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Abstract. We give an O(φk · n2) algorithm for the 1-Sided Crossing
Minimization problem, thus showing that the problem is Fixed Param-
eter Tractable. The constant φ in the running time is the golden ratio
φ = 1+

√
5

2 ≈ 1.618. The constant k is the parameter of the problem: the
number of allowed edge crossings.

1 Introduction

A common method for drawing directed acyclic graphs is to produce layered
drawings or hierarchical drawings as introduced by Tomii et al. [17], Carpano
[1], and Sugiyama et al. [16]. In these drawings, the vertices are arranged on two
or more “layers”, i.e. on parallel horizontal lines, and edges are drawn straight
between vertices on adjacent layers. Edges between vertices on the same layer
are not permitted, and no point between layers may lie on more than two edges.
Layouts of this kind have applications, for example, in visualization, in DNA
mapping, and in row-based VLSI layout.

The readability of layered drawings is believed to depend crucially on the
number of edge crossings. Once vertices have been assigned to layers, this number
is determined by the orderings of the vertices within the layers. Unfortunately,
the problem of choosing vertex orderings that minimize the number of edge
crossings in layered drawings is in fact an NP-complete problem [12] even if
there are only two layers [11]. The problem of choosing vertex orderings that
minimize the number of edges whose removal leaves the graph planar is also
NP-complete, even for two layers [10].

Most techniques for producing layered drawings first assign vertices to layers
(sometimes this is determined by the context), and then do a layer-by-layer
sweep. A permutation π1 for the vertices in the top layer L1 is chosen and fixed.
Then for each succeeding layer Li, a permutation πi is sought that keeps to a
minimum the number of edge crossings among the edges between Li−1 and Li.

A key step in this method is to minimize crossings between two adjacent
layers when the ordering on one layer is fixed. This problem is called 1-Sided
Crossing Minimization. Unfortunately, the 1-Sided Crossing Minimiza-
tion problem is also NP-complete [11]. The problem is NP-complete even for
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graphs with only degree-1 vertices in the fixed layer and vertices of degree at
most 4 in the other layer [14], i.e. for a forest of 4-stars.

The 1-Sided Crossing Minimization problem is the focus of this paper.
Many heuristics have been proposed (e.g. [19,16,9,11,6,2,18]). Jünger and Mutzel
[13] gave an exact integer linear programming algorithm for the 1-Sided Cross-
ing Minimization problem. They also surveyed heuristics and made perfor-
mance comparisons with optimal solutions generated by their methods. They
reported that the iterated barycentre method of Sugiyama et al. [16] performs
best in practice. However, from a theoretical point of view the median heuristic
of Eades and Wormald [11] is a linear 3-approximation algorithm, whereas the
barycentre heuristic is a Θ(

√
n)-approximation algorithm.

When only a small number, k, of edge crossings is acceptable, then an algo-
rithm for 1-Sided Crossing Minimization whose running time is exponential
in k but polynomial in the size of the graph may be useful. The theory of pa-
rameterized complexity [5] addresses complexity issues of this nature, in which
a problem is specified in terms of one or more parameters. Such a problem with
input size n and parameter size k is fixed parameter tractable, or in the class
FPT, if there is an algorithm to solve the problem in f(k) · nα time, where α
is a constant independent of k and n, and f is an arbitrary function dependent
only on parameter k. A problem in FPT is thus solvable in polynomial time for
any fixed value of k.

The more general h-Layer Crossing Minimization problem as well as
the related h-Layer Planarization problem have been studied from the fixed
parameter tractability point of view in [8]. Here h represents the number of layers
and planarization means to remove some number k of edges so that the remaining
graph can be drawn without crossings (see [10]). It has been proven in [8],
using bounded pathwidth techniques, that both these general problems (which
include 1-Sided Crossing Minimization) are in the class FPT. Unfortunately,
the pathwidth-based approach is only of theoretical interest, since the running
time of the algorithms is O(232(h+2k)3n). In [7], other FPT techniques are used
to derive an O(k · 6k + |G|) time algorithm for 2-Layer Planarization of a
graph G, and an O(3k · |G|) time algorithm for 1-Layer Planarization.

In this paper, we give an algorithm for 1-Sided Crossing Minimization
that runs in O(φk|L2|2 + |L1||L2|) time, where L2 is the set of vertices on the
free layer where the permutation π2 of vertices is to be chosen, L1 is the set
of vertices on the fixed layer where the permutation π1 of vertices is fixed, and
the constant φ is the golden ratio. The algorithm is based on the FTP technique
called Bounded Search Tree. This technique relies on exploring some search space,
and then proving that its size depends only upon the parameter k. The search
space thus becomes constant size and the algorithm is then polynomial time for
each fixed k.

The remainder of this paper is organized as follows. After definitions and
preliminary results in Section 2, we study properties of optimal drawings in
Section 3. Our algorithm for the 1-Sided Crossing Minimization problem is
then given in Section 4.
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2 Problem Statement, Notation, and Some Facts

A graph G = (V,E) with vertex set V and edge set E ⊆ V ×V is called bipartite
if there is a partition of V into two disjoint non-empty sets L1 and L2 such that
V = L1

⋃
L2 and E ⊆ L1 × L2. The number of vertices and edges of G are

respectively denoted by n = |V | and m = |E|. Let dv denote the degree of a
vertex v. We assume dv ≥ 1.

In a 2-layer drawing of a graph G = (L1, L2;E), the vertices in L1 and L2
are positioned on two distinct parallel lines (layers), and the edges are drawn
straight. Since edges are not allowed within a layer, G must be bipartite. Let L1
denote the top, fixed layer, whose vertex ordering π1 is fixed. Let L2 denote the
bottom, free layer, whose vertices are free to be permuted.

We study the following problem:
Problem:1-Sided Crossing Minimization
Instance: a bipartite graph G = (L1, L2;E), an integer k, and a fixed ordering
π1 for the vertex set L1 on the top layer.
Question: Is there a 2-layer drawing of G that respects π1 and that has at most
k crossings?

L1, π1 fixed

L2, π2 free

Fig. 1. A 2-layer drawing. The ordering π1 of L1 is fixed. Vertices of L2 are free.

From now on, we assume that input graphs are bipartite, with minimum
degree at least 1, and that an ordering π1 has been specified for the top layer.
We do not consider multiple edges, although these are easy to handle.

Let 〈G, π1, k〉 denote an instance of the 1-Sided Crossing Minimization
problem, and let (G, π1, π2) denote a combinatorial representation of a 2-layer
drawing of G, with π1 and π2 giving the permutations for the vertices on layers
L1 and L2, respectively. Let the number of crossings in the drawing (G, π1, π2)
be denoted by cr(G, π1, π2), and let the minimum possible number of crossings
subject to the vertices of L1 being ordered by π1 be denoted by cr(G, π1, πopt).
Note that cr(G, π1, πopt) = minπ2{cr(G, π1, π2) }, where π2 ranges over all per-
mutations for L2. Let v < w denote an ordered pair of vertices on the same layer,
and let v, w denote an unordered pair of vertices. Sometimes it is convenient to
denote unordered pairs of vertices by (v, w), which is also used to denote an
edge. The meaning will be clear from the context. Throughout the paper, the
term “pair” refers to a pair of distinct objects.
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Fact 1. [4] Two edges (v, v′) and (w,w′), where v, w ∈ L2 and v′, w′ ∈ L1,
cross in a 2-layer drawing if and only if v < w and w′ < v′, or w < v and
v′ < w′.

Fact 2. [4] For vertices v and w in the free layer L2, the number of crossings
of the edges incident to v with the edges incident to w is completely determined
by the relative ordering of v and w.

Definition 1. Consider a problem instance 〈G, π1, k〉, and let v and w be ver-
tices in L2. The crossing number cvw is the number of crossings that edges in-
cident with v make with edges incident with w in drawings having v < w; the
crossing number cwv is for w < v.

Fact 3. [4] The total number of crossings in a 2-layer drawing (G, π1, π2) is:

cr(G, π1, π2) =
∑

∀v<w∈π2

cvw, (1)

where the summation is over all ordered pairs v < w of elements of π2; further-
more,

∑

v,w∈L2

min(cvw, cwv) ≤ cr(G, π1, πopt) ≤
∑

v,w∈L2

max(cvw, cwv), (2)

where the summations are over all unordered pairs v, w of vertices of L2.

3 Properties of Optimal Drawings

In this section, we establish a property of optimal drawings (G, π1, πopt) (see
Lemma 1) that will be fundamental for our algorithm in the next section.

For each vertex v in L2, let lv denote the leftmost neighbor of v in L1, and
let rv denote the rightmost neighbor of v in L1. Note that if v ∈ L2 has degree
1, then lv = rv.

Now consider two vertices v and w in L2. We say that v and w are a suited
pair if rv ≤ lw, or if rw ≤ lv; otherwise we call the pair unsuited. For example,
in Fig. 2 v, u is a suited pair and so is pair w, u; pair v, w is not suited. If v and
w each have degree 1 and have the same neighbor in L1 (i.e. lv=rv=lw=rw),
we say that v and w are a trivial suited pair. The following fact, which is an
immediate consequence of Fact 1 and the definition of unsuited pair, indicates
the importance of the notion of suitable pairs.

Fact 4. A pair of vertices v, w ∈ L2 is unsuited if and only if cvw ≥ 1 and
cwv ≥ 1.

On the other hand, the edges of a suited pair v, w do not cross if v and w
appear in their natural ordering in π2, i.e., if v < w when rv ≤ lw, and w < v
when rw ≤ lv. If v, w is a trivial suited pair, then cvw = 0 and cwv = 0, and we
say that both v < w and w < v are natural orderings for the pair v, w.

The notion of natural ordering leads to a useful fact for our algorithm.
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lv

uwv

rv L1, π1 fixed

L2, π2 free

Fig. 2. Pair v, w is unsuited, while v, u and w, u are suited pairs.

Fact 5. Suppose v, w is a suited pair for π1 with natural ordering v < w. Then
for any π2, the drawing (G, π1, π2) satisfies: (i) cvw=0; (ii) if rv �= lw, then cwv=
dv · dw; (iii) if rv = lw, then cwv= (dv · dw)− 1; and finally, (iv) unless v and w
are a trivial suited pair, cwv > 0.

Note that natural ordering is only defined for pairs of suited vertices. For
general pairs, we say that v < w is the preferred ordering for a pair v, w if
cvw < cwv. Thus the natural ordering is the preferred ordering for non-trivial
suited pairs. The following Lemma is the basis for our algorithm.

Lemma 1. For fixed π1, let Γopt = (G, π1, πopt) be a drawing with the minimum
possible number of crossings. Then all suited pairs appear in πopt in their natural
ordering.

To prove Lemma 1 the following straight forward lemma will be useful.

Lemma 2. For 1 ≤ i ≤ |L2|, let vi denote the vertex in the ith position in
π2 of some drawing (G, π1, π2) with π1 fixed. Moving any vertex vi ∈ L2 from
its starting position i across the t consecutive vertices vi+1, vi+2, . . . , vi+t to the
right creates a new drawing (G, π1, π

′
2) with:

cr(G, π1, π
′
2) = cr(G, π1, π2) +

t∑

j=1

(cvi+jvi − cvivi+j ). (3)

Similarly, if vi is moved to the left over t consecutive vertices, then the above
summation is from j = −1 to j = −t and the sign in front of the summation is
“−”.

Proof. Assume, without loss of generality, that vertex vi moves to the right across
t consecutive vertices in (G, π1, π2). This creates a new drawing (G, π1, π

′
2). The

only pairs of vertices in (G, π1, π2) whose relative ordering changes in (G, π1, π
′
2)

are the pairs vi, vj for i+1 ≤ j ≤ i+ t. Hence by Fact 2, these are the only pairs
whose crossing number might change. In particular, the crossing number for a
pair vi, vj for j in the range [i+1, i+ t] changes from cvivj to cvjvi . Substituting
these changes into Equation 1 of Fact 3 gives Equation 3 above. ✷

Now we give the proof of Lemma 1.

Proof of Lemma 1: The proof is by contradiction. Assume that in Γopt =
(G, π1, πopt) there is a suited pair v, w whose ordering in πopt is not its natural
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ordering. Note that v and w are not degree-1 vertices with a common neighbor,
as both orderings would be natural in that case. Assume that v < w is the
(unique) natural ordering of v, w.

By Fact 5 the crossing number cvw = 0 and the crossing number cwv > 0.
For a contradiction, we now prove that either v or w can be moved in Γopt such

that the resulting drawing Γnew = (G, π1, πnew) satisfies cr(Γnew) < cr(Γopt).
Let i and j denote the positions of w and v, respectively, in πopt. Here i < j

since v and w appear in the order w < v in πopt.
If |j − i| = 1, we can interchange v and w without affecting any other pair

of vertices in Γopt. Equation 3 in Lemma 2 gives the number of crossings in the
resulting drawing Γnew:

cr(Γnew) = cr(Γopt) − cwv + cvw = cr(Γopt) − cwv + 0.

Since cwv > 0, we have cr(Γnew) < cr(Γopt), which contradicts the optimality of
Γopt.

If |j − i| > 1, let ui+1, ui+2, . . . , uj−1 denote the vertices between w and v
in πopt, listed in order of appearance in πopt. Regard these vertices as a frozen
block U inside which no changes are made. See Fig. 3.

w vU

lv rv

L1, π1 fixed

L2, π2 free

Fig. 3. Proof of Lemma 1

According to Lemma 2, moving v or w from one side of block U to the other
may only affect the crossing number contributions of pairs of the form u,w and
u, v for u ∈ U . Let cUp denote the number of crossings that the edges incident to
vertices in U have with the edges incident to a vertex p to the right of U : cUp =
Σu∈U cup. Similarly, let cpU denote this number of crossings when p lies to the
left of U .

Since Γopt is optimal, we claim we have the strict inequality
cUv < cvU . (4)

Otherwise, we could move v to the left side of U and then interchange v with
w to obtain a drawing with the following total number of crossings: cr(Γnew) =
Γopt − cUv + cvU − cwv +0. Since cwv > 0, if cUv ≥ cvU , then cr(Γnew) < cr(Γopt),
a contradiction.

observation: To conclude the case |j − i| > 1, and hence the proof of the
lemma, it suffices to show that cUv < cvU implies cwU ≥ cUw, for this means
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we can move w to the right side of U without increasing the total number of
crossings in the resulting drawing and then interchange w and v to produce a
drawing with fewer crossings than Γopt. This gives a contradiction, and so proves
that the assumption that πopt contains a suited pair not ordered by its natural
ordering cannot hold.

To establish the desired inequality cwU ≥ cUw, we first derive some interme-
diate inequalities for cUv, cvU , cwU , and cUw in terms of sizes of the following sets:
ER = the set of edges in Γopt with one endpoint in U and the other endpoint
strictly greater than rv in the ordering π1; EL = the set of edges with one end-
point in U and the other endpoint strictly less than rv in the ordering π1; Nv =
the neighbors of v; and Nw = the neighbors of w.

By the definition of ER, all the vertices in Nv occur in π1 strictly before the
L1 endpoint of each edge in ER. By the definition of EL and by the fact that
v, w is a suited pair with the natural ordering v < w, the vertices in Nw occur
in π1 strictly after the L1 endpoints of the edges in EL.

Fact 2 implies the following inequalities for crossing numbers:
cUv ≥ dv · |ER| : The edges incident to v and the edges in ER all pairwise inter-

sect, creating dv · |ER| crossings. Since ER is a subset of the edges incident
to U , cUv ≥ dv · |ER|.

cvU ≤ dv · |EL| : This holds because no edge incident to v crosses any edge inci-
dent to U that is not in EL.

cwU ≥ dw · |EL| : The edges incident to w and the edges in EL all pairwise in-
tersect, so cwU ≥ dw · |EL|.

cUw ≤ dw · |ER| : This holds because no edge incident to w intersects any edge
incident to U that is not in ER.

Recall inequality (4), that cUv < cvU . Since cUv ≥ dv ·|ER| and cvU ≤ dv ·|EL|,
we have dv · |ER| ≤ cUv < cvU ≤ dv · |EL|, which implies that |ER| < |EL|. This,
and the fact that cwU ≥ dw · |EL|, and the fact that cUw ≤ dw · |ER| together
imply that cwU > cUw. By the observation above, this completes the proof. ✷

4 An Efficient FPT Algorithm

4.1 The Bounded Search Tree Approach for the Algorithm

One of the basic methods for developing FPT algorithms is the method of
bounded search trees (BST) (see Downey and Fellows [5, Chapter 3.1]). In this
method one builds a search tree which is exhaustively traversed for a solution.
The critical observation for many parameterized problems is that, while the com-
putation done at each node of the tree may depend on the problem size, the size
of the tree itself depends only on the parameters.

In this section we present an FPT algorithm for the 1-Sided Crossing
Minimization problem based on the bounded search tree approach. The key
observations for building a BST for this problem lie in Lemma 1 and Fact 4.
Here is an overview of our algorithm.
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Lemma 1 allows us, at the start, to fix the relative ordering of each non-
trivial suited pair of vertices in L2 according to its unique natural ordering.
The remaining unordered pairs of vertices in L2 are either trivial suited pairs,
or unsuited pairs which will each, by Fact 4, create a crossing no matter which
relative ordering is chosen. We build a bounded search tree (i.e., a BST) based
on the unsuited pairs. (It turns out that the trivial pairs neighbours can be
dealt with later in the algorithm.) The input to every node of the BST is a
budget B giving the remaining number of allowed edge crossings, and a relation
D containing all pairs of L2 ordered thus far. We will formally define relation
D shortly. At each node of the BST some unordered pair (v, w) is chosen (i.e.
a pair not in D) such that cvw �= cwv. Then the node branches to two recursive
subproblems. In one branch, the ordering of (v, w) is fixed to v < w and the
budget B is reduced by cvw. In the other branch the ordering of (v, w) is fixed
to w < v and B is reduced by cwv. Since we only work with unsuited pairs in
building the tree, we know that cvw ≥ 1 and cwv ≥ 1. Therefore, since the initial
budget B = k, the height of the BST is at most k.

As a matter a fact the situation is better than that, for two reasons. Firstly,
since cvw �= cwv, then either cvw or cwv is at least 2, so one of the two branches of
the BST node reduces B by at least 2. Secondly, since < is a transitive relation,
fixing an ordering of the pair (v, w) at a node of the BST may in fact impose an
ordering of another as yet unordered pair (p, q) in the relation D at that node.
Hence B can be reduced not only by cvw but also by either cpq or cqp, depending
on which relative ordering is imposed on (p, q).

4.2 The Algorithm

The following definitions will be useful for the description of the algorithm.
Let D be a directed acyclic graph (digraph) that represents a binary relation

“ < ” on the set of vertices L2. In particular, the vertices of L2 are represented
by nodes of a digraph D and an ordered pair of vertices v < w is represented by
a directed edge from v to w (denoted henceforth by vw) in D. The digraph D
is stored as an |L2| × |L2| matrix. We use D to denote both the set of pairs in
the current binary relation “ < ” and the associated acyclic directed graph that
represents these pairs as directed edges. The algorithm labels nodes in the BST
with digraphs. The digraph associated with the root will be transitively closed,
acyclic, and directed. As the algorithm progresses, it computes a digraph label
for each child node it generates in the BST by choosing a directed edge to add
to the digraph of the parent and then taking the transitive closure of this.
The following algorithm solves the 1-Sided Crossing Minimization problem.

Algorithm: 1-Sided Crossing Minimization
Input: 〈G, π1, k〉
Output: πopt if 〈G, π1, k〉 is a YES instance, else NO
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Step 0. Computing crossing numbers: Compute the crossing numbers cvw
and cwv for all pairs of vertices in L2, stopping the computation of a particular
crossing number as soon as it is known to exceed k.
Step 1. Checking for extreme values: Compare k with the upper and lower
bound as per Fact 3.

if k < Σ(v,w) min(cvw, cwv) then output NO and HALT;
if k ≥ Σ(v,w) max(cvw, cwv) then output an arbitrary π2 and HALT.

Step 2. Initialization: Precompute the following information required by the
bounded search tree.

C = {(v, w)|cvw = cwv};
D0 = a directed acyclic graph (V,E), where V = L2, and the directed edges

vw ∈ E correspond to the naturally ordered pairs (v, w) that satisfy cvw = 0
and cwv �= 0. (It is easy to check that D0 is transitively closed.);

B0 = initial budget = k−Σvw∈D0 cvw−Σ(v,w)∈C cvw. Note that Σvw∈D0cvw =
0. Also note that we reduce the budget k by the eventual cost of the pairs in C
even though these pairs do not appear in D0.

Step 3. Building the search tree: A node of the search tree has at most
two children. Each node has a label (D,B). The label D of a node represents a
“possible” partial solution, i.e. a partial ordering of vertices of L2. The label B
represents the remaining budget for crossings. For instance the label of the root
is: D= D0 and B = B0.

We now build the search tree as follows. Label the root of the tree with
(D,B) where D = D0 and B = B0. In general, for a non-leaf node labeled
(D,B), choose a pair (v, w) such that D contains no edge joining v and w and
such that cvw �= cwv. A pair (v, w) is thus an unordered pair not in C. In any
ordering π2, the pair (v, w) is ordered as either vw or wv, so we create at most
two children (D1, B1) and (D2, B2) of the non-leaf node (D,B) corresponding
to these two possibilities. No child is created if its budget would be negative.
Thus a node labeled (D,B) is a leaf if and only if, either it does not have an
unordered pair (v, w) �∈ C; or there remains any pair (v, w) for which both B1
and B2 are negative.
For a non-leaf node (D,B), we label one of its two children by (D1, B1) where:

D1 = transitive closure of D ∪ vw, and B1 = B − cvw −
∑
pq cpq.

Here D∪vw represents the addition of directed edge vw to D. The summation in
B1 is over the directed edges that are added to D ∪ vw by the transitive closure
and that have cpq �= cqp. That is, the sum is over pq s.t. pq ∈ D1 and pq �∈ D∪vw
and cpq �= cqp.
Similarly, we label the other child of node (D,B) with (D2, B2), where:

D2 = transitive closure of D ∪ vw, and B2 = B − cvw −
∑
pq cpq.

If a leaf is created whose label D has the property that
∀(v, w) if vw �∈ D and wv �∈ D then (v, w) ∈ C,

then output π2 = topological sort of D. Also, update the minimum number
of crossings found so far to k−B, where B is the budget of the leaf, and update
the best ordering so far to π2. We call such a node a solution leaf.
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If after exploring the entire tree, no solution leaf is found, output NO and
HALT; otherwise, output the best ordering found, which is πopt, and HALT.

Remarks. In Step 0, we stop computing cvw as soon as it becomes k + 1, even
though cvw may be bigger than that. This is because a child with v < w would
have a negative budget. Hence it suffices to know that cvw ≥ k + 1.

Step 3 of the algorithm effectively creates and explores the search tree simul-
taneously. This can be done by depth-first search, or by breath-first search. The
depth-first way requires less space and is thus the preferred choice.

Also notice that, when creating a child by choosing, say, to order v and w as
vw, we reduce the budget for the child by an amount computed not only for the
ordered pair vw, but also for the pairs that are newly ordered by the transitive
closure of D ∪ vw. However, we only do this for newly ordered pairs whose two
crossing numbers are not the same. Those whose crossing numbers are the same
have already been accounted for in B0.

Theorem 6. Given a bipartite graph G = (L1, L2;E), a fixed permutation π1
of L1, and an integer k, algorithm 1-Sided Crossing Minimization(G, π1, k) deter-
mines in O(φk · |L2|2+ |L1||L2|) time if cr(G, π1, πopt) ≤ k and if yes produces a
2-layer drawing (G, π1, π2) with the optimum number of crossings. The constant
φ in the running time is the golden ratio φ = 1+

√
5

2 ≈ 1.618.

Proof. Step 3 of the algorithm creates and explores the search tree simultane-
ously. For every node (D,B) of the search tree we maintain the following two
invariants: (i) D is a transitively closed, directed, acyclic graph; (ii) The bud-
get B at node (D,B) is B = k −∑vw∈C cvw −

∑
vw∈D&vw �∈C cvw. This is true

for the root node (D0, B0). Suppose this is true for a node labeled (D,B). At
this node, the algorithm chooses an unordered pair (v, w) with cvw �= cwv. This
pair is used to create up to two child nodes. We claim that both D ∪ vw and
D ∪ wv are acyclic. Suppose, on the contrary, that D ∪ vw contains a directed
cycle. Then D must contain a directed path from w to v. Since D is transitively
closed, it contains edge wv, contradicting the fact that (v, w) is unordered in
D. Similarly for D ∪wv. Since the transitive closure of a directed acyclic graph
is again acyclic, the graph labels D1, D2 for any child nodes created at a node
labeled D are again transitive and acyclic. Thus all the graph labels in the search
tree are directed, acyclic, and transitively closed. The fact that labels B1 and
B2 agree with formula (ii), follows directly from the formulas used to compute
these two labels from the parent label B in Step 3 of the algorithm.

As the tree is built, either a solution leaf is found, or the tree is completely
explored without finding such a leaf. A solution leaf (D,B) has, by definition, a
non-negative budget B. By the invariant (ii), the cost of all the crossings arising
from the ordered pairs in D has been taken into account. By the definition of
a solution leaf, all pairs (v, w) not ordered by directed edges in D are in C
and satisfy cvw = cwv; hence the total cost directly attributable to them has
already been deducted from the initial budget k. Hence any topological sort of
D produces a total ordering consistent with D and having total cost k−B, where
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0 ≤ B ≤ k. By the invariant (i), the label D of every node of the search tree is an
acyclic graph and it necessarily has a topological sort. Based on this argument,
a solution leaf (D,B) encodes an ordering π2 such that cr(G, π1, π2) ≤ k.

It is not difficult to verify that the solution leaves of the BST implicitly store
all the orderings π2 for which cr(G, π1, π2) ≤ k and in which all the suited pairs
are ordered by their natural ordering. Lemma 1 implies that in order to decide
if 〈G, π1, k〉 is a YES or NO instance it is enough to consider only such orderings
π2. Therefore, if there is an ordering π2 such that cr(G, π1, π2) ≤ k the algorithm
finds one. In fact, since the algorithm updates the best solution found so far,
when it terminates it outputs an optimal ordering πopt.

We now discuss the running time of the algorithm. Only for an unordered
unsuited pair v, w that has cvw �= cwv are child nodes created, of which there
are at most two. Therefore, in one child node the budget is reduced by at least 1
and in the other by at least 2. A node with B = 0 must be a leaf node, because
any child of such a node would have a negative budget. Therefore, no further
branching is allowed. At a node for which budget B = 1, at most one child can
have a budget B1 that is non-negative, and in this case, B1 = 0 and the child
must be a leaf. Thus a recurrence relation that generates an upper bound for
the number of nodes in this search tree is:

sB = sB−1 + sB−2 + 1 for k ≥ 2; s0 = 1, s1 = 2.
It can be verified by induction that for B ≥ 0, sB = FB+2 +FB+1− 1 where

FB is the B-th Fibonacci number. From the bound on Fibonacci numbers and
given that B0 ≤ k, it follows that sB0 < φk+2

√
5

+ φk+1√
5
− 1 < 1.9 · φk. Thus the

search tree has O(φk) nodes.
The time taken at each node of the search tree is dominated by updating

a transitive closure of its label D after insertion of one ordered pair v < w
(or w < v). Updating the transitive closure after one insertion can be done
in O(|L2|2) time [3]. These updates are needed to generate the labels for the
children, of which there are at most two. Thus the time taken in the third step
of the 1-Sided Crossing Minimization algorithm is O(φk · |L2|2).

It can be shown that the time taken in steps 0 - 2 of the algorithm is no
more than O(k · |L2|2 + |L1||L2|). Thus the total running time of the algorithm
is O(φk · |L2|2 + |L1||L2|). ✷

5 Conclusion

We have proved that the 1-Sided Crossing Minimization problem is fixed
parameter tractable by presenting a very easy-to-implement FPT algorithm for
its solution. Moreover, the algorithm finds a drawing with the smallest possible
number of crossings in the case that this number does not exceed k. The expo-
nential part of the running time of the algorithm is 1.618k. In many instances the
base of this exponent will be even smaller. The reason is that a pair of vertices
v, w will often have both crossing numbers cvw and cwv bigger than 1, or at least
one of them bigger than 2. Each time a node of the BST branches on such a pair
of vertices, the resulting search tree will be even smaller.
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An interesting investigation for future research would be to compare ex-
perimentally the performance of the two known methods for optimal 1-Sided
Crossing Minimization, namely, integer linear programming [13] versus our
FPT algorithm.
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7. V. Dujmović, M. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin,
N. Nishimura, P. Ragde, F. Rosemand, M. Suderman, S. Whitesides, and D. R.
Wood. A fixed-parameter approach to two-layer planarization. In Mutzel [15],
pages 1–15.

8. V. Dujmović, M. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin,
N. Nishimura, P. Ragde, F. Rosemand, M. Suderman, S. Whitesides, and D. R.
Wood. On the parameterized complexity of layered graph drawing. In Proc. 9th
European Symposium on Algorithms (ESA 2001), volume 2161 of Lecture Notes in
Comput. Sci., pages 488–499. Springer, 2001.

9. P. Eades and D. Kelly. Heuristics for drawing 2-layered networks. Ars Combin.,
21(A):89–98, 1986.

10. P. Eades and S. Whitesides. Drawing graphs in two layers. Theoret. Comput. Sci.,
131(2):361–374, 1994.

11. P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379–403, 1994.

12. M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J.
Algebraic Discrete Methods, 4(3):312–316, 1983.
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