Compact Encodings
of Planar Orthogonal Drawings

Amrita Chanda and Ashim Garg
Department of Computer Science and Engineering
University at Buffalo
Buffalo, NY 14260
{achanda,agarg}@cse.buffalo.edu

Abstract. We present time-efficient algorithms for encoding (and decoding) planar orthogonal drawings of degree-4 and degree-3 biconnected and triconnected planar graphs using small number of bits. We also present time-efficient algorithms for encoding (and decoding) turn-monotone planar orthogonal drawings.

1 Introduction

It is important to compress the representation of planar orthogonal drawings to reduce their storage requirements and transmission times over a network, like Internet. The encoding problem is also interesting from a theoretical viewpoint.

A degree-d graph is one, where each vertex has at most d edges incident on it. A planar drawing is one with no edge-crossings. An orthogonal drawing is one, where each edge is drawn as an alternating sequence of horizontal and vertical line-segments. A bend (turn) is defined as the meeting point of two consecutive line-segments of an edge in a drawing.

In this paper, we investigate the problem of encoding planar orthogonal drawings of degree-4 and degree-3 biconnected and triconnected planar graphs using small number of bits, and present several results.

Let d be a planar orthogonal drawing, with b turns (bends), of a planar graph G with n vertices, m edges, and f internal faces. Suppose each line-segment of d has length at most W. Throughout the paper, to avoid triviality, we will assume that $n \geq 3$. A simple drawing-description format that stores the underlying graph using adjacency-list representation, and stores the coordinates of the vertices and edge-bends would require $\Omega(n + m \log_2 n + n \log_2 (b + n) W + b \log_2 (b + n) W)$ bits in the worst case. More complex formats may require even more bits. We are not aware of any work focusing explicitly on encoding planar orthogonal drawings.

In Sections 2, 3, and 4, respectively, we give our result, previous work, and some definitions. In Sections 5, 6, and 7, respectively, we show how to encode (and decode) degree-3 and degree-4 plane graphs, orthogonal representations, and lengths of the line-segments of a planar orthogonal drawing. In Section 8, we give our overall algorithm for encoding (and decoding) a planar orthogonal drawing.

* Research supported by NSF CAREER Award IIS-9985136 and NSF CISE Research Infrastructure Award No. 0101244.
2 Our Result

Our results can be summarized as follows (with \(G, n, m, f, d, W, \) and \(b \) as defined above): Let \(p = (2 + b + m - f) \log_2(W + 1) \). Let \(q = n + b \).

- If \(G \) is a degree-4 biconnected graph, then we can encode (and decode) \(d \) using at most \(4.74m + 2.42n + 1.58b + p + O(\log q) \) bits in \(O((n + b + p)^2) \) time, and using at most \(5.01m + 2.33n + 1.67b + p + O(\log q) \) bits in \(O(n + b + p) \) time.
- If \(G \) is a degree-4 triconnected graph, then we can encode (and decode) \(d \) using at most \(3.34m + 4n + 1.67b + p + O(\log q) \) bits in \(O(n + b + p) \) time, and using at most \(3.34m + 4n + 1.67b + p + O(\log q) \) bits in \(O(n + b + p) \) time.
- If \(G \) is a degree-3 biconnected graph, then we can encode (and decode) \(d \) using at most \(4.74m + 1.23n + 1.58b + p + O(\log q) \) bits in \(O((n + b + p)^2) \) time, and using at most \(5.01m + 1.33n + 1.67b + p + O(\log q) \) bits in \(O(n + b + p) \) time.
- If \(G \) is a degree-3 triconnected graph, then we can encode (and decode) \(d \) using at most \(3.58m + n + 1.58b + p + O(\log q) \) bits in \(O((n + b + p)^2) \) time, and using at most \(3.67m + n + 1.67b + p + O(\log q) \) bits in \(O(n + b + p) \) time.
- If \(G \) is a degree-3 triconnected graph, then we can encode (and decode) \(d \) using at most \(3.16m + 2n + 1.58b + p + O(\log q) \) bits in \(O((n + b + p)^2) \) time, and using at most \(3.34m + 3n + 1.67b + p + O(\log q) \) bits in \(O(n + b + p) \) time.
- If \(G \) is a degree-3 triconnected graph, then we can encode (and decode) \(d \) using at most \(3.16m + 2n + 1.58b + p + O(\log q) \) bits in \(O((n + b + p)^2) \) time, and using at most \(3.34m + 3n + 1.67b + p + O(\log q) \) bits in \(O(n + b + p) \) time.
- If \(G \) is a degree-3 triconnected graph, then we can encode (and decode) \(d \) using at most \(2n + 4.17n + 1.58b + p + O(\log q) \) bits in \(O((n + b + p)^2) \) time, and using at most \(2m + 4.34n + 1.67b + p + O(\log q) \) bits in \(O(n + b + p) \) time.
- If \(G \) is a degree-3 triconnected graph, then we can encode (and decode) \(d \) using at most \(2m + 2.58n + 1.58b + p + O(\log q) \) bits in \(O((n + b + p)^2) \) time., and using at most \(2m + 2.67n + 1.67b + p + O(\log q) \) bits in \(O(n + b + p) \) time.

As a by-product, our technique also encodes orthogonal representations, which are important intermediate constructs used by several drawing algorithms [718].

3 Related Work

As mentioned above, we are not aware of any previous work focusing explicitly on encoding planar orthogonal drawings. However, a lot of work has been done on encoding planar graphs. Let \(G \) be a planar graph with \(n \) vertices and \(m \) edges. If \(G \) is biconnected (triconnected, triangulated, respectively), then it can be
176 Amrita Chanda and Ashim Garg

encoded using at most $2n + 1.58m$ bits \([1]\) (1.58(n + m) bits [1], 1.33m bits [1]). If G is a triangulated graph, then any encoding of G requires at least 1.08m bits \([9]\). \([5]\) presents a technique for encoding G in asymptotically the minimum number of bits in $O(n \log n)$ time. For more results on graph encoding, see [1].

Our encoding technique is based on the graph encoding technique of \([1]\), and on the concept of canonical orderings of planar graphs \([2,6,1]\).

4 Preliminaries

We use standard definitions of graph-theoretic terms. A plane graph G is a planar graph equipped with an embedding. Two vertices of G are neighbors if they are connected by an edge. Let u_1, u_2, \ldots, u_k be some vertices of G. The plane graph induced by u_1, u_2, \ldots, u_k is the maximal subgraph of G that consists of these vertices and their incident edges. Suppose G has n vertices. An ordering v_1, v_2, \ldots, v_n of the vertices of G is an assignment of unique integers in the range $[1, n]$ to the vertices, such that the i^{th} vertex v_i in the order is assigned number i.

Let G be a degree-4 plane graph. Two planar orthogonal drawings T_1 and T_2 of G are shape equivalent if: (1) for each vertex v, consecutive edges incident to v form the same angle at v in T_1 and T_2, and (2) for each edge (u, v), the sequence of left and right turns encountered while walking from u to v along the polygonal chain representing (u, v) is the same in T_1 and T_2. An orthogonal representation Γ of G defines an equivalence class of shape equivalent planar orthogonal drawings of G. Γ is a turn monotone representation if each edge is represented as a polygonal chain consisting of only left or right turns, but not both (see Figure 1(a)).

An important concept used by our encoding technique is that of a canonical ordering of a plane graph (see Figure 1(b)). This concept has been defined and used in \([2,6,1]\). Let $G = (V, E)$ be a simple biconnected plane graph with n vertices,
and \(m \) edges. Let \(v_1, v_2, \ldots, v_n \) be an ordering of the vertices of \(G \). Let \(G_i \) be the plane graph induced by vertices \(v_1, v_2, \ldots, v_i \). Let \(H_i \) be the external face of \(G_i \).

Definition 1 ([1]). Let \(v_1, v_2, \ldots, v_n \) be an ordering of the vertices of a biconnected plane graph \(G = (V, E) \), where \(v_1 \) and \(v_2 \) are two arbitrary vertices on the external face of \(G \) with \((v_1, v_2) \in E\). The ordering is canonical if there exist ordered partitions \(I_1, I_2, \ldots, I_K \) of the interval \([3, n]\) such that the following properties hold for every \(1 \leq j \leq K \): Suppose \(I_j = [k, k + q] \). Let \(C_j \) be the path \((v_k, v_{k+1}, \ldots, v_{k+q})\) (Note, \(C_j \) is a single vertex if \(q = 0 \)). Suppose we say that a vertex \(u \) of \(G_{k-1} \) is a neighbor of \(C_j \) if a vertex of \(C_j \) is a neighbor of \(u \). Then:

- The graph \(G_{k+q} \) is biconnected. Its external face \(H_{k+q} \) contains the edge \((v_1, v_2)\), and the path \(C_j \). \(C_j \) has no chord in \(G \), i.e., \(G \) does not contain any edge \((v_s, v_t)\) with \(|s - t| > 1\) and \(k \leq s, t \leq k + q \).
- \(C_j \) has at least two neighbors in \(G_{k-1} \), all of which are vertices of \(H_{k-1} \).
 - The leftmost neighbor is a neighbor of \(v_k \) and the rightmost neighbor is a neighbor of \(v_{k+q} \). Moreover, if \(q > 0 \), then \(v_1 \) and \(v_r \) are the only neighbors of \(C_j \) in \(G_{k-1} \). Here, the leftmost and rightmost neighbors of \(C_j \) in \(G_{k-1} \) are defined as follows: Vertices \(v_1 \) and \(v_2 \) divide \(H_{k-1} \) into two paths: a path consisting only of edge \((v_1, v_2)\), and another path \(v_1 (= u_1) u_2 \ldots u_q (= v_2) \) that connect \(v_1 \) and \(v_2 \), and that does not contain the edge \((v_1, v_2)\). We say that a vertex \(u_i \) is left (right) of another vertex \(u_z \), if \(i < z \) (\(i > z \)). The leftmost (rightmost) neighbor of \(C_j \) in \(G_{k-1} \) is the vertex \(u_i \) such that \(u_i \) is a neighbor of \(C_j \), and there is no other vertex \(u_i \) such that \(u_i \) is a neighbor of \(C_j \) and \(u_i \) is left (right) of \(u_i \).

A canonical ordering for a triconnected plane graph is defined the same as for a biconnected plane graph, except that it has the following additional property:

Property 1 ([2]). Every vertex \(v_k \), where \(1 \leq k \leq n - 1 \) has at least one neighbor \(v_p \), with \(k < p \).

A rightmost canonical (rmc) ordering for a biconnected plane graph \(G \) is defined as follows (see Figure 1(b)):

Definition 2 ([1]). Let \(v_1, v_2, \ldots, v_n \) be a canonical ordering for \(G \), where \(I_1, I_2, \ldots, I_K \) are its corresponding interval partitions. We say that \(v_1, v_2, \ldots, v_n \) is a rightmost canonical (rmc) ordering for \(G \) if the following property holds for every interval \(I_j \), where \(1 \leq j \leq K \):

Suppose \(I_j = [k, k + q] \). Let \(v_1, v_2, \ldots, v_{k-1}, u_k, u_{k+1}, \ldots, u_n \) be any canonical ordering for \(G \) whose first \(j - 1 \) interval partitions are exactly \(I_1, I_2, \ldots, I_{j-1} \) (Clearly, the \(G_{k-1} \) and \(H_{k-1} \) with respect to both canonical orderings are the same). Let \(v_1 \) be the leftmost neighbor of \(v_k \) on \(H_{k-1} \). Let \(u_1 \) be the leftmost neighbor of \(u_k \) on \(H_{k-1} \). Then, \(v_1 \) is to the right of \(u_1 \) on \(H_{k-1} \).

Theorem 1. ([1]) Every biconnected plane graph \(G \) with \(n \) vertices admits a rightmost canonical (rmc) ordering, which can be constructed in \(O(n) \) time.
Any canonical ordering \(c = v_1, v_2, \ldots, v_n \) of a biconnected plane graph \(G \) and its corresponding interval partitions \(I_1, I_2, \ldots, I_K \) defines a canonical spanning tree \(T_c \) that consists of the edge \((v_1, v_2)\) plus the union of the paths \(v_1 v_k v_{k+1} \ldots v_{k+q} \) over all intervals \(I_j = [v_k, v_{k+q}] \), where \(1 \leq j \leq K \) and \(v_1 \) is the leftmost neighbor of \(v_k \) on \(H_{k-1} \) (see Figure 1(b)). Suppose we root \(T_c \) at \(v_1 \). A tree edge of a vertex \(v \) is one that also belongs to \(T_c \), and a non-tree edge is one that does not. The incoming tree edge of \(v \) is the edge that connects \(v \) to its parent in \(T_c \), and an outgoing tree edge is one that connects \(v \) to a child in \(T_c \). Suppose vertex \(v \) belongs to interval \(I_j = [v_k, v_{k+q}] \). The incoming non-tree edges of \(v \) are those that connect \(v \) to neighbors in \(G_{k-1} \), and the outgoing non-tree edges are the remaining non-tree edges. Note that by the definition of canonical ordering, each outgoing non-tree edge of \(v \) will be of the form \((v, v_s)\), where \(s > k + q \). Also, note that for each incoming non-tree edge \((u, v)\) of \(v \), \(u \) will be on \(H_{k-1} \). For example, in Figure 1(b), Vertex 12 has incoming tree edge (10, 12), no outgoing tree edge, incoming non-tree edges (11, 12), and outgoing non-tree edge (12, 14).

Properties 2 and 3 follow easily from the definition of canonical ordering:

Property 2. Let \(v \neq v_1 \) be a vertex of \(G \). Then, \(v \) has exactly one incoming tree edge, and at least one outgoing tree-edge or incoming non-tree edge. Vertex \(v_1 \) has only outgoing tree edges.

Property 3. If \(G \) is a triconnected graph, then for every vertex \(v \neq v_1, v_n \) of \(G \), \(v \) has Property 2. Also, it has either at least one outgoing tree-edge, or at least one outgoing non-tree edge. Vertex \(v_1 \) has only outgoing tree edges. Vertex \(v_n \) has exactly one incoming tree edge and all its other edges are incoming non-tree edges.

Theorem 2. Let \(G \) be a biconnected plane graph with \(n \) vertices. Suppose, we are given a rightmost canonical ordering \(c = v_1, v_2, \ldots, v_n \) of the vertices of \(G \), along with the number of outgoing tree edges, incoming non-tree edges, and outgoing non-tree edges of each vertex as defined by \(c \). Then, we can determine in \(O(n) \) time, all the edges in \(G \), as well as its embedding. In other words, given this information, we can determine the entire structure of graph \(G \).

Sketch of Proof. Starting from the empty graph \(G_0 \), we reconstruct \(G \) iteratively by constructing a sequence of plane graphs \(G_0, G_1, G_2, \ldots, G_p = G \), where in each iterative step \(i \), we obtain \(G_i \) from \(G_{i-1} \) by inserting some vertices and edges into it. This is done as follows: For each vertex \(v_k \), where \(1 \leq k \leq n \), maintain two counters, \(T\text{Count}(v_k) \) and \(N\text{Count}(v_k) \), that initially store the number of outgoing tree edges and outgoing non-tree edges, respectively, of \(v_k \).

In the first iterative step, insert into \(G_0 \) vertices \(v_1, v_2, \ldots, v_r \), where \(v_r \) is the lowest numbered vertex in \(c \) with an incoming non-tree edge. Also, insert the edges \((v_1, v_2), (v_1, v_3), (v_3, v_4), \ldots, (v_{r-1}, v_r), (v_r, v_2) \). Note that these edges will form a single simple cycle. Reduce \(N\text{Count}(v_2) \) by 1. For each \(j \), where \(1 \leq j \leq r-1 \) and \(j \neq 2 \), reduce \(T\text{Count}(v_j) \) by 1.

In a general iterative step \(i \), we obtain \(G_i \) from \(G_{i-1} \) as follows: Suppose \(G_{i-1} \) consists of vertices \(v_1, v_2, \ldots, v_{k-1} \). Let \(v_{k}, v_{k+1}, \ldots, v_{k+q} \) be the sequence
of consecutive vertices in \(c \) such that vertices \(v_k, v_{k+1}, \ldots, v_{k+q-1} \) do not have any incoming non-tree edge, but \(v_{k+q} \) does. Let \(H_{k-1} \) be the external face of \(G_{k-1} \). Let \(u \) be the rightmost vertex on \(H_{k-1} \) with \(TCount(u) > 0 \). We have 2 cases:

- \(q = 0 \): Suppose \(v_k \) has \(t \) incoming non-tree edges. Let \(u_1, u_2, \ldots, u_t \) be the first \(t \) vertices to the right of \(u \) on \(H_{k-1} \), such that, for each \(u_i \), \(NCount(u_i) > 0 \). Insert vertex \(v_k \) and the edges \((u, v_k), (v_k, u_1), (v_k, u_2), \ldots, (v_k, u_t)\) into \(G_{k-1} \) to obtain \(G_k \). For each \(i \), where \(1 \leq i \leq t \), reduce \(NCount(u_i) \) by 1 (Note that except for \(u_t \), \(NCount(u_i) \) for each \(u_i \) will become 0 now). Reduce \(TCount(u) \) by 1.

- \(q > 0 \): In this case, \(v_{k+q} \) will have only one neighbor \(u' \) on \(H_{k-1} \), where \(u' \) is the first vertex right of \(u \) with \(NCount(u') > 0 \). Insert vertices \(v_k, v_{k+1}, \ldots, v_{k+q} \) and edges \((u, v_k), (v_k, v_{k+1}), (v_{k+1}, v_{k+2}), \ldots, (v_{k+q-1}, v_{k+q}), (v_{k+q}, u')\), into \(G_{k-1} \) to obtain \(G_k \). Reduce \(NCount(u') \) by 1. Reduce \(TCount(u) \) by 1. Also, for each \(i \), where \(k \leq i \leq k+q-1 \), reduce \(TCount(u_i) \) by 1.

5 Encoding Degree-3 and Degree-4 Plane Graphs

The algorithms of \[1\] will encode a biconnected (triconnected) degree-4 plane graph using 5.17\(n \) bits (4.74\(n \) bits), and a degree-3 biconnected (triconnected) plane graph using 4.37\(n \) (3.95\(n \)) bits. But, these algorithms do not consider the degrees of vertices while encoding a graph. (The algorithm of \[5\] will construct an asymptotically bit-minimum encoding of these graphs, but it is practical only for very large graphs.) Here, we show that we can get a better encoding for degree-3 and degree-4 plane graphs by considering the degrees of their vertices.

The basic idea is simple. Suppose we construct a rightmost canonical ordering \(c = v_1, v_2, \ldots, v_n \) of the vertices of a biconnected plane graph \(G \). Then, to encode \(G \), from Theorem 2 it is sufficient to encode, for each vertex, how many outgoing tree edges, incoming non-tree edges, and outgoing non-tree edges the vertex has.

Suppose \(G \) is a degree-3 graph. From Property 2, a vertex \(v \neq v_1 \) can only be of one of the 7 types, \(A \) to \(G \), based on its degree, and the number and types of its edges. \(v \) is of one of types \(A \) to \(F \), if it has degree 3, and of type \(F \) or \(G \) if it has degree 2. \(v \) is of (a) Type \(A \): if it has two outgoing tree edges, (b) Type \(B \): if it has one outgoing tree edge and one incoming non-tree edge, (c) Type \(C \): if it has one outgoing tree edge and one outgoing non-tree edge, (d) Type \(D \): if it has one incoming and one outgoing non-tree edge, (e) Type \(E \): if it has two incoming non-tree edges, (f) Type \(F \): if it has one incoming non-tree edge, and (g) Type \(G \): if it has one outgoing tree edge. Note that vertex \(v_1 \) will have either two or three outgoing tree edges. Thus, we encode \(G \) by a string \(S = s_1 s_2 \ldots s_n \), where

- \(s_1 \) represents the number of outgoing tree edges of \(v_1 \), and is equal to 0 if \(v_1 \) has two outgoing edges, and is equal to 1 if \(v_1 \) has three outgoing edges.

Each symbol \(s_i \), \(2 \leq i \leq n \), represents the type of vertex \(v_i \), and is equal to \(A, B, C, D, E, F, \) or \(G \).

Since each \(s_i \), where \(2 \leq i \leq n \), can have 7 possible values, we can encode the substring \(S' = s_2 \ldots s_n \) using \((n - 1) \log_2 7 \approx 2.81(n - 1) \) bits by converting the
corresponding Base-7 number into binary representation in \(O(n^2)\) time. Using Huffman encoding, we can encode \(S'\) using at most \(3(n - 1)\) bits in \(O(n)\) time.

This, combined with Theorems 1 and 2, gives us the following lemma:

Lemma 1. Given a degree-3 biconnected plane graph \(G\) with \(n\) vertices, we can encode it using less than \(2.81n\) bits in \(O(n^2)\) time and decode the encoding to reconstruct \(G\) in \(O(n^2)\) time. We can also encode \(G\) using at most \(3n - 2\) bits and decode the encoding to reconstruct \(G\) in \(O(n)\) time.

If \(G\) is a degree-3 triconnected graph, then, using Property 3, we can show that each vertex \(v \neq v_1, v_n\) can only be of 4 types. This gives a shorter encoding for \(G\):

Lemma 2. Given a degree-3 triconnected plane graph \(G\) with \(n\) vertices, we can encode it using at most \(2n - 2\) bits in \(O(n)\) time (using Huffman Encoding). This encoding can be decoded in \(O(n)\) time to reconstruct \(G\).

If \(G\) is a degree-4 biconnected (triconnected) graph, then each vertex \(v\), where \(v \neq v_1, v_n\), can be of 16 (12) types. This gives Lemma 3 (Lemma 4):

Lemma 3. Given a degree-4 biconnected plane graph \(G\) with \(n\) vertices, we can encode it using at most \(4n - 2\) bits in \(O(n)\) time (using Huffman Encoding) and decode the encoding to reconstruct \(G\) in \(O(n)\) time.

Lemma 4. Given a degree-4 triconnected plane graph \(G\) with \(n\) vertices, we can encode it using \(2 + (n - 2)\log_2 12 + 1 < 3.59n\) bits in \(O(n^2)\) time and decode the encoding to reconstruct \(G\) in \(O(n^2)\) time. We can also encode \(G\) using at most \(2 + 3.67(n - 1) + 1 < 3.67n\) bits (using Huffman encoding) and decode the encoding to reconstruct \(G\) in \(O(n)\) time.

6 Encoding an Orthogonal Representation

We will use the following properties of an orthogonal representation:

Property 4. The sum of angles around any vertex is equal to \(360^\circ\).

Property 5. The sum of interior angles of the polygon \(p\) representing any internal face is equal to \((k - 2)180^\circ\), where \(k\) is the total number of line-segments in \(p\).

We can encode an orthogonal representation \(\Gamma\) of a biconnected plane graph \(G\) by:

- **encoding structure:** encoding the structure of graph \(G\),
- **encoding angles:** for each vertex, encoding the angles between consecutive edges incident on it, and
- **encoding turns:** for each edge \(e = (u, v)\), encoding the sequence of left and right turns encountered while walking from \(u\) to \(v\) along \(e\).
To encode angles, suppose \(G \) has \(n \) vertices and \(m \) edges. Each angle of \(\Gamma \) can be either 90°, 180°, or 270°. Suppose we have already constructed a rightmost canonical ordering \(c = v_1, v_2, \ldots, v_n \) of the vertices of \(G \). Let \(v_i \) be a vertex of \(G \). Let \(e_1 \) be the incoming tree edge of \(v_i \), where, if \(v_i \neq v_1 \), then \(e_1 \) is the incoming tree edge of \(v \), and if \(v_i = v_1 \), then \(e_1 \) is the edge \((v_1, v_2) \). Let \(s_i^* \) be the string \(a_1 a_2 \ldots a_k \), where \(a_j \) represents the counterclockwise angle between edges \(e_j \) and \(e_{j+1} \) at vertex \(v_i \). \(a_j \) is equal to \(A \), \(B \), or \(C \), respectively, if the magnitude of the corresponding angle is equal to 90°, 180°, or 270°, respectively. Then, we can construct a string \(S^* = s_1^* s_2^* \ldots s_n^* \), that encodes all the angles of \(G \). Total number of symbols in \(S^* \) is equal to number of angles in \(\Gamma \), which is equal to \(2m \).

Using Property 4, we can encode \(S^* \) using even fewer bits. Property 4 implies that, for each vertex \(v_i \), it is sufficient to encode angles \(a_1, a_2, \ldots, a_{k-1} \) since the value of angle \(a_k \) can be obtained from them. Thus, for \(v_i \), it is sufficient to construct the string \(s_i^* = a_1 a_2 \ldots a_{k-1} \). So, the overall number of symbols in string \(S^* \) can be reduced to \(2m - n \). We therefore have the following lemma:

Lemma 5. Given an orthogonal representation of a degree-4 biconnected graph \(G \) with \(n \) vertices, we can encode its angles using \((2m-n) \log_2 3 \approx 1.58(2m-n) \leq 4.74n \) bits in \(O(n^2) \) time and at most 1.67(2m - n) \leq 5.01n \) bits in \(O(n) \) time (using Huffman Encoding). Moreover, during decoding, if we already knew the degree of each vertex, then we can decode these encodings to obtain the angles in \(O(n^2) \) and \(O(n) \) time, respectively.

If \(G \) is a triconnected graph, then each vertex has at least 3 angles around it, and so each angle can be either 90°, or 180°. Therefore:

Lemma 6. Given an orthogonal representation of a degree-4 triconnected graph \(G \) with \(n \) vertices, we can encode its angles using \(2m - n \) bits in \(O(n) \) time.
Moreover, during decoding, if we already knew the degree of each vertex, then we can decode the encoding to obtain the angles in \(O(n) \) time.

Now consider the problem of encoding the turns of \(\Gamma \). Given a rightmost canonical ordering \(c = v_1, v_2, \ldots, v_n \) of \(G \), and the associated canonical tree \(T_c \), we first construct an ordering \(o = e_1, e_2, \ldots, e_m \) of the edges of \(G \) by putting the incoming tree and non-tree edges of the vertices \(v_1, v_2, \ldots, v_n \) into \(o \), such that the edges of \(v_i \) precede those of \(v_j \) if \(i < j \), and for each vertex \(v_i \), we first put its incoming tree edge, and then its incoming non-tree edges in the same order as their counter-clockwise order around \(v_i \). Next, for each edge \(e_i = (v_j, v_k) \) in \(o \), where \(j < k \), we construct a (possibly empty) string \(s_i^+ \) consisting of symbols \(L \) and \(R \), where a symbol \(L \) (\(R \)) denotes a left (right) turn encountered while walking from \(v_j \) to \(v_k \) along \(e_i \). These symbols are placed in \(s_i^+ \) in the order the corresponding turns are encountered while walking from \(v_j \) to \(v_k \). Finally, we construct a string \(S^+ = s_1^+ \# s_2^+ \# \ldots \# s_n^+ \) consisting of all the \(s_i^+ \)'s separated by a symbol \(\# \).

Lemma 7. Given an orthogonal representation \(\Gamma \) with \(b \) turns (bends) of a degree-4 biconnected graph \(G \) with \(n \) vertices, we can encode its turns using \((b+m-1) \log_2 3 \approx 1.58(b+m-1) \) bits in \(O((b+m)^2) \) time, and at most 1.67(b+m-1)
bits in $O(b+m)$ time (using Huffman Encoding). These encodings can be decoded in $O((b+m)^2)$ and $O(b+m)$ time, respectively, to obtain the turns of Γ.

If Γ is a turn-monotone orthogonal representation, then we can reduce the length of S^+ by using Property 5 as follows: c induces an ordering f_1, f_2, \ldots, f_p of the internal faces of G, such that when we reconstruct G using c, as in the proof of Theorem 2 starting from an initially empty graph, the faces will get inserted into it in the same order. Let I_1, I_2, \ldots, I_K be the corresponding intervals of c. The ordering f_1, f_2, \ldots, f_p is defined as follows (see Figure 1(b)): Let $I_1 = [v_3, v_{3+q'}]$, where $q' \geq 0$. Face f_1 is the face consisting of the vertices $v_1, v_3, \ldots, v_{3+q'}, v_2$. In general, suppose we have already constructed the partial ordering f_1, f_2, \ldots, f_s of the faces, using intervals $I_1, I_2, \ldots, I_{k-1}$. Let $I_k = [v_k, v_{k+q}]$, where $q \geq 0$. Let $P = v_1(= u_1) u_2 \ldots u_s(= v_2)$ be the subpath of H_{k-1} that we obtain by removing the edge (v_1, v_2) from H_{k-1}. Let C_j be the path $v_k v_{k+1} \ldots v_{k+q}$. We have 2 cases:

- $q > 0$: Then, C_j has exactly two neighbors v_l and v_r in H_{k-1}. Let $x_l = (v_l) x_2, \ldots, x_{t}(= v_r)$ be the subpath of P that connects v_l and v_r. Then, f_{s+1} is the internal face of G consisting of the vertices $v_l(= x_1), v_k, \ldots, v_{k+q}, v_r(= x_t), x_{t-1}, x_{t-2}, \ldots, x_2$. We say that face f_{s+1} belongs to Interval I_k.
- $q = 0$: Then C_j consists of exactly one vertex v_k. Let $u'_1(= v_l), u'_2, \ldots, u'_i(= v_r)$ be the left-to-right order of the neighbors of v_k in H_{k-1}. Let P'_i, where $1 \leq i \leq t-1$, be the subpath of P that connects u'_i and u'_{i+1}. Then, each face f_{s+i}, where $1 \leq i \leq t-1$, is the internal face that consists of the vertex v_k and the vertices of path P'_i. We say that face f_{s+i} belongs to Interval I_k.

(Figure 1(b) also shows the ordering of the faces given by the rightmost canonical ordering shown in Figure 1(b).) Let T_c be the canonical spanning tree associated with c. For each face f_i, a tree edge of f_i is one that is also an edge of T_c.

Fact 1. Except for one non-tree edge e, all the non-tree edges of each face f_i are already contained in the faces $f_1, f_2, \ldots, f_{i-1}$. We will call edge e as the non-tree completion edge of f_i.

Intuitively, we call the edge non-tree completion edge because, while reconstructing G using c, this is the only non-tree edge that we need to add to the already constructed graph to add face f_i to it (of course, we will need to add the tree edges of f_i also). For example, in Figure 1, edge $(14, 12)$ is the non-tree completion edge of face f_{10}. For the face f_s, in the case $q > 0$ given above, the non-tree completion edge is the edge (v_{k+q}, v_r). For each face f_{s+i}, in the case $q = 0$ given above, the non-tree completion edge is the edge (v_k, u_{i+1}).

Since each edge of a turn-monotone orthogonal representation Γ has same kinds of turns only (left or right, but not both), Property 5 implies that for any face of Γ, it is sufficient to encode the turns of all but one edge, namely its non-tree completion edge e, since the turns of e can be deduced from the turns of the other edges. In fact, Lemma 8 says that it is sufficient to encode turns of tree edges:
Lemma 8. Let Γ be a turn-monotone orthogonal representation of a degree-4 biconnected plane graph G. Let c be a rightmost canonical ordering of G. Suppose we construct a string S^+ encoding the turns of Γ as in Lemma 7 using c, except that S^+ encodes the turns of only the tree edges of G. Then, by decoding S^+ we can obtain the turns of all the edges of Γ.

Proof. Let f_1, f_2, \ldots, f_p be the ordering of faces that corresponds to c, as defined above. We can easily prove this lemma can using induction:

Base Case: Consider face f_1. Decoding S^+ will give us the turns of all the tree edges of f_1. f_1 has exactly one non-tree edge e (which is its non-tree completion edge). From Property 5, we can determine the turns of e also.

Induction: Suppose we have already determined the turns of all the edges of faces $f_1, f_2, \ldots, f_{i-1}$. Consider face f_i. From Fact 1, except for its non-tree completion edge e_i, all the other non-tree of f_i are already contained in the faces $f_1, f_2, \ldots, f_{i-1}$. Decoding S^+ will give us the turns of all the tree edges of f_i. Hence, except for e_i, we would know the turns of all the edges of f_i. From Property 5 we can determine the turns of e_i also.

Since, T_e has exactly $n - 1$ edges, we have:

Lemma 9. Given a turn-monotone orthogonal representation with b turns (bends) of a degree-4 biconnected graph with n vertices, we can encode its turns using at most $(b + n - 2) \log_2 3 \approx 1.58(b + n - 2)$ bits in $O((b + n)^2)$ time, and at most $1.67(b + n - 2)$ bits in $O(b + n)$ time (using Huffman Encoding). These encodings can be decoded in $O((b + n)^2)$ and $O(b + n)$ time, respectively, to obtain the turns.

To encode an orthogonal representation Γ, we construct a string $S_1 = A' L' A^* L^* S' S^* S^+$, where S', S^*, S^+ are strings encoding structure, angles, and turns, respectively, of Γ, as given by Lemmas 1 (or 2) or 3 (or 6), and 7 (or 9), respectively. L' (L^*) is length of S' (S^*) in binary notation, and A' (A^*) encodes the length of L' (L^*) in unary notation, and consists of $|L'|$ ($|L^*|$) 0’s followed by a 1. Note that lengths of A', L', A^*, and L^* are $O(\log n)$ each.

7 Encoding Lengths of Line-Segments

Let d be a planar orthogonal drawing with b turns of a degree-4 biconnected plane graph G with n vertices and m edges. Suppose each line-segment of d has length at most W. Just as we constructed a string S^+ in Section 6 to encode turns, we can construct a string $S'' = s_1 s_2 \ldots s_m$, where each s_i contains the lengths of all the line-segments of edge $e_i = (v_j, v_k)$, placed in the order the corresponding line-segments are encountered while traveling along e_i from v_j to v_k, where $j < k$.

We can reduce the length of S'' by using the following property of d; Suppose we orient each horizontal line-segment of d as going “East” or “West”, and each vertical line-segment as going “North” or “South”, assuming that the line-segment of the edge (v_1, v_2) incident on v_1 goes East. (We can easily do this in $O(n + m + b) = O(n + b)$ time using the angle and turn information contained in d.)
Property 6. In d, for each face of G:

1. The sum of the lengths of all the line-segments going East = the sum of the lengths of all the line-segments going West, and
2. The sum of the lengths of all the line-segments going North = the sum of the lengths of all the line-segments going South.

Property 6 implies that we can omit encoding the length of one horizontal and one vertical line-segment of f_i, and still be able to obtain the lengths of all the line-segments of f_i from an encoding of the lengths of its other line-segments. To decide which line-segments to omit, consider the ordering f_1, f_2, \ldots, f_m of the faces of G that we can obtain from a rightmost ordering c of G, as described in Section 6. Let $I_k = [v_k, v_{k+q}]$ be the interval of c, such that f_i belongs to I_k. Let E_i be the set of all the edges of f_i that are not in the faces $f_1, f_2, \ldots, f_{i-1}$. Note that E_i contains at least one edge, namely, the non-tree completion edge $e = (u, v)$ of f_i. Moreover, the edges of E_i form a connected path p, which connects u with a vertex u', where u is the end-vertex of e that belongs to H_{k-1}, and u' is a vertex common to both f_i and f_{i-1}. The free horizontal (vertical) line-segment of f_i is defined as the first horizontal (vertical) line-segment encountered while traveling along p from u to u'. Note that f_i will have at least one free line-segment (which can be horizontal or vertical). While encoding the lengths of the line-segments of d, we can omit from S'' all the free line-segments of the faces of G.

Having constructed S'', we can construct a string $S_2 = A''T''S''$, where T'' stores the value of W in binary using exactly $\log_2(W+1)$ bits, and A'' contains a sequence of $|T''|$ 0’s followed by a 1. String A'' basically encodes the length of T'' in unary notation. We have the following lemma:

Lemma 10. We can encode the lengths of the line-segments of d using a string S_2 consisting of $1+(2+b+m−f_H−f_V)\log_2(W+1) \leq 1+(2+b+m−f)\log_2(W+1)$ bits in $O(|S_2|)$ time, where f_H and f_V are the number of horizontal and vertical free line-segments, respectively, of d. Assuming that, while decoding, we already know all the angles and turns of d, we can decode S_2 to obtain the lengths of all the line-segments of d in $O(|S_2|)$ time.

8 Encoding a Planar Orthogonal Drawing

Let d be a planar orthogonal drawing of a degree-4 biconnected planar graph G. Let I' be the orthogonal representation of G that corresponds to d.

We can encode d by constructing a string $S = BLS_1S_2$, where S_1 is the string constructed in Section 6 that encodes I', S_2 is the string constructed using Lemma 10 that encodes the free lengths of the line-segments of d, L is a string, with length $\log_2(|S_1|+1)$, that encodes in binary notation the length of string S_1, and B is a string that contains a sequence of $|L|$ 0’s followed by a 1. B encodes the length of L in unary notation.

We can obtain d by decoding S, by first extracting B from it and obtaining the length of L, then extracting L and obtaining the length of S_1, then extracting
Compact Encodings of Planar Orthogonal Drawings 185

S_1 and decoding it to obtain Γ, and finally, extracting S_2 and decoding it to obtain the lengths of the line-segments of d. This is summarized in Theorem 3.

Theorem 3. Let d be a planar orthogonal drawing, with b turns (bends) of a plane graph G with n vertices, m edges, and f internal faces. Suppose each line-segment of d has length at most W. Let $p = (2 + b + m - f) \log_2(W + 1)$. Let $q = n + b$.

- If G is a degree-4 biconnected graph, then we can encode (and decode) d using at most $4.74m + 2.42n + 1.58b + O(\log q)$ bits in $O((n + b + p)^2)$ time, and using at most $5.01m + 2.33n + 1.67b + p + O(\log q)$ bits in $O(n + b + p)$ time.
- If G is a degree-4 triconnected graph, then we can encode (and decode) d using at most $3.58m + 2.59n + 1.58b + O(\log q)$ bits in $O((n + b + p)^2)$ time, and using at most $3.67m + 2.67n + 1.67b + p + O(\log q)$ bits in $O(n + b + p)$ time.
- If G is a degree-3 biconnected graph, then we can encode (and decode) d using at most $4.74m + 1.23n + 1.58b + O(\log q)$ bits in $O((n + b + p)^2)$ time, and using at most $5.01m + 1.33n + 1.67b + p + O(\log q)$ bits in $O(n + b + p)$ time.
- If G is a degree-3 triconnected graph, then we can encode (and decode) d using at most $3.58m + n + 1.58b + p + O(\log q)$ bits in $O((n + b + p)^2)$ time, and using at most $3.67m + n + 1.67b + p + O(\log q)$ bits in $O(n + b + p)$ time.

Moreover, if d is turn-monotone, then we can encode it using fewer bits, as follows:

- If G is a degree-4 biconnected graph, then we can encode (and decode) d using at most $3.16m + 4n + 1.58b + p + O(\log q)$ bits in $O((n + b + p)^2)$ time, and using at most $3.34m + 4n + 1.67b + p + O(\log q)$ bits in $O(n + b + p)$ time.
- If G is a degree-4 triconnected graph, then we can encode (and decode) d using at most $2m + 4.17n + 1.58b + p + O(\log q)$ bits in $O((n + b + p)^2)$ time, and using at most $2m + 4.34n + 1.67b + p + O(\log q)$ bits in $O(n + b + p)$ time.
- If G is a degree-3 biconnected graph, then we can encode (and decode) d using at most $3.16m + 2.81n + 1.58b + p + O(\log q)$ bits in $O((n + b + p)^2)$ time, and using at most $3.34m + 3n + 1.67b + p + O(\log q)$ bits in $O(n + b + p)$ time.
- If G is a degree-3 triconnected graph, then we can encode (and decode) d using at most $2m + 2.58n + 1.58b + p + O(\log q)$ bits in $O((n + b + p)^2)$ time., and using at most $2m + 2.67n + 1.67b + p + O(\log q)$ bits in $O(n + b + p)$ time.

References