
HGV: A Library for Hierarchies,
Graphs, and Views

Marcus Raitner

University of Passau, D-94032 Passau, Germany,
raitner@fmi.uni-passau.de

Abstract. We introduce the base architecture of a software library
which combines graphs, hierarchies, and views and describes the interac-
tions between them. Each graph may have arbitrarily many hierarchies
and each hierarchy may have arbitrarily many views. Both the hierar-
chies and the views can be added and removed dynamically from the
corresponding graph and hierarchy, respectively. The software library
shall serve as a platform for algorithms and data structures on hierarchi-
cally structured graphs. Such graphs become increasingly important and
occur in special applications, e. g., call graphs in software engineering or
biochemical pathways, with a particular need to manipulate and draw
graphs.

1 Introduction

Graphs are often used to model structured data, e. g., road maps with locations
connected by roads, the web-graph with web-pages connected by links or bio-
chemical pathways with substances connected by reactions [3]. Particularly for
large graphs it is important to view, manipulate, and automatically draw them
using some software tools. Clearly, all these tools rely on an appropriate data
structure for graphs. There already exist various libraries implementing data
structures for graphs, e. g., Leda [15], Gtl [9], or Boost Graph Library [2].

There are many applications with very large graphs. Such graphs must be
manipulated efficiently by powerful operations acting on subgraphs. Repeated
use of subgraphs induces a hierarchical structure. This is a particular means
also for the visualization of large graphs, because certain subgraphs may be col-
lapsed and represented by a meta-node. There are various concepts for extending
graphs with such a hierarchical structure [7,10,12,18]. Moreover there are layout
algorithms [7, 18] and interactive systems [17,13] working with these concepts.

The inclusion hierarchy on top of a graph can be used to define abstract
representations of the graph, so called views [5,6,7] or abridgements [13]. Instead
of displaying every single node of the graph, in a view a subset of the nodes is
represented as one (abstract) node. These nodes are connected by an (abstract)
edge if there is an edge between nodes in the corresponding subsets. In a graph
editor views are very convenient since they simultaneously provide an overview
of the whole graph and some details from a special portion. In some respects
a view can be compared to the well known tree views of file systems where

M.T. Goodrich and S.G. Kobourov (Eds.): GD 2002, LNCS 2528, pp. 236–243, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



HGV: A Library for Hierarchies, Graphs, and Views 237

initially only the topmost layer of folders is shown and the folders of interest can
be expanded within the view.

Up to now there is no thorough description of the software architecture for a
library providing graphs with hierarchies and views. This contribution and the
prototype implementation [11] are a first step.

1.1 Related Work

There are several notions of hierarchically structured graphs in the literature.
Depending on their purpose these definitions come in different flavors ranging
from succinct representations of large graphs [16] to graph drawing [7, 18]. The
latter is surveyed in [4].

Structuring a graph hierarchically was first employed on statecharts [10].
There the term higraph is defined as an ordinary graph with an acyclic inclu-
sion relation on its nodes. A higraph can be seen as a directed acyclic graph
(DAG) describing an inclusion hierarchy with additional graph edges connecting
arbitrary nodes.

The compound graphs [18] consist of a set of nodes together with inclusion
edges and adjacency edges such that the inclusion edges induce a directed graph
(mostly a tree) and the adjacency edges induce a directed graph. Like a higraph
a compound graph can be seen as a directed graph describing the hierarchy with
additional (adjacency) edges connecting arbitrary nodes.

Closely related to compound graphs and higraphs are the cigraphs [14]. A
cigraph is a root node together with a possibly empty set of sub-cigraphs and a
set of edges between nodes in different sub-cigraphs. This means that an edge
is always stored at the least common ancestor of the cigraphs it connects.

Neither higraphs nor compound graphs nor cigraphs distinguish properly
between the nodes of the underlying graph and the nodes of the hierarchy. On
the other hand the clustered graphs [7] consist of an ordinary graph and a tree
with the leaves of the tree being exactly the nodes of the graph. This can be seen
as a tree describing an inclusion hierarchy with additional graph edges between
its leaves only. Each node in the tree represents a cluster of nodes of the graph
that are leaves of the subtree rooted at the node. With the additional restriction
that there are no long tree edges, i. e., tree edges connecting nodes whose heights
in the tree differ by more than one, a view at level i of a clustered graph is a
graph consisting of all nodes of height i in the tree. Two nodes in the view are
connected by an edge if there is at least one graph edge connecting the respective
clusters.

In [6,5] the notion of a view of a clustered graph is generalized. There a view
is a subset of the nodes of the tree such that the corresponding clusters partition
the set of nodes of the graph. Hence the view can be detailed and coarsened as
needed. In [6] it is shown how to maintain a view on a clustered graph efficiently
while navigating up and down the hierarchy using the methods collapse and
expand.

Some interactive systems [13, 17] actually use these two operations to ex-
plore clustered graphs. However, they do not describe thoroughly the coherence



238 Marcus Raitner

of graph, hierarchies and views from a software-engineering perspective. Other
systems [1] model clustered graphs as an extension of ordinary graphs and do
not provide views at all.

1.2 Our Results

We propose a software architecture for the interaction of graphs, hierarchies, and
views. Employing the Observer design pattern [8] twice, our model features an
arbitrary number of hierarchies for each graph as well as an arbitrary number of
views for each hierarchy. Our model prepares the ground for a graph library with
hierarchies and views. Such a library, integrated in a graph editor or a graph
layout tool, provides an additional dimension for the structuring of graphs and
makes working with large graphs more convenient. A first implementation of our
model is available [11].

Since we allow more than one hierarchy per graph we need a rigid distinction
between graph and hierarchy. Therefore we extend the clustered graphs by cross
edges between tree nodes. Cross edges can be seen as edges on a higher level
of abstraction, They describe a relation between clusters of nodes while edges
in the graph describe a relation between the nodes of the graph. For our model
we generalize the views in [6, 5], which are defined only on clustered graphs.
Moreover, our views need not cover the whole graph and can therefore be used
to model subgraphs and views of subgraphs.

2 Basic Notions

Definition 1. Let G be a graph with nodes V (G) and edges E(G). A hierarchy
H over G consists of nodes V (H) = V (G)∪̇Vi(H), cross edges Ec(H) and a
grouping function cH : V (H)→ P(V (G)) such that

(i) ∀ v ∈ V (G) : cH(v) = {v}
(ii) ∃ v ∈ Vi(H) : cH(v) = V (G)
(iii) ∀u, v ∈ V (H) : cH(u) ∩ cH(v) 	= ∅ ⇒ (cH(v) ⊆ cH(u) ∨ cH(u) ⊆ cH(v))
(iv) ∀ e = (u, v) ∈ Ec(H) : cH(u) ∩ cH(v) = ∅
The nodes Vi(H) are the called inner nodes and cH(v) is called the cluster of v.

A hierarchy over a graph can be seen as a rooted tree with its leaves cor-
responding exactly to the nodes of the underlying graph and with cross edges
connecting tree nodes which are not predecessors of one another. In Fig. 1 the
hierarchy over a graph is depicted as an inclusion diagram. The solid lines are
edges of the graph and the dashed ones are cross edges. The boxes represent
the clusters cH(v) for v ∈ V (H). Figure 2 shows the same graph and the same
hierarchy as a tree with graph edges and cross edges.

Because of the cross edges this notion of a hierarchy is more general than
the clustered graphs of [7]. Our definition differs from compound graphs of [18]
and the higraphs of [10] since the hierarchy may not be a DAG and only cross



HGV: A Library for Hierarchies, Graphs, and Views 239

Fig. 1. Inclusion Diagram Fig. 2. Tree

f

e

Fig. 3. View

edges are allowed. The cigraphs of [14] are equivalent to our model, but do not
provide a rigid distinction between graph and hierarchy which is necessary for
more than one hierarchy per graph.

Definition 2. A view S of a hierarchy H over a graph G is a graph with nodes
V (S) ⊂ V (H) such that ∀u, v ∈ V (S) : u 	= v ⇒ cH(u) ∩ cH(v) = ∅. Two nodes
u, v ∈ V (S) are connected by an edge if and only if

(i) ∃u′, v′ ∈ V (H) : cH(u′) ⊆ cH(u) ∧ cH(v′) ⊆ cH(v) ∧ u′ is connected to
v′ by a cross edge or

(ii) ∃u′ ∈ cH(u), v′ ∈ cH(v) : u′ and v′ are connected by an edge in G.

Figure 3 shows a view of the hierarchy of Fig. 1. The edges e and f are examples
for (i) and (ii), respectively. There are many other views.

Our definition generalizes the one given in [6, 5] in various respects. The
clusters of nodes in the view need not cover the whole graph. Therefore we can
model subgraphs and views of subgraphs. Using cross edges, our views can have
edges connecting clusters which are not connected in the underlying graph.

3 Core Architecture

The three main classes in the class diagram in Fig. 4 are graph, hierarchy, and
view. The other two classes, observable_graph and observer, are primarily
abstract interfaces modeling the observer design pattern [8].

3.1 Assumptions

The following assumptions guided the design of our library.

1. Fully dynamic graph, hierarchy and view: Nodes and edges can be added or
removed from the underlying graph. The inner nodes of the hierarchy can
be inserted or deleted and nodes in the view can be expanded or collapsed.



240 Marcus Raitner

graph

+ graph()
+ new_node() : node
+ new_edge(node, node) : edge
+ delete_node(node)
+ delete_edge(edge)

observer

+ observer(observable_graph&)
+ new_node_handler(node)
+ new_edge_handler(edge)
+ delete_node_handler(node)
+ delete_edge_handler(edge)

observable_graph

+ observable_graph()
+ add(observer&)
+ remove(observer&)
 

1
observed

1..*
observers

hierarchy

+ hierarchy(observable_graph&)
+ new_node(InputIterator, InputIterator) : node
+ get_root() : node
+ son_edges_begin() : son_edge_iterator
+ son_edges_end() : son_edge_iterator
+ get_father_edge(node) : edge
+ induced_edge(node, node) : int
+ is_predecessor_of(node, node) : bool
+ is_inner_node(node) : bool
+ is_cross_edge(edge) : bool

view

+ view(hierarchy&, InputIterator, InputIterator)
+ expand(node)
+ collapse(node)

Fig. 4. Core Architecture

2. Arbitrarily many hierarchies per graph: A hierarchy always describes one
dimension of abstraction, e. g., grouping locations in a road map by their
geographical proximity. Sometimes it may be necessary or convenient to use
more than one dimension of abstraction for the same graph, i. e., more than
one hierarchy. Consider for instance the web-graph, which can be grouped
either by domain or by topic.

3. Arbitrarily many views per hierarchy: A view defines an abstract version of
a graph in terms of an associated abstraction hierarchy (cf. Definition 2).
Clearly, it is very convenient to have more than one view, especially in a
viewer or editor, where the user can see one abstract overview and work in
another more detailed view.

4. Minimize redundant information: By Definition 1 the graph is part of each
associated hierarchy and each view is part of a hierarchy (cf. Definition 2).
Since all objects are subject to change it is very important to minimize
redundancy.

5. Reusable algorithms: Hierarchies and views can be seen as graphs and thus
many graph algorithms are applicable to them. Clearly, these algorithms
should be implemented only once.

3.2 Graphs, Nodes and Edges

The class graph is the common base class for hierarchy and view. It consists of
nodes and edges and the basic methods for adding and removing these objects. It
also provides methods for traversing and accessing nodes and edges. This includes
methods for traversing the adjacency of a node in particular. In other words, the
graph has full control and the nodes and edges are only handles without state or



HGV: A Library for Hierarchies, Graphs, and Views 241

functionality of their own. Examples for this model are the graphs in Leda [15]
and in Boost Graph Library [2].

This is more appropriate here than the alternative, where nodes and edges
are objects of their own controlling their adjacency lists themselves as in Gtl [9],
because then there can be at most one adjacency list for each node. On the other
hand there can be at most one adjacency list per graph and node if the graph
manages the lists. In other words nodes can be shared by several graphs, which
is important to avoid redundancy.

3.3 The Observer Pattern

The partly abstract classes observer and observable_graph form the observer
design pattern [8]. observable_graph extends graph with methods for adding
and removing observers dynamically. Any object used as such an observer has
to be derived from observer and thus has to implement the callback methods
like new_node_handler. All the methods that modify the graph are redefined in
observable_graph in order to trigger the appropriate callback method in all its
observers with the modified object as argument. Notification of a new node or
edge occurs after the change whereas deleting a node or edge is announced in
advance.

3.4 Hierarchies

As shown in Fig. 4 a hierarchy is both observer and observable_graph. The
observer part keeps track of modifications of the underlying graph whereas the
observable_graph part informs the attached views about changes of either the
graph or the hierarchy.

By definition a hierarchy cannot exist without an underlying graph. Therefore
its constructor takes an observable_graph as argument. Initially a hierarchy
consists of one root with all the nodes of the associated graph as sons and no
cross edges.

A hierarchy is a graph and thus it can be modified using the methods already
defined in graph. On the other hand, a hierarchy is a special graph, namely a
tree with some cross-edges, and imprudent use of such a method could violate
this invariant. Therefore these methods are redefined as follows:

– new_node(): Creates a new leaf, i. e., a new node in the underlying graph,
and attaches it to the root.

– new_edge(s,t): If both s and t are leaves then a new edge in the underlying
graph is created. If at least one is an inner node and neither is a predecessor
of the other a new cross-edge is inserted.

– delete_node(n): If n is a leaf it is deleted in the underlying graph. If it is an
inner node and is not the root all its sons are attached directly to its father
before it is deleted.

– delete_edge(e): Depending on whether e is a cross-edge or an edge between
leaves it is deleted in the hierarchy or in the underlying graph, respectively.



242 Marcus Raitner

For inserting a new inner node the method new_node(it,end) is provided.
Its arguments specify a set of nodes as the range [it,end), where it and end
are iterators over some collection of nodes. It is required that all the nodes in
this range have the same father in the hierarchy. The new inner node is inserted
between these nodes and their father, i. e., the new node becomes the new father
of these nodes and is inserted as son of the old father.

Apart from these explicit changes a hierarchy must be adapted whenever
the underlying graph is modified. This is achieved by implementing the callback
methods of the observer interface accordingly. A new node in the underlying
graph becomes a leaf attached to the root node and deleting a node in the
graph results in removing the corresponding leaf from the hierarchy. Adding or
removing an edge from the graph does not result in a change in the hierarchy.
However, all attached views are notified about changes of either the graph or
the hierarchy.

The other new methods in hierarchy as shown in Fig. 4 are either for navi-
gation in the hierarchy, e. g., son_edges_begin or get_father_edge, or provide
information used by the views, e. g., induced_edge or is_predecessor_of.

3.5 Views

A view is both a graph and an observer. The graph part is the abstract version
of the underlying graph in terms of the associated hierarchy. The observer part
listens to changes of this hierarchy and updates the view accordingly.

At any time a view consists of a subset of the nodes of its hierarchy and
thus the constructor of view takes two arguments: the hierarchy and the initial
subset for this view. The subset is given as a range [it,end) in a collection of
nodes, where it and end are iterators.

Since a view is a graph it can be modified through the standard methods
defined in graph. On the other hand a view consists of nodes of the associated
hierarchy and induced edges and thus all modifications must be forwarded to
the hierarchy. Hence those methods are redefined in view in order to call the
respective methods in hierarchy.

Whenever a view is notified of a change of the hierarchy (or the graph) it has
to check whether it is affected. For instance, if a node in the hierarchy is deleted
the view must be adapted if and only if this node was part of the view. In order
to perform these updates efficiently the view makes use of the query methods
provided in hierarchy, e. g., induced_edge or is_predecessor_of.

The method view::expand replaces a node in the view by its sons, and
conversely view::collapse replaces all the sons of a node with the node itself.
For both methods the view removes some nodes with all their incident edges and
inserts one or more others. After inserting the new nodes the view uses query
methods like hierarchy::induced_edge to determine their adjacency. Thus a
view can not only be used to represent an abstract version of a graph but also
to navigate through the hierarchy in either direction.



HGV: A Library for Hierarchies, Graphs, and Views 243

4 Conclusion

We have presented an architecture model for a library featuring graphs with an
arbitrary number of hierarchies and views. Such a library shall help in handling
large graphs in a convenient manner. It can be used in graph editors for drawing
and exploring large graphs interactively.

Our model prepares the ground for data structures for the efficient implemen-
tation of hierarchies and views and algorithms taking advantage of the additional
hierarchical structure.

References

1. Agd. http://www.ads.tuwien.ac.at/AGD/index.html.
2. Boost Graph Library. http://www.boost.org/libs/graph/doc/.
3. F. J. Brandenburg, M. Forster, A. Pick, M. Raitner, and F. Schreiber. Biopath.

In Proc. GD 2001, LNCS 2265, pp. 451–456, 2001.
4. R. Brockenauer and S. Cornelsen. Drawing clusters and hierarchies. In Drawing

Graphs – Methods and Models, LNCS 2025, pp. 193–227, 2001.
5. A. L. Buchsbaum, M. T. Goodrich, and J. R. Westbrook. Range searching over

tree cross products. In 8th ESA, 2000.
6. A. L. Buchsbaum and J. R. Westbrook. Maintaining hierarchical graph views. In

11th ACM-SIAM Symposium on Discrete Algorithms, 2000.
7. P. Eades and Q.-W. Feng. Multilevel visualization of clustered graphs. In Proc.

GD 1996, LNCS 1190, pp. 101–112, 1996.
8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements od

Reusable Object-Oriented Software. AW Professional Computing Series, 1995.
9. Gtl. http://www.infosun.fmi.uni-passau.de/GTL.

10. D. Harel. On visual formalisms. Comm. of the ACM, 31(5):588–600, 1988.
11. Hgv. http://www.infosun.fmi.uni-passau.de/˜raitner/HGV/.
12. M. Himsolt. Konzeption und Implementierung von Grapheneditoren. PhD thesis,

Fakultät für Mathematik und Informatik, Universität Passau, 1993.
13. M. L. Huang and P. Eades. A fully animated interactive system for clustering and

navigating huge graphs. In Proc. GD 1998, LNCS 1547, pp. 374–383, 1998.
14. W. Lai and P. Eades. A graph model which supports flexible layout functions.

Technical Report 96–15, 1996.
15. Leda. http://www.algorithmic-solutions.com/.
16. T. Lengauer and E. Wanke. Efficient solution of connectivity problems on hierar-

chically defined graphs. SIAM Journal on Computing, 17(6):1063–1080, 1988.
17. I. A. Lisitsyn and V. N. Kasyanov. Higres - visualization system for clustered

graphs and graph algorithms. In Proc. GD 1999, LNCS 1731, pp. 82–89, 1999.
18. K. Sugiyama and K. Misue. Visualization of structural information: Automatic

drawing of compound digraphs. IEEE Trans. Systems, Man and Cybernetics,
21(4):876–892, 1991.


	HGV: A Library for Hierarchies, Graphs, and Views
	1 Introduction 
	1.1 Related Work 
	1.2 Our Results

	2 Basic Notions 
	3 Core Architecture
	3.1 Assumptions
	3.2 Graphs, Nodes and Edges
	3.3 The Observer Pattern
	3.4 Hierarchies
	3.5 Views

	4 Conclusion
	References




