
A Framework for Complexity Management
in Graph Visualization

Ugur Dogrusoz and Burkay Genc

Computer Eng. Dept., Bilkent Univ., Ankara 06533, Turkey
Tom Sawyer Software, Oakland, CA 94612, USA

1 Short Description

We present a comprehensive framework for development of complexity man-
agement techniques in graph visualization tools. The presented architecture is
capable of managing multiple associated graphs with navigation links and nest-
ing of graphs as well as ghosting, folding and hiding of unwanted graph elements.
The theoretical analyses show that the involved data structures and algorithms
are quite efficient, and an implementation in a graph drawing tool has proven
to be successful.

Our architecture is based on dynamic interactive compound graphs. The
definition of compound graphs is extended to efficiently handle the graph editing
and complexity management operations. A navigation forest is used to keep track
of navigational links among nodes and graphs, and a nesting forest is used to
keep track of nesting (inclusion) relations.

2 Complexity Management Operations

The framework manages complexity via the following instruments:

Expand/Collapse:Most applications require multiple levels of abstraction,
where the user would like to visualize the information with varying levels of
abstraction for different parts of the drawing. A collapse operation allows us
to cancel a nesting relation between a node and a graph, thus avoiding the
drawing of the graph inside the node. The expand operation is defined as the
reverse operation creating a nesting relation between a node and a graph.

Folding/Grouping: A fold operation is applied to a group of graph mem-
bers, and results in a new (folder) node and its new child graph with these
members. At any time, an unfold operation may be applied on a folder node
to reverse the effects of the fold operation.
Often times, members of a graph need to be put together according to some
criteria to emphasize certain grouping. This can be achieved through folding
followed by an expand operation, enabling all the group members to be
gathered in the newly created graph.

M.T. Goodrich and S.G. Kobourov (Eds.): GD 2002, LNCS 2528, pp. 368–369, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



A Framework for Complexity Management in Graph Visualization 369

Invisibility/Hiding/Ghosting: A graph member is said to be invisible
when it is not rendered on the display yet it is part of the graph topology.
Hiding, on the other hand, is used to avoid any means of user interaction on
a set of graph members, and temporarily removes graph contents from the
graph topology as well. Any set of graph members may later be unhidden.
Ghosting can be used to visually decrease the importance of a graph member
by means of changing its color and/or brightness of its skin, and sending it
to the background. Unlike hiding, the member is still there, both visually
and topologically.

3 Implementation

Our framework has been successfully implemented and integrated into Tom
Sawyer Software’s Graph Editor Toolkit for Java, version 5.0.

Fig. 1. Upper Left: Map of a small network drawing in GET for Java. Upper Right:
All related network devices are grouped together under a folder. Lower Left: Lab4 has
been expanded to reveal details. Additionally, Printer1, PC41, PC43 and PC47 are
unavailable, so they are hidden. Lower Right: The varying levels of the details of the
server has been input as deeply nested graphs.


	A Framework for Complexity Management in Graph Visualization
	1 Short Description
	2 Complexity Management Operations
	3 Implementation


