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Abstract. The OKE Corral is an active network environment which
allows third-party active code to configure an active node’s code organi-
sation at any level, including the kernel. Using the safety properties of an
open kernel environment and a simple ‘Click-like’ software model, third
parties are able to load native code anywhere in the processing hierarchy
and connect it to existing components at runtime.

1 Introduction

For reasons of safety, most active networks (ANs) tend to sandbox active code
in user space, either locally or at a remote node. Moreover, such code is often
interpreted, which slows down its performance considerably. Even in non-active
environments interpreters are frequently used whenever application-specific code
is loaded in the kernel. A well-known example is found in BSD packet filtering.

In previous work, however, we have shown how the open kernel environment
(OKE) provides a safe, resource-controlled programming environment which al-
lows fully optimised native code to be loaded in a Linux kernel by parties other
than root in a safe manner [BS02]. In this paper, we describe how the OKE was
used to develop an environment for building high-speed ANs allowing third par-
ties to load and configure native code anywhere in the processing hierarchy. An
implementation of this environment is found in the Corral (Code Organisation
and Reconfiguration at Runtime using Active Linking). The contribution of this
work is that three existing technologies in programmable networks (open kernels,
the ‘Click router’ model, and ANs) are combined to provide a safe platform for
fast packet processing in the kernel of a common operating system while explic-
itly separating control and data. In the OKE Corral high-speed packet processing
is managed by slow-speed control code. It can be summed up as follows:

1. We borrow the LEGO-like software model advocated by the ’Click router’
project in [CM01] to build both fast data paths and slower control paths.

2. One of the components on the control path is an AN runtime.
3. The configuration/implementation of the paths is controlled by third-party

code executing either on the node itself, e.g. in the form of active applications
(AAs), or at a remote site.

4. The OKE ensures that new kernel-level path components are safe.
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Although the individual components may not be new, to the best of our knowl-
edge there does not exist any system that provides the following combination
of features in a commonly used operating system: (a) programmability of both
kernel and user space with fully optimised native code, (b) while still providing
full resource control and safety with respect to memory, CPU, available API,
etc., and (c) allowing for flexibility in the amount of programmability permitted
on a node, and (d) where control over fast native code components is exercised
by slow-speed active applications (AAs), (e) by means of a simple ’Click-like’
programming model,

Not all issues concerning the use of the OKE for ANs are addressed in this
paper. In particular, node heterogeneity and scaling of trust relationships to
large networks are not addressed. However, while the OKE relies on trusted
compilers, the issue of trusting compilers in a remote domain is non-trivial and
important. We will briefly discuss this in Section 3.3.

The remainder of this paper is organised as follows. The OKE Corral architec-
ture is explained in Section 2, the prototype implementation of the architecture
is discussed in Section 3. This is evaluated in Section 4. Related work can be
found in Section 5 and conclusions are drawn in Section 6.

2 Architecture

As illustrated in Figure 1, the OKE Corral builds on three technologies: (1) the
OKE, (2) one or more AN runtimes, and (3) packet channels that implement
control and data paths. To the right of the architecture we have indicated the
approximate mapping of OKE Corral components on the DARPA reference ar-
chitecture of an active node. By necessity this is only an approximation. For
instance, depending on the configuration the kernel may or may not be dynam-
ically programmed (i.e. run AAs in its execution environment).

2.1 Corral Terminology

The terminology in the OKE Corral roughly follows that of the Click-router
project, although there are some differences. What are called processing ele-
ments in Click are called ‘engines’ in the Corral. They may have multiple input
and output ports that can be logically attached to other elements to form con-
nections (drawn as arrows). A data transfer whereby the source element takes
the initiative is called a push operation, while a transfer initiated by the destina-
tion is called a pull. Connections are either of the push or the pull type. Engines
are normally also either ‘push’ or ‘pull’, but a hybrid form, known as pull2push
is also possible. A pull2push engine pulls data from a source and pushes it to a
destination, changing the pull into a push.

The inverse of a pull2push element is a queue, as it accepts pushes on its
input, and pulls on its output, and thus may be termed a push2pull element.
Queues may be filled and emptied by more than one engine. As shown in Figure 1,
engines and queues are connected and disconnected via control operations. The
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Fig. 1. Overview of the OKE Corral

path followed by a particular packet is known as a ‘channel’. In Figure 1, the
entry engine, the two boxes to the right of it, and the exit engine form a channel.

In contrast to the Click approach, queues and engines may reside in the
kernel, in user space, or even on remote machines. Wherever they reside is known
as the queue or engine’s “domain”. Similarly, they may exist either inside the
OKE (in which case they are subject to checks and resource limits), or as native,
unprotected code. The packet classifier in the figure determines which packets are
relegated to the AN’s channels. It is really part of the OKE environment setup
code (ESC) for the AN, but it lies beyond the reach of the AN and because of
this it is drawn outside of the OKE box.

2.2 OKE, AN Runtime, and Channel Interaction

When an AN runtime is instantiated, it is initially provided with a channel
consisting of two engines: the entry engine and the exit engine. All the AN’s
packets are first pushed to the entry engine, which automatically leads to a push
to the exit engine. Each of the pushes is implemented as a function call, executed
immediately and in the same thread of control.

The AN is allowed to disconnect the two engines and reconnect them (at
runtime), e.g. to new components inserted between them. For example, to receive
all packets in its runtime, a trivial AN implementation might: (1) disconnect the
two engines, (2) reconnect the entry engine to a queue, (3) implement an engine’s
interface for the runtime (essentially making the runtime an engine which ’pulls’
packets from the queue and pushes them up into the runtime), and (4) implement
the runtime’s send operation as a push to the exit engine. All incoming packets
classified as AN traffic are now automatically pushed onto the queue, and from
there pulled up into userspace.

The AN is given a set of standard components (engines and queues) with
which to build channels (subject to the privileges given to the AN). These stan-
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dard components can be highly optimised so as to incur few checks at runtime.
In addition, the AN is able to load entirely new components. In case native code
is to be loaded in the kernel, the OKE is used to ensure safety. As discussed in
Section 3.1, the OKE is able to restrict code according to the loading party’s cre-
dentials. In OKE terminology, the credentials presented by a client’s are defined
as that client’s role. Thus, a party in a highly untrusted role may be allowed to
load code with very few privileges and many dynamic checks, while a party in a
highly trusted role may benefit from a more relaxed security policy.

2.3 Control and Data Channels

Using the above techniques, an AN is able to build fast channels where processing
is done in optimised native code and where the next processing stage is always
just a function call away. At the same time we also use channels to implement
slow-speed control paths which commonly lead to AN runtimes in user space (or
even remote hosts) and which are used to carry the active packets containing
the control code. Given the appropriate privileges they are able to replumb, or
add new elements to, the data-path at runtime. Thus, the amount of data-path
programmability allowed is configurable, which is useful if active networks are
to scale.

3 Implementation

3.1 The Open Kernel Environment

Although the running of third-party code in the kernel normally violates security
constraints, it would be useful from a performance perspective. In the OKE,
instead of asking whether or not a party may load code in the kernel, we ask: what
is such code allowed to do there? Trust management determines the privileges of
user and code, both at compile time and at load time. Based on these privileges
a trusted compiler enforces extra constraints on the code. In the following we
briefly describe the OKE’s two main components: the code loader (CL), and
the bygwyn compiler (as previously presented in [BS02]). A pre-release of the
OKE as well as an extended version of this paper can be downloaded from
www.liacs.nl/~herbertb/projects/oke/.

The CL accepts object code, together with authentication and credentials,
from any party. It checks the credentials against the code and the security policy
and loads the code if they match (Figure 3). Trust management is based on
KeyNote [BFIK99]. At start-up, the CL loads a security policy, containing the
keys of any party permitted to load certain types of modules. These parties
are then able to delegate trust to other clients by way of credentials containing
containing the ‘rights’ that are granted, e.g. the right to ‘load modules of type X
or Y, but only under condition Z’. A ‘type’ here denotes the set of privileges given
to the code, e.g., the interface to the kernel, the amount of CPU time, etc. The
‘condition’ contains environment-specific stipulations, e.g., ‘only valid during

www.liacs.nl/~herbertb/projects/oke/
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office hours’. A module type is instantiated when source code corresponding
to it is compiled. The trusted compiler generates an unforgeable ‘compilation
record’ which proves that module M was compiled as type T by this compiler.

module C

user
kernel
module

Bygwyn

"credentials"

extra rules
for this user

compile and ’sign’

CTID  C’s MD5

Fig. 2. User compiles kernel module

Kernel

User

module A

module B

module C

Code Loader

module C

"credentials"
user

Fig. 3. User loads module in the kernel

It is crucial that we guard against malicious or buggy code in the kernel.
What we have tried to avoid, however, is the definition of yet another safe lan-
guage which is only useful for implementing filters, say and/or runs inside an
interpreter, as such a language necessarily restricts towards the lowest common
denominator. Instead we would like to have a single language that is automati-
cally restricted on the basis of explicit privileges. A single language is preferable
to many special-purpose languages for many reasons, e.g., consistency, learn-
ability, maintainability, flexibility, etc. Moreover, using a language like C would
facilitate the interfacing of third party code to the rest of the kernel.

We therefore allowed a C-like language to be restricted in such a way that,
depending on the client’s privileges more or less access is given to resources,
APIs and data (and/or more or less runtime overhead is incurred). As C itself
is not safe and the possibilities of corrupting a kernel using C are endless, we
opted for Cyclone, a crash-free language derived from C which ensures safe use
of pointers and arrays, offers fast, region-based memory protection, and inserts
few runtime checks [JMG+02]. However, for true safety and speed, using Cyclone
was not sufficient. For example, we had to add an entirely new garbage collector
to deal with pointers to kernel memory. Other hard problems (e.g., resource lim-
itation, module termination, and memory/pointers sharing) are also not solved
by Cyclone. We therefore created our own dialect which we call ‘OKE-Cyclone’.

The restrictions are enforced by a trusted compiler, known as bygwyn, (named
after a track by the Rolling Stones: ‘You can’t always get what you want, but
you get what you need’). Bygwyn is customisable, so that in addition to its
normal language rules, it is able to apply extra rules as well. For example, we
allow one to remove constructs from the language. If after such a restriction the
compiler encounters the forbidden construct, it generates an error.

The key idea is that the customisations for a user’s program depend on
the user’s role: users present credentials to the compiler, and these credentials
determine which rules are applied (Figure 2). Customisation types have unique
identifiers, called customisation type identifiers (CTIDs). After compilation, byg-
wyn generates a signed compilation record containing both the CTID and the
MD5 of the object code, explicitly binding the code to a type. Given this, we
allow security policies to be specified of the form ‘a user with authorisation X is
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allowed to load code that is compiled with customisation Y’. Once loaded, the
code runs natively at full speed.

Depending on the users’ roles, they get access to the rest of the kernel via
an API containing the routines which they may call (e.g., students in a course
on kernel programming may get access to different functions than third-party
network monitors). The routines are linked with the user code and reflect its role.
In other words, the API is used to encapsulate the rest of the kernel (Figure 4).
In the figure, some function calls are relegated to a wrapper, while others may
be called directly.

We now briefly mention some of the mechanisms we implemented for making
the OKE-Cyclone dialect safe for use in the kernel.
1. We perform global code analysis to decrease the number of dynamic checks.
2. Environment setup code (ESC) containing the customisations is automati-

cally prepended. It declares kernel APIs and other functions and variables
and leaves the untrusted code with only the safe API (wrappers mostly). It
also provides wrapper code for resource cleanup and safe exception catching.
The ESC can configure this wrapping using a new wrap extern construct:
bygwyn detects all potential entry points to the untrusted code and auto-
matically wraps them using code declared by the ESC.

3. Certain language constructs can be removed from the programmer’s reper-
toire using a new forbid construct (examples include: forbid extern "C",
forbid namespace, and forbid catch).

4. A unique, randomly generated namespace is opened to prevent namespace
clashes and unauthorised imports of symbols from other namespaces.

5. The stack usage of the code can be restricted to a limit defined in the ESC.
6. CPU usage is limited by using a modified timer interrupt. When a module

has not finished on time, an exception is thrown and the module is removed.
Code misbehaving in other ways is likewise removed.

7. Cyclone’s region-based memory protection mechanism was extended with
a new region ‘kernel, to distinguish between kernel-owned and module-
owned memory regions and a new garbage collector was implemented to
ensure that pointers from the OKE modules to kernel memory (which may
be manipulated by kernel functions) are memory safe, and freeing of module
memory is handled correctly.

8. Specific fields of kernel structures shared with untrusted code can be stati-
cally protected by making making them locked. A locked member cannot
be used in calculations, it cannot be cast to another type, no other type
can be cast to it, no pointer dereferences can take place, and no structure
members can be read. Basically, its is limited to copying, and it cannot be
read. This technique reduces the need to anonymise data at run-time.

3.2 Channels

The concept of clicking kernel components together to create new functionality is
a tried and useful practice. The x-Kernel, first proposed in the late 80s, provided
mechanisms to statically stack network protocols in this way [HP91]. Similarly,
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the STREAMS abstraction, proposed even earlier, allowed protocol stacks to be
composed dynamically [Rit84]. This work was influenced by all such approaches
and in particular, as mentioned earlier, by the Click software router. The OKE
channel elements all have simple interfaces that are implemented in either C
or OKE-Cyclone. Each channel element carries pointers to its own state, as
well as to both blocking and nonblocking implementations of the pull and push
operations. In this section we describe the main features of engines and queues. In
essence, queues and engines have unique identifiers and communicate by pulling
and pushing data from and to each other’s ports. A push or pull connection is
typed, so that only specific items may be pushed or pulled on a connection. The
types range from simple types such as integers and octets to composite types
(e.g., IP packets). We have not addressed the issue of how specific engines or
queues to connect to are discovered or located. This should not be a problem
for a handful of elements that we loaded ourselves on a single node, but for
large-scale deployment such functionality would be very useful.

Queues in the default implementation are strictly FIFO (producer/consumer
on a circular buffer). More complex queueing schemes can be constructed us-
ing multiple FIFOs, or by providing an implementation of custom push and
pull functions. Queues are passive elements. They respond to push and pull
operations, but never initiate actions themselves. In contrast, engines are ac-
tive elements. Apart from push and pull, they also provide a control interface
(Figure 1), and a run method which is called when it is scheduled. The control
interface contains the connect methods needed to link engines to other engines
or to queues. These methods take as arguments (among other things) the unique
name of the target element, as well as the port and the port direction (input or
output). Queues do not provide such methods: they are managed by engines.

Engines and queues can be (dis-)connected at runtime. As such, the con-
nections between them are not built into their logic. Instead, the control API
allows explicit replumbing of the components. As it is dangerous to replumb an
element when it is active (e.g., about to push a packet to an engine we would
like to disconnect), these activities are protected by a ’readers-writers’ solution:
many different data-path actions may be taking place at any time, but manage-
ment operations such as connect require exclusive access.

Engines and queues are tied to a domain. Currently, possible domains are:
userspace, kernel, and remote. Elements in the same domain communicate by
pushing or pulling simple types directly, or complex types by passing pointers,
making communication within the same domain quite efficient. It is also possible
to place engines and queues in different domains. For this purpose we use simple
marshalling techniques commonly used in remote procedure calls. For example,
if an engine in domain D1 wants to push a packet to queue Q in domain D2, it
really calls the push operation on a local proxy Qproxy (also known as ‘stub’).
Qproxy is initialised with a set of routines that enables it to connect to the
remote implementation of Q. It marshalls the packet and initiates a ‘remote’
procedure call to push the packet on the ‘remote’ queue. ‘Remote’ here means a
different domain, which could easily reside on the same host. Default proxies and
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marshalling routines have been written which are expected to suffice for most
applications. Even so, the scheme can be easily extended.

Packet traversal in the Corral is as follows. Once a packet is classified (by
the classifier in Figure 1) as belonging to the AN, it is pushed on the AN’s entry
engine and follows the data-path determined by the AN’s engines and queues.
Some of the fields in the packet may be protected against access violations using
the locked keyword. Locked fields cannot be pushed across domains. The entry
engine pushes the packet to the next engine and so on, until one of the following
three events has occurred: (1) the packet is dropped, (2) the exit engine is reached
and the packet has been sent, or (3) an intermediate queue has been reached.

3.3 The Active Network

The AN runtime is derived from a home-grown active network, which is capable
of running either a Java or a Tcl execution environment. For the OKE Cor-
ral implementation we have limited ourselves to the Tcl implementation. The
runtime provides a simple environment for AN experiments and permits code
loading both in-band and out-of-band. It consists of an interpreter and a fairly
extensive set of operations specific to the AN. This is called the core set, which is
implemented in C. The core set contains elementary operations, e.g. functions to
access received packets and to find the load on specific links, etc. It also contains
a send operation for transmitting a packet. Packets are stored in packet buffers,
of which there is a fixed number. One of the buffers is designated the ‘current’
buffer and this is used to receive the next packet. A number of operations in the
core set is responsible for managing the buffers, e.g. to set the current buffer, to
execute safe memcpy and memmove operations, etc. An additional library that is
fully implemented in Tcl contains a large number of functions that are commonly
used, as well as wrappers around the core set.

The runtime back-end was modified to sit on top of the OKE channels. More
correctly, by implementing the engine interface, the runtime really becomes an
engine ER itself. ER initialisation code disconnects the packet entry and exit
engines assigned to it and reconnects the entry engine to a kernel-domain queue.
It also connects ER to the other end of the queue for inbound traffic and to the
packet exit engine for outbound traffic.

After initialisation, the active code in the runtime is responsible for the man-
agement and control of the engines and queues in its channels. For example,
operations were added to the AN’s repertoire to to connect or disconnect all
elements under its control. Depending on the AN, bootstrap kernel modules
containing pre-installed engines and queues may be loaded at initialisation. The
components in such modules can be used by the AN to construct new data-paths.
They may be highly efficient, e.g. written in C and containing few runtime checks.

There are also commands to enable the active code to add entirely new
components (engines and queues) to the data-path. In the following discussion
we assume that the target domain for the new components is the kernel, since
this presents the most severe security risks. For the purpose of loading data-
path components, the active code refers to new kernel modules on a remote
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webserver. Similarly, it uses URLs to refer to the credentials. Next, the module
and the credentials are both loaded and offered to the OKE codeloader. Provided
the credentials match, the module is pushed into the kernel. At that point the
AN is able to manage the new engines and queues in exactly the same way as
the pre-installed components.

When loading new components in the data-path, safety is guaranteed by the
OKE. This means not only that the code must be written in OKE-Cyclone, but
also that the compiler that compiles it must be trusted. We have not addressed
the issue of whether under what circumstances compilers in remote domains can
be trusted. We call this the ‘trust propagation’ problem. One possibility is to
have a well-known group of trusted compilers that are accepted by many sites
(the “VeriSign model”). Alternatively, we might store the code in source format
and have a local (and presumably trusted) compiler generate the object code
anew just prior to loading it. We are currently exploring and evaluating these
and other solutions.

Another issue concerns the authorisation of requests to load code in the
kernel. Normally, when a client tries to load a module in the kernel it is required
to authenticate every such request by signing a number of items with its private
key. However, if code is running on an unknown active node, clients may be
reluctant to send their private keys there for obvious reasons. In the OKE Corral
model, we have ‘single sign-on’ behaviour. In other words, the identity of the
client is established when the active code is loaded on the runtime. From that
point onwards, this is the identity that is used in load, connect and other
requests. The active code is not required to sign anything.

4 Results

We do not think that the number of packets per second that can be handled
is a relevant measure in evaluating the OKE Corral, for two reasons. First,
such numbers often say more about the traffic capture (e.g. polling or interrupt-
driven) than about the processing [ST93]. Second, we are really interested in how
the Corral compares to typical ANs and this concerns primarily the nature of
code execution: in-kernel native code versus interpreted code in userspace. For
the number of packets per second that can be processed with a channel-based
system, please refer to [CM01].

Instead, we measure the performance of the data-path components and com-
pare the results with alternative implementations. All measurements were taken
on a PIII 1GHz PC running a Linux-2.4.18 kernel. The overhead of a push from
entry engine to exit engine without any processing takes roughly 250 nsecs (in-
cluding all locks and sanity checks). The applications used for the comparison are
in the domains of transcoding (application T ) and monitoring (application M).
Both are considered components on the data-path. In the OKE Corral version of
the experiment, they are implemented in OKE-Cyclone, and loaded in the kernel
by the active control code in userspace. M implements a packet sampler which is
meant to push 1% of all packets on a queue which is read by the AN monitoring
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application in userspace using a pull. On request (pull), M also reports the total
number of bytes of all packets that passed through M since the last report. T
resamples audio packets to a lower quality (containing half the bits) and thus
works on the entire payload. For this reason, T also requires a recalculation
of the IP and UDP checksums. Both types of applications may operate on the
same packets. In fact, there are 4 types of packet, all of which are UDP with
destination ports p0, p1, p2, and p3. The experiment is illustrated in the leftmost
illustration of Figure 5. Packets for port p0 are subject to both transcoding and
monitoring. Packets for p1 are subject to transcoding but not to monitoring, i.e.
they are pushed directly to the exit engine by the transcoder engine. Destination
p2 packets will pass through the transcoder, but are not touched by it. Instead
they are moved straight to the monitoring engine. Packets for p3 are neither
resampled nor monitored, but do pass through the entry engine, the transcoder
and the exit engine.

module X

foo_wrap(char *p)

bar()

foo(char *p)

KERNEL

Fig. 4. Kernel encapsulation

runtime

monitor

transcoder

entry exit

"pull"
report

monitor

transcode

"push"
packets

"pull"

entry exitOKE

monitor

transcode

kernel

userspace

A B C

netfilter
PRE_ROUTING

ip_xmit

"ioctl"
report

"push"
packets

Fig. 5. The three scenarios used

We evaluate 3 different implementations: (A) all components in the OKE,
(B) all components in the AN runtime, and (C) all components in in-kernel C,
as shown in Figure 5. All three versions are possible in the OKE Corral, but
we are most interested in solution (A), as it provides maximum flexibility while
still running natively in the kernel. We measure time between packet entry at
the Linux netfilter hook to the time that we send the packet (or queue it for
userspace).

The results are shown in Figures 6-8. As expected, we see in all figures that,
since the entire payload must be processed for T , the overheads for p0 and p1

packets strongly depend on the packet sizes. The p2 and p3 graphs on the other
hand are basically flat, as we do not even need to recalculate the checksums
for these packets. We also observer that in the Tcl implementation the effect of
monitoring is no longer visible. This is due to the enormous overhead introduced
by the interpreter and context switching.

No manual optimisation was used in any of the implementations. Moreover,
there exist much faster AN runtimes than the one we have used. However, in
previous work we measured that a copy from kernel to userspace using an ioctl
channel takes roughly 2 µs, and considerably longer with libipq (8 µs on aver-
age). If a copy to userspace is needed, it will be difficult to optimise away this
overhead. A copy back to the kernel takes approximately the same amount of
time, so regardless of the speed of the C code, we lose 4µs, just on the copies.
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This overhead alone exceeds the total time needed by the OKE-Cyclone imple-
mentation.

Fig. 9. Overhead of processing packet p1 in the OKE compared with C

In Figure 9 we also plot the relative overhead of performing the transcoding
application in the OKE instead of native C. Concretely, the figure plots the ratio
computed by (TCyclone

TC
∗ 100 − 100) for the p1 packet times shown in Figures 6

and 8. It is interesting to note that the overhead per byte decreases as the
packet size increases. This is caused by the fact that the fairly substantial one-
time overhead is ammortised over a large number of bytes. The overhead of
the implementation with the AN in the datapath is orders of magnitude and
therefore not plotted.

For now, we conclude that the difference in performance between the AN
implementation and either of the other two implementations is orders of mag-
nitude. Between the OKE and the ‘pure C’ implementation the difference is
roughly 25%. A substantial gain in performance can be achieved by employing
the OKE in ANs. However, even if the speed of pure C is required, active code is
still able to control and manage these components, and to build new applications
by clicking together elements from a predefined set.

5 Related Work

Organising AN software in a hierarchical fashion is advocated in many active
network projects, e.g. SwitchWare [AHK+98]. Such approaches differ from the
OKE Corral in that they are mostly concerned with (interpreted) user space
code for all loadable extensions. Clicking components together to form channels
is equally common in ANs. A good example is CANEs, which allows extensions to
be injected in predefined locations on the data-path [MBC+99]. A third aspect,
the separation of control and data path in programmable networks has also been
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advocated in a number other projects, e.g. SwitchWare at UPenn and the work
on programmable network control in Cambridge [BIML01].

Many projects target safety in operating systems (OSs). These include lan-
guage-based approaches such as BSD Packet Filters [MJ93], proof carrying
code[NL96] and software fault isolation[RSTS93], as well as OS-based approaches
such as Nemesis [LMB+96], ExoKernels [EKO94], and SPIN [BSP+95]. Trust
management combined with module thinning in ANs was introduced in the Se-
cure Active Network Environment [AHK+98]. An exhaustive discussion of these
projects is beyond the scope of this paper. In short, the OKE provides a more
complete safety model than SFI which is simpler than PCC and distinguishes
itself from such approaches as Nemesis, Exokernels and SPIN in that it is imple-
mented on a commonly used OS. Interested readers are referred to the discussion
in [BS02].

In the remainder of this section, we will compare our work briefly with a
number of other systems that support the loading of native code in the kernel
of an operating system, by looking at how well they support the following ten
features targeted by the OKE Corral (and as described in this paper):

1. The system explicitly supports 3rd party code in the kernel.
2. The kernel is fully programmable, although if needed, we are able to restrict

access to specific APIs, data, etc., at compile time.
3. Resource control is enforced for CPU, memory, etc.
4. Safety is enforced in the sense that a module is not able to crash, dereference

NULL pointers, inadvertently free kernel memory it points to, etc.
5. Data channels are composed of LEGO-like components (like in Click).
6. Configuration of these channels is possible at runtime.
7. Data and control are explicitly separated.
8. AAs in the form of capsules are able to configure the data channels to the

point of loading and connecting new native code components.
9. Out-of-band loading of AAs in the kernel is supported.

10. The system is implemented on a common OS.

Note that we do not aim for a true comparison of these very different systems.
We only look at how well other approaches support some of the more attractive
features of the OKE Corral. The results of the comparison are shown in Table 1.
Below we discuss the projects mentioned in the table.

We have been strongly influenced by the Click router’s LEGO-like organisa-
tion of forwarding code [CM01]. Although we didn’t use the Click code directly,
we implemented a very similar system (in C). However, whereas Click compo-
nents are assumed to reside in the same domain (e.g. the kernel), we permit
them to be distributed at will over kernel, user-space and even remote machines.

Our processing hierarchy resembles that of the ‘extensible router’ [NLA+02].
In particular, SILK also provides fast kernel data-paths with support for resource
accounting. However, it does not provide safety. The code loading in our work
somewhat resembles that of ANN [DPP99]. In ANN active code is replaced by
references to modules stored on code servers. On a reference to an unknown code
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Feature SILK ANN PromethOS SPIN FLAME Click OKE Corral

1 3rd party code in krnl ++ -- - ++ ++ -- ++

2 full krnl programmability +
restriction possibilities

+/- +/- + ++ - +/- ++

3 resource control + - - + + - ++

4 safety guarantees -- - - ++ + -- ++

5 LEGO-like components + - - - - ++ ++

6 dynamic configuration ++ + + ++ + - ++

7 separation control/data ++ - ++ 0 + + ++

8 AA: capsules load in krnl - - - 0 0 0 ++

9 AA: out-of-band loading ++ + ++ 0 ++ + ++

10 common OS ++ ++ ++ -- ++ ++ ++

Table 1. OKE Corral features compared with other systems. Explanation of symbols:

‘+’ = strong support, ‘-’ = weaker, ‘+/-’ = partly, ‘0’ = not applicable to this system.

segment in a node, the native code is downloaded, linked and executed. Similarly,
a recent project called PromethOS described elsewhere in these proceedings,
supports kernel plugins with explicit signalling for plugin installation [RLAB02].
Neither approach targets safety as aimed for by the OKE.

SPIN, which builds on the safety properties of Modula-3, is close in spirit to
the work presented here. However, unlike the OKE, SPIN does not control the
heap used by ‘safe’ kernel additions. Additionally, it is not a commonly used OS.

Early work on the use of the Cyclone for kernel work and KeyNote for policy
control was demonstrated in FLAME [AIM+02] which is similar to the OKE and
a good example of how similar principles are used for different goals. FLAME
is aimed at safe network monitoring and not on fully programmable kernels. In
contrast, the OKE provides the necessary features for general-purpose kernel
extensions, with a focus on customisability. FLAME provides little flexibility in
the restrictions placed on a module, and full interaction between the module
and the kernel (e.g., using pointers) is not allowed. While essential to the OKE,
neither of them are needed in FLAME.

6 Conclusions

The OKE Corral combines a ’Click-like’ software model with an open kernel en-
vironment under control of an active network while maintaining strict separation
of control and data plane. Performance varies with the programmability desired.
At one extreme, only the control plane is programmable, while data-paths are
composed of highly optimised ‘standard’ components. At the other extreme, the
‘capsule’ approach can be supported. In between these two extremes, but closer
to the former, we have the OKE channels. For flexibility, the different kinds of
programmability may be mixed, so that capsules, pre-defined and third-party
components all interact to build data and control flows.
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