
Formal Test Purposes and the Validity of Test Cases

Peter H. Deussen1 and Stephan Tobies2

1 Fraunhofer FOKUS, Berlin, Germany, deussen@fokus.fhg.de
2 Nokia Research Center, Bochum, Germany, Stephan.Tobies@nokia.com

Abstract. We give a formalization of the notion of test purpose based on (suitably
restricted) Message Sequence Charts. We define the validity of test cases with
respect to such a formal test purpose and provide a simple decision procedure for
validity.

1 Introduction

The quality of a test system directly influences the quality of the tested implementation:
high quality test systems are essential to obtain high quality implementations. Hence, a
common problem in the testing area is the so-called “test the tester” problem [12]: how
can the validity of a test system with respect to a given specification, and therefore the
quality of the test system, be assured? To put it in conformance testing terminology: how
can it be assured that a test case achieves its test purpose?

One approach used to obtain valid test systems is the derivation of test cases from
formal specifications or test purpose definitions. Other approaches focus on the manual
or automated simulation against a formal specification (see [14] for a description of tools
that employ these two approaches). While many modern telecommunication protocols
come with (semi-) formal specifications of test purposes, a formal protocol description is
provided only in very few cases (see [5] for a notable exception). For example, Internet
Protocols defined in RFCs use natural language to define the semantics of the specifica-
tion. Due to this, a formal description of the specification would have to be elaborated
to allow for an automatic generation of valid test cases. Additionally, even if formal de-
scriptions are available, automated generation methods only generate test skeletons that
need to be manually refined to obtain executable test cases for the execution against a
concrete system implementation. For all these reasons, the implementation of test cases
is still performed mainly in a manual manner.

In this paper, we give a new answer to the “test the tester problem”, namely, to
check the validity of a (possibly hand-written) test case against a formal test purpose
definition. It does not rely on the existence of a formal description of the system under
test (SUT) or the test system, but requires a formally defined test purpose. From this test
purpose, the allowed and required behavior of the test case is derived. This information
is then used in a guided simulation of the executable test system to determine whether
the test system is valid with respect to this test purpose. Since our approach is solely
based on test purposes, it is not necessary to develop a complete formal specification of
the system as test purposes are only a partial description of the system. We use Message
Sequence Charts (MSC) as the formal test purpose description language [6], which is

D.A. Peled and M.Y. Vardi (Eds.): FORTE 2002, LNCS 2529, pp. 114–129, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Formal Test Purposes and the Validity of Test Cases 115

widely used in the system development process in the telecommunication area. This
allows for an easy re-use of the uses-cases developed during system design as a solid
basis for the test purpose definition. This further reduces the work necessary for the test
purpose specification.

Despite the fact that MSCs are widely used to capture test purpose, theoretical studies
of MSCs so far seem to have failed to address the following issues:

– What does it mean for a test case to implement a test purpose, i.e., when is a test
case valid w. r. t. a test purpose?

– When is an MSC a well-formed test purpose, i. e., when does an MSC characterize
behavior that is indeed (black-box) testable?

We address these issues using a semantics for MSC based on pomsets [11,4] in the
spirit of [8]. We then describe a simple decision procedure for the validity of test cases
w. r. t. a test purpose and prove its correctness.

The paper is structured as follows: Section 2 of this paper introduces the partial order
semantics of MSCs and their usage as formal test purposes. In Section 3, we define
test case validity, describe the decision procedure and prove its correctness. Section 4
presents one possible implementation design for an MSC based test validator. Section 4
concludes. Proofs of key lemmata and theorems can be found in the appendix.

2 Formal Test Purposes

To check (or even define) validity of a test case wrt. a test purposes, we need a formal
definition of a test purpose together with suitable semantics. In this section, we suggest a
formalism to formally express test purposes and establish a set of criteria that guarantee
that a test purposes indeed describes (black-box) testable behavior.

We use Message Sequence Charts (MSCs) to express formal test purposes because
they are widely used to capture test purposes and semantics based on different approaches
are available. We have chosen semantics based on pomsets [4,11] in an adaption of the
definition of [8] to better suit our purposes. The particular choice of semantics of MSCs
in not central to our approach, but obviously some choice has to be made. Using the
more operational semantics from [9,7] would lead to similar results.

After a short overview on the employed MSC syntax for test purposes, we recapitulate
the pomset-based semantics of MSC and define when an MSC constitutes as well-formed
test purpose.

Message Sequence Charts. The MSCs in Fig. 1 serves as an explanatory example for the
basic MSC language as used throughout this paper. The most fundamental constructs of
MSCs are instances and messages. Instances represent components or communication
interfaces that exhibit a sequential behaviour. Our example MSC m1 consists of three
instances p, q, and r. A message exchange between a sending instance p and a receiving
instance q comprises two events !p,qa and ?p,qa for sending the message a at p and for
receiving a at q, respectively. Graphically, messages are depicted by arrows between
instances labeled with messages.

116 P.H. Deussen and S. Tobies

p q r

a

b

c

d

e

msc m1

p q

a

C1

b

C2

alt

msc m2

Fig. 1. Example MSCs.

Events are considered to be causally or temporally ordered only if they are located
at the same instance (in this case the ordering is top-to-bottom), or if they are part of the
same message exchange. In our example m1, the event !p,qa precedes the events ?p,qa
and !p,rb, but no assumption on an ordering of the events !p,rb and !q,rc is expressed,
even if !p,rb is drawn above !q,rc.

There is a way to express the concurrency of events of the same instance: the con-
current region (coregion, for short). Coregions are depicted by dashed sections on the
corresponding instance line bordered by small horizontal bars: the events that occur on
this dashed section are supposed to happen in parallel. In our example, the events ?p,rb
and ?q,rc are temporally unrelated. On the other hand, it is possible to use general order
arrows (dotted lines between events with an arrow head in their middle section) to express
causal orderings of events on different instances. In m1, the event !q,rc precedes !p,qd.
Finally, the MSC language allows to express message exchange with the environment
of a MSC; e. g. in m1 the message e is send to the environment of this MSC.

The MSC formalism provides not only communication primitives but also control
structures. For our purposes, only the alt operator. modeling nondeterministic choice,
is of importance. m2 in Fig. 1 shows an example: A choice between sending a from p
to q and sending b from q to p is expressed. A final construct considered in this paper
is that of conditions. Conditions model global states or predicates related to more than
on instance; m2 contains two conditions C1 and C2. It is not an easy task to assign a
formal meaning to conditions. However, we use conditions only to express test verdicts
and handle them formally in a special way. We will discuss this topic in detail in a later
section.

Other important concepts of the basic MSC language not covered in this paper are:
loop inline expressions (since tests are finite, loops occurring in test purposes comprises
alway finite, fixed boundaries and therefore can be unfolded), and especially timers,
which require extra considerations and will be dealt with in forthcoming work.

Formal Test Purposes and the Validity of Test Cases 117

p q r

a

a

b

b

pass

b

b

fail

alt

msc m3

p q

a

a

b

b

pass

b

b

fail

alt

msc m′3

Fig. 2. Expressing the same test purposes with and without SUT instances

Expressing test purposes. We will use the MSC formalism to capture test purposes
in the following way: the set of instances is partitioned into a non-empty set of port
instances and a non-empty set of SUT instance. Intuitively, the port instances represent
the different ports (PCOs, interfaces) at which the SUT interacts with its environment.
Conditions that span the port instances are used to assign the test verdicts.

The SUT instances are used as “syntactic sugar” and serve two purposes: (1) as
communication partners for the port instances, and (2) to impose an ordering of the
sequence of messages. The same could be achieved by using communication with the
environment and generalized orderings, but our approach leads to a more concise and
intuitive representation of the test purpose and matches the common usage. Fig. 2 shows
the two alternative ways of depicting a simple test purpose: after having received the
message a on both its ports p and q (in arbitrary order), the SUT answers by sending the
message b, again both on port p and q. If the message is sent on port p before it is sent
on port q then the SUT shall pass the test, otherwise it shall fail. We will come back to
this example later in this paper.

2.1 Partial Orders

We quickly recapitulate how pomsets can be used to assign a semantics to MSCs. We
start by introducing the basic notations used throughout this paper.

To avoid tedious notation, we fix the following convention: if a structure S =
〈A,B, . . .〉 is introduced, the components of S will be denoted by AS , BS , . . .

118 P.H. Deussen and S. Tobies

a

a

x

a

a

b

b

b

c

y

a

a

b

b

b

c

z

Σ = {a, b, c}
D = {〈a, a〉, 〈b, b〉, 〈c, c〉, 〈b, c〉, 〈c, b〉}

Fig. 3. Example pomsets

For some set A, P(A) is the set of all subsets of A. For R ⊆ A×B and a ∈ A, we
denote the image of a under R by R(a) =df {b ∈ B : a R b}. For C ⊆ A we define
R(C) =df

⋃
a∈C R(a). The inverse R−1 of a relation R, the identity relation idA on A,

the relational composition R · S or two relations R,S, the transitive closure R+ of R,
and the reflexive-transitive closure R∗ of R are defined in the usual manner.

Lposets. For the rest of this paper let us fix a finite alphabet Σ. A labeled partial order
(lposet, for short) over Σ is a structure x = 〈E,<, λ〉 where E is a finite set of events,
< ⊆ E × E is an (irreflexive) partial order, and λ : E → Σ is a labeling function.

Let x be a lposet and let e1, e2 ∈ Ex. We use the following notions: The reflexive
closure of <x is �x =df <x∪ idEx . Unrelated events are called concurrent, i. e.,
e1 cox e2 ⇔df e1 �| x e2 & e2 �| x e1, while related events are in line: e1 lix e2 ⇔df
e1 <x e2 ∨ e2 <x e1. The downward closure of a set D ⊆ Ex is ↓xD =df �−1

x (D).
If D = ↓xD holds, then D is called downward closed in x. By C(x) we denote the set
of downward closed sets in x. If D ⊆ Ex, then x[D] =df 〈D,<x ∩ (D ×D), λ � D〉
is the lposet generated by D in x (λ � D denotes the restriction of λ to D).

Pomsets. Lposets x and y over Σ are called isomorphic, written x ≡ y, if there is a
bijection f : Ex → Ey such that (e1 <x e2 ⇔ f(e1) <y f(e2)) & λx = λy ◦ f holds.
A partially ordered multiset (a pomset for short) over Σ is an isomorphism class of
lposets, i. e., a set [x] =df {y : x ≡ y}. We fix the convention, that pomsets are denoted
by boldfaced small letters x,y,z. Moreover x is assumed to be the equivalence class
[x] of x. By this convention, Ex always denotes the set of events of a representative x
of x. The class of pomsets over Σ is denoted by P(Σ).

Fig. 3 shows examples of pomsets. Graphically, we represent pomsets as directed
acyclic (not necessarily connected) graphs. Nodes are labeled with elements from the
underlying alphabet Σ. Transitive arcs are sometimes omitted.

Let x,y ∈ P(Σ) be pomsets. Then x is called a prefix of y—denoted x � y—iff
there are representatives x ∈ x and y ∈ y such that Ex ⊆ Ey & C(x) ⊆ C(y) holds.
If there are representatives x ∈ x and y ∈ y such that Ex = Ey & <x ⊆ <y holds,
then x is called less sequential than y. This is denoted by x � y. It is easy to see that
both � and � partially order P(Σ). In Fig. 3, x � y, x � z, and y � z, holds.

Formal Test Purposes and the Validity of Test Cases 119

An alternative definition of the prefix relation � and the ordering by the degree
of sequentiality � can be obtained by introducing the notion of weak homomorphisms
between representatives of pomsets [2].

Special pomsets that will be encountered in this paper are:

1. Letters a = [{a}, ∅, a �→ a] for a ∈ Σ (we abuse a, b, c, . . . to denote both letters
from P(Σ) and from Σ).

2. Strings [{0, . . . , n− 1}, <, i �→ ai] for a0a1 . . . an−1 ∈ Σ∗, where < denotes the
standard order relation on integers.

3. The empty word ε = [∅, ∅, ∅].
In this paper we do not distinguish between strings and pomset strings, i. e, if Σ is an
alphabet then Σ∗ is considered to be the set of pomsets σ over Σ such that <σ is a total
ordering. If x ∈ P(Σ), then by lin(x) =df {σ ∈ Σ∗ : x � σ} we denote the set of
linearizations of x.

Dependencies and Weak Sequential Composition. A reflexive and symmetric relation
D ⊆ Σ×Σ is called a dependence onΣ; for the rest of this paper letD be a dependence
onΣ. Ifx andy are lposets overΣ, such thatEx∩Ey = ∅holds, then the weak sequential
composition x ◦D y is defined by

x ◦D y =df [Ex ∪ Ey, (<x ∪<y ∪R)+, λx ∪ λy],

where R ⊆ Ex × Ey is given by e1 R e2 ⇔df λx(e1) D λy(e2).
A pomset x is called D-consistent if we have, for all e1, e2 ∈ Ex, e1 cox e2 ⇒

¬λx(e1) D λx(e2). Let P(Σ,D) denote the class of D-consistent pomsets. Clearly, if
x and y are D-consistent, then also x ◦D y is.

Another operation on pomsets which is closely related to ◦D is the unsequential-
ization via D: If x ∈ P(Σ), then by 〈x〉D we denote the pomset [Ex, R+, λx], where
R ⊆ Ex × Ex is defined by e1 R e2 ⇔df e1 � e2 & λx(e1) D λx(e2). 1

The pomsets in Fig. 3 are allD-consistent for the dependenceD shown in that figure.
We have 〈z〉D = y.

The following lemma justifies the relation between the operations ◦D and 〈·〉D.

Lemma 1. Let x,y in P(Σ). Then 〈x ◦D y〉D = 〈x〉D ◦D 〈y〉D.

Some more definitions: if A ⊆ Σ is a set of symbols and x is a pomset, then
x � A =df [x[λ−1

x (A)]]. x � A is called the restriction of x to A, i.e., x restricted
to those events labeled with elements from A. Finally, a set of pomsets X ⊆ P(Σ) is
called pre-closed if x ∈ X & y � x⇒ y ∈ X holds.

2.2 Partial Order Semantics for MSCs

To define the semantics of MSCs based on pomsets, we first need to fix an alphabet Σc
and a dependence Dc on Σc.

1 The operations ◦D and 〈·〉D impose an interesting and fruitful connection to the theory of
Mazurkiewicz traces [10]. Although it is far beyond the scope of this paper it should be noted
that pomsets of the form 〈x〉D ∈ P(Σ,D) are just alternative representations of Mazurkiewicz
traces: in fact we have that lin(〈x〉D) is a Mazurkiewicz trace over Σ and D; moreover, the
operation ◦D coincides with trace concatenation.

120 P.H. Deussen and S. Tobies

p q r

a!p,ra ?p,ra
a!q,ra ?q,ra

b !r,pb?r,pb 0!p,q0 ?p,q0

b !r,qb?r,qb

pass

msc m4

Fig. 4. An annotated MSC.

Communication Alphabet and Dependence. Let M be a set of messages and P a set of
instances fixed throughout this paper. We assume that there is a non-empty set T ⊂ P
of port instances; the instances in P − T will be called SUT instances. Usually we will
have |P − T | = 1, but the theory presented in the following does not rely on this.

Let Σ!, Σ? be the two alphabets:

1. Σ! =df {!}×P ×M ×P is the set of send actions. Its elements 〈!, p,m, q〉 will be
denoted by !p,qm,

2. Σ? =df {?}×P×M×P is the set of receive actions. Its elements 〈?, p,m, q〉 ∈ Σ?
will be denoted by ?p,qm.

We put Σc =df Σ! ∪ Σ? to be the set of communications. The mapping ιc(a)
identifies the instance of an action a ∈ Σc, i. e., ιc(!p,qm) =df p and ιc(?p,qm) =df q.
We put Σo =df {a ∈ Σc : ιc(a) ∈ T} to be the set of tester observable actions. For
convenience, we furthermore define Σ!

o =df Σo ∩Σ! and Σ?
o =df Σo ∩Σ?.

Fig. 4 gives a few examples of this syntax of actions. It shows the expansion of the
first alternative of m4 where the generalized ordering has been replaced by sending the
void message 0. The messages have been annotated with the corresponding symbols
from Σc.

To build pomsets from actions, we define the dependenceDc onΣc: letDc ⊆ Σc×Σc
be the smallest reflexive, symmetric relation containing:

– 〈a, b〉 with ιc(a) = ιc(b) and a and b are not placed on the same co-region,
– 〈!p,qm, ?p,qm〉 for instances p, q ∈ P and messages m ∈M .

To keep things simple, we restrict ourself to the following MSC operators: message
sending and receiving, co-regions, and the alternative inline expression, which allows
the expression of optional behavior and finite iterations. We simulate general ordering by
sending a void message 0, which might also be sent between two port or SUT instances.

Formal Test Purposes and the Validity of Test Cases 121

Conditions are only allowed to assign verdicts and are not dealt with by the semantics.
In order to obtain a set of Dc-consistent pomsets, we have to impose the restriction that
identical actions (e. g. sending of a message twice from an instance p to an instance q)
are not placed on the same co-region.

The semantics of an MSC M is given by a pre-closed set of pomsets XM ⊆
P(Σc, Dc). We illustrate the construction of XM only by informal means of an ex-
ample (m3 from Fig. 2); the translation is done similar to [8] with slightly different
syntax for events of pomsets.

In the following, ◦c abbreviates ◦Dc .
The semantics of our example m3 is given by the set Xm3 :

Xm3 = {z ∈ P(Σc, Dc) : z � x ◦c y1 ∨ z � x ◦c y2}.

where x,y1, and y2 are defined by:

x =df !p,ra ◦c !q,ra ◦c ?p,ra ◦c ?q,ra (1)

y1 =df !r,pb ◦c ?r,pb ◦c !p,q0 ◦c ?p,q0 ◦c !r,qb ◦c ?r,qb (2)

y2 =df !r,qb ◦c ?r,qb ◦c !q,p0 ◦c ?q,p0 ◦c !r,pb ◦c ?r,pb (3)

Without a proof (which would require a more formal treatment of the definition of
XM we state:

Lemma 2. If M is a MSC, then 〈x〉Dc
= x for all x ∈ XM.

2.3 Message Sequence Charts as Test Purposes

Now that we have explained how to assign semantics to an MSC, we show how MSCs
can be utilized as a formal language to express test purposes. We discuss how the notion
of a test verdict can be integrated into an MSC and how it can be guaranteed that an
MSC specifies behavior that is amenable to black-box testing.

Verdict assignments. Syntactically, a verdict assignment is expressed by a condition on
the port instances on the very end of each terminal alternative of the MSC. Semantically,
the condition-like constructs pass, fail, and inconc are not treated as an ordinary condition
but as a convenient way to define a verdict assignment: 2

Let V =df {pass, fail, inconc,none} be a set of verdicts and let Vf =df V −{none}
be the set of final verdicts. A mapping υ : X → V for some finite, pre-closed set of
pomsets X is called a verdict assignment to X if, for all x ∈ X , we have:

1. ∃y ∈ X.x � y & υ(y) =| none, i. e., every pomset can be extended to a pomset
that is assigned a final verdict, and

2. υ(x) =| none⇒ ∀y ∈ X.x <| y, i. e., pomsets that are assigned a final verdict are
maximal in X .

2 Alternatively, one could allow verdict conditions to appear also at other places within the MSC
and, e.g., use the verdict assignment rules of TTCN-3 [3] to resolve the case where different
verdicts are encountered during a single run through the MSC.

122 P.H. Deussen and S. Tobies

The verdict conditions drawn in an MSC M are used to define a verdict mapping
υM. Again, we introduce this informally by the example of m3 from Fig. 2, where υm1

is defined by:

υm3(z) =




pass, if z = x ◦c y1;
fail, if z = x ◦c y2;
none, otherwise.

It is obvious that not every MSC that satisfies the syntactic restrictions that have been
introduced above constitutes a test purpose, i. e., describes behavior of the SUT that can
be tested in a black box testing approach. For example consider a modification of m3
from Fig. 2, where the generalized ordering constraints have been eliminated. There the
verdict does not depend on the order in which the messages b can be observed at the
ports of the SUT but rather on the (SUT-internal) events that cause these messages to
be sent. Clearly, such an event is not visible to a black-box test system and hence no
test case can distinguish between the behavior of the first and second alternative. In the
following we present a number of criteria that an MSC must satisfy to be considered
a well-formed test purpose. Later we will see that these criteria indeed guarantee the
existence of a valid test case for a test purpose.

Well-Formed Test Purposes. First, we define a function that reduces the semantics of an
MSC to the information that is available to the test case, i. e., the sequences of events
that occur on port instances:

Given test purpose MSC M with semantics XM. For x ∈ XM, we define the tester
observable traces of x by obs(x) =df lin(x � Σo).

A MSC M is called a well-formed test purpose if it is possible to determine its state
(and hence assigned verdict) based on this information in its tester observable traces,
i. e., if

WF1. for every x,y ∈ XM � Σo, lin(x) ∩ lin(y) =| ∅ implies x = y.

Unfortunately, this restriction does not yet suffice to guarantee that an MSC describes
testable behavior. Another aspect that needs considerations is which party resolves es-
sential choice in the sense of the following definition:

Let X ⊆ P(Σc, Dc) be a pre-closed set of pomsets. A pomset x ∈ X is called a
choice point for two actions a, b ∈ Σc in X if x ◦c a ∈ X , x ◦c b ∈ X , and

{y ∈ max �(X) : x ◦c a � y} =| {y ∈ max �(X) : x ◦c b � y} ,
where max�(X) denotes the �-maximal pomsets in X .

Coming back to example from Fig. 2 with semantics Xm3 as defined in (1)– (3),
x � Σo is a choice point for ?r,pb and ?r,qb. On the other hand, ε is not a choice point
even though there are two “available” communications, namely !p,ra and !q,ra, since
this choice does not alter the reachable maximal configurations.

We require, for a well-formed test purpose, that each choice point is resolved by a
message from the SUT:

WF2. If x is a choice point of XM � Σo for actions a, b ∈ Σo, then both a, b ∈ Σ?
o .

Formal Test Purposes and the Validity of Test Cases 123

p r

a

b

pass

b

fail

alt

msc m5 p r

a1

b1

pass

a2

b2

pass

c

pass

alt

msc m6

Fig. 5. Two malformed MSCs

This restriction is necessary because both other possibilities for a choice point (a, b ∈
Σ!

o or a ∈ Σ!
o and b ∈ Σ?

o) are undesirable in a test purpose: a choice that has to be
resolved by the test case indicates that the test purpose should indeed be (at least) two test
purposes, one for each choice of the test case. Otherwise, a deterministic test case will
only be able to test the part of the test purpose that corresponds to the (necessarily fixed)
way the test case resolves the choice. On the other hand, a choice that can be resolved
simultaneously by the test case and SUT leads to problems because it might lead to
a race condition where both test case and SUT resolve the choice in an inconsistent
manner. This situation bears strong resemblance to the presence of non-local choice in
the MSC [1].

Figure 5 shows examples of malformed MSCs: in m5 exist x,y ∈ Xm5 � Σo with
x =| y and σ = !r,pa · ?p,rb ∈ lin(x) ∩ lin(y) =| ∅, and hence WF1 is violated. Indeed
there exist x,y with that property such that υm5(x) = pass and υm5(y) = fail. Taking
into account the fact that a test system will only observe σ it is clear that m5 does not
describe testable behaviour—which verdict should a test system assign after observing
σ? The MSC m6 is malformed because it violates WF2: ε is a choice point for the
actions !r,pa1, !r,pa2, and !p,rc. In its initial configuration, the test system can either
(deterministically) send a1 or a2, but will then not be able to test the behaviour of the
SUT that corresponds to the respective other choice.Also, what happens if the test system
decides to perform action !r,pa1 while the SUT, before it has received a1, performs !p,rc?
This behaviour is not defined by the MSC. For an example of a well-formed MSC, the
reader may verify that m3 from Fig. 2 is indeed well-formed.

124 P.H. Deussen and S. Tobies

3 Test Case Validity

We now define the validity of a test case w. r. t. a well-formed test purpose. Our defini-
tion is different from the available conformance relations for labeled transition systems
because it assigns different roles to test case and SUT. We show that the well-formedness
conditions on MSCs from the previous section suffice to guarantee the existence of a
valid test case. Moreover, we give a simple decision procedure that decides validity of
a test case and prove its correctness.

First, we need to formalize the notion of a test case. Intuitively, a test case interacts
with the SUT by means of exchanging messages and finally assigning a verdict. Formally,
we model a test case as follows:

Test Cases. A test case is a partial function T : Σ∗o ⇁ Σ!
o ∪̇ {δ} ∪̇ Vf , where δ is a

symbol that denotes quiescence of the test case.
A run of a test case T is a sequence σ0, σ1, . . . , σn, of words from Σ∗o such that

σ0 = ε, and σi −−→
T

σi+1 for 0 � i < n, where the relation −−→
T

is defined by

σ −−→
T

σa⇔df T(σ) defined &
(
T(σ) = a ∈ Σ!

o ∨ T(σ) = δ & a ∈ Σ?
o
)

A run σ0, σ1, . . . , σn is called complete if T(σn) ∈ Vf . Note that it is indeed impossible
to extend a complete run due to the definition of −−→

T
.

In the following we will show how to model test case validity as a certain language
inclusion problem.

Test Languages. Both the runs of a test case and the tester observable traces of a well-
formed test purpose naturally induce test languages, i. e., languages L ⊆ Σ∗o together
with a verdict assignments υL:

For a test case T, the test language 〈LT, υT〉 is defined byLT =df {σ ∈ Σ∗o : ε −−→
T

∗

σ} with verdict assignment υT defined by

υT(σ) =df

{
T(σ), if T(σ) ∈ Vf ;
none, otherwise.

For a well-formed test purpose M, the induced test language 〈LM, υM〉 is defined
by settingLM =df obs(XM) and, for σ ∈ LM, υM(σ) =df υM(x) for the (due to WF1

uniquely defined) x ∈ XM with σ ∈ obs(x).
It can easily be shown that vT and vM are well-defined and satisfy the requirements

imposed on verdict assignments.
What is the correct relation between 〈LM, υM〉 and 〈LT, υT〉 to define validity of T

w. r. t. M? Clearly, υM and υT should agree on LM ∩LT . But what is the right relations
between LM and LT? None of the “obvious” choices leads to a satisfactory notion of
validity:

– if we would require LM ⊆ LT then there would be no valid test cases for any test
purpose that allows (inessential) choice between two actions a, b ∈ Σ!

o becauseLM

contains traces for both choices while a deterministic test case would be limited to
only a single choice.

Formal Test Purposes and the Validity of Test Cases 125

valid(test purpose M; test case T; string ρ) {
if T(ρ) is undefined then fail;
if T(ρ) ∈ Vf & T(ρ) =| υM(ρ) then fail;
else if T(ρ) = δ then

if en(M, ρ) ∩Σ?
o = ∅ then fail;

else foreach a ∈ en(M, ρ) ∩Σ?
o do valid(M,T, ρ · a);

else if ρ · T(ρ) ∈| LM then fail;
else valid (M,T, ρ · T(ρ));
success;
}
where en(M, ρ) =df {a ∈ Σo : ρ · a ∈ obs(XM)}

Algorithm 1. Validation algorithm.

– requiring LT ⊆ LM would allow the test case to send arbitrary messages to the
SUT even though these would not be specified in the test purpose

– if we require LT ∩LM =| ∅ then the test case would only be required to react to one
of the possible many (essential) choices that the SUT might have.

While the first option matches the intuitive meaning of test case validity best, it needs
to be modified to eliminate the influence of inessential choice. This is done by means of
the following equivalence relation on strings:

LetL ⊆ Σ∗o be a language. We define an equivalence relation�L ⊆ L×L by setting
σ �L ρ⇔df ρ is a permutation of σ such that σ � Σ?

o = ρ � Σ?
o . The equivalence class

w. r. t. �L of σ ∈ L is denoted by [σ]L =df {ρ ∈ L : σ �L ρ}.

Test Case Validity. Let M be a well-formed test purpose and T be a test case for M.
Then T is called a valid test case w. r. t. M if

– for every σ ∈ LT ∩ LM, υT(v) = υM(v), and
– for every σ ∈ LM with υM(σ) ∈ Vf , [σ]LM

∩ LT =| ∅.
Since we have given the definition both for well-formed test purposes and test case

validity, it would be futile to use one to justify the other. What can be shown formally
though, is that these notions are compatible in the following sense:

Theorem 1. Let M be a well-formed test purpose. Then there exists a test case T that
is valid w. r. t. M. T can be computed effectively from M.

Also, it is easy to see that there are MSCs that violate one of the well-formedness
conditions, for which no valid test case exists.

Deciding Validity. In the following we present an algorithm that decides validity of a
test case w. r. t. a well-formed test purpose and establish the algorithm’s correctness.
Interestingly, the algorithm does not require the calculation of the�LM

-classes but only
refers to obs(XM), υM, and LM, which can easily be derived from M.

Theorem 2. Let M a well-formed test purpose and T a test case for M. Then T is valid
w. r. t. M iff valid(M,T, ε) does not fail.

126 P.H. Deussen and S. Tobies

4 Practical Considerations

The previous sections have discussed formally the relationship between a test purpose
defined using MSC and a test system that implements the test purpose. No assumptions
have been made on the test system besides that it is deterministic and that it has observable
test events and a final verdict status. An MSC based validator tool has been designed
and developed within a joint project between Nokia Research Center and Fraunhofer
FOKUS.

The validator is designed to run against any test system that provides some basic
functionality, like starting of a test case, retrieving the status of the final verdict, sending
and receiving messages, etc. The basic idea was to create a validator that is not only able
to validate the abstract test suite but also a real test system (tester), i. e., an abstract test
suite plus its execution environment plus the glue that is necessary to tie the test suite
to the actual system under test. Since this glue can be of considerable complexity, e.g.,
consisting of implementations of various protocol stacks, message en- and decoders,
possibly tailored hardware, etc., testing of the whole test system is indeed an important
aspect.

This is also one of the advantages of our approach as compared to other approaches
like an isolated verification of the abstract test suite or an automatic generation of test
cases from test purposes.

Given a sufficiently detailed specification of the test purpose, a combination of au-
tomatic generation of test cases [14] from the test purpose together with a validation
following our approach seems optimal. The validation guarantees both the correctness
of the implementation of the generation algorithm and of the additional components that
make up the test system.

The design of the validator aims to make it as independent of the test system as
possible by defining a small, well-defined interface to connect the validator to the test
system. In our case study we have used a TTCN-3 test system with the MSC validator.
The validator accesses the test system at its (proprietary) control interface to trigger the
execution of testcases and retrieve the final verdict. It uses TTCN-3’s standardized com-
munication interface toward the SUT [13] to exchange messages with the test system.
The MSC validator has been implemented using JAVA and the test system runs indepen-
dently of the validator. Although not all work within this project has been completely
finished, results so far show that using MSCs as test purpose definition language and
as basis for the test case validation can improve the quality of test cases and thus the
quality of system implementations.

sectionFuture Work
This paper defines a novel approach to test case validation and provides the necessary

theoretical background. Yet, it is only a first step toward a working test case validation
system. In particular, the following issues need to be addressed in the future:

Algorithms and Complexity. Deciding well-formedness of an MSC M so far requires the
calculation of the semanticsXM, which is a costly operation.A syntactic characterization
of well-formedness would be desirable because it would probably allow for faster tests
for well-formedness that could, e.g., also be built into an MSC editor to support test

Formal Test Purposes and the Validity of Test Cases 127

purpose development by pointing out problematic constructs. Additionally, a detailed
analysis of the complexity of well-formedness and test case validity would be desirable.

Data. Since its last revision, data is an integral part of the MSC language. An extension
of our approach that also takes into account data passed in messages is essential for the
practical applicability of our approach to a wider class of test cases. While this should
not impose any theoretical problems, it will be a challenge to integrate data into the
implementation in a user-friendly manner.

Time. MSCs allow to express various timing constraints and timing aspects are important
in many testing efforts. Therefore, we plan to extend our approach to MSCs with timing
constraints. From a theoretical point of view, this is probably the most interesting way
to continue the work presented in this paper.

5 Appendix

This appendix contains the proofs of Theorems 1 and 2 (for technical reason in reverse
order). In the following, let M denote a well-formed test purpose.

From property WF1 we get that the function 〈·〉M : obs(XM) → XM that maps
every σ ∈ obs(XM) to a xσ ∈ XM such that σ ∈ lin(xσ) is in fact a well-defined and
total. It is easy to show the following property:

Lemma 3. Let M be a well-formed test purpose and ρ, σ ∈ obs(XM) with ρ � σ. Then
〈ρ〉M � 〈σ〉M.

Let M be a well-formed test purpose, T a test case for M and σ ∈ LM with υM(σ) =|
none. A validation for σ is a complete run ρ0 −−→

T
ρ1 −−→

T
· · · −−→

T
ρn such that

ρn �LM
σ and υT(ρn) = υM(σ).

It is easy to see that validity of a test case w. r. t. a test purpose can equivalently be
formulated as follows.

Lemma 4. Let M be a well-formed test purpose and T a test case for M. Then T is valid
w. r. t. M iff every σ ∈ LM has a validation.

We will need the following technical lemma:

Lemma 5. Let M be a well-formed test purpose, a, b ∈ Σo be actions, and ρ, σ ∈ Σ∗o .
Moreover, assume ρa, ρb ∈ LM, υM(σ) =| none, and ρb � σ. If a ∈| Σ!

o or b ∈| Σ!
o (or

both), then there exists a σ′ ∈ LM with σ �LM
σ′, υM(σ) = υM(σ′), ρa � σ′, and

υM(σ) = υM(σ′).

Proof. Let a, b, ρ, σ as required by the lemma and let x = 〈ρ〉M, and z = 〈σ〉M. Let
ya,yb ∈ XM � Σo such that ya = x ◦c a and yb = x ◦c b. From WF1 we get
x � yb � z. From WF2, also x � ya � z holds. Hence, there exists u ∈ XM � Σo
withu = x◦c a◦c b andu � z and we obtain σ′ setting σ′ = ρabη, where η is the string
that can be appended to ρb to obtain σ with the first occurrence of a deleted. From what
have said before, σ′ is a linearization of z, hence σ �LM

σ′ and υM(σ) = υM(σ′).

128 P.H. Deussen and S. Tobies

Proof (Proof of Theorem 2). Assume that valid(M,T, ε) does not fail and let σ ∈ LM

with υM(σ) =| none and |σ| = n. By Lemma 4, it suffices to show that there exists a
validation of σ. To this purpose, we will construct sequences ρ0, . . . , ρn and σ0, . . . , σn
such that |ρi| = i, valid(M.T, ρi) is called during the execution of the algorithm,ρi � σi,
σi �LM

σ, and υM(σ) = υM(σi), for each 0 � i � n.
We start with ρ0 = ε and σi = σ, which satisfies all the required properties. Assume

that the sequences have been constructed up to i. Since valid(M,T, ρi) does not fail,
ρi ∈ LM holds and there are the following possibilities:

– T(ρ) ∈ Vf & T(ρ) = υM(ρ). In this case, |ρ| = n must hold because other-
wise υM(σi) =| none and υM(ρi) =| none, together with ρi < σi, would be (by
Lemma 3) a contradiction to the fact that υM is a verdict assignment on LM.

– T(ρ) = δ & en(M, ρ)∩Σ?
o =| ∅. Then i < nmust hold and since ρi < σi, there ex-

ists b ∈ Ec(T) such thatρib � σi. If b ∈ Σ?
o then there will be a call valid(M,T, ρib)

and we setρi+1 =df ρib andσi+1 =df σi to continue the sequences. Clearly, this sat-
isfies all necessary properties. If b ∈ Σ!

o then leta ∈ en(M, ρi)∩Σ?
o . Thena, b, ρi, σi

satisfy the prerequisites of Lemma 5, which yields the existence of σ′i ∈ LM with
σi �LM

σ′i, υM(σi) = υM(σ′i), and ρia � σ′i. If we set ρi+1 =df σ
′
i then we have

extended the sequence as required.
– T(ρ) = a ∈ Σ!

o & ρa ∈ LM. In this case we necessarily have to set ρi+1 =df ρia
and we need to show the existence of a suitable σi+1. This can be done similar to
the previous case using Lemma 5.

It is easy to see that T(ρn) ∈ Vf and by construction it holds that ρn �LM
σ as well

as υT(ρn) = υM(σ). Moreover, obviously ρ0 −−→
T
· · · −−→

T
ρn is complete run and thus

we have found the desired validation for σ.
For the converse direction, let T be a test case that is valid w. r. t. M. We need to

show that the call valid(M,T, ε) does not fail. Hence assume that is does fail and let
ρ ∈ LM a prefix-maximal word such that valid(M,T, ρ) is evaluated. By definition of
valid, ρinLM must holds. One of the following choices for ρ is the one that leads to
failure.

– T(ρ) is undefined, then obviously, for every σ ∈ LM with ρ � σ, [σ]LM
∩LT = ∅.

– T(ρ) ∈ Vf and T(ρ) =| υM(ρ), which violates the first condition in the definition of
test case validity.

– T(ρ) = δ and en(M, ρ) ∩Σ?
o = ∅. If υM(ρ) =| none then LT and LM, then again

the first condition of the definition of test case validity is violated. If υM(ρ) = none
then there exists σ ∈ LM with υM(σ) =| none and ρ < σ. It is easy to see that, if
there exists η ∈ [σ]LM

∩LT , then ρ < η, but since T(ρ) = δ and en(M, ρ)∩Σ?
o = ∅,

for every χ ∈ LT with ρ < χ, χ ∈| LM holds and hence the does not exists such a
η.

– The case that T(ρ) = a ∈ Σ!
o but ρ · a ∈| LM is analog to the previous case.

Hence, valid(M,T, ε) cannot fail.

Formal Test Purposes and the Validity of Test Cases 129

Proof (Proof of Theorem 1). We define a test case T as follows: for σ ∈ obs(XM):

T(σ) =df



υM(〈x〉M), if en(M, σ) = ∅;
δ, if ∅ =| en(M, σ) ⊆ Σ?

o
a, for an arbitrary a ∈ en(M, σ) ∩Σ!

o otherwise

It is easy to see that for this test case T, valid(M,T, ε) does indeed not fail and
hence, by Theorem 2, T is a valid test case w. r. t. M.

References

1. H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and non-local choice
in message sequence charts. In E. Brinksma, editor, Tools and Algorithms for the Construction
and Analysis of Systems, volume 1217 of Lecture Notes in Computer Science, pages 259–274.
Springer Verlag, 1997.

2. P. Deussen. Concurrent automata. Technical Report 1-05/1998, Brandenburg Tech. Univ.
Cottbus, 1998.

3. ETSI. The tree and tabular combined notation version 3; part 1: TTCN-3 core language.
Technical Report ES 201 873-1, ETSI, 2001.

4. J. Grabowski. On partial languages. Fundamenta Informaticae, 4(2):427–498, 1981.
5. J. Grabowski and D. Hogrefe. TTCN SDL- and MSC-based specification and automated test

case generation for inap. In Proceedings of the 8th International Conference on Telecommu-
nication Systems (ICTS’2000) - Modeling and Analysis, Nashville, March 2000.

6. ITU-T. ITU-T recommendation z.120 message sequence chart (MSC). Technical report,
ITU-T, 1999.

7. B. Jonsson and G. Padilla. An execution semantics of MSC-2000. In R. Reed and J. Reed,
editors, Proceedings of the 10th Internation SDL-Forum, number 2078 in Lecture Notes in
Computer Science. Springer Verlag, 2001.

8. J.-P. Katoen and L. Lambert. Pomsets for message sequence charts. In Proc. of 1st Workshop
of the SDL Forum Society on SDL and MSC, SAM98, Berlin, 1998.

9. S. Mauw and M.A. Reniers. Operational semantics for MSC’96. InA. Cavalli and D. Vincent,
editors, Tutorials of the Eighth SDL Forum SDl’97: Time for Testing - SDL, MSC and Trends,
pages 135–152, Evry, France, 1997. Institut national des télécommunications.

10. A. Mazurkiewicz. Introduction to trace theory. In V. Diekert and G. Rozenberg, editors, The
Book of Traces, chapter 1, pages 3 – 42. World Scientific, Singapore – New Jersey – London
– Hong Kong, 1995.

11. V. Pratt. Modelling concurrency with partial orders. International Journal of Parallel Pro-
gramming, 15(1):33–71, 1986.

12. R. Scheurer, J. Grabowski, and D. Hogrefe. Revised comparison of an automatically gener-
ated and a manually specified test suite for the B-ISDN protocol SSCOP. In H. König and
P. Langendörfer, editors, FBT’98 - Formale Beschreibungstechniken für verteilte Systeme.
Shaker Verlag, Aachen, 1998. Available online from http://www.itm.mu-luebeck.de/.

13. S. Schhulz and T. Vassiliou-Gioles. Implementation of TTCN-3 test systems using the TRI. In
I. Schieferdecker, K. H, and A. Wolisz, editors, Testing of Communication Systems XIV, Proc.
of TestCom-2002, pages 425–442, Berlin, Germany, 2002. Kluwer Academic Publishers.

14. M. Schmitt, M. Ebner, and J. Grabowski. Test generation with autolink and testcomposer. In
Proceedings of the 2nd Workshop of the SDL Forum Society on SDL and MSC (SAM’2000).
SDL Forum Society, 2000. Proceedings available online from
http://www.irisa.fr/manifestations/2000/sam2000/.

http://www.itm.mu-luebeck.de/
http://www.irisa.fr/manifestations/2000/sam2000/

	Formal Test Purposes and the Validity of Test Cases
	Introduction
	Formal Test Purposes
	Partial Orders
	Partial Order Semantics for MSCs
	Message Sequence Charts as Test Purposes

	Test Case Validity
	Practical Considerations
	Appendix
	References

