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Abstract. State space exploration is a main approach to verification
of finite-state systems. The sweep-line method exploits a certain kind of
progress present in many systems to reduce peak memory usage during
state space exploration. We present a new sweep-line algorithm for a
compositional setting where systems are composed of subsystems. The
compositional setting makes it possible to divide subsystem progress
measures into monotone and non-monotone progress measures to further
reduce peak memory usage. We show that in a compositional setting, it
is possible to automatically obtain a progress measure for the system
by combining the progress measure for each subsystem to a progress
measure for the full system.

1 Introduction

A main method for verification of distributed and concurrent systems is state
space exploration. The basic idea is to generate all the reachable states and
state changes of the system under consideration, and represent these as a directed
graph called the state space. The nodes in the state space represent the reachable
states of the system, and the edges represent transitions between the reachable
states. Because of the state explosion problem, the limiting factor in verification
based on state spaces is, in most cases, the available computer memory. This
has lead to the development of a wide range of state space reduction methods
capable of reducing the memory required to conduct state space exploration.
Partial-order methods [16,14,19] explore a subset of the state space, whereas the
symmetry method [2] and symbolic methods based on Binary Decision Diagrams
(BDDs) [12] provide a compact representation of the state space.

Another main paradigm is that of compositional state space verification [17].
In this paradigm, systems are specified as a parallel composition of subcompo-
nents, and the state space of the full system is computed from the state spaces
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of the subcomponents. Moreover, the state spaces of subcomponents can be re-
placed by smaller and behaviourally equivalent state spaces before constructing
the state space of the full system. Process algebras [5,13] are examples of formal
description techniques that naturally fit the compositional paradigm.

The basic idea of the sweep-line method [1, 9] is to exploit a certain kind
of progress exhibited by many systems. Exploiting progress makes it possible to
explore all the reachable states of a system, while only storing small fragments of
the state space in memory at a time. The key concept of the sweep-line method
is the notion of a progress measure which is used to capture the progress in
the system. A progress measure associates a progress value to each state of the
system, and it is the progress values of states that are used to determine which
states can be deleted during the sweep through the state space. The sweep-line
method is aimed at on-the-fly verification of safety properties, e.g., determining
whether a reachable state exists satisfying a given state predicate. The sweep-line
method was used in [4] for verification of transactions in the Wireless Application
Protocol (WAP) with a reduction in peak memory usage to 20%.

The sweep-line method is similar in spirit to the state space caching method
[7,3] in that they are both based on the paradigm of deleting states encountered
during the state space exploration. The criteria for deletion of states is, however,
fundamentally different. In the state space caching method, states not on the
depth-first stack can be deleted. With the sweep-line method, deletion is based on
progress values. The sweep-line method and state space caching both guarantee
complete coverage of the state space, i.e., exploration of all reachable states. For
the monotone progress measures of [1], the sweep-line method explores each state
exactly once, whereas state space caching may explore states multiple times.
For the generalised sweep-line method [9] the main difference is in the search
order. State space caching relies on depth-first exploration, whereas the sweep-
line method visits the reachable states in a least-progress-first order.

A disadvantage of the sweep-line method is that it requires additional infor-
mation from the user in the form of a progress measure. It is therefore desirable
to automatically compute progress measures for systems. One contribution of
this paper is to show that in a compositional setting where state spaces of the
subcomponents are explicitly represented, a progress measures for each subcom-
ponent can be obtained algorithmically and combined to a progress measure for
the full system. This makes the sweep-line method fully automatic in such a set-
ting. Furthermore, we present a new sweep-line state space exploration algorithm
which exploits a division of subcomponent progress measures into monotone and
non-monotone progress measures to further reduce peak memory usage.

The paper is organised as follows. Section 2 gives the necessary background
on the sweep-line method. Sections 3 and 4 show how to obtain a global progress
measure from progress measures for the subcomponents of the system, and
presents the sweep-line algorithm for compositional progress measures. Section 5
presents two algorithms for computing progress measure for subcomponents. Sec-
tion 6 presents some experimental results and compares the use of the composi-
tional sweep-line method with the use of the state space caching method. Finally
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in Sect. 7, we sum up the conclusions. The reader is assumed to be familiar with
the basic ideas of state space exploration.

2 The Sweep-Line Method

This section contains the necessary background information on the sweep-line
method [1, 9]. To make our presentation independent of the concrete modelling
language used for specification of the system, we present our results in the frame-
work of labelled transition systems.

Definition 1. A labelled transition system (LTS) is a tuple L = (S,Σ,∆, ι),
where S is a finite set of states, Σ is a finite set of transition labels, ∆ ⊆
S ×Σ × S is the transition relation, and ι ∈ S is the initial state. ��

We will write s a→ s′ ∈ ∆ if (s, a, s′) ∈ ∆. A state sn is reachable from a state s1
iff there exists states s2, s3, . . . , sn−1 and transition labels a1, a2, . . . an−1 such
that si

ai−→ si+1 ∈ ∆ for 1 ≤ i ≤ n− 1. If a state s′ is reachable from a state s in
the LTS L, we write s →∗L s′. We will refer to →∗L as the reachability relation.
For a state s, reachL(s) = { s′ ∈ S | s→∗L s′ } denotes the set of states reachable
from s. The set of reachable states of an LTS L is then reachL(ι). The transition
labels of the LTSs are not important for the sweep-line method, and hence we
omit them in the figures. An LTS can be viewed as representing the state space
of a system, and we therefore use the terms state space and LTS interchangeably.

A common way of constructing systems is through composition, and sev-
eral parallel composition operators have been defined in the literature. In this
paper we do not consider a particular parallel composition operator. Our only
requirement to the parallel composition is captured in the definition below. This
requirement is satisfied by most parallel composition operators used in practice.

Definition 2. Let (S,Σ,∆, ι) = L1‖ · · · ‖Ln be the parallel composition of n
LTSs, where Li = (Si, Σi, ∆i, ιi) for 1 ≤ i ≤ n, and S = S1 × · · · × Sn. The
operator ‖ respects local reachability if and only if the following holds:

– ι = (ι1, . . . , ιn).
– (s1, . . . , sn)→∗L (s′1, . . . , s

′
n)⇒ si →∗Li s′i for 1 ≤ i ≤ n. ��

The sweep-line method is based on the concept of a progress measure. A progress
measure specifies a partial order (O,�) (i.e., a reflexsive, antisymmetric, and
transitive relation) on progress values O of the system, and a progress mapping
ψ assigning a progress value ψ(s) ∈ O to each state s.

Definition 3. A progress measure on an LTS L = (S,Σ,∆, ι) is a tuple
P = (O,�, ψ) such that (O,�) is a partial order and ψ : S → O is a progress
mapping from states into O. A monotone progress measure is a progress
measure satisfying: ∀s, s′ ∈ reachL(ι) : s→∗L s′ ⇒ ψ(s) � ψ(s′). ��
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Fig. 1. Snapshots of the sweep-line method. The states are ordered left to right accord- 
ing to their progress value. Initially (a), only the initial state i is stored and marked 
as unprocessed, and the sweep-line (the dashed vertical line), is to the left of the state 
space. Successors of i are calculated and marked as unprocessed. After i has been pro- 
cessed, s~ has a minimal progress value among the unprocessed states (SI, s ~ ,  and s ~ )  
and is selected for processing. After sl has been processed, all states with the initial 
progress value (i.e., i and sl) have been processed (b), and the sweep-line can move to 
the right. As it does this, the states i and si with progress value strictly less than the 
minimal progress value among the unprocessed states (i.e., s2, s3, and s4) are deleted 
(c). Either s z  or s s  can now be selected for processing and the exploration continues. 

Monotone progress measures preserve the reachability relation +> of the LTS. 
This means that a monotone progress measure 'P provides a conservative esti- 
mate of the reachability relation. In conventional state space exploration, the 
set of explored states is kept in memory to recognise already visited states. For 
a system with a monotone progress measure, the states with a progress value 
strictly less than the progress values of unprocessed states1 cannot be reached 
from the set of unprocessed states. It is therefore safe to delete such states from 
memory as they are not required to determine whether a newly generated state 
has already been visited. Saving memory by deleting such states is the basic idea 
underlying the sweep-line method. Figure 1 [9] illustrates the sweep-line method 
for monotone progress measures. The progress measure orders the states of the 
LTS, and the states are processed in this order. New states to be processed are 
chosen with minimal progress value, and whenever the minimal progress value 
increases, all states with a strictly smaller progress value are deleted. Intuitively, 
a sweep-line is dragged through the LTS, while new states are calculated in front 
of the sweep-line and processed states are deleted behind the sweep-line. 

For non-monotone progress measures it is not safe to delete states with a 
progress value less than the minimal progress values among the unprocessed 
states. The reason is that a state with a low progress value could be reach- 
able from a state with a high progress value. State space exploration with non- 
monotone progress measure can be done by conducting multiple sweeps. Each 
sweep is done in a similar way to the monotone case, with one exception: to 

A state is said to be unprocessed if all its successors have not yet been calculated. 
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1: Roots← {ι} ; Nodes← {ι} ; Persistent← ∅
2: while Roots �= ∅ do
3: Unprocessed ← Roots // mark all root states for this sweep unprocessed.
4: Roots ← ∅
5: while Unprocessed �= ∅ do
6: // select s minimal wrt. ψ and � in Unprocessed
7: select s ∈ Unprocessed such that ∀s′ ∈ Unprocessed : ψ(s′) �� ψ(s)
8: Unprocessed← Unprocessed− {s}
9: for all (a, s′) such that s a−→ s′ do
10: if s′ �∈ Nodes then
11: Nodes ← Nodes ∪ {s′}
12: if ψ(s) �� ψ(s′) then
13: Persistent← Persistent ∪ {s′}
14: Roots← Roots ∪ {s′} // make s′ root for the next sweep.
15: else
16: Unprocessed← Unprocessed ∪ {s′}
17: end if
18: end if
19: end for
20: // delete unreachable non-persistent states from Nodes
21: Nodes← {s ∈ Nodes | ∃s′ ∈ Unprocessed : ψ(s′) � ψ(s)} ∪ Persistent
22: end while
23: end while

Fig. 2. The sweep-line algorithm. The algorithm performs a number of sweeps (lines 2-
23). In each sweep regress-edges are identified (line 12), and the destination states of
regress-edges are marked as persistent and are used as root states (lines 13-14) for the
next sweep. Once a node has been marked as persistent, it is not deleted in line 21.

ensure that the state space exploration terminates and that all states have been
visited at least once, regress-edges are recognised during the state space explo-
ration. A regress-edge is an edge s a−→ s′ of the LTS such that ψ(s) �� ψ(s′).
When a regress-edge is discovered, the destination state of the regress-edge is
marked as persistent preventing it from being deleted. Newly discovered persis-
tent states are used as roots in the subsequent sweep. The algorithm, derived
from the standard algorithm for explicit state enumeration, is listed in Fig. 2.
Correctness of the algorithm was established in [9].
Theorem 1 (Thm. 1 in [9]). The sweep-line algorithm terminates after hav-
ing explored at most (|B| + 1) · |reachL(ι)| states, where B denotes the set of
destination states of regress-edges. Upon termination, all states reachable from
the initial state have been explored at least once. ��

3 Compositional Sweep-Line Exploration

The construction of a progress measure for the parallel composition of LTSs is
based on the observation that given n partial orders (Oi,�i) for 1 ≤ i ≤ n,
we can construct the product partial order (

∏n
i=1Oi,�) where (o1, . . . , on) �

(o′1, . . . , o
′
n) iff for all 1 ≤ i ≤ n : oi �i o′i. Based on this we define the product

of n progress measures.
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Definition 4. The product of progress measures Pi = (Oi,�i, ψi) for 1 ≤ i ≤ n
is defined as P = (O,�, ψ) where (O,�) is the product partial order of (Oi,�i)
for 1 ≤ i ≤ n as defined above, and ψ(s1, . . . , sn) = (ψ1(s1), . . . , ψn(sn)). ��

The fact that the product of progress measures can be used as a progress mea-
sure in conjunction with parallel composition is established by the following
proposition. The proof of the proposition is rather straightforward and has been
omitted here. It can be found in [8].

Proposition 1. Let Li for 1 ≤ i ≤ n be LTSs with progress measures Pi =
(Oi,�i, ψi), respectively. The product P = (O,�, ψ) of the Pi’s as defined in
Def. 4 is a progress measure on L = L1‖ · · · ‖Ln. If Pi is a monotone progress
measure on Li for 1 ≤ i ≤ n, then P is a monotone progress measure on L. ��
Since by Prop. 1, the product progress measure is a progress measure on the par-
allel composition, we can immediately apply the algorithm from Fig. 2. However,
we present a more elaborate algorithm which exploits that the progress measure
on some components might be monotone. This makes it possible to delete per-
sistent states when the monotone progress of a component ensures that they
are no longer reachable from the unprocessed states. Persistent states cannot be
deleted with the algorithm from Fig. 2.

To explain how the improved algorithm operates, we first revisit the al-
gorithm from Fig. 2. The progress mapping for the parallel composition L =
L1‖ · · · ‖Ln is a vector: ψ = (ψ1, . . . , ψn). This n-dimensional progress mapping
makes a disjoint partitioning of the states of L, and positions the states into
an n-dimensional grid. Figure 3 illustrates this for n = 2 and progress measures
based on total orders. The square with coordinates (x, y) contains all states with
progress value (x, y). For example, the states s1, s2, and s3 are the states with
progress value (1, 2).

The progress measure P1, corresponding to the x-axis in Fig. 3, is monotone,
whereas P2, corresponding to the y-axis, is non-monotone. That P1 is monotone
can be seen from the fact that all edges where the first coordinate changes points
to the right. That P2 is non-monotone can be seen from, e.g., the regress-edge
from s5 to s6 where the value of the y-coordinate decreases. As it can be seen, the
non-monotone progress measures cause multiple sweeps. In this case, it caused all
states reachable from s6 to be re-explored in the next sweep. Revisiting all states
reachable from s6 can be avoided by exploring the states columnwise according
to P1 (the monotone progress measure) and by conducting multiple sweeps only
within each column. Figure 4 depicts a scenario in which the states are explored
according to the columns determined by the monotone progress measure P1.

To formulate the sweep-line algorithm for n-dimensions we introduce two
partial orderings derived from the partial order on the product progress values.
The role of the two orderings is to distinguish between progress originating from
monotone and non-monotone progress measures.

Definition 5. Let Pi = (Oi,�i, ψi) for 1 ≤ i ≤ n be progress measures, and let
P = (O,�, ψ) be the product progress measure. Let m = {i | Pi is monotone },
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Fig. 3. Snapshots of state exploration. The sweep-line (indicated with thick lines) 
separates the squares (1, I ) ,  (1,2) ,  (1,3) ,  and (2, 1) containing the  explored (and now 
deleted) states ( 6 ,  sl, s2, s3, ss) from the squares containing some unprocessed states 
The squares (2,2)  and (4, 1) are the next squares that  can be examined in the least- 
progress-first order. If ( 4 , l )  is chosen to be examined, the fragment of the sweep-line 
corresponding to y = 1 can move to ( 4 , l )  as shown in Fig. 3(b). If (2,2)  is chosen to 
be examined, the fragment of the sweep-line corresponding to z = 2 can move t o  (2,2). 
Eventually, this sweep will terminate, giving the situation depicted in Fig. 3(c). During 
the sweep, the states ss and sr will have been marked as persistent states because of 
the regress-edges from s4 to  sr and s~ to  ss, and they will be used as roots in the next 
sweep. The exploration of the state s p x e  will finish after this next sweep. 

and m = { j  1 j $ m). The partial orders ( 0 ,  Em)  and ( 0 ,  EK) are defined by: 

(01,. . . ,on) Em (o:, . . . ,o&) u Y i  t m : oi Ei oj 

(01,. . . ,on) EK (o:, . . . , o&) u Y i  t m : oi Ei oj 

In Fig. 3, the ordering on the monotone component determines the ordering on 
the columns, whereas the ordering on the non-monotone component determines 
the ordering within the columns. Figure 5 lists the compositional sweep-line al- 
gorithm. The algorithm consists of two procedures: COLUMNSWEEP and SWEEP. 
The procedure COLUMNSWEEP specifies the local sweep according to the non- 
monotone progress measures, i.e., the sweeps in the columns of Fig. 4. SWEEP 
specifies the global sweep based on the monotone progress measures. 

4 Correctness 

We now turn to the correctness of the compositional sweep-line algorithm, i.e., 
that the algorithm in Fig. 5 terminates for any LTS C = C 1  . . . C ,  and upon 
termination all reachable states of C have been visited at least once (full cover- 
age). To do this, we first introduce some new notation: The monotone compc. 
nents of the product progress measure on C partitions the set of reachable states 
into equivalence classes (columns in terms of Fig. 4), where two states s and s' 
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Global sets:
1: GlobalUnprocessed← {ι}; Nodes← {ι}; Persistent← ∅

procedure ColumnSweep ()
1: while Roots �= ∅ do
2: Unprocessed ← Roots // mark all roots for this columnsweep unprocessed.
3: Roots ← ∅
4: while Unprocessed �= ∅ do
5: // select s minimal wrt. ψ and �m in Unprocessed
6: select s such that ∀s′ ∈ Unprocessed : ψ(s′) ��m ψ(s)
7: Unprocessed← Unprocessed− {s}
8: for all (a, s′) such that s a−→ s′ do
9: if s′ �∈ Nodes then
10: Nodes ← Nodes ∪ {s′}
11: if ψ(s) �m ψ(s′) then
12: // s′ is in a subsequent column.
13: GlobalUnprocessed← GlobalUnprocessed ∪ {s}
14: else if ψ(s) ��m ψ(s′) then
15: Persistent← Persistent ∪ {s′}
16: Roots← Roots ∪ {s′}
17: else
18: Unprocessed← Unprocessed ∪ {s′}
19: end if
20: end if
21: end for
22: // delete unreachable non-persistent states in this column from Nodes
23: Nodes← {s ∈ Nodes | ∃s′ ∈ Unprocessed : ψ(s′) �m ψ(s)}
24: Nodes← Nodes ∪ Persistent ∪GlobalUnprocessed
25: end while
26: end while

procedure Sweep ()
1: while GlobalUnprocessed �= ∅ do
2: Roots← R where R ⊆ GlobalUnprocessed satisfy: ∀s, s′ ∈ R : ψ(s) = ψ(s′)

and ∀s ∈ R, s′ ∈ GlobalUnprocessed−R : ψ(s′) ��m ψ(s)
3: GlobalUnprocessed← GlobalUnprocessed−Roots
4: ColumnSweep() // sweep the next column.
5: Nodes ← Nodes − Persistent
6: Persistent← ∅
7: end while

Fig. 5. The compositional sweep-line algorithm. Procedure ColumnSweep is identical
to the algorithm in Fig. 2 except for lines 11-14 where it is checked whether s′ is higher
in the monotone order. If this is the case, its investigation should be postponed to
a later invocation of the procedure as it belongs to a subsequent column. The state
is therefore inserted into the set GlobalUnprocessed which is shared between the
two procedures. The procedure Sweep conducts a sweep according to the monotone
progress measures where for each fixed progress value of the monotone components,
a non-monotone sweep is conducted by invoking the ColumnSweep procedure. After
each invocation of ColumnSweep, the persistent states are deleted from the set Nodes
in line 6 of Sweep.
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alence class. We say that a state is being explored whenever its successor states
are being calculated.

Lemma 1. Let C ∈ CL and let R ⊆ C be a set of states. If in(C) ⊆ R, then
invoking ColumnSweep on R explores all states in C, adds out(C) to Glob-
alUnprocessed, and explores at most (|B(C)|+ 1) · |C| states.
Proof. The lemma follows by a straightforward generalisation of the proof of
Thm. 1 given in [9], and the observation that all states in C are reachable from
in(C) using only intermediate states in C. ��

Definition 7. Let X ⊆ CL. The notation for out and over in Def. 6 is extended
to sets of equivalence classes by:

– out(X) = {ι} if X = ∅, and out(X) =
⋃
C∈X out(C)−⋃C∈X C otherwise.

– over(X) = CL if X = ∅, and
⋃
C∈X over(C)−X otherwise. ��

For a non-empty set X ⊆ CL we will say that C ∈ X is minimal in X if there
exists no C ′ ∈ X such that C ′ �m C. Similarly, we will say that s ∈ C for
some C ∈ CL is minimal in C if there exists no s′ ∈ C such that ψ(s′) �m ψ(s).
The correctness of the compositional sweep-line algorithm in Fig. 5 follows from
Thm. 2 below which uses the following proposition. Its proof can be found in [8].

Proposition 2. Let C ∈ CL and let X ⊆ CL be downwards closed. Then:

1. If C is minimal in over(X), then X ∪ {C} is downwards closed.
2. If s ∈ C is minimal in out(X), then C is minimal in over(X).
3. If C is minimal in over(X), then in(C) ⊆ out(X). ��

Theorem 2. The sweep-line algorithm in Fig. 5 terminates after having ex-
plored at most

∑
C∈CL(|B(C)|+1) · |C| states. Upon termination all states reach-

able from the initial state have been explored at least once.

Proof. Let E(i) denote the equivalence classes completely explored after i iter-
ations of the loop in lines 1-7 of Sweep. The following loop invariant holds:

E(i) is downwards closed, GlobalUnprocessed = out(E(i)), and |E(i)| = i.

Before the first iterations (i = 0), E(0) = ∅ and hence is trivially downwards
closed, out(E(0)) = {ι} by the definition of out, and |E(0)| = 0. Assume that the
invariant is valid before the i+1’th iteration, and let R be the set of states chosen
by at line 2. By the definition, R ⊆ C for some equivalence class C, and the states
in R are minimal with respect to �m in GlobalUnprocessed. By Prop. 2(2-
3) (with X = E(i)), in(C) ⊆ out(E(i)) = GlobalUnprocessed. Since line 2
of Sweep ensures that R contains all states in GlobalUnprocessed which
are in C, in(C) = R. Hence by Lemma 1 the call to ColumnSweep in line 4
explores all of C. Since C is now explored, E(i + 1) = E(i) ∪ {C}. Since C is
minimal in over(E(i)) by Prop. 2(2), E(i+1) is downwards closed by Prop. 2(1).
Since C ∈ over(E(i)), we have C �∈ E(i). Hence |E(i + 1)| = |E(i)| + 1 =
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i+1. Since R is removed from GlobalUnprocessed, and ColumnSweep adds
out(C) to GlobalUnprocessed by Lemma 1, we have GlobalUnprocessed
= out(E(i)) − R ∪ out(C). The monotonicity of �m and C �∈ E(i) ensures
that

⋃
C′∈E(i) C

′ ∩ out(C) = ∅, and hence that out(E(i)) − R ∪ out(C) =
out(E(i+ 1)).

The number of equivalence classes are finite, and since the size of E(i) grows
by one in each iteration of the loop in lines 1-7 of Sweep we eventually have:
E(i) = CL. In this case GlobalUnprocessed = out(E(i)) = ∅ by the definition
of out, and the loop will eventually terminate with all equivalence classes having
been explored. Each iteration of the loop explores a new equivalence C using
ColumnSweep. The number of states explored when exploring the equivalence
class C is bounded by (|B(C)|+1) · |C| by Lemma 1. The total number of states
explored by Sweep is hence bounded by

∑
C∈CL(|B(C)|+ 1) · |C|. ��

5 Computing Component Progress Measures

This section presents our initial approaches for automatically computing progress
measures for the components LTSs. We present two algorithms: one for obtaining
a monotone progress measure based on strongly connected components, and one
for obtaining a non-monotone progress measure based on spanning trees. Both
algorithms have a time and space complexity which is linear in the size of the
component LTS for which the progress measure is being computed.

Strongly Connected Components. A monotone progress measure for a component
LTS can be obtained by viewing the LTS as a directed graph and computing the
strongly connected component (SCC) graph using e.g, Tarjan’s algorithm [15].
The associated progress mapping ψscc maps each state s into the SCC scc(s) to
which it belongs. The partial order �scc on progress values is determined by the
reachability relation on the SCC graph, i.e., ψscc(s) �scc ψscc(s′) if and only if
s′ ∈ reachL(s). The relation �scc is a partial order since the SCC graph is a
directed acyclic graph. The progress measure is monotone since ψscc preserves
reachability.

The progress measure obtained using SCCs is optimal for monotone progress
measures in the sense that all states in the same SCC must have the same
progress value as a consequence of the definition of monotone progress measures.
Hence, the progress measures based on SCC give the finest partitioning of the
states of all monotone progress measures. However, the SCC based progress
measure gives only the trivial progress measure if the component LTS itself is
strongly connected, i.e., all its states belong to the same SCC.

Spanning Tree. The SCC based algorithm for monotone progress measure above
is highly dependent on the component LTSs having many small SCCs. If too
large SCCs exist, a non-monotone progress measure might give a better reduction
of peak memory usage. A non-monotone progress measure can be obtained by
computing a spanning tree for the component LTS using e.g., a depth-first search.
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The reachability relation on the spanning tree determines the partial ordering in
a similar way as for the SCC algorithm. A topological ordering of the nodes in
the spanning tree gives the non-monotone progress measure consistent with the
reachability relation on the spanning tree. Each edge not in the spanning tree
will be treated as a regress-edge.

6 Experimental Results

A prototype [11] has been developed to conduct some initial experiments with
the compositional sweep-line algorithm. This prototype consists of three pro-
grams. A program pslc for compiling process specifications into labelled transi-
tions systems, a program progress implementing the two algorithms in Sect. 5
for computing progress measures for subcomponents, and a program sweepcheck
implementing the algorithm in Fig. 5. The sweepcheck program implements the
CSP [5] parallel composition operator. The deletion of states is handled by keep-
ing track of which column each state belongs to. When the next unprocessed state
selected has a progress value which is larger (wrt. to the non-monotone compo-
nents) than the previous unprocessed state selected, all non-persistent states in
the current column are deleted.

We present experimental results obtained with this prototype on three
smaller examples, and we compare the use of the sweep-line method with the
use of ordinary full state space exploration, and with the use of the state space
caching method [7]. The three examples are available from [11]. The experiments
were conducted on a 1 Ghz Linux PC with 1 Gb of RAM.

Master/Slave System. This example consists of a master process and a number
of slave processes. The master process initially manages a set of jobs that it
assigns to the slaves. Since the master process progresses with each job assigned,
the SCC algorithm has been used to compute a monotone progress measure for
the master. The slaves are all reactive, i.e., they return to their idle state after
having completed a job. Hence they only have a single SCC, and the spanning
tree algorithm was used to compute a non-monotone progress measure.

The performance of full state space exploration of the master/slave system is
shown to the left in Table 1 for different number of jobs processed by 12 slaves.
The reduction obtained with the sweep-line method is shown to the right in the
table. The Total column shows the number of states processed by the sweep-line
method relative to the total number of reachable states. The Peak column shows
relative memory usage of the sweep-line method compared to the full state space,
i.e., the peak number of states stored divided by the total number of states in
the full exploration. As seen from the Time columns, the reduction comes at a
minor runtime penalty. This is due to the larger number of states processed and
the overhead in deletion of states.

Two-Phase Commit Protocol. The two-phase commit protocol consists of a single
initiator process and a number of voter processes. The initiator process initiates
an election on whether to commit or abort a transaction. The voters then decides
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Table 1. The master/slave system with 12 slaves.

Full State Space Sweep-Line
Config. States Time Total Peak Time
20 jobs 126,976 00:00:14 200% 6.45% 00:00:24
24 jobs 159,744 00:00:18 200% 5.13% 00:00:30
28 jobs 192,512 00:00:23 200% 4.26% 00:00:36
34 jobs 241,664 00:00:29 200% 3.39% 00:00:46
40 jobs 290,816 00:00:36 200% 2.82% 00:00:55

locally whether to vote for commit or abort, and the initiator collects the votes.
In this example, both the initiator and the voters have non-trivial SCCs. The
SCC based algorithm has therefore been used on all subcomponents to compute
the progress measures. Table 2 compares full state spaces exploration to the
sweep-line method for different configurations. The independence of voters, to-
gether with the broadcast nature of the communication from initiator to voters,
causes the state space to grow in width more than in depth as the number of vot-
ers increases. Consequently, the relative reduction obtained with the sweep-line
method becomes smaller as the number of voters grows.

Table 2. The two-phase commit protocol.

Full State Space Sweep-Line
Config. States Time Total Peak Time
6 slaves 18,478 00:00:01 100% 21.16% 00:00:02
7 slaves 87,475 00:00:08 100% 22.33% 00:00:10
8 slaves 420,988 00:01:08 100% 23.19% 00:01:20
9 slaves 2,051,029 00:15:46 100% 23.81% 00:20:46

Stop-and-Wait Protocol. This example is a stop-and-wait data-link protocol,
where a sender process sends packets attached with sequence numbers over an
unreliable network to a receiver process. All processes in this system are cyclic,
and the spanning tree algorithm was used to obtain non-monotone progress
measures. Table 3 compares of the sweep-line method with full state space ex-
ploration for different values of the maximal sequence number.

State Space Caching. The state space caching method resembles the sweep-line
method in that it deletes states on-the-fly in order to reduce peak memory usage.
State space caching conducts a depth-first exploration of the state space, and
allows states not on the depth-first stack to be deleted. To compare the two
methods, we have implemented the state space caching method in our prototype
tool, and tried it on the three examples above for different cache sizes. The
time/space trade-off for different systems, configurations, and different choices
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Table 3. The stop-and-wait protocol.

Full State Space Sweep-Line
Config. States Time Total Peak Time
20 3,640 00:00:01 103.84% 61.73% 00:00:01
30 5,460 00:00:01 103.84% 61.48% 00:00:01
40 7,280 00:00:02 103.84% 61.36% 00:00:02
50 9,100 00:00:04 103.84% 61.29% 00:00:04

of cache size is plotted in Fig. 6. For all three examples, the state space caching
methods runs in time comparable to ordinary full state space exploration for
large cache sizes. Its performance, however, quickly degenerates, when the size
of the state cache is reduced.

The performance degradation of state space caching has been observed be-
fore, and partial-order reduction has been used to alleviate this problem [3]. We
have not added partial-order reduction to our prototype. Both the sweep-line
method and state space caching will, however, benefit from the use of partial-
order methods. We leave it for future work to investigate the relative impact
of partial-order methods on the sweep-line method and the state space caching
method. Compared to pure state space caching, the sweep-line method appears
to provide a better time/space trade-off.

7 Conclusion and Future Work

We have presented a sweep-line algorithm applicable in a compositional frame-
work where the components of the system are represented as labelled transition
systems (LTSs). The key idea was to automatically compute progress measures
for the component LTSs and compose these to obtain a progress measure for
the full system. In addition, the developed sweep-line algorithm exploits that
some components have monotone progress measures and some components have
non-monotone progress measures. We have given algorithms based on strongly
connected components and spanning trees for computing monotone and non-
monotone progress measures for the component LTSs. Better progress measures
can possibly be obtained by combining the two using spanning trees to split
large strongly connected components.

We have assumed that the system considered was a parallel composition of
components represented as LTSs. It is, however, only the computation of progress
measures for the components of the system which relies on the representation
of the components in the form of LTSs. The compositional sweep-line algorithm
itself can be applied independently of the origin of the progress measure for
the components. This means that the algorithm is applicable for any system
S = S1‖ · · · ‖Sn which is a parallel composition of subsystems Si, and where the
states of the full system S is a vector of states with an entry for each subsystem.
This means that our results are applicable to many modelling and specification
languages for concurrent systems, such as for instance Promela used in the
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Fig. 6. Timelspace trad-off for state space caching and the sweep-line methods. The 
graphs shows, for different systems and configurations, the time and space usage of the 
sweep-line method and the state space caching method for different cache sizes. With 
smaller cache sizes the peak memory usage is smaller than for larger cache sizes, but 
at  a significant runtime penalty. The sweep-line method reduces memory usage at  a 
much lower runtime penalty. 
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SPIN tool [6]. Processes (subsystems) in Promela are specified in a C like
language. In this case it seems possible to compute progress measures based
on, e.g., the control flow in the individual processes. In other formalisms such
as timed automata networks as used in, e.g., the UPPAAL tool [10], a progress
measure for the individual timed automata could possibly be computed based
on the locations of the automata. Details of computing progress measure for
processes in various modelling formalisms are left for future work.

The sweep-line algorithm as presented is aimed at checking reachability prop-
erties as it explores all reachable states of the system at least once. It can how-
ever be observed that if all progress measures of the components are monotone
progress measure, then all states of a cycle in the state space will have the same
progress value, and hence all states in a cycle will reside in memory simulta-
neously at some point. This can be exploited for conducting Linear Temporal
Logic (LTL) model checking, which can formulated as searching for cycles in
the composition of two Büchi automata [18]. This means that the compositional
approach presented in this paper can be used to develop an LTL model check-
ing algorithm capable of exploiting the graph structure of the Büchi automata
expressing the LTL property to be checked. Details of this is left for future work.

Future work also involves techniques for generation of error traces with the
sweep-line method. A trace leading from, e.g., the initial state to a state satisfying
a given predicate cannot immediately be obtained with the current version of
the sweep-line method due to the deletion of states.
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