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Abstract. In this paper we present an active, or programmable, packet
system, SNAP (Safe and Nimble Active Packets) that can be used to pro-
vide flexible, lightweight network management with predictable resource
usage. SNAP is efficient enough to support both centralized polling and
mobile agent approaches; furthermore, its resource predictability pre-
vents malicious or erroneous agents from running amok in the network.

1 Introduction

Mobile agents have often been proposed as a solution for network manage-
ment [5]. By moving computation away from a central network operations cen-
ter (NOC) via mobile code, these schemes use distribution to achieve scalabil-
ity [4, 5, 6, 17, 20]. Furthermore, having a programmable management platform
in theory makes it easier to customize management applications to particular
networks or to quickly take new management actions (for example, a response
to a new virus or denial-of-service attack).

If mobile agents are such a panacea for distributed management, why do they
not appear more frequently in actual management systems? We believe there are
two reasons: existing systems are too heavyweight, and network managers fear
losing control over runaway agents.

Several researchers have explicitly considered how the performance of agents
compares to SNMP and similar approaches. Rubinstein and Duarte [20], for
example, simulate the performance of an agent designed to gather values from
several nodes and compare it to SNMP on a simple topology. Their simulations
show that for several metrics when a large number of nodes are visited (over
200), their agent outperforms SNMP. However, for a small number of nodes,
SNMP is superior; because their agent requires about 5,000 bytes to be trans-
mitted, the mobile agent approach can overcome its constants of proportionality
only for the largest of networks. Baldi and Picco [3] develop a set of analytical
models concerning the performance of several approaches, including both cen-
tralized polling and mobile agents and are thus able to characterize when one
� This work was supported by DARPA under Contract #N66001-96-C-852 and by the
NSF under Contracts ANI 00-82386 and ANI 98-13875.

J. Sterbenz et al. (Eds.): IWAN 2002, LNCS 2546, pp. 111–119, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



112 Jonathan T. Moore, Jessica Kornblum Moore, and Scott Nettles

technique will perform better than another. They then examine a specific case
study involving SNMP and Java Aglets [13]. Here the Java code is again about
5,000 bytes in size, with a similar impact on the trade-offs compared to SNMP.

A further problem concerns bounding resource usage, which is always an issue
where mobile agents are concerned. Indeed, many agent platforms suffer from
the problem of runaway agents that are difficult to track down and stop once
unleashed [27]. Network operators are extremely hesitant about surrendering
control to agents whose behavior is not entirely predictable.

In this paper, we describe the use of an active (or, programmable) packet
system, SNAP (Safe and Nimble Active Packets) [15], for use in network man-
agement. SNAP packets contain code that is executed at SNAP-aware routers,
thus adding significant flexibility over IPv4 or simple client-server protocols. The
SNAP language has been designed to provide lightweight execution as well as
predictable resource usage. As a result, SNAP is an ideal candidate for realizing
the mobile agent approach to network management.

We begin in Section 2 with a brief overview of SNAP, stressing its secu-
rity features and providing a micro-benchmark demonstrating its lightweight
implementation. Then in Section 3, we illustrate the detection of a Distributed
Denial-of-Service (DDoS) attack using special SNAP monitoring agents. We dis-
cuss related work in Section 4 before concluding and suggesting future work in
Section 5.

2 SNAP: Predictable, Lightweight Mobile Agents

SNAP is an active packet language designed to address the open problem of pro-
viding a flexible programming language with high performance, yet safe (and in
particular, safe with respect to system resources), execution. In this subsection,
we present merely a high level overview; the reader is referred to [15] for more
details.

SNAP is a simple stack-based bytecode language designed to require no un-
marshalling (and in most cases very little or no marshalling) and to permit
in-place execution. The packet contains code, heap, and stack segments; the
stack is the last segment in the packet, allowing us to execute SNAP in-place in
a network buffer, as the stack can grow and shrink into the available space at
the end of the buffer (the heap can also grow down from the end of the buffer if
needed). By design, SNAP does not require a garbage collector.

SNAP is indeed a low-level, assembly-style language (see Figures 1 and 2 for
examples), making tightly hand-tuned packet programs possible. However, for
programming convenience, a compiler [10] exists to translate the higher-level,
strongly-typed active packet language PLAN into SNAP.

In its current implementation, SNAP is carried in an IPv4 packet with the
Router Alert [11] option. Thus, legacy routers will simply forward a SNAP packet
toward its destination. On the other hand, SNAP-aware routers can detect the
router alert, check the IP protocol field to see that the packet contains SNAP,
and then call the SNAP interpreter. Kernel and user-space implementations exist
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for Linux systems, and an interpreter has also been built for IBM’s PowerNP
4GS3 network processor [12].

A key aspect of SNAP’s design is its model of predictable resource usage.
In particular, a single packet execution on a node is guaranteed to use time
and space proportional to the packet’s length. This guarantee is derived from
two facts: all SNAP instructions execute in (possibly amortized) constant time
and space, and all branches must move forward. Thus, unlike other approaches
based upon watchdog timers or memory limits, SNAP routers know that incom-
ing SNAP programs will behave reasonably with respect to resources without
even having to examine them. Furthermore, this means that SNAP program-
mers can know that their programs will not be unexpectedly terminated; if they
can express their programs in SNAP, those programs are resource safe.

In addition, each packet has an associated resource bound (RB) field that is
decremented for every network hop, including sending to the current node via
a loopback interface. This loopback behavior can be used to emulate backward
branches at the cost of 1 RB. Furthermore, a packet must donate some of its
RB to any child packets it spawns (conservation of resource bound). As a result,
we can examine the initial length of a SNAP program and its initial RB count,
and place a strict upper bound on the amount of network resources it or its
descendants can ultimately use.

Because SNAP cannot express infinite loops, nor can SNAP packets roam
around the network indefinitely, it is not possible to write a stationary daemon-
style agent that “settles in” at a given node to monitor it, nor can we write
permanently circulating “sentry” agents. Stationary agents are more appropri-
ately designed using existing approaches like AgentX [7] and RMON [25]. Long-
running agents that traverse a given circuit repeatedly can be composed from
multiple SNAP agents, each of which traverses the circuit a fixed number of
times before reporting back into the NOC, which then sends out a new agent.
Our example DDoS detection application in Section 3 would be naturally con-
structed this way. The benefit, of course, is that to control incorrect agents, we
can simply stop injecting new agents at the NOC; all outstanding agents will
then fairly quickly run out of resources and die.

For added security, access to management functions may be protected by
strong authentication, in the style of PLAN [9]. Here, there is some minimal set
of “safe” services available to all packets without authentication. A packet can
carry cryptographic credentials that can be presented to the node in exchange
for an expanded service namespace—access to additional services. This style
of namespace security allows packets to only pay the costs of cryptographic
authentication on an as-needed basis. Although we have not yet implemented
this service for SNAP, it would be straightforward: the credentials could be
carried in the packet’s heap as a byte array and then handed to an “auth”
service that would side-effect the service namespace for the packet.



114 Jonathan T. Moore, Jessica Kornblum Moore, and Scott Nettles

forw ; move towards destination

bne done ; if returning to source, branch

push "interfaces.ifNumber.0" ; MIB variable

calls "snmpget" ; invoke service

push 1 ; push 1 to indicate return

getsrc ; retrieve source address

forwto ; forward back toward source

done:

demuxi <portnum> ; deliver payload

Fig. 1. SNAP program for the polling micro-benchmark.

2.1 Micro-benchmark

In this section, we support our claim that SNAP can provide a lightweight net-
work monitoring system. Our experiments were performed on a two PCs, called
hera and athena; each machine has a Pentium III (Coppermine) 1 Ghz CPU,
256 MB of RAM, and a SuperMicro Super 370 DE6 motherboard with on-board
Intel Speedo3 100 Mbps Ethernet card. The cluster runs RedHat Linux 7.3, with
kernel version 2.4.18-5. Both machines are on the same LAN, switched by an As-
anté Fast100 Ethernet hub. The measurements we present are the median of 21
trials.

In our first test, we ran the snmpd from ucd-snmp version 4.2.5 on hera, and
ran a client program on athena to retrieve the interfaces.ifNumber.0 MIB
variable from hera. The median latency was 575 µs (the ping latency between
the machines accounts for 148 µs of this).

In our second test, we ran our user-space snapd on both hera and athena,
and injected the SNAP program1 shown in Figure 1 from athena. The program
proceeds to hera, queries the MIB variable via the “snmpget” service, and then
returns back to athena. The median latency for this program was 660 µs, an extra
overhead of only 85 µs (15%) over plain snmpd above. However, this overhead
is exaggerated by the fact that the implementation of the “snmpget” service
simply contacts the local snmpd via a network socket; this overhead could be
avoided in an integrated SNAP+SNMP daemon, such as we discuss in future
work (Section 5).

3 Application Example: DDoS Detection

We now present a concrete example using SNAP as a lightweight mobile agent
platform for network management. Distributed denial-of-service (DDoS) attacks
are an increasing problem, targeting well-known e-commerce and government
sites; easy to use tools for carrying out these attacks [1], are becoming widely
available. For e-commerce sites, response time for such attacks is critical, as

1 For an explanation of SNAP semantics, the reader is referred to [15].
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serious revenue losses can accrue during down-time, not to mention the impact
on customer satisfaction. The first step of a response is detecting the attack in
the first place. In this section, we describe a DDoS detection mechanism using
SNAP.

To detect a DDoS attack, we can measure the amount of incoming traffic
T into our administrative domain. Generally, as a network manager, we will
have some traffic threshold Talarm; if incoming traffic exceeds Talarm, we want
to sound an alarm and take action. We need to query incoming octet counts on
multiple interfaces of multiple nodes. The usual centralized polling approach will
quickly overwhelm the NOC with management data as the number of managed
nodes grows, so this solution does not scale. The key to scalability lies in being
able to distribute the computation of T . Fortunately, this particular computation
can be performed incrementally, making it especially well suited for the use of
lightweight active packets.

3.1 SNAP Surveyors

Figure 2 shows the SNAP “surveyor” programs that we use to address the scaling
problem. This packet program carries a list of nodes to query and visits each
in sequence. At each node i it queries the MIB variable interfaces.ifTable.
ifEntry.ifInOctets for the external interface and keeps a running sum, Tsum.
Once all nodes have been visited, the surveyor returns to the NOC and reports
the current value of T . The algorithmic intuition is the following: with n nodes
to manage, a centralized polling approach requires O(2n) network hops (out to
each node and back), whereas the surveyor approach requiresO(n) hops. Perhaps
more importantly, in the centralized approach, all O(2n) hops involve the NOC,
whereas in the surveyor approach, only 2 hops involve the NOC. Thus, not only
is the network traffic reduced, but it is also distributed.

The surveyor program consists of just 21 instructions, for a total of 84 bytes of
code in a SNAP packet. This leaves significant room in the packet for carrying
accumulated data and/or addresses of nodes to visit. Even with a maximum
transmission unit (MTU) as small as 256 bytes, there are still 128 bytes of
room left over in the packet after headers and code (enough to visit 32 nodes,
assuming 4 bytes of accumulated data as in the above example). With more
realistic autonomous domain MTUs of 1500 bytes, one packet could easily visit
over 300 nodes.

3.2 Discussion

The specific example presented here is just one of a class of distributed threshold
detection problems; Raz and Dilman [18] point out several such problems, in-
cluding monitoring general network traffic, Web mirror loads, software licenses,
bandwidth brokerage, and denial-of-service attacks. In each case, we want to
know whether some global network threshold has been exceeded.

Raz and Dilman’s approach, efficient reactive monitoring, apportions some
“ration” of the global threshold to each monitored node; the node monitors its
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main:

forw ; get to next hop

bne athome ; if homeward flag set, just deliver data

;; else, we need to update load sum

push "interfaces.ifTable.ifEntry.ifInOctets.5"

calls "snmpget" ; get current octet count

add ; running sum

;; any more nodes to visit?

pull 1 ; get n (number of remaining nodes)

bez gohome ; if out of addrs, go home

;; re-arrange stack state in preparation for transit

pull 2 ; get next node’s address

pull 2 ; get n

subi 1 ; n--

store 4 ; put new n over old next hop

pull 1 ; pull load sum

store 3 ; put load sum over old n

push 0 ; still more hops to go; unset homeward flag

store 2 ; put flag over old load sum

forwto ; move on to next hop

gohome:

push 1 ; set homeward-bound flag

getsrc ; find out where home is

forwto ; go there

athome:

getspt ; get port number for delivery

demux ; deliver octet total

Fig. 2. SNAP “surveyor” program

own state and, if the ration is used up, triggers an alarm to the NOC, which
then issues a global poll. If none of the nodes exceed their ration, then the global
usage cannot have exceeded the global threshold.

This approach can be adapted to use SNAP surveyors without requiring extra
code to be installed at the monitored nodes (except for the one-time installation
of a SNAP interpreter). Furthermore, the surveyor can make use of domain-
specific knowledge to shortcut its route: the surveyor may be able to determine,
based on its current incremental result, the number of remaining nodes to visit,
and an upper bound on the queried value, that the overall threshold will not be
exceeded2.
2 A centralized poll could also short-circuit its search, but as we noted earlier, this
requires on the order of twice as many network hops as the surveyor approach.
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4 Related Work

There is a significant body of work concerning mobile agents in network man-
agement [2, 4, 6, 16, 24, 17, 19, 21, 22, 26]. Bieszczad et al. provide a survey [5]
that identifies a number of areas in which mobile agents are applicable to net-
work management, including network modeling, fault management, configura-
tion management, and performance management.

Existing mobile agent systems [4, 16, 24, 17, 19] geared toward network
management tend to be based largely upon Java. Unfortunately, there is no
good way to bound the resources consumed by a Java agent, as infinite loops
can be expressed, yet Hawblitzel et al. have shown that it is unsafe to simply
terminate runaway threads in the JVM [8].

The IETF ScriptMIB [14] provides an SNMP-based interface for installing
and running scripts, although it does not specify a particular script programming
language. Furthermore, multiple SNMP round-trips are necessary to set up and
invoke a new script, whereas SNAP-based agents are more “light on their feet,”
being self-contained.

Perhaps the most closely related project to ours is the Smart Packets project
from BBN [23]. Indeed, their system closely resembles ours in having a byte-
code interpreter for active packets. The main difference from our work is their
approach to resource control. Smart Packets rely on instruction counters and
memory limits to prevent packets from consuming too many local resources,
whereas SNAP can provide the same guarantees via language design. In the
end, this impacts programmer convenience: with Smart Packets, it is possible
that a packet program may accidentally and unpredictably exceed its resource
allotment and be prematurely terminated, whereas SNAP programs will always
run to completion (barring other sorts of errors). One other important difference
is that Smart Packets cannot direct themselves; they are sent from a source to a
destination, and may execute on intermediate nodes, but may not deviate from
the original path. As a result, Smart Packets do not offer quite the agility needed
for truly mobile agents. Finally, no performance data is available to determine
whether the Smart Packets execution environment is lightweight or not.

5 Conclusions and Future Work

We have described an active packet system, SNAP, and have argued that it
can be used to add flexible mobile agent capabilities wherever SNMP is already
used. We have shown experimentally that SNAP execution overheads are small
compared to SNMP: thus SNAP offers the flexibility of mobile agents with the
efficiency of standard centralized polling. Furthermore, our language design guar-
antees that SNAP agents have predictable (and finite) resource usage. Finally,
we have presented an example application, using SNAP to detect distributed
denial-of-service attacks (DDoS).

The main thrust for future work revolves around providing a generic SNMP
service interface for SNAP. Walter Eaves of University College London has al-
ready added an SNMP service interface to a user-space SNAP implementation.
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In this system, services send appropriate SNMP requests to a separate SNMP
daemon on the same host. Willem de Bruijn at the Leiden Institute of Advanced
Computer Science is currently merging a SNAP user-space implementation with
the net-snmp SNMP daemon, creating a single programwith a MIB backend and
two frontends, one for vanilla SNMP and one for SNAP. The resulting program
will be a SNAP-enabled drop-in replacement for a standard snmpd.
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