). This suggests to consider modifying the notion of connectivity
of lists for bipartite graphs.

We introduce our new variant called the bipartite loosely connected list ho-
momorphism problem for bipartite graphs to resolve this situation. We first intro-
duce some notation. Let H be a fixed bipartite graph with bipartition (HA, HB).
Let H1, H2, . . . , Hs be the components of H, and (Hi,A, Hi,B) be a bipartition
of Hi with Hi,A ⊆ HA and Hi,B ⊆ HB , for all i = 1, 2, . . . , s. Let a graph G with
lists L(v) ⊆ V (H), for all v ∈ V (G), be an instance of LHOM-H. Let LA(v) =
L(v)∩HA and LB(v) = L(v)∩HB , for all v ∈ V (G). Thus LA(v), LB(v) is a par-
tition of L(v), for all v ∈ V (G). Further, let Li,A(v) = LA(v)∩Hi,A and Li,B(v) =
LB(v)∩Hi,B , for all i = 1, 2, . . . , s, v ∈ V (G). Thus Li,A(v) ⊆ Hi,A and Li,B(v) ⊆
Hi,B , for all i = 1, 2, . . . , s, v ∈ V (G). Also, L1,A(v), L2,A(v), . . . , Ls,A(v) is a
partition of LA(v), and L1,B(v), L2,B(v), . . . , Ls,B(v) is a partition of LB(v),
with v ∈ V (G).

The bipartite loosely connected list homomorphism problem for H, denoted
as BLCL-H, is a restriction of the problem LHOM-H where for each edge vv′ of
G, the sets Li,A(v)∪Li,B(v′) and Li,B(v)∪Li,A(v′) are both loosely connected,
for all i = 1, 2, . . . , s. This completes the description of BLCL-H.

We present a linear time algorithm for BLCL-H when H is a chordal bipartite
graph. We utilize the consistency test in our algorithm. We point out that BLCL-
H is NP-complete for any non-chordal bipartite graph H. Thus we achieve a
complete complexity classification of BLCL-H for bipartite graphs H which is
analogous to the result of the complete complexity classification of the problem
ECL-H for reflexive graphs H.

In order to show that BLCL-H is NP-complete for any non-chordal bipartite
graph H, we need to consider the following problem. The one-or-all list homo-
morphism problem for H, denoted as OAL-H, is a restriction of LHOM-H where
each list L(v) contains either a single vertex of H or all the vertices of H. The
problem OAL-H was introduced in [Feder & Hell, 1998]. Clearly, the problem
OAL-H is a restriction of both the problems BLCL-H and ECL-H (with H being
bipartite in case of the problem BLCL-H).

The problem OAL-H has its own significance, as it is polynomially (in fact
linearly) equivalent to a well studied problem of retraction. This can be eas-
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ily proved, and a proof for this can be found in [Feder & Hell, 1998]. Retrac-
tion problems have been of continuing interest in graph theory for a long time
and have been studied in various literature including [Hell, 1972], [Hell, 1974],
[Nowakowski & Rival, 1979], [Pesch and Poguntke, 1985], [Bandelt, Dahlmann,
and Schutte, 1987], [Hell & Rival, 1987], [Pesch, 1988], [Bandelt, Farber, and
Hell, 1993], [Feder & Hell, 1998], [Feder & Vardi, 1998], [Feder, Hell, and Huang,
1999]. Another problem, called the compaction problem [Vikas, 1999, 2001], poly-
nomially transforms to OAL-H and the retraction problem. Hence polynomial
results on OAL-H and the retraction problem are also helpful for the compaction
problem.

Since the consistency test turns out to be a useful technique for list homo-
morphism problems (including OAL-H), as can be noted from the results in this
paper, it is hence also useful for retraction problems. Earlier the isometry test
has been a commonly used technique for retraction problems. Without giving a
formal proof here, the consistency test includes the isometry test, and hence is
more powerful. For example, the isometry test does not turn out to be useful for
the retraction problem for reflexive chordal graphs H, whereas using the consis-
tency test, we get a polynomial (in fact linear) time algorithm for the problem,
as it provides a linear time algorithm for ECL-H which includes OAL-H.

In Section 2, we present a complete complexity classification of the problem
BLCL-H. In particular, in Section 2.1, we present a linear time algorithm for
BLCL-H when H is a chordal bipartite graph. In Section 3, we present a linear
time algorithm for ECL-H when H is a reflexive chordal graph.

2 A Complete Complexity Classification of the Bipartite
Loosely Connected List Homomorphism Problem

Theorem 2.1 The problem BLCL-H is NP-complete if H is a non-chordal bi-
partite graph, and is polynomial time solvable if H is a chordal bipartite graph.

Proof. Let H be a non-chordal bipartite graph. Let H ′ be an induced cycle of
length at least six in H (since H is a non-chordal bipartite graph, we know there
exists such an H ′ in H). As mentioned in Section 1.2, we know that OAL-H ′ is a
restriction of BLCL-H ′. Clearly, for any induced subgraph Z ′ of a given bipartite
graph Z, the problem BLCL-Z ′ is a restriction of the problem BLCL-Z. Thus
we have that OAL-H ′ is a restriction of BLCL-H. It is shown in [Feder, Hell,
and Huang, 1999] that OAL-H ′ is NP-complete. It follows that BLCL-H is also
NP-complete.

When H is a chordal bipartite graph, we prove results in Section 2.1 below,
showing that BLCL-H is solvable in linear time. 
�

2.1 A Linear Time Algorithm for Bipartite Loosely Connected List
Homomorphism to Chordal Bipartite Graphs

In this section, we give a linear time algorithm for BLCL-H when H is a chordal
bipartite graph, completing the proof of Theorem 2.1. We first prove the following
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theorem Theorem 2.1.1 for chordal bipartite graphs which we use in proving the
main theorem Theorem 2.1.2.

Theorem 2.1.1 Let H be a chordal bipartite graph with bipartition (HA, HB).
Let X ⊆ HA, and Y,Z ⊆ HB, such that the sets X ∪ Y and X ∪ Z are both
loosely connected. Then (Nbr(Y ) ∩X) ∪ Z is also loosely connected.

Proof. Let X ′ = Nbr(Y ) ∩ X, X ′′ = Nbr(Z) ∩ X, Y ′ = Nbr(X) ∩ Y , and
Z ′ = Nbr(X) ∩ Z. Since X ∪ Y and X ∪ Z both are loosely connected, we have
that X ′ ∪ Y ′ and X ′′ ∪ Z ′ both are connected.

We have to prove that X ′ ∪ Z is loosely connected. Let X∗ = Nbr(Z) ∩X ′

and Z∗ = Nbr(X ′) ∩ Z. Thus we have to prove that X∗ ∪ Z∗ is connected.
Suppose that X∗ ∪Z∗ is disconnected. Then there exist two distinct vertices

x and x′ in X∗ such that x and x′ are disconnected in X∗ ∪ Z∗. Clearly, the
vertices x and x′ are also disconnected in X∗ ∪ Z ′, as X∗ ⊆ X ′, Z∗ ⊆ Z ′,
and no vertex in X ′ has a neighbour in Z − Z∗. The vertices x and x′ also
belong to X ′′, as X∗ ⊆ X ′′. Since X ′′ ∪ Z ′ is connected, the vertices x and
x′ are connected in X ′′ ∪ Z ′. Since x and x′ are connected in X ′′ ∪ Z ′ but
disconnected in X∗ ∪Z ′, and the fact that X ′′−X∗ ⊆ X −X ′, this implies that
(X −X ′) ∩X ′′ �= φ, and for any path P connecting x and x′ in X ′′ ∪ Z ′ (thus
by definition V (P ) ⊆ X ′′ ∪ Z ′), there is at least one internal vertex of P which
belongs to (X −X ′)∩X ′′. Moreover, since X∗ = X ′′− (X −X ′), we can choose
the vertices x and x′ such that no internal vertex of P belongs to X ′′−(X−X ′),
i.e., every internal vertex of P belongs to either Z ′ or (X −X ′)∩X ′′. Let x and
x′ be such a pair of vertices, and let Pxx′ denote a shortest path connecting x
and x′ in X ′′ ∪ Z ′ (again V (Pxx′) ⊆ X ′′ ∪ Z ′), where every internal vertex of
Pxx′ belongs to Z ′ or (X − X ′) ∩ X ′′, and at least one internal vertex of Pxx′

belongs to (X −X ′) ∩X ′′. Since X∗ ⊆ X ′, the vertices x and x′ also belong to
X ′. Since X ′ ∪ Y ′ is connected, there exists a shortest path P ′

xx′ connecting x
and x′ in X ′ ∪ Y ′ (V (P ′

xx′) ⊆ X ′ ∪ Y ′).
Let Pxx′ = xz1w1z2w2 . . . zp−1wp−1zpx

′, where wi ∈ (X−X ′)∩X ′′, for all i =
1, 2, . . . , p−1, zj ∈ Z ′, for all j = 1, 2, . . . , p, where p > 1, as at least one internal
vertex of Pxx′ belongs to (X−X ′)∩X ′′. Let P ′

xx′ = xy1x1y2x2 . . . yq−1xq−1yqx
′,

where xi ∈ X ′, for all i = 1, 2, . . . , q − 1, yj ∈ Y ′, for all j = 1, 2, . . . , q, where
q ≥ 1. We have that x, x′ ∈ X∗ = X ′′ − (X − X ′) and x, x′ ∈ X ′. Clearly,
the vertices x and x′ of these paths are not adjacent to any vertex of these
paths other than shown, as these paths are shortest paths connecting x and x′

in X ′′ ∪ Z ′ and X ′ ∪ Y ′ respectively. The only possibility of adjacency among
internal vertices of these paths is due to a possible adjacency between the vertices
xi and zj , 1 ≤ i ≤ q − 1, 1 ≤ j ≤ p. Clearly, no other pair of internal vertices of
these paths can be adjacent.

Suppose that for every subpath zjwjzj+1 of Pxx′ 1 ≤ j ≤ p− 1, there exists
a vertex xi of P ′

xx′ , 1 ≤ i ≤ q − 1, such that xi is adjacent to both zj and zj+1.
Then there exists a path from x to x′ all of whose vertices belong to the set
S = {x, x′, x1, x2, . . . , xq−1, z1, z2, . . . , zp}. Since S ⊆ X ′ ∪ Z ′, it follows that x
and x′ are connected in X ′ ∪ Z ′. Clearly then x and x′ are also connected in



406 Narayan Vikas

X∗∪Z ′. Further, this implies that x and x′ are also connected in X∗∪Z∗, which
contradicts our assumption.

Thus there exists a subpath zswszs+1 of Pxx′ , 1 ≤ s ≤ p− 1, such that there
is no vertex xi of P ′

xx′ adjacent to both zs and zs+1, 1 ≤ i ≤ q−1. Suppose there
exist two distinct vertices t and t′ which belong to T = {x, x′, x1, x2, . . . , xq−1},
such that t is adjacent to zs, and t′ is adjacent to zs+1. Let P ′

tt′ be the subpath
of P ′

xx′ from t to t′. We choose t and t′ to be such that no internal vertex on
the subpath P ′

tt′ is adjacent to any vertex of zswszs+1 (we can always choose t
and t′ to be such). Clearly, P ′

tt′ consists of at least three distinct vertices. Also,
the subpath zswszs+1 of Pxx′ , 1 ≤ s ≤ p − 1, has three distinct vertices, as
p > 1. Let P ′

tt′ = ty′1x
′
1y

′
2x

′
2 . . . y

′
r−1x

′
r−1y

′
rt

′, where x′
i ∈ {x1, x2, . . . , xq−1}, for

all i = 1, 2, . . . , r − 1, y′j ∈ {y1, y2, . . . , yq}, for all j = 1, 2, . . . , r, r ≥ 1. Thus
ty′1x

′
1y

′
2x

′
2 . . . y

′
r−1x

′
r−1y

′
rt

′zs+1wszst is an induced cycle of length greater than
four, and we have a contradiction. The case when zs or zs+1 is not adjacent
to any vertex in T would mean even fewer edges between Pxx′ and P ′

xx′ , and
based on the above case, would obviously imply existence of an induced cycle of
length greater than four in H (including zs, ws, zs+1), which would again be a
contradiction. Hence X∗ ∪Z∗ must be connected, and therefore X ′ ∪Z must be
loosely connected. 
�

Theorem 2.1.2 Let H be a chordal bipartite graph, and let a bipartite graph G
with lists LST (v) ⊆ V (H), for all v ∈ V (G), be an instance of BLCL-H. Then
there exists a list-LST -homomorphism of G to H if and only if the consistency
test for G with respect to H and LST succeeds.

Proof. Suppose that H has s components, namely, H1, H2, . . . , Hs. Let (HA, HB)
be a bipartition of H, and (Hi,A, Hi,B) be a bipartition of Hi, with Hi,A ⊆ HA,
and Hi,B ⊆ HB , for all i = 1, 2, . . . , s. Let LSTA(v) = LST (v) ∩ HA, and
LSTB(v) = LST (v)∩HB , for all v ∈ V (G). Further, let LSTi,A(v) = LSTA(v)∩
Hi,A, and LSTi,B(v) = LSTB(v) ∩Hi,B , for all i = 1, 2, . . . , s, v ∈ V (G). Since
the graph G with lists LST (v), for all v ∈ V (G), is an instance of BLCL-
H, we have that for each edge vv′ of G, the sets LSTi,A(v) ∪ LSTi,B(v′) and
LSTi,B(v) ∪ LSTi,A(v′) are both loosely connected, for all i = 1, 2, . . . , s.

If there exists a list-LST -homomorphism of G to H then clearly the consis-
tency test for G with respect to H and LST succeeds.

Now suppose that the consistency test for G with respect to H and LST suc-
ceeds. Let L′(v), for all v ∈ V (G) be the lists obtained as a result of performing
the consistency test for G with respect to H and LST . We have L′(v) ⊆ LST (v),
for all v ∈ V (G), and since the consistency test has succeeded, we have L′(v) �= φ,
for all v ∈ V (G). Let L′

A(v) = L′(v) ∩ HA, and L′
B(v) = L′(v) ∩ HB , for

all v ∈ V (G). Let L′
i,A(v) = L′

A(v) ∩ Hi,A, and L′
i,B(v) = L′

B(v) ∩ Hi,B ,
for all i = 1, 2, . . . , s, v ∈ V (G). We have that L′

i,A(v) ⊆ LSTi,A(v), and
L′

i,B(v) ⊆ LSTi,B(v), for all i = 1, 2, . . . , s, v ∈ V (G). For each edge vv′ of
G, since the sets LSTi,A(v) ∪ LSTi,B(v′) and LSTi,B(v) ∪ LSTi,A(v′) are both
loosely connected, it follows from Theorem 2.1.1 and the mechanism of the con-
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sistency test that the sets L′
i,A(v) ∪ L′

i,B(v′) and L′
i,B(v) ∪ L′

i,A(v′) are both
connected, for all i = 1, 2, . . . , s.

Assume that G has t components, namely, G1, G2, . . . , Gt. Let (GA, GB) be
a bipartition of G, and (Gi,A, Gi,B) be a bipartition of Gi, with Gi,A ⊆ GA,
and Gi,B ⊆ GB , for all i = 1, 2, . . . , t. Let u be some vertex of Gj , 1 ≤ j ≤ t.
Let ij be some value for which either L′

ij ,A(u) �= φ or L′
ij ,B(u) �= φ (both may

be nonempty), 1 ≤ ij ≤ s. There exists such an ij , as L′(u) �= φ. Without loss
of generality, suppose that L′

ij ,A(u) �= φ. Thus L′
ij ,A(u) contains a vertex of

Hij ,A, and hence L′(u) contains a vertex of Hij ,A. We can always redefine the
bipartition of G and Gj such that u ∈ Gj,A, and Gj,A ⊆ GA, without affecting
the bipartition of other components of G. Hence, without loss of generality, we
assume that the vertex u of Gj belongs to Gj,A. Since L′(u) contains a vertex of
Hij ,A, it follows due to the success of the consistency test that for each a ∈ Gj,A,
the list L′(a) contains a vertex of Hij ,A, and for each b ∈ Gj,B , the list L′(b)
contains a vertex of Hij ,B . This implies that L′

ij ,A(a) �= φ, for all a ∈ Gj,A,
and L′

ij ,B(b) �= φ, for all b ∈ Gj,B . Since j was an arbitrary value, we argue
this way for each component Gj of G, 1 ≤ j ≤ t. We let L(a) = L′

ij ,A(a),
for all a ∈ Gj,A, and L(b) = L′

ij ,B(b), for all b ∈ Gj,B , j = 1, 2, . . . , t. Thus
L(a) ⊆ V (Hij ,A), for all a ∈ V (Gj,A), and L(b) ⊆ V (Hij ,B), for all b ∈ V (Gj,B),
j = 1, 2, . . . , t. As mentioned above, L′

ij ,A(a) ∪ L′
ij ,B(b) is connected, for all

ab ∈ E(Gj), j = 1, 2, . . . , t. Hence L(a) ∪ L(b) is connected, for all ab ∈ E(G).
We shall prove that there exists a list-L-homomorphism of G to H. Since

L(v) ⊆ LST (v), for all v ∈ V (G), this would imply that there exists list-LST -
homomorphism of G to H. We find a list-L-homomorphism of G to H as follows.

Suppose that E(H) = {e1, e2, . . . , eq}. Let S =< e1, e2, . . . , eq > be a perfect
edge elimination scheme for H. We shall perform q steps, namely 1, 2, . . . , q,
in this order. In each step, we consider deleting certain vertices from the older
lists and obtain new lists as described below. The original lists are L(v), for all
v ∈ V (G). Let Li(v), for all v ∈ V (G), denote the set of lists obtained as a result
of executing step i, for all i = 1, 2, . . . , q. We let L0(v) = L(v), for all v ∈ V (G).
The lists Li−1(v), for all v ∈ V (G), may be viewed as an input to the i-th step,
and the lists Li(v), for all v ∈ V (G), may be viewed as an output of the i-th
step, for all i = 1, 2, . . . , q.

The i-th step is described as follows, 1 ≤ i ≤ q. We consider the edge ei = xy,
with x ∈ HA, y ∈ HB . Initially, we let Li(v) = Li−1(v), for all v ∈ V (G). Next,
for every edge ab of G, with a ∈ GA, b ∈ GB , x ∈ Li−1(a), and y ∈ Li−1(b),
we do the following. If y has another neighbour x′ in Li−1(a), x′ �= x, then we
update Li(a) = Li−1(a)− {x}. If x has another neighbour y′ in Li−1(b), y′ �= y,
then we update Li(b) = Li−1(b)− {y}. This completes the description of step i,
1 ≤ i ≤ q. Note that Li(v) ⊆ Li−1(v), and the two sets differ by at most one
element, for all v ∈ V (G), i = 1, 2, . . . , q.

Let ab be any edge of G. We shall prove by induction that Li(a) ∪ Li(b)
is connected, for all i = 0, 1, 2, . . . q. For i = 0, we do know that this is true.
Suppose that Lj(a) ∪ Lj(b) is connected for all j < i, for some i ≥ 1. We shall
show that Li(a) ∪ Li(b) is also connected. We first show that Li(a) ∪ Li−1(b) is
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connected. If Li(a) = Li−1(a) then by assumption Li(a)∪Li−1(b) is connected.
Suppose that Li(a) �= Li−1(a). It follows from step i that Li(a) = Li−1(a)−{x},
where ei = xy, with x ∈ HA, y ∈ HB , x ∈ Li−1(a), and there exists a neighbour
b′ of a in G with y ∈ Li−1(b′) so that y has another neighbour x′ in Li−1(a),
x′ �= x. We show that if x is an endpoint of any edge ej = xz, with j < i,
z ∈ HB , then there exists no neighbour b′′ of a in G with z ∈ Li−1(b′′).

Suppose that x is an endpoint of some edge ej , with j < i. Let ej = xz,
where z ∈ HB . Consider when the j-th step is executed. Since x, x′ ∈ Li−1(a),
and Li−1(a) ⊆ Lj−1(a), we have x, x′ ∈ Lj−1(a). Thus x is not the only vertex
of Lj−1(a), as x′ ∈ Lj−1(a), and x′ �= x. If there exists no neighbour b′′ of a
in G with z ∈ Lj−1(b′′) then it is also the case that there exists no neighbour
b′′ of a in G with z ∈ Li−1(b′′), as Li−1(v) ⊆ Lj−1(v), for all v ∈ V (G). Now
suppose that there exists a neighbour b′′ of a in G, with z ∈ Lj−1(b′′), b′′ ∈ GB .
Since by assumption Lj−1(a) ∪ Lj−1(b′′) is connected, and x is not the only
vertex of Lj−1(a), either x has another neighbour z′ in Lj−1(b′′), z′ �= z, or
z has another neighbour x′′ (could be x′) in Lj−1(a), x′′ �= x. It follows from
step j that either Lj(a) = Lj−1(a) − {x} or Lj(b′′) = Lj−1(b′′) − {z}. Since
x ∈ Li−1(a), and Li−1(a) ⊆ Lj(a) (as j < i), it must be that Lj(a) = Lj−1(a)
and Lj(b′′) = Lj−1(b′′) − {z}. Since b′′ was an arbitrary neighbour of a in G,
we have that Lj(b′′) = Lj−1(b′′) − {z}, for all neighbours b′′ of a in G. Thus
there exists no neighbour b′′ of a in G with z ∈ Lj(b′′). Since Li−1(v) ⊆ Lj(v),
for all v ∈ V (G), this implies that there exists no neighbour b′′ of a in G with
z ∈ Li−1(b′′). Thus for every edge ej = xz, with j < i, there exists no neighbour
b′′ of a in G with z ∈ Li−1(b′′).

It follows from the above result and the definition of perfect edge elimination
scheme that for every neighbour b′′ of a in G, the vertex x′ of Li−1(a) is adja-
cent to every neighbour of x which occurs in Li−1(b′′). Since Li−1(a) ∪ Li−1(b)
is connected by assumption, this implies that Li−1(a) − {x} ∪ Li−1(b) is also
connected. Thus in all cases Li(a)∪Li−1(b) is connected. Using this result, and
with arguments analogous to the above when considering the list Li(b), we can
show that Li(a)∪Li(b) is connected (indeed Li−1(a)∪Li(b) is also shown to be
connected similarly). Thus Li(a) ∪ Li(b) is connected, for all i = 0, 1, 2, . . . , q.
Since ab was an arbitrary edge of G, we have that Li(a)∪Li(b) is connected, for
all ab ∈ E(G), i = 0, 1, 2, . . . , q.

For each isolated vertex v of G, we update Lq(v) by removing all vertices
from Lq(v) except one vertex chosen arbitrarily. We now show that Lq(v) is a
singleton, for all v ∈ V (G). We know this is true when v is an isolated vertex
of G. Consider an edge ei = xy, with x ∈ HA, y ∈ HB , 1 ≤ i ≤ q. The edge
ei is considered only in the i-th step. Let ab be an edge of G, with a ∈ GA,
b ∈ GB , x ∈ Li−1(a), and y ∈ Li−1(b). If Li−1(a) = {x} or Li−1(b) = {y} is
a singleton then clearly it follows from step i that accordingly Li(a) = {x} or
Li(b) = {y}. Now suppose that one or both of the lists Li−1(a) and Li−1(b)
is not a singleton. Since we showed that Li−1(a) ∪ Li−1(b) is connected, either
x has another neighbour y′ in Lj−1(b), y′ �= y, or y has another neighbour x′

in Lj−1(a), x′ �= x (both cases may hold). It follows from step i that either
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Li(a) = Li−1(a)− {x} or Li(b) = Li−1(b)− {y} (both may hold). Thus the size
of the lists tend to get smaller, and when a list becomes a singleton, then as
explained above, no further vertices are removed from the list. For every non-
isolated vertex v of G, each vertex in L(v) is an endpoint of some edge e in the
scheme S, and e gets considered in some step. After all the edges of H have
been considered (in the order of the scheme S) through the steps 1, 2, . . . , q, this
mechanism shows that the list Lq(v) must be a singleton, for all v ∈ V (G).

Let Lq(v) = {hv}, where hv ∈ V (H), for all v ∈ V (G). Since we showed
that Lq(a) ∪ Lq(b) is connected for all ab ∈ E(G), it follows that the mapping
l : G → H, with l(v) = hv, for all v ∈ V (G), is indeed a list-Lq-homomorphism
of G to H. Since Lq(v) ⊆ L(v) and L(v) ⊆ LST (v), for all v ∈ V (G), it follows
that l : G → H is a list-LST -homomorphism of G to H, and the theorem is
proved. 
�

We outline below our algorithm for BLCL-H in a stepwise form which also
defines a list homomorphism if there exists one. The correctness of the algorithm
readily follows from the proof of Theorem 2.1.2.

Algorithm for BLCL − H

Let H be a chordal bipartite graph. Let a bipartite graph G with lists LST (v) ⊆
V (H), for all v ∈ V (G), be an instance of BLCL-H. Our algorithm to decide
whether or not there exists a list-LST -homomorphism of G to H, and define a
list-LST -homomorphism of G to H if there exists one, is as follows.

1. Perform the consistency test for G with respect to H and LST , and obtain
lists L′(v) (⊆ LST (v)), for all v ∈ V (G).
2. If there exists a vertex v of G for which L′(v) = φ, i.e., if the consistency test
in step 1 does not succeed, then report that there does not exist a list-LST -
homomorphism of G to H, and stop.
3. Report that there exists a list-LST -homomorphism of G to H, and define one
as follows (steps 4 through 10).
4. Let H1, H2, . . . , Hs be the components of H. Let (Hi,A, Hi,B) be a bipartition
of Hi, for all i = 1, 2, . . . , s. Let G1, G2, . . . , Gt be the components of G.
5. Let (Gj,A, Gj,B) be a bipartition of Gj (if Gj has only one vertex then either
Gj,A or Gj,B is empty) such that L(a) = L′(a) ∩ V (Hij ,A) �= φ, and L(b) =
L′(b)∩V (Hij ,B) �= φ, for some ij (there always exists such an ij and a bipartition
of Gj), 1 ≤ ij ≤ s, for all a ∈ V (Gj,A), b ∈ V (Gj,B), j = 1, 2, . . . , t. (As shown
in the proof of Theorem 2.1.2, using Theorem 2.1.1 and the mechanism of the
consistency test, we have that L(a) ∪ L(b) is connected, for all ab ∈ E(G).)
6. Obtain a perfect edge elimination scheme S =< e1, e2, . . . , eq > for H, where
E(H) = {e1, e2, . . . , eq}.
7. Let (HA, HB) be a bipartition of H, with Hi,A ⊆ HA, and Hi,B ⊆ HB ,
for all i = 1, 2, . . . , s. Let (GA, GB) be a bipartition of G, with Gi,A ⊆ GA,
and Gi,B ⊆ GB (note that Gi,A and Gi,B are computed in Step 5), for all
i = 1, 2, . . . , t. Let L0(v) = L(v), for all v ∈ V (G).
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8. for i = 1 to q do
begin

let ei = xy, with x ∈ HA, y ∈ HB ;
let Li(v) = Li−1(v), for all v ∈ V (G);
for each edge ab of G, with a ∈ GA, b ∈ GB , do
begin

if x ∈ Li−1(a) and y ∈ Li−1(b) then do
begin

if y has a neighbour x′ ∈ Li−1(a), x′ �= x, then Li(a) = Li−1(a)− {x};
if x has a neighbour y′ ∈ Li−1(b), y′ �= y, then Li(b) = Li−1(b)− {y};

end
end /* for each edge ab */

end /* for i = 1 to q */
9. For each isolated vertex v of G, remove all vertices from Lq(v) except one
vertex (this vertex is chosen arbitrarily).
10. The mapping l : G → H with l(v) = the vertex in Lq(v), for all v ∈ V (G),
is a list-Lq-homomorphism, and hence a list-L-homomorphism, and a list-LST -
homomorphism of G to H (as shown in the proof of Theorem 2.1.2, we have that
Lq(v) is a singleton, for all v ∈ V (G)).

This completes the outline of our algorithm. Since H is fixed, Step 6 takes only
a fixed time. As mentioned earlier, Step 1 runs in time linear in the size of G.
Note that q is fixed, and Step 8 also runs in time linear in the size of G. It is
readily seen that the entire algorithm also runs in time linear in the size of G.

3 A Linear Time Algorithm for Connected List
Homomorphism to Reflexive Chordal Graphs

In this section, we give an alternate linear time algorithm for ECL-H when H is
a reflexive chordal graph. We first prove the following two basic theorems Theo-
rem 3.1 and Theorem 3.2 that we use in proving the main theorem Theorem 3.3.
We do not include the proofs of any theorem in this section.

Theorem 3.1 If H is a reflexive chordal graph then for any connected subsets
X and Y of V (H), the subset Nbr(X) ∩ Y of V (H) is also connected.

Theorem 3.2 Let H be a chordal graph, and S be its perfect vertex elimination
scheme. For any two distinct vertices h and h′ of H, define h > h′ and h′ < h,
if h occurs after h′ in S. Let x, y ∈ V (H). If there exists a path from x to y in
H then there exists a path P = h1h2 . . . hkhk+1 . . . hq from h1 = x to hq = y
in H such that hi < hi+1, for all i = 1, 2, . . . , k − 1, and hj > hj+1, for all
j = k, k + 1, . . . , q − 1; ht ∈ V (H), for all t = 1, 2, . . . , q.

Theorem 3.3 Let H be a reflexive chordal graph, and let a graph G with lists
LST (v) ⊆ V (H), for all v ∈ V (G), be an instance of ECL-H. Then there exists
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a list-LST -homomorphism of G to H if and only if the consistency test for G
with respect to H and LST succeeds.

We outline below our algorithm for ECL-H in a stepwise form which also
defines a list homomorphism if there exists one using a direct formula. The
correctness of the algorithm follows from the proof of Theorem 3.3.

Algorithm for ECL − H

Let H be a reflexive chordal graph with components H1, H2, . . . , Hs. Let a graph
G with lists LST (v) ⊆ V (H), for all v ∈ V (G), be an instance of ECL-H. Let
G1, G2, . . . , Gt be the components of G. Our algorithm to decide whether or
not there exists a list-LST -homomorphism of G to H, and define a list-LST -
homomorphism of G to H if there exists one, is as follows.

1. Perform the consistency test for G with respect to H and LST , and obtain
lists L′(v) (⊆ LST (v)), for all v ∈ V (G).
2. If there exists a vertex v of G for which L′(v) = φ, i.e., if the consistency test
in step 1 does not succeed, then report that there does not exist a list-LST -
homomorphism of G to H, and stop.
3. Report that there exists a list-LST -homomorphism of G to H, and define one
as follows (steps 4, 5, and 6).
4. Obtain a perfect vertex elimination scheme S for H.
5. Let L(v) = L′(v) ∩ V (Hij ) �= φ, for some ij (there always exists such an
ij), 1 ≤ ij ≤ s, for all v ∈ V (Gj), j = 1, 2, . . . , t. (It is shown in the proof of
Theorem 3.3, using Theorem 3.1 and the mechanism of the consistency test, that
L(v) is connected, for all v ∈ V (G).)
6. The mapping l : G→ H defined below is a list-L-homomorphism, and hence
a list-LST -homomorphism, of G to H (we utilize Theorem 3.2 in proving this) :
l(v) = the vertex in L(v) which occurs latest in S among the vertices present in
L(v).

This completes the outline of our algorithm. A perfect vertex elimination scheme
for a chordal graph can be obtained in time linear in the size of the graph (see
[Golumbic, 1980]). However since H is fixed, step 4 takes only a fixed time. As
mentioned earlier, step 1 runs in time linear in the size of G. Thus it can be seen
that the entire algorithm also runs in time linear in the size of G.
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Abstract. We analyze evolving tree computations on circulant (rings
with “regular” chords) and related graphs. In an evolving α-ary tree
computation, a complete tree grows level by level, i. e., every leaf gener-
ates α new nodes that become the new leaves. The load balancing task
is to spread the new nodes on a network of processors in the moment
they were created in such a way that the accumulated number of nodes
per processor, i. e., its load, is as close as possible to the average number
of nodes per processor. Gao/Rosenberg [2] introduced evolving compu-
tations and investigated the growth of complete binary trees on rings
of processors. They showed that the so-called ks-regimen behaves opti-
mally in the course of long computations. In this paper, we generalize
evolving computations to trees of arbitrary degree and we generalize the
regimen notion. We show that any regimen behaves optimally. For this
purpose, we model the actual load distribution, the generation process,
and the distribution regimen by formal infinite polynomials. Then we
show that evaluating these polynomials for certain inputs leads to the
analysis of these regimens on circulant and related graphs. It is shown
that any regimen leads to a close to optimal load distribution.

1 Introduction

Background. In the standard abstract formulation of load balancing in a dis-
tributed network, processors are modeled as the vertices of a graph and links
between them as edges. Each processor initially has a collection of unit-size jobs
which we call tokens. In a dynamic setting, some of these tokens generate new
tokens, so we distinguish between generating and non-generating tokens. The
object is to balance the number of tokens by transmitting the new tokens along
edges according to some local scheme. This problem has obvious applications in
job scheduling and other coordination tasks in parallel and distributed systems.
It also arises in the context of finite element computations, and in simulations
of physical phenomena.
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In order to avoid expensive reordering of all tokens or special computations
of destinations for every new token individually, it is desirable to have a simple
general strategy that governs the load transmission procedure. For example, if
every generating token which resides in processor i creates four new tokens, a
very simple strategy would be to send one of them to processor i−1, to hold two,
and to send one to processor i+ 2, where the processor numbers are considered
as congruent modulo the size n of the network and having edges to realize these
transmissions.

The topic of this paper is the following. We assume the token generation
process to grow a tree where, in one round, only the leaf nodes generate new
tokens. Every leaf generates the same number of tokens. After the new tokens
have been created in the processors of the network it has to be decided which
tokens are held and which tokens are sent to which neighboring processors.

Previous Work. Gao/Rosenberg introduced in [2] the notion of (regularly) evolv-
ing (binary) tree computations on a ring of n processors. In their setting, a com-
plete binary tree is grown. Initially, only one processor holds a generating token.
Every generating token creates in a single round two new generating tokens, but
will not create further tokens for the rest of the computation. The new tokens
have to be spread among the processors according to a regimen. Gao/Rosenberg
define the ks-regimen (“Keep-left-Send-right”) that works on a ring of processors
as follows: One new token stays at the processor where it has been generated,
one token is sent to the, say, right neighbor of the processor where it has been
generated. So, during the computation, the total load of generating and non-
generating tokens accumulates in every processor. They show that this policy is
asymptotically optimal, i. e., that the tokens are evenly distributed among the
processors. More specifically, let the token generation process be run t rounds on
a ring of n processors (so the total number of tokens is Mt = 2t+1−1), and let l(t)i

the number of tokens in processor i. Then |l(t)i −Mt

n | ≤ (2 cos(π/n))t+1 = o(2t+1),
and thus, l(t)i = (1± o(1)) · Mt

n .
In another seminal paper [1], Bhatt/Cai investigate evolving binary tree com-

putations on d-dimensional hypercubes. The tree is allowed to grow arbitrarily,
so not only leaves can generate a token in one round. New tokens are sent along
a random path of length O(log d) to their destination. With M denoting the
size of the tree, their algorithm ensures that the maximum load per processor is
O(1 +M/2d), with high probability. To obtain this result, random walks on the
hypercube are analyzed accurately. This approach has been further investigated
by Li [4].

New Result. In this paper, we generalize the regularly evolving tree computations
approach to arbitrary α-ary trees that grow level by level. Here, in one round
every generating (leaf) token creates α = α1+· · ·+αk new tokens, k ≥ 1 and αi ∈
IN fixed. Let the mentioned tokens be created in processor i. A global regimen
states that αj of these tokens are transmitted to processor i + δj , δj ∈ ZZ fixed,
where the processor numbers are considered modulo the size n of the network
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and having edges to realize these transmissions. For the Gao/Rosenberg ks-
regimen, (α1, α2) = (1, 1) and (δ1, δ2) = (0, 1). We show that any global regimen
on circulant graphs, i. e., rings of length n that have all chords that correspond to
the δj sequence given above, is asymptotically optimal. That means that when
we have after t rounds a tree of size Mt = (αt+1−1)/(α−1), the load in processor
i is l(t)i = (1±o(1)) · Mt

n . Furthermore, we determine the parameter that governs
the speed of the load balancing.

In order to prove this property, we describe global load-balancing regimens
by generating polynomials which simplifies the analysis of the Gao/Rosenberg
ks-regimen, or any regimen, considerably by applying algebraic tools.

Organization of Paper. In Section 2, we give a more formal description of evolv-
ing computations and regimens and state the result of this paper in this frame-
work. In Section 3, we describe the token generation process by generating poly-
nomials on an infinite linear array with chords. Then, in Section 4, we show that
winding-up the infinite array on an n-cycle with chords can be modeled and
analyzed by evaluating the generating polynomials for powers of nth primitive
roots of unity. Finally, in Section 5 we demonstrate how this approach can be
used for analyzing evolving tree computations on multi-dimensional tori with
regular chords.

2 Definitions and Result

Let α ∈ IN. An evolving α-ary tree computation is a complete α-ary tree that
grows in rounds. Initially, there is only the root. In one round, every leaf of the
tree generates α new leaves. So after t rounds, there are αt leaves, and the size
of the tree is αt+1−1

α−1 . As synonym for the term “node” we use the term “token.”
The leaves are called generating tokens, the interior nodes are non-generating
tokens.

Let α = α1+· · ·+αk, k ≥ 1, αj ∈ IN fixed. The α-ary tree computation grows
on a host network of processors that are numbered from 0 through n − 1. For
simplicity, think of the network as an n-cycle, i. e., processor j is connected to
processor (j+1) mod n. The root of the tree computation is in some processor j.
Let (δ1, . . . , δk),−n < δj < n be fixed. The global (α1, . . . , αk; δ1, . . . , δk) regimen
governs one round of the tree computation as follows: For every generating token
stored in processor i, αj new tokens are sent to processor (i+δj) mod n, for every
j ∈ {1, . . . , k}.

If for every processor i the edges {i, (i+δj) mod n} are added to the n-cycle,
we call the resulting graph a circulant graph. The graph is a full circulant graph,
if there is only one connected component induced by the edges defined by the
δ-sequence. E. g., when n = 6 and (δ1, δ2) = (0, 2), there are two connected
components, whereas, when n = 5 there is only one. An example of an evolving
4ary tree computation with n = 6 and the (1, 2, 1; 0, 1, 2)-regimen is given in
Fig. 1.

Note that the dilation of the tree edges in the host network is 1.
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Fig. 1. An evolving 4-ary tree computation after t = 2 rounds and the circulant host
network with n = 6 corresponding to the (1, 2, 1; 0, 1, 2)-regimen and to p(x) = 1 +
2x + x2.

In the rest of this paper, let a
(t)
i denote the number of generating tokens

stored in processor i after round t. Similarly, let l
(t)
i denote the total number of

tokens stored in processor i.
We prove the following theorem.

Theorem 1. For any global (α1, . . . , αk; δ1, . . . , δk) regimen on a full circulant
graph of size n described by the δ-sequence holds, as t advances:

l
(t)
i =

(
1± o(1)

) · 1
n
· α

t+1 − 1
α− 1

That means that with increasing number of rounds the load in every processor
comes closer and closer to the average load, independent of the used regimen. In
a certain way this resembles the properties of random walk on a cycle where after
some time the probability distribution comes close to the uniform distribution.

3 The Infinite Setting and the Generating Polynomials

Before we turn to the cycle, we first show how an evolving tree computation and a
global (α1, . . . , αk; δ1, . . . , δk)-regimen can be modeled on an infinite linear array
as the tree’s host network. In this array, the processors are numbered from −∞
through∞. As in circulant graphs, we assume that each processor i is connected
to all processors i+δj . For processor i, let a(t)

i denote the number the generating
tokens stored in i after round t, and let l

(t)
i denote the total number of tokens

in processor i.
As this infinite graph is invariant under shifts right and left, we assume,

w. l. o. g., that the root is stored in processor 0. Hence, a(0)
0 = l

(0)
0 = 1.

We describe the distributions of the generating tokens and of all tokens among
the processors after round t by two generating functions,

a(t)(x) =
∞∑

i=−∞
a
(t)
i · xi and l(t)(x) =

∞∑
i=−∞

l
(t)
i · xi ,

resp., and, for a global (α1, . . . , αk; δ1, . . . , δk)-regimen, let
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p(x) =
k∑

j=1

αj · xδj .

E. g., for the (1, 1; 0, 1)-regimen (i. e., the ks-regimen), p(x) = 1 + x, and for the
(1, 2, 1;−1, 0, 1)-regimen, p(x) = x−1 + 2 + x.

Note that the total number of tokens is simply l(t)(1).
p(x) describes the regimen completely, and calculations with it can simulate

the evolving tree computation because there is the following connection between
the regimen, the tree computation and the polynomials.

Lemma 1. Let the global (α1, . . . , αk; δ1, . . . , δk)-regimen in the infinite network
setting be given. For all t ≥ 1,

(a) a(t)(x) = p(x)t

(b) l(t)(x) =
t∑

τ=0

p(x)t =
p(x)t+1 − 1
p(x)− 1

Proof. (a) a
(t)
i · xi is the monomial in a(t)(x) that describes the number a

(t)
i of

generating tokens in processor i. These tokens create, for j ∈ {1, . . . , k}, a(t)
i ·αj

new tokens that have to be transmitted to processor i + δj , i. e.,

k∑
j=1

a
(t)
i · αj · xi+δj = a

(t)
i · xi ·

∑
j=1

αj · xδj = a
(t)
i · xi · p(x)

must, as the contribution of processor i, be added to a(t+1)(x). Thus a(t+1)(x) =
p(t)(x) · p(x), which completes the proof of (a).

(b) follows from (a) and the fact that l(t)(x) =
∑t

τ=0 a
(τ)(x). �

Hence, the load distribution of the ks-regimen with polynomial p(x) = 1+x
is given by l(t)(x) = x−1 · ((1 + x)t+1 − 1). Due to symmetry, the “reversed”
ks-regimen p(x) = x−1 + 1 results in the same sequence of loads except that
the number of tokens that has been in processor i, is in this case in processor
−i. So, also l(t) = x · (1 + 1/x)t+1 − x returns the same load per processor
as the ks-regimen. In general, we can multiply p(x) by xj , j ∈ ZZ, without
changing the load sequence. A further consequence is that with p(x) = 1+x and
p̂(x) = p(x)2/x = x−1 + 2 + x, the two regimens result, after 2t and t rounds,
resp., in the same load sequence.

Of course, in the infinite setting the regimen cannot result in a good distribu-
tion of the total load that is obviously l(t)(1). E. g., with p(x) = 1 + x, in l(t)(x)
the largest coefficient is

(
t+1
�t/2

)
, and the smallest non-zero coefficient is 1.

In the next section, we will show that l(t)(x) also can be used to analyze the
finite setting.
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4 The Finite Setting: Winding up the Infinite Array

In the following, we show that winding up the infinite array and its load on the
n-cycle leads to an exact description of the evolving tree computation on the
cycle (and its chords). As we have seen above, the load difference can be very
large in the infinite setting. However, the winding-up flattens this difference
dramatically.

Let p(x) be a regimen, and let l̂(t)(x) =
∑∞

i=−∞ l̂
(t)
i xk the resulting load

polynomial in the infinite setting. Consider the same regimen on the n-cycle
(with appropriate chords). Then the load l

(t)
i of processor i of the cycle is related

to the infinite setting as follows.

Lemma 2. For the load l
(t)
i of processor i on the n-cycle, l(t)i =

∞∑
k=−∞

l̂
(t)
i+kn

This lemma follows from the fact that generating tokens are not influenced
by other generating tokens. So they can be bijectively identified in the cycle and
the infinite array.

In the following, we shall see how we can calculate l
(t)
i by evaluating l̂(t)(x)

for appropriate complex numbers x. Let ωn = e2iπ/n = cos(2π/n) + i sin(2π/n)
be an nth primitive root of unity. ωn has the the following important properties:

–
∑n−1

j=0 ωj
n = 0 and

– ωi
n = ωi+k·n

n for all k.

Lemma 3. In the finite setting, the load l
(t)
i of processor i after t rounds is

l
(t)
i =

1
n
·

n−1∑
j=0

ω−ji
n · p(ω

j
n)t+1 − 1

p(ωj
n)− 1

.

Proof.

1
n
·

n−1∑
j=0

ω−ji
n · l̂(t)(ωj

n) =
1
n
·

∞∑
k=−∞

l̂
(t)
k ·

n−1∑
j=0

ωj(k−i)
n︸ ︷︷ ︸

=z

=
∞∑

k=−∞
l̂
(t)
i+kn

By the properties of ωn, z = n, if k − i = 0 mod n, and z = 0 otherwise. By
Lemmata 1(b) and 2, the statement follows. �

The technique used above is called multisection (e g., see [3, p. 89]).
In the case of the n-cycle and the “two rounds” ks-regimen, i. e., p(x) =

(1 + x)(1 + x−1) = x−1 + 2 + x, it is particularly easy to get rid of the complex
numbers, so we have explicitly

l
(t)
i =

1
n
·

n−1∑
j=0

ω−ji
n · (ω−j

n + 2 + ωj
n)t+1 − 1

ω−j
n + 1 + ωj

n

=
1
n
·

n−1∑
j=0

cos
(2πji

n

)
· (2 + 2 cos( 2jπ

n ))t+1 − 1

1 + 2 cos( 2jπ
n )

.
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Now we show that l
(t)
i comes very close to the average load when t becomes

large. More specifically, we show that the deviation from the average load be-
comes small.

Let λ = max0<j<n |p(ωj
n)| = |p(ωn)|. Note that λt = o(αt) for growing t as

λ < p(1) = α, and recall that l̂(t)(1) is the total number of tokens after t rounds.
Let Δ(t)

i = l
(t)
i − l̂(t)(1)

n be the deviation of the load in processor i after round
t from the average load.

Lemma 4.

|Δ(t)
i | ≤

n− 1
n

· λ
t+1 − 1
λ− 1

Proof. By applying Lemma 3, we obtain

l
(t)
i =

1
n
·

n−1∑
j=0

ω−ji
n · l̂(t)(ωj

n) =
l̂(t)(1)
n

+
1
n
·

n−1∑
j=1

ω−ji
n · p(ω

j
n)t+1 − 1

p(ωj
n)− 1︸ ︷︷ ︸

=Δ
(t)
i

.

Now,

|Δ(t)
i | ≤

1
n
·

n−1∑
j=1

∣∣∣∣∣p(ωj
n)t+1 − 1

p(ωj
n)− 1

∣∣∣∣∣ ≤ 1
n
·

n−1∑
j=1

t∑
τ=0

∣∣p(ωj
n)
∣∣τ ≤ n− 1

n
· λ

t+1 − 1
λ− 1

The first two estimations are true because of the Triangle Inequality. The ω−ji
n

factor can be dropped from the sum because of the Cauchy-Schwarz Inequality.
�

As a consequence of Lemma 4, we have that after at most t∗ ≈ logα/λ( 1
4ε )

rounds
|Δ(t∗)

i |
l̂(t∗)

≤ ε

for arbitrary ε > 0 so that the larger α/λ, the faster the loads approach the
average load. Immediately, as λt = o(αt), we can conclude:

Theorem 1. For any global regimen described by p(x) on a full circulant graph
holds with total load l̂(t)(1) and as t advances:

l
(t)
i =

(
1± o(1)

) · l̂(t)(1)
n

For the “two rounds” ks-regimen mentioned above, λ = 2 + 2 cos(2π/n) =
4 cos2(π/n) ≈ 4− 4π2

n2 .

5 Related Networks and Remarks

Now we consider evolving tree computations on a d-dimensional torus as host
network. To model the development of the loads, we can first use a d-dimensional
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array that is infinite in all directions. For every dimension j, a formal vari-
able xj can be used, so this time the generating polynomial for the loads is
l(t)(x1, . . . , xd). Here, the regimen can be described by a polynomial p(x1, . . . , xd).
When we have an n1 × · · · × nd torus (with appropriate internal chords reflect-
ing the regimen), we have to do multisection with ωn1 , . . . , ωnd

as described
above for the one-dimensional case. Then we can repeat the calculations of the
proof of Lemma 4 which also shows that any regimen eventually leads to a good
distribution of the tokens.

Our analysis also extends to the case where more than one tree grows. In this
case, a(0)(x) is not only just 1, but a polynomial. Also more complex regimens
can be analyzed with our approach. Here, a regimen can consist of several poly-
nomials p1(x), . . . , pm(x). Obviously, the development of loads is then described
by the polynomial that is the product of the pj(x).

Evolving tree computations are very similar to Random Walk on the host
network. Besides using integers, the difference is the accumulation of load in a
single processor. This leads to the following interesting observation: Consider
the regimen p(x) = x−1 + x on the ring of length 4. After every round, only two
processors contain generating tokens, that means, the generating tokens are not
balanced among the processors, we have something like a periodic Random Walk.
On the other hand, the accumulated number of tokens per processor approaches
the average number.

In [5], a Random Walk approach is used to analyze diffusive load-balancing
algorithms. Here the number of tokens and their distribution is fixed, and the
goal is to distribute the tokens evenly among the processors. In order to upper
bound the deviation between the Random Walk where rational number occur
and the distribution, in [5] the measure local divergence has been introduced
which is similar in some respects to our l

(t)
i . The local divergence accumulates

the maximum possible deviation between the integer and the rational process
per round. Future work could relate the local divergence to evolving tree com-
putations.
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