
Feature Interaction Detection in Active

Networks

Go Ogose, Jyunya Yoshida, Tae Yoneda, and Tadashi Ohta

Soka University, Faculty of Engineering
1-236, Tangi-cho, Hachioji-shi, Tokyo 192-8577, Japan

{gogose, jyoshida}@edu.t.soka.ac.jp
{anne, ohta}@t.soka.ac.jp

Abstract. This paper presents the results of experiments with an ac-
tive gatekeeper for VoIP. Problems arising with supplementary service
programs uploaded by users: such as event conversion and detection of
feature interactions between the programs, are presented and their solu-
tions are proposed. The VoIP gatekeeper (GK) and the validation server,
based on architecture, proposed by the authors at IWAN2000 and called
STAR, were implemented and evaluated. With the proposed GK, the up-
loaded program is described using a declarative language ESTR instead
of using a procedural language, such as Java. Unlike most conventional
architectures, here, one common execution environment is used for exe-
cution with all up-loaded programs. 12 service programs were tested to
evaluate the proposed systems. Results show that the proposed GK and
validation server were reasonable. . . .

1 Introduction

VoIP is becoming a standard technique to provide telecommunication services
in the IP network. A VoIP gatekeeper has functions such as address transla-
tion from a telephone number to an IP address, network access control, and
so on. Many architectures for Active Network have been proposed in order to
provide new services instantly [1][2]. The authors are investigating using VoIP
gatekeeper as an active node. The active VoIP gatekeeper (GK) and the valida-
tion server based on the architecture proposed by the authors at IWAN2000 [3]
and called STAR (Software archiTecture for Active network using Rule based
language), were implemented and evaluated. This paper presents results of ex-
periments with STAR. Problems arising with supplementary service programs
uploaded by unspecified users (third party service providers and end users): such
as event conversion and detection of feature interactions between programs, are
presented and their solutions are proposed. The problem of feature interaction,
in particular, is a serious problem in developing an active network.

With the proposed GK, the up-loaded program, from now on referred to as
the ’service program’, is described using a declarative language ESTR (Enhanced
State Transition Rule) instead of using a procedural language, such as Java.
ESTR makes it easier to detect feature interactions. Unlike most conventional

J. Sterbenz et al. (Eds.): IWAN 2002, LNCS 2546, pp. 241–252, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

242 Go Ogose et al.

architectures, here, one common execution environment is used for execution
with all service programs.

12 service programs, including POTS (Plain Old Telephone Service), were
described using ESTR and validated on the validation server. Because of the
limitations of the system purchased, 11 service programs were tested on the pro-
posed GK. TWC (Three Way Call service program) was tested using a simulator.
It was confirmed that all service programs were executed correctly.

The results of experiments were evaluated by comparison with the inter-
national benchmark [4][5]. It was confirmed that all interactions described in
the benchmark were detected. In fact, many more interactions, which were not
described in the benchmark, were detected.

Results show that the proposed GK and validation server were reasonable.
Section 2 contains a brief description of the proposed architecture, STAR.

In section 3, problems with implementation of the GK and the validation server
are described. In section 4, solutions for the problems are proposed. Section 5
evaluates the proposed systems.

2 STAR

Much research into Active Networks has been done all over the world. In the
IWAN2000, we proposed an architecture for the Active Network for VoIP Gate
Way where the up-loaded program, (’service program’), is described using a
declarative language. We have also implemented an experimental VoIP gate-
keeper based on the proposed architecture (Figure 1). First, the proposed archi-
tecture STAR is explained.

Uploading

Programs

Distributing

Programs

VoIP

GK

Validation Server

IP Phone IP Phone

a user

VoIP

GK

Fig. 1. Proposed Active Network

Characteristics of STAR are as follows:

1) A declarative language, ESTR, is adopted to describe service programs in-
stead of a procedural language, such as Java.

Feature Interaction Detection in Active Networks 243

2) One common Execution Environment (EE) is used for all service programs,
instead of using an individual EE for each service program.

3) A Validation Server is used to detect feature interactions between service
programs described by unspecified users, before the service programs are
installed to network nodes.

These characteristics are explained briefly.

2.1 Related Work

Several special languages to describe service programs for the Active Network
has been reported [6]. But, no declarative language other than ours has been
reported as description language for the service program in the Active Network,
especially for an active gatekeeper. Feature interaction detection is one of the
most exciting research themes in the field of telecommunication systems research.
Much research for definition, detection, and resolution of feature interactions
has been discussed, mainly in the International workshop on feature interaction
(FIW) [7-11]. But, as far as the authors know, there has been no proposal for
feature interaction detection in the Active Network.

2.2 ESTR

The minimum explanation of ESTR, which is necessary for this paper, is given.
See paper [2] for a detailed description.

ESTR has the form of Pre-condition, event, Post-condition and Action-
description. It is a rule which defines the condition for state transition, state
change while the rule is applied, and the system control required for state tran-
sition. Pre-condition consists of states description elements called primitives.
Primitives are states of terminals or the relationship between terminals that are
targets of the state transition. An event is a trigger that causes the state transi-
tion, e.g. a signal input to the node and some trigger occurs in the node. Post-
condition is the state description part that also consists of primitives. Action-
description is the system control description part that shows the system controls
required for the state transition. Action-description is described in which follows
after Post-condition separated by ’, ’(see Figure 2). When no system controls
are required, the content of is empty. A description example of ESTR is shown
in Figure 2.

call(x,y) connotify(y,x): talk(x,y),{Send(con,y,x),Con(x,y)}

Pre-condition Event Post-condition Action-description

Fig. 2. An Example of ESTR

244 Go Ogose et al.

The example in Figure 2 is explained. Terminal x and y are in calling state,
denoted by call(x,y). If terminal y makes off hook, denoted by connotify(y,x), a
signal Connect is sent to terminal x, denoted by Send(con,y,x), and terminal x
and y transit to talk state, denoted by talk(x,y). call(x,y) and talk(x,y) are called
status primitives. All arguments in status primitives are described as variables
so that a rule can be applied to any terminals.

When an event occurs, a rule which has the same event, and whose Pre-
condition is included in the system state, is applied. When the rule is applied,
stored programs designated by Action-description are executed. When the pro-
grams end normally, the system state changes as follows. A state corresponding
to the Pre-condition of the applied rule is deleted from the current system state
and a state corresponding to Post-condition of the applied rule is added. Here,
a state corresponding Pre/Post-condition is obtained by replacing arguments in
Pre/Post-condition with actual terminals when the rule is applied.

2.3 Execution Environment (EE)

In most conventional architectures for the Active Network, each EE for the ser-
vice program is uploaded to network nodes with the respective service programs
[1]. Consequently, uploaded programs become very large. This adds significantly
to the workload of users wanting to upload service programs. However, with
STAR, one common EE is used for all service programs. Thus, users simply
have to upload service programs only. Comparison of the software architectures
of STAR and conventional architectures is shown in figure 3.

Service

program A

EE A

Service

program B

EE B

Service

program C

EE C

Platform provided by a vendor

(a) EE of the conventional architectures

EE

Platform provided by a vendor

(b) EE of STAR

Service

program A

Service

program B

Service

program C

Fig. 3. EE Comparison

For STAR, the EE consists of: 1) an ESTR Interpreter, which selects a rule
and executes the selected rule, 2) an Input processing part, which receives input
signals from a platform provided by a vendor and converts them into events, and
3) an Action executing part, which analyzes and executes the Action-description
of the rule. The software architecture of the EE of STAR is shown in figure 4.

Input Processing Part When a signal is received, the Input processing part
converts the signal to an event corresponding to the signal, so that the ESTR
Interpreter can handle the event. The event is sent to the interpreter in the EE
program.

Feature Interaction Detection in Active Networks 245

ESTR Interpreter

Input processing part Action executing part

Execution Environment

Platform provided by a vendor

Service programs using ESTR

Fig. 4. Software Structure of EE

ESTR Interpreter On receiving an event from the Input processing part, the
interpreter selects a rule which has the same event as the one sent.

When the rule to be applied is selected, the Action-description of the rule
is sent to the Action executing part in the EE program. If execution in the
Action executing part ends normally, the system state is changed according to
the Post-condition of the selected rule. If execution in the action executing part
ends abnormally, the system state is not changed.

Action Executing Part On receiving an Action-description from the inter-
preter, the Action executing part of the program analyzes it and decides which
programs are to be executed and in what order. The programs will have been
stored in the system beforehand by the service provider.

2.4 Validation Server

In an Active Network, unspecified numbers of users send their service programs
to the nodes. This may cause feature interactions between the service programs.
Feature interactions may cause serious problems to the network. Therefore, be-
fore being installed to the network nodes, the service programs are tested at the
validation server. Multiple validation servers are set in the network and each
validation server sends the service programs to nodes to which the user wants
to upload the programs.

3 Problems with Implementing the System

The gatekeeper (GK) was implemented based on the proposed architecture [3].
Some problems with implementing the GK are described.

246 Go Ogose et al.

3.1 Event Conversion

With STAR, as mentioned in section 2, a single EE is used for all service pro-
grams up-loaded by unspecified users. As stated above, all the service programs
should be processed in the same EE. This means that the EE should understand
all the service programs. Thus, how the EE understands the service programs,
which the user described freely, is a problem. Since the ESTR interpreter han-
dles a primitive as a mere character string, without knowing the meaning of the
primitive, to select the rule and to change the system state, there is no problem
for primitives. For the action description part, the problem can be solved by
preparing commands beforehand, for users to describe action description parts.
The remaining problem is event conversion. The EE is invoked by receiving a
signal. The ESTR interpreter is invoked by the event. Therefore, in order to
invoke an interpreter, the signal has to be converted into an event.

On receiving a signal, the Input processing part converts the signal into an
event described in the service programs. The signal event conversion is done
as follows: the Input processing part searches an event conversion table, and
converts the signal into the corresponding event.

The problem, therefore, is how to automatically revise the event conversion
table when a new service program, which uses new events, is installed into the
node.

3.2 Validation Server

Services that independently operate normally will behave undesirably when si-
multaneously initiated with another service. This behavior is called a feature
interaction. As shown in AIN, JAIN, Parlay and Active Networks, a telecom-
munication network architecture changes to a new one where the third-party
service providers can provide network services. This architecture enables mul-
tiple providers to provide services in the same network, simultaneously. As a
result, feature interactions between different provider services inevitably occur.
This causes serious problems to service deployment. A great deal of research on
detecting feature interactions has been done all over the world [7-17] to solve
the problems.

4 Solutions

4.1 Event Conversion

An event conversion table is used to convert a signal to an event. The event
conversion table provides the relationship between an input signal and a corre-
sponding event. To revise the event conversion table for newly used events, the
following method is proposed:

When a user plans to use a new event in a new service program, he/she
should send information on the correspondence relation between a new event
and a signal with the new service to the validation server. After checking feature

Feature Interaction Detection in Active Networks 247

interactions, the validation server sends the information to the GK with the new
service program. On receiving the information, the GK registers the information
into the event conversion table, so that the Input processing part can identify
the correspondence between a new event and a signal. On receiving a signal, the
Input processing part converts the received signal into a corresponding event by
referring to the event conversion table.

As an example of a registration process of a new event and an event con-
version, a registration process and an event conversion of a specific number are
explained. A specific number is a special telephone number for identifying a
specific service.

Suppose, sp1setup(x) and 1901 are a newly defined event used in a service
program and specific number input by an end user, respectively. First, the user,
who uploads the service program which uses a specific number as an event, sends
the information which defines the correspondence relation between the new event
sp1setup(x), and the specific number, 1901, beforehand, to the validation server
(VS). On receiving the information, the GK puts 1901 and sp1setup(x) into the
event conversion table (Figure 5).

Event conversion table

Specific

number

Event

name

1901 sp1setup(x)

....

others setup(x,y)

Set '1901' and

 'sp1setup(x)'

to the event

conversion table

Send '1901' and

'sp1setup(x)'

VoIP

GK

a user

VS

Fig. 5. Event Conversion Table Set

Next, an event conversion process for a specific number is explained (Figure
6). When the Input processing part receives a SETUP signal, the Input process-
ing part calls a number analysis program. The number analysis program decides
whether the terminating telephone number contained in a SETUP signal is a
specific number or a usual telephone number, by referring to the event conver-
sion table. If the terminating telephone number is a specific number, the number
analysis program returns the event sp1setup(T1) to the Input processing part.
If the terminating telephone number is a usual telephone number, the number
analysis program returns the event setup(T1,T2) to the Input processing part.
(Here, T1 and T2 are the originating terminal identifier and the terminating
terminal identifier, respectively.)

4.2 Validation Server

Outline The Authors have proposed efficient methods for detecting feature in-
teractions by analyzing Pre-conditions and Post-conditions of uploaded ESTR

248 Go Ogose et al.

Event conversionNumber

analisis

Specific

number

Event

name

1901 sp1setup(x)

....

others setup(x,y)

Event conversion table

Input processing part

SETUP signal

sp1setup(T1)

Fig. 6. Event Conversion Table Use

rules. To detect feature interactions between service programs uploaded by un-
specified users, a validation server based on the proposed methods was imple-
mented (Figure 7).

rule database

Validation Server

VS Input processing part

Feature interaction detection part

VoIP

GK Socket processing part
a user

Fig. 7. Validation Server

The validation server checks for each uploaded ESTR rule whether the feature
interactions are caused with existing rules. Feature interactions are classified into
7 categories [14]. The validation server implemented here detected the following
5 categories, which frequently occur in telecommunication services:

- Non-determinacy: there is more than one next state for one event.
- Appearance of abnormal states: Appearance of states which are not defined

in the individual service.
- Disappearance of normal states: Disappearance of states which are defined

in an individual service.

Feature Interaction Detection in Active Networks 249

- Appearance of abnormal transitions: Appearance of transitions, which are
not defined in an individual service.

- Disappearance of normal transitions: Disappearance of transitions, which are
defined in an individual service.

First one causes EE service cancellation. Resting 4 interactions, called ’semantic
interaction’, cause various service malfunctions. When a feature interaction is
detected between service A and B, the validation server regulates the service
activation so that either of service A or B can be activated simultaneously.

Detection Algorithm A brief explanation of detection algorithm for semantic
interactions will be described. For detailed descriptions, please refer to paper
[13], [15], [16], and [17].

Semantic interactions can be considered as follows. Suppose two services
are activated. When either specification of the services is applied, one state
transition, according to the specification, clashes with the specification for the
other service. Therefore, feature interactions are detected as follows: To make
a rule pair, select a rule from each service, respectively, which is applicable to
the same system state. Apply either rule to the system state. Check if the state
transition by the rule causes an abnormal state transition from the viewpoint of
the other service whose rule is not applied.

In some conventional methods, all possible states must be generated in one
way or another and all state transitions checked to detect feature interactions.
This causes an explosion of the number of states, resulting in a huge increase in
computation time for detecting feature interactions.

In our method, on the other hand, interactions are detected solely by ana-
lyzing Pre-conditions, events, and Post-conditions of selected rules as follows:

step 1) If the rule pair can be applied to the same system state, go to step 2.
Otherwise, a feature interaction is not detected.

step 2) If both rules have the same event, go to step 4, otherwise, go to step 3.
step 3) If the Pre-condition of the rule, which is not applied, is not preserved in

the next system state, a feature interaction is detected. Otherwise, a feature
interaction is not detected.

step 4) If the Post-condition of the rule, which is not applied, is not preserved in
the next system state, a feature interaction is detected. Otherwise, a feature
interaction is not detected.

Suppose, ra and rb denote selected rules from service a and service b, re-
spectively. rac, ran, rbc, and rbn denote Pre-condition of ra, Post-condition of ra,
Pre-condition of rb, and Post condition of rb, respectively. If redundancy can be
neglected, formal descriptions of conditions used to detect interactions in step3
and step 4, respectively, are given as follows:

For step3: (rbc − rac) ∪ ran + rbc

For step4: {(rbc − rac) ∪ ran + rbn} ∨ {(rac − ran) + (rbc − rbn)}

250 Go Ogose et al.

This method does not require any state creation and does not cause a huge
increase in computation time for feature interaction detection. Other problems
in implementing the feature interaction detection system are described in the
next section. Redundancy will be evaluated in section 5.

Detection Process The detection process of the detecting system is shown in
Figure 8.

First, select a pair of rules from the target service, one rule from each service,
respectively [13]. After assigning real terminals to terminal variables in each rule
[16], check if the pair of rules causes any non-determinacy interactions [17] and/or
semantic interactions [13]. If the pair of rules causes any interactions, execute
a reachability test. If the system state is reachable, the pair of rules actually
causes interactions.

rule pairs

generation

terminal

assignments

reachability

test

interaction detection

1)non-determinacy

 interactions

2)semantic

 interactions

knowledge

database

input

specifications

input

knowledge

output

intearactions

Fig. 8. Detection Process

5 Evaluations

A VoIP gatekeeper and a validation server were implemented based on the pro-
posed methods mentioned in section 4. The gatekeeper was implemented by
modifying an existing commercial gatekeeper.

5.1 Event Conversion

12 services programs: POTS, OCS(Originating Call Screening Service), TCS
(Terminating Call Screening Service), CFV(Call Forwarding Service), FB(Free
phone Billing), FR(Free phone Routing), CC(Charge Call service), CFBL(Call
Forwarding Busy Line), TL(Teen Line service), TWC(Three Way Call Service),
and two game service programs using specific numbers, a memory test game and
a personality analysis game were described using ESTR. 8 services programs
such as POTS, OCS, TCS, CFV, FB, FR, CC, and CFBL were uploaded to
the GK. It was confirmed that all programs worked correctly. Although the two
game service programs and TL were uploaded to the GK, it was only possible to

Feature Interaction Detection in Active Networks 251

confirm event conversion functionality; this was because of the limitations of the
commercially purchased gatekeeper and gateway. The same restrictions made it
necessary to test the TWC using a simulator; results confirmed that it worked
correctly.

Thus, it was confirmed that the proposed method of event conversion was
reasonable.

5.2 Validation Server

Except for POTS, the 11 services mentioned in the previous section were vali-
dated on the implemented validation server. A benchmark for feature interaction
detection was published in April 2000 [4][5]. To evaluate the proposed validation
server, experimental results for nine service programs, which were shown in the
benchmark, were compared with the benchmark. For example, the pairs of ser-
vices of the feature interaction detected are TCS and CFBL, TCS and OCS, and
CFV and FB. The feature interaction of TCS and CFBL is briefly explained.
Terminal B activates CFBL, and registers terminal D as a forwarding terminal.
Terminal D activates TCS, and registers terminal A as a screening terminal.
Terminal A is off the hook, and terminal B is talking with terminal C. Then, if
terminal A dials terminal B, and CFBL is applied, the state of terminal A will
change the calling state with the terminal D. This is an illegal state transition
because the system state doesn’t change to a correctly state of TCS.

All the interactions described in the benchmark were detected, in fact, there
are many more interactions detected, which were not described in the bench-
mark. It was confirmed manually that there was no redundancy and miss-
detection.

Evaluation results for detecting interactions are given as follows:

1) A large number of interactions were detected, compared to what was shown
in the benchmark. There was no redundancy or miss-detection. Thus it was
confirmed that the proposed algorithm, including the detection system, is
reasonable.

2) The reason so many interactions were detected is that, first of all, since
ESTR allows a multiplicity of services to share states it has the mechanism to
create feature interactions. With the conventional detection methods, limited
terminal assignments were tested to suppress detection time because the
correct way of making terminal assignments had not been made clear, but
with the proposed methods, the way of making terminal assignments was
clarified [16] and other filtering methods were developed. As the filtering
methods reduced detection time considerably, all terminal assignments were
considered and far more interactions were detected.

6 Conclusion

An active gatekeeper for VoIP and a validation server were proposed. Problems
were identified and their solutions were proposed. The proposed systems were
evaluated and it was confirmed that they were reasonable.

252 Go Ogose et al.

In future work, many more supplementary service programs will be applied
in order to evaluate the proposed architecture and systems. Further work will be
on how to guarantee that one user’s action doesn’t consume too many resources
or disrupt other user’s services. We are planning to make separations between
users so that the problem does not occur.

References

1. H. Yasuda Ed., ”Active Networks,” Lecture Notes in Computer Science 1942, Oct.
2000.

2. T. Morinaga, G. Ogose, and T. Ohta, ”Active Networks for VoIP GW using Declar-
ative Language,” Proc. of APCC2001, pp.89-92, Sep. 2001.

3. S. Komatsu and T. Ohta, ”Active Networks using Declarative Language,” Proc.
of IWAN2000, pp.33-44, Oct. 2000.

4. N. Griffeth et al., ”Feature Interaction Detection Contest of the Fifth International
Workshop on Feature Interactions,” The Interanational Journal of Computer and
Telecommunications Networking, Computer Networks 32 (2000) pp.487-510, April
2000

5. N. Griffeth et al., ”A Feature Interaction Benchmark for the First Feature Inter-
action Detection Contest,” The Interanational Journal of Computer and Telecom-
munications Networking, Computer Networks 32 (2000) pp.389-418, April 2000

6. K.L. Calvert et al., ”Directions in Active Network,” IEEE Com. Magazine, Vol.36,
No.10, pp.72-78, Oct. 1998.

7. L.G. Bouma et al., Feature Interactions in Telecommunications Systems, IOS Press,
1994

8. K.E. Cheng and T. Ohta, Feature Interactions in Telecommunications III, IOS
Press, 1995

9. P. Dini et al., Feature Interactions in Telecommunication Networks IV, IOS Press,
1997

10. K. Kimbler and L.G. Bouma, Feature Interactions in Telecommunications and
Software Systems V, IOS Press, 1998

11. M. Calder and E.Magill, Feature Interactions in Telecommunications and Software
Systems VI, IOS Press, 2000

12. T. Ohta et al., ”Classification, Detection and Resolution of Service Interactions in
Telecommunication Services,” Proc. of FIW’94, pp60-72, May 1994

13. T. Yoneda and T. Ohta, ”A Formal Approach for Definition and Detection of
Feature Interactions,” Proc. of FIW’98, pp.202-216, Sep. 1998.

14. T. Ohta and F. Cristian, ”Formal Definitions of Feature Interactions in Telecom-
munications Software,” IEICE transactions on Fundamentals of Electronics, Com-
munications and Computer Science, vol.E81-A No.4, pp.635-638, April 1998

15. T. Yoneda and T. Ohta, ”Automatic Elicitation of Knowledge for Detecting Fea-
ture Interactions in Telecommunication Services,” IEICE transactions on informa-
tion and systems, vol.E83-D No.4, pp.640-647, April 2000

16. T. Yoneda and T. Ohta, ” Reduction of the Number of Terminal Assignments for
Detecting Feature Interactions in Telecommunication Services,” Proc. of ICECCS,
pp.202-209, Sep. 2001.

17. J. Kobayashi, T. Yoneda and T. Ohta, ”An Effective Method for Testing Reachabil-
ity Using Knowledge in Detecting Non-Determinacy Feature Interactions,” IEICE
Trans. on Information and Systems, vol.E85-D No.4, pp.607-614, April 2002

	Feature Interaction Detection in Active Networks
	Introduction
	STAR
	Related Work
	ESTR
	Execution Environment (EE)
	Validation Server

	Problems with Implementing the System
	Event Conversion
	Validation Server

	Solutions
	Event Conversion
	Validation Server

	Evaluations
	Event Conversion
	Validation Server

	Conclusion
	References

