
Open Packet Monitoring on FLAME:

Safety, Performance, and Applications�

Kostas G. Anagnostakis, Michael Greenwald, Sotiris Ioannidis, and
Stefan Miltchev

CIS Department, University of Pennsylvania
200 S. 33rd Street, Philadelphia PA 19104, USA

{anagnost,mbgreen,si,miltchev}@dsl.cis.upenn.edu

Abstract. Packet monitoring arguably needs the flexibility of open ar-
chitectures and active networking. In earlier work we have implemented
FLAME, an open monitoring system, that balanced flexibility and safety
while attempting to achieve high performance by combining the use of a
type-safe language, lightweight run-time checks, and fine-grained policy
restrictions.
We seek to understand the range of applications, workloads, and traffic,
for which a safe, open, traffic monitoring architecture is practical. To that
end, we investigated a number of applications built on top of FLAME. We
use measurement data and analysis to predict the workload at which our
system cannot keep up with incoming traffic. We report on our experience
with these applications, and make several observations on the current
state of open architecture applications.

1 Introduction

The bulk of research on Active Networks [23] has been directed towards building
general infrastructure [1, 24], with relatively little research driven by the needs
of particular applications. Recently the focus has shifted slightly as researchers
have begun to investigate issues such as safety, extensibility, performance, and
resource control, from the perspective of specific applications [4, 18].

Network traffic monitoring is one such application. [3, 4] makes the case that
network traffic monitoring can benefit greatly from a monitoring infrastructure
with an open architecture, as static implementations of monitoring systems are
unable to keep up with evolving demands. The first big problem is that, in many
cases, monitoring is required at multiple points in the network. No distributed
monitoring infrastructure is currently deployed, so monitoring must typically
take place at the few nodes, such as routers, that already monitor traffic and ex-
port their results. While routers do offer built-in monitoring functionality, router
vendors only implement monitoring functions that are cost-effective: those that

� This work was supported in part by the DoD University Research Initiative (URI)
program administered by the Office of Naval Research under Grant N00014-01-1-
0795, and by NSF under grant ANI-00-82386.

J. Sterbenz et al. (Eds.): IWAN 2002, LNCS 2546, pp. 120–131, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Open Packet Monitoring on FLAME: Safety, Performance, and Applications 121

are interesting to the vast majority of possible customers. If one needs functions
that are not part of the common set, then there may be no way to extract the
needed data from the routers. Furthermore, as customer interests evolve, the
router vendors can only add monitoring functionality on the time-scale of prod-
uct design and release; it can be months or years from the time customers first
indicate interest until a feature makes it into a product. Therefore, the need for
timely deployment cannot always be met at the current pace of standardization
or software deployment, especially in cases such as detection and prevention of
denial-of-service attacks.

In response to these problems, several prototype extensible monitoring sys-
tems [14, 4, 3, 11] have been developed. One basic goal of such approaches is
to allow the use of critical system components by users other than the network
operator. However, providing users with the ability to run their own modules
on nodes distributed throughout the network requires extensible monitoring sys-
tems to provide protection mechanisms.

Flexible protection mechanisms, and other methods of enforcing safety, are
essential for extensible monitoring systems for two reasons. First, users, such as
researchers who want to study network behavior, should not have access to all
the data passing through a router. Rather, fine-grained protection is needed to
allow the system to enforce policy restrictions, e.g., ensuring privacy by limiting
access to IP addresses, header fields, or packet content. Second, protection from
interference is needed to guard against poorly implemented (or malicious) mod-
ules which could otherwise hurt functions that may be critical to the operation
of the network infrastructure.

The thrust of our research is to determine whether programmable traffic
monitoring systems that are flexible enough to be useful, and safe enough to be
deployed, can perform well enough to be practical.

In LAME [4] we demonstrated that it is possible to build an extensible
monitoring system using off-the-shelf components. Further investigation demon-
strated performance problems with the use of off-the-shelf components in LAME.
Our follow-on project, FLAME, presented a design that preserved the safety
properties of LAME, but was designed for high performance. FLAME combines
several well-known mechanisms for protection and policy control; in particu-
lar, the use of a type-safe language, custom object patches for run-time checks,
anonymizing, and namespace protection based on trust management.

The purpose of the study in this paper is to understand the range of appli-
cations and traffic rates for which a safe, open, traffic monitoring architecture is
practical. In [3] we presented preliminary results that demonstrated that FLAME
largely eliminated the performance problems of LAME. We have implemented a
number of additional test applications and have used them as our experimental
workload. We use the data collected from these applications to quantify and
analyze the performance costs, and to predict the workload at which our system
will no longer be able to keep up with incoming traffic.

The general tenor of the results reported here (although not the specific num-
bers) should be more widely applicable than just to FLAME. For example, the



122 Kostas G. Anagnostakis et al.

Open Kernel Environment (OKE) of Bos and Samwel [6] adopts a similar ap-
proach to FLAME. The OKE designers also carefully considered the interaction
between safety features and performance implications. OKE, among other fea-
tures, provides additional flexibility through the use of trust-controlled elastic
language extensions. These extensions provide increased control over the trade-
offs between safety and performance, as, for example, certain checks which are
hard-wired in our design can be eliminated, if appropriate trust credentials are
provided. The work reported in this paper should give some indications about
the workload supportable by systems such as OKE, also.

The rest of this paper is structured as follows. A brief overview of the FLAME
architecture, including protection mechanisms, is given in Section 2. In Section 3
we study the performance trade-offs of the resulting system, and we conclude
in Section 4.

2 Overview of the FLAME Architecture

The architecture of FLAME is shown in Figure 1. A more detailed description
is available in [3]. Modules consist of kernel-level code Kx, user-level code Ux,
and a set of credentials Cx. Module code is written in Cyclone [12] and is pro-
cessed by a trusted compiler upon installation. The kernel-level code takes care
of time-critical packet processing, while the user-level code provides additional
functionality at a lower time scale and priority. This is needed so applications can
communicate with the user or a management system (e.g., using the standard
library, sockets, etc.).

There has been a small architectural modification to FLAME since the pub-
lication of [3], after experimentation under high load. The original FLAME ar-
chitecture interacted with the network interface exclusively through interrupts.
As others have noted [15, 22], under high rates of incoming network traffic, inter-
rupt handling can degrade performance. More recent versions of FLAME poll the
network interface card (NIC) to read packets to avoid performance degradation.
Note that the polling technique and the resulting performance improvement is
well known and does not represent a contribution of this paper.

In terms of deployment, the system can be used as a passive monitor e.g. by
tapping on a network link by means of an optical splitter, or using port mirroring
features on modern switches. Ideally, a FLAME -like subsystem would be part
of an enhanced router interface card. A preliminary study shows how such a
subsystem can be built using a network processor board [2]. For the purposes of
this paper, we consider FLAME in a passive monitor set-up.

The basic approach is to use the set of credentials, Cx, at compile time to
verify that the module is allowed by system policy to perform the functions it
requests. The dark units in Figure 1 beside each Kx represent code that is in-
serted before each module code segment for enforcing policy-related restrictions.
These units appropriately restrict access of modules to packets or packet fields,
provide selective anonymization of fields, and so on.

For allowing user code to safely execute inside the operating system kernel,
the system needs to guard against excessive execution time, privileged instruc-



Open Packet Monitoring on FLAME: Safety, Performance, and Applications 123

user

kernel

trusted compiler
+loader

packet

specialized data-path

app Capp A app B

execution environment

dispatcher

KU

K

U

KU KUA B CA B C

U U

A B CK K

A B C

C C CA B C

Fig. 1. FLAME Architecture

tions, exceptions and random memory references. There has been extensive work
in the operating system and language communities that addresses the above
problems (c.f. [20, 8, 25]). FLAME leverages these techniques to satisfy our
security needs.
Bounding Execution Time. For bounding execution time we take an ap-
proach similar to [10]: we augment the backward jumps with checks to a cycle
counter; if the module exceeds its allocated execution time we jump to the next
module. On the next invocation,the module can consult an appropriately set
environment variable to check if it needs to clean-up data or exit with an error.
This method adds an overhead of 5 assembly instructions for the check. If the
check succeeds there is an additional overhead of 6 instructions to initiate the
jump to the next module.
Exceptions. We modified the trap handler of the operating system to catch
exceptions originating from the loaded code. Instead of causing a system panic
we terminate the module and continue with the following one.
Privileged Instructions and Random Memory References. We use Cy-
clone [12] to guard against instructions that may arbitrarily access memory loca-
tions or may try to execute privileged machine instructions. Cyclone is a language
for C programmers who want to write secure, robust programs. It is a dialect of
C designed to be safe: free of crashes, buffer overflows, format string attacks, and
so on. All Cyclone programs must pass a combination of compile-time, link-time
and run-time checks to ensure safety.
Policy control. Before installing a module in our system we perform policy
compliance checks1 on the credentials this module carries. The checks determine
the privileges and permissions of the module. In this way, the network operator
is able to control what packets a module can access, what part of the packet a
module is allowed to view and in what way, what amount of resources (process-
ing, memory, etc.) the module is allowed to consume on the monitoring system,
and what other functions (e.g., socket access) the module is allowed to perform.

1 Our policy compliance checker uses the KeyNote [5] system.



124 Kostas G. Anagnostakis et al.

3 Experiments

This section describes a number of applications that we have implemented on
FLAME and then presents three sets of experiments. The first involves the de-
ployment of the system in a laboratory testbed, serving as a proof of concept.
The second looks at issues of the underlying infrastructure, in order to specify
the capacity of our system on Gbit/s links. The third set of experiments pro-
vides a picture of the processing cost of our example applications, and protection
overheads.

3.1 Applications

We present examples of applications that a) are widely regarded as useful but
appear to be stalled in the standardization process (trajectory sampling), b)
would be difficult to deploy in time to be useful (worm detection) and c) may be
valuable in certain situations but may not be globally useful to make it worth
implementing in routers (RTT analysis, LRD analysis).
Trajectory sampling. Trajectory sampling, developed by Duffield and Gross-
glauser [9], is a technique for coordinated sampling of traffic across multiple
measurement points, effectively providing information on the spatial flow of traf-
fic through a network. The key idea is to sample packets based on a hash function
over the invariant packet content (e.g. excluding fields such as the TTL value
that change from hop to hop) so that the same packet will be sampled on all
measured links. Network operators can use this technique to measure traffic load,
traffic mix, one-way delay and delay variation between ingress and egress points,
yielding important information for traffic engineering and other network man-
agement functions. Although the technique is simple to implement, we are not
aware of any monitoring system or router implementing it at this time.

We have implemented trajectory sampling as a FLAME module that works as
follows. First, we compute a hash function h(x) = φ(x) mod A on the invariant
part φ(x) of the packet. If h(x) > B , where B < A controls the sampling
rate, the packet is not processed further. If h(x) < B we compute a second
hash function g(x) on the packet header that, with high probability, uniquely
identifies a flow with a label (e.g. TCP sequence numbers are ignored at this
stage). If this is a new flow, we create an entry into a hash table, storing flow
information (such as IP address, protocol, port numbers etc.). Additionally, we
store a timestamp along with h(x) into a separate data structure. If the flow
already exists, we do not need to store all the information on the flow, so we
just log the packet.
Round-trip time analysis. We have implemented a simple application for obtain-
ing an approximation of round-trip delays for TCP connections passing through
a link. The round-trip delay is an important metric for understanding end-to-
end performance due to its role in TCP congestion control [13]. Additionally,
measuring the round-trip times observed over a specific ISP provides a reason-
able indication of the quality of the service provider’s infrastructure, as well as



Open Packet Monitoring on FLAME: Safety, Performance, and Applications 125

its connectivity to the rest of the Internet. Finally, observing the evolution of
round-trip delays over time can be used to detect network anomalies on shorter
time scales, or to observe the variation in service quality over longer periods of
time.

The implementation is both simple and efficient. We watch for TCP SYN
packets indicating a new connection request, and watch for the matching TCP
ACK packet (in the same direction). The difference in time between the two
events provides a reasonable approximation of the round-trip time between the
two ends of the connection. For every SYN packet received, we store a timestamp
into a hash-table. As the first ACK after a SYN usually has a sequence number
which is the SYN packet’s sequence number plus one, this number is used as the
key for hashing. Thus, in addition to watching for SYN packets, the application
only needs to look into the hash table for every ACK received. The hashtable
can be appropriately sized depending on the number of flows and the desired
level of accuracy.

Worm detection. The concept of “worms” and techniques to implement them
have existed since the early descriptions in [7, 21]. A worm compromises a system
such as a Web server by exploiting system security vulnerabilities; once a system
has been compromised the worm attempts to replicate by “infecting” other hosts.
Recently, the Internet has observed a wave of “worm” attacks [16]. The “Code
Red” worm and its variants infected over 300,000 servers in July-August 2001.

This attack can be locally detected and prevented if the packet monitor can
obtain access to the TCP packet content. Unfortunately, most known packet
monitors only record the IP and TCP header and not the packet payload. We
have implemented a module to scan packets for the signature of one strain of
“Code Red” (the random seed variant). If this signature is matched, the source
and destination IP addresses are recorded and can be used to take further ac-
tion (such as blocking traffic from attacking or attacked hosts etc.). Despite the
ability to locally detect and protect against worms, widespread deployment of
an extensible system such as FLAME would still have improved the fight against
the virus.

Real-time estimation of long-range dependence parameters. Roughan et al. [19]
proposed an efficient algorithm for estimating long-range dependence parameters
of network traffic in real-time. These parameters directly capture the variability
of network traffic and can be used, beyond research, for purposes such as measur-
ing differences in variability between different traffic classes and characterizing
service quality. We have ported the algorithm to Cyclone and implemented the
appropriate changes to allow execution as a module on the FLAME system.
Some modifications were needed for satisfying Cyclone’s static type checker and
providing appropriate input, e.g., traffic rates over an interval. The primary dif-
ference between this module and the other applications is that separate kernel
and user space components were needed. This requirement arises because the al-
gorithm involves two loops: the inner loop performs lightweight processing over
a number of samples, while the outer loop performs the more computationally
intensive task of taking the results and producing the estimate. As the system



126 Kostas G. Anagnostakis et al.

0

200

400

600

800

1000

0 50 100 150 200 250 300 350

on
e-

w
ay

 d
el

ay
 (

m
se

c)

time (sec)

Remote LAN to UPENN

Fig. 2. Measuring one way delay be-
tween two networks.

estimated connection RTT (ms)

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

fr
ac

tio
n 

of
 c

on
ne

ct
io

ns

0

0.1

0.2

0.3

0.4

0.5
Remote LAN

UPENN Testbed

Fig. 3. Histogram for RTT estimates
for the same targets seen from two net-
works.

cannot interrupt the kernel module and provide scheduling, the outer loop had
to be moved to user space.

3.2 Experiment Setup

The testbed used for our experiments involves two sites: a local test network at
Penn, and a remote LAN connecting to the Internet through a DSL link. The
minimum round-trip delay between the two sites is 24 ms. The test network at
Penn consists of 4 PCs connected to an Extreme Networks Summit 1i switch.
The switch provides port mirroring to allow any of its links to be monitored by
the FLAME system on one of the PCs. All PCs are 1 GHz Intel Pentium III
with 512 MB memory, OpenBSD 2.9 operating system except for the monitoring
capacity experiments where we used the Click [17] code under Linux 2.2.14 on
the sending host. The FLAME system uses the Intel PRO/1000SC Gigabit NIC.

3.3 Testbed Demonstration

In this section we demonstrate the use of the round-trip delay analysis and
trajectory sampling modules on our experimental setup. We have installed the
round-trip delay analysis module on the two FLAME monitors, on the remote
LAN and the PENN test network. We initiated wget to recursively fetch pages,
starting from the University of Pennsylvania main web server. In this way we
created traffic to a large number of sites reachable through links on the starting
Web page. The experiment was started concurrently on both networks to allow
us to compare the results. One particular view of 5374 connections over a 1 hour
period is presented in Figure 3, clearly showing the difference in performance
which is partly due to the large number of local or otherwise well connected sites
that are linked through the University’s Web pages.



Open Packet Monitoring on FLAME: Safety, Performance, and Applications 127

0

2000

4000

6000

8000

10000

0 100 200 300 400 500 600 700 800 900

co
ns

um
ed

 p
ro

ce
ss

in
g 

cy
cl

es
 p

er
 p

ac
ke

t

Maximum Loss-Free Rate (MLFR) in 1000 x pkts / sec

FLAME/polling
FLAME/no polling

LAME

Fig. 4. Available processing cycles per
packet as a function of maximum loss-
free traffic rate.

Module gcc Cyclone Cyclone Cyclone
protection protection

optimized

Traj.smpl. 381 10.2% 20.2% 12.8%

RTT est. 183 12.4% 15.3% 15.3%

Worm det. 24 83.3% 125% 83.3%

LRD est. 143 7.6% 10.4% 9%

Fig. 5. Module processing costs (in cy-
cles), Cyclone overhead, FLAME pro-
tection overhead, and optimization ef-
fect.

We also executed the trajectory sampling module and processed the data
collected by the module to measure the one way delay for packets flowing between
the two networks. The clocks at the two monitors were synchronized using NTP
prior to the experiment. The results are shown in Figure 2. Note that this is
different from simply using ping to sample delays, as we measure the actual
delay experienced by network traffic. The spike shows our attempt to overload
the remote LAN using UDP traffic.

3.4 System Performance, Workload Analysis, and Safety Overheads

We determine how many processing cycles are available for executing monitoring
applications at different traffic rates. We report on the performance of FLAME
with and without the interface polling enhancement as well as LAME.

The experiment is designed as follows. Two sender PCs generate traffic to one
sink, with the switch configured to mirror the sink port to the FLAME monitor.
The device driver on the FLAME system is modified to disable interrupts and the
FLAME system is instrumented to use polling for reading packets off the NIC. To
generate traffic at different rates, we use the Click modular router system under
Linux on the sending side. All experiments involve 64 byte UDP packets. The
numbers are determined by inserting a busy loop into a null monitoring module
consuming processing cycles. The sending rate is adapted downward until no
packets are dropped at the monitor. This may seem overly conservative, because
packet losses occur when even one packet is delivered to FLAME too early.
However, the device driver allocates 256 RxDescriptors for the card to store 2K
packets. Therefore the card can buffer short-term bursts that exceed the average
rate without incurring packet loss, but cannot tolerate sustained rates above
the limit. In Figure 4 we show the number of processing cycles available at
different traffic rates, for LAME, FLAME without polling, and FLAME with
polling enabled.

There are two main observations to make on these results. First, as expected,
the polling system performs significantly better, roughly 2.5 times better than



128 Kostas G. Anagnostakis et al.

the non-polling system. Second, the number of cycles available for applications
to consume, even at high packet rates, appears reasonable. In the next sections
we will discuss these figures in light of the processing needs of our experimental
applications.

To obtain an rough estimate of the processing cost for each application, we
instrumented the application modules using the Pentium performance counters.
We read the value of the Pentium cycle counter before and after execution of
application code for each packet. Due to lack of representative traffic on our
laboratory testbed, we fed the system with packets using the Auckland-II packet
trace provided by NLANR and the WAND research group. The measurements
were taken on a 1 GHz Intel Pentium III with 512 MB memory, OpenBSD 2.9
operating system, gcc version 2.95.3, and Cyclone version 0.1.2.

We compare the processing cost of a pure C version of each application to the
Cyclone version, with and without protection, and using additional optimizations
to remove or thin the frequency of backward jumps (these modifications were
done by hand). We measure the median execution time of each module over 113
runs. The results from this experiment are summarized in Table 5.

There are four main observations to make. First, the cost per-application
appears to be well within the capabilities of a modern host processor, for a
reasonable spectrum of traffic rates. Second, the cost of protection (after op-
timization), does not exceed by far the cost of an unprotected system. Third,
the costs presented are highly application dependent and may therefore vary.
Finally, some effort was spent in increasing the efficiency of both the original
C code as well as the Cyclone version Thus, care must be taken not to over-
state these results. This experiment does indicate that it is feasible to provide
protection mechanisms in an open monitoring architecture, enabling support for
experimental applications and untrusted users. However, the numbers should not
be considered representative of off-the-shelf compilers and/or carelessly designed
applications.

3.5 Modeling Supportable Workloads and Traffic Rates

We can roughly model the expected performance (maximum supportable packet
rate) of FLAME as a function of workload (number of active modules). We
derive the model from our measured system performance from Section 3.4, and
the costs of our experimental applications and the measured safety overheads
from Section 3.4.

We can approximately fit the number of available cycles to a0r
b0 , where r is

transmission rate in packets per second and a0 and b0 are constants. Computing
a0 and b0 using least squares, and dropping the data point at 848k packets per
second2, we get the number of available cycles for processing is 3 × 109r−1.1216.

2 The fit is remarkably good for packet rates under 500,000 packets per second. The
fit is good for packet rates up to about 800,000 packets per second, but our mea-
surements when the gigabit network was running full bore sending 64 byte packets
(small), yielded fewer available cycles than predicted by our model.



Open Packet Monitoring on FLAME: Safety, Performance, and Applications 129

Packets per second, r, can itself be computed as B/8s where B is the transmis-
sion rate in bits per second, and s is the mean packet size in bytes. Assuming a
mean module computation cost of 210 cycles per module (based on the assump-
tion that our applications are representative), and using our measured overhead
of 60 cycles per module, we can support a workload of � 1

9108r−1.1216� modules for
an incoming traffic rate of r packets per second, without losing a single packet.
Conversely, we can compute the maximum traffic rate as a function of the num-
ber of available cycles, c, by r = 2.816× 108c−0.8916 (or r = 1.914× 106n−0.8916,
where n is the number of modules).

To apply this model on an example, consider a fully-utilized 1 Gbit/s link,
with a median packet size of 250 bytes, which is currently typical for the Internet.
In this scenario, r, the input packet rate, is approximately 500,000 packets per
second. The model predicts enough capacity to run 5 modules. For comparison,
note that we measured the maximum loss-free transmission rate for 1310 cycles
on a 1 Ghz Pentium to be 500,004 packets per second; 1310 cycles comfortably
exceeds the total processing budget needed by the 4 applications in this study
(841 cycles with safety checks, and 731 cycles without any safety checks). Alter-
natively, with 20 active modules loaded, and an average packet size of 1K bytes
(full-size ethernet data packets, with an ack every 2 packets), the system can
support a traffic rate over 1 Gbps.

The demonstrated processing budget may appear somewhat constrained, as-
suming that users may require a much richer set of monitoring applications to
be executed on the system. However, in evaluating the above processing budget,
three important facts need to be considered. First, faster processors than the 1
GHz Pentium used for our measurements already exist, and processors are likely
to continue improving in speed. Second, a flexible system like FLAME may not
be required to cover all monitoring needs: one can assume that some portion of
applications will be satisfied by static hardware implementation in routers, with
an open architecture supporting only those functions that are not covered by
the static design. Third, the figures given above represent the rate and workload
at which no packets are lost. As the number of active applications increases, it
will be worthwhile to allow the system to degrade gracefully. The cost of graceful
degradation is an increase in the constant per-module overhead due to the added
complexity of the scheduler — thus packet loss will occur under slightly lighter
load than in the current configuration, but an overloaded system will shed load
gracefully.

Based on our results, we can assert that FLAME is able to support a reason-
able application workload on fully loaded Gbit/s links. Using FLAME on higher
network speeds (e.g. 10 Gbit/s and more) does not currently seem practical and
is outside the scope of our work.

4 Summary and Concluding Remarks

We have spent some time building, measuring, and refining an open architec-
ture for network traffic monitoring. Several interesting observations are worth
reporting:



130 Kostas G. Anagnostakis et al.

The techniques developed to build general infrastructure are applicable and
portable to specific applications. LAME was built using off-the-shelf components.
FLAME, in contrast, required us to write custom code. However, it was con-
structed using “off-the-shelf technology”. That is, the techniques we used for
extensibility, safety, and efficiency were well-known, and had already been devel-
oped to solve the same problems in a general active-networking infrastructure.
In particular, the techniques used for open architectures are now sufficiently
mature that applications can be built by importing technology, rather than by
solving daunting new problems.

Nevertheless, careful design is still necessary. Although the technology was
readily available, our system has gone through three architectural revisions, after
discovering that each version had some particular performance problems. Care
must be taken to port the right techniques and structure, otherwise the price
in performance paid for extensibility and safety may render the application im-
practical.

Programmable applications are clearly more flexible than their static, closed,
counterparts. However, to the limited extent that we have been able to find ex-
isting custom applications supporting similar functionality, we found that careful
engineering can make applications with open architectures perform competitively
with custom-built, static implementations.

More experience building applications is certainly needed to support our
observations, but our experience so far supports the fact that high performance
open architecture applications are practical.

References

[1] D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar, A. D. Keromytis, J. T.
Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith. The SwitchWare active
network architecture. IEEE Network, 12(3):29–36, May/June 1998.

[2] K. G. Anagnostakis and H. Bos. Towards flexible real-time network monitoring
using a network processor. In Proceedings of the 3rd USENIX/NLUUG SANE
Conference (short paper), May 2002.

[3] K. G. Anagnostakis, S. Ioannidis, S. Miltchev, J. Ioannidis, M. B. Greenwald, and
J. M. Smith. Efficient packet monitoring for network management. In Proceedings
of the 8th IFIP/IEEE Network Operations and Management Symposium (NOMS),
pages 423–436, April 2002.

[4] K. G. Anagnostakis, S. Ioannidis, S. Miltchev, and J. M. Smith. Practical network
applications on a lightweight active management environment. In Proceedings of
the 3rd Int’l Working Conference on Active Networks (IWAN), pages 101–115,
October 2001.

[5] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The KeyNote Trust
Management System Version 2. Internet RFC 2704, September 1999.

[6] H. Bos and B. Samwel. Safe kernel programming in the OKE. In Proceedings of
IEEE OPENARCH 2002, June 2002.

[7] J. Brunner. The Shockwave Rider. Del Rey Books, Canada, 1975.
[8] J. Chase, H. Levy, M. Baker-Harvey, and E. Lazowska. Opal: A single address

space system for 64-bit architectures. In Proceedings of the Fourth Workshop on
Workstation Operating Systems, pages 80–85, 1993.



Open Packet Monitoring on FLAME: Safety, Performance, and Applications 131

[9] N. Duffield and M. Grossglauser. Trajectory sampling for direct traffic observation.
IEEE/ACM Transactions on Networking, 9(3):280–292, June 2001.

[10] M. Hicks, J. T. Moore, and S. Nettles. Compiling PLAN to SNAP. In Proceedings
of the 3rd Int’l Working Conference on Active Networks (IWAN), pages 134–151,
October 2001.

[11] S. Ioannidis, K. G. Anagnostakis, J. Ioannidis, and A. D. Keromytis. xPF: packet
filtering for low-cost network monitoring. In Proceedings of the IEEE Workshop
on High-Performance Switching and Routing (HPSR), pages 121–126, May 2002.

[12] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone:
A safe dialect of C. In Proceedings of USENIX 2002 Annual Technical Conference,
June 2002.

[13] T. V. Lakshman and U. Madhow. The performance of TCP/IP for networks with
high bandwidth-delay products and random loss. IEEE/ACM Transactions on
Networking, 5(3):336 – 350, June 1997.

[14] G. R. Malan and F. Jahanian. An extensible probe architecture for network
protocol performance measurement. In Proceedings of ACM SIGCOMM, pages
215–227, August 1998.

[15] J. C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an interrupt-
driven kernel. ACM Transactions on Computer Systems, 15(3):217–252, August
1997.

[16] D. Moore. The spread of the code-red worm (crv2). In
http://www.caida.org/analysis/security/code-red/. August 2001.

[17] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The click modular
router. In Proceedings of the 17th ACM Symposium on Operating System Princi-
ples (SOSP), pages 217–231, December 1999.

[18] C. Partridge, A. Snoeren, T. Strayer, B. Schwartz, M. Condell, and I. Castineyra.
FIRE: Flexible intra-AS routing environment. In Proceedings of ACM SIGCOMM,
pages 191–203. August 2000.

[19] M. Roughan, D. Veitch, and P. Abry. Real-time estimation of the parameters of
long-range dependence. IEEE/ACM Transactions on Networking, 8(4):467–478,
August 2000.

[20] F. B. Schneider, G. Morrisett, and R. Harper. A language-based approach to
security. Informatics: 10 Years Back, 10 Years Ahead, pages 86–101, 2000.

[21] J. F. Shoch and J. A. Hupp. The “worm” programs – early experiments with
a distributed computation. Communications of the ACM, 25(3):172–180, March
1982.

[22] J. M. Smith and C. B. S. Traw. Giving applications access to Gb/s networking.
IEEE Network, 7(4):44–52, July 1993.

[23] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Minden. A survey of
active network research. IEEE Communications Magazine, pages 80 – 86, January
1997.

[24] D. Wetherall. Active network vision and reality: Lessons from a capsule-based sys-
tem. In Proceedings of the 17th ACM Symposium on Operating System Principles
(SOSP), pages 64 – 79, December 1999.

[25] C. Yarvin, R. Bukowski, and T. Anderson. Anonymous RPC: Low-latency pro-
tection in a 64-bit address space. In Proceedings of the 1993 Summer USENIX
Conference, June 1993.


	Open Packet Monitoring on FLAME: Safety, Performance, and Applications
	Introduction
	Overview of the FLAME Architecture
	Experiments
	Applications
	Experiment Setup
	Testbed Demonstration
	System Performance, Workload Analysis, and Safety Overheads
	Modeling Supportable Workloads and Traffic Rates

	Summary and Concluding Remarks
	References


