Encoding PAMR into (Timed) EFSMs*

Manuel Nunez and Ismael Rodriguez

Dept. Sistemas Informaticos y Programacién
Universidad Complutense de Madrid, E-28040 Madrid. Spain.
{mn,isrodrig}@sip.ucm.es

Abstract. In this paper we show how the formal framework introduced
in PAMR (Process Algebra for the Management of Resources) can be in-
cluded into a notion of Extended Finite State Machines (in short EFSM).
First, we give the definition of process. Following the lines of PAMR, a
process consists not only of information about its behavior but also of
information about the preference for resources. This information will
be encoded into a model based on EFSMs. In contrast with the original
definition of PAMR, a notion of time is included in our processes, that is,
transitions take time to be performed. Systems are defined as the compo-
sition of several processes. We present different implementation relations,
depending on the interpretation of time, and we relate them. Finally, we
study how tests cases are defined and applied to implementations.

1 Introduction

There exists a growing interest in including microeconomic concepts into dif-
ferent areas of computer science. For example, several systems related to e-
commerce use a notion of preference or, equivalently, utility function (see e.g.
[23/3/8]). These notions have been also considered in the field of networks to de-
fine algorithms dealing with resource allocation (e.g. [ITJ27/12]). However, most
of these works are restricted to solve a concrete problem, that is, they do not
provide a general framework to be applied to different fields.

PAMR [19] is a formal language very suitable to specify systems which depend
on the resources that they own. Sometimes, in order to formally describe a
system, it is useful to specify information about the available resources for the
different components of the system. Let us introduce the following simple running
example. Consider a system consisting in the parallel execution of n subsystems
(P ... P,) and m different kinds of resources that they may use (let us suppose
that the total quantity of the resource i is equal to x;). The performance of these
subsystems depends on these resources (for example, the portion of memory used
by each subsystem, time quantum of CPU, time quantum of access to the bus,
etc). Each subsystem P; has an initial distribution of resources z7 ... xd, . that

* Research supported in part by the CICYT project TIC 2000-0701-C02-01. This
research was carried out while the first author was visiting the GET-INT. He would
like to thank Ana Cavalli for helpful discussions on testing and for her financial
support under the Platonis project.

D.A. Peled and M.Y. Vardi (Eds.): FORTE 2002, LNCS 2529, pp. 1-[I6 2002.
© Springer-Verlag Berlin Heidelberg 2002

2 M. Nufiez and 1. Rodriguez

is, in the beginning P; owns a:f units of the resource i. Given the fact that
the quantity of resources that subsystems own cannot be bigger than the total
amount, we work under the constraint: V1 < i < m : Zj xi < x;. Finally,
subsystems have a preference on how they like resources. For example, suppose
that P;, runs at the same speed if we replace one unit of the resource i; by
four units of the resource iy, while Pj, runs at the same speed if one unit of
the resource i, is replaced by two units of the resource 5. In particular, P;, will
perform better if we replace three of its units of i by one additional unit of ;.

In PAMR a process does not only take into account its activity (that is, which
actions can be performed at a given point of time) but it also considers which
resources can be used during its execution. Besides, processes may exchange
resources with other processes. For instance, in our running example, if P;, gives
to P, three units of 7 and receives from Pj, one unit of 41, then both subsystems
run faster. So, PAMR provides mechanisms to, starting with an initial distribution
of resources, accomplish a better performance of the system. Processes are able
to exchange resources but harmful exchanges are forbidden. For instance, it is not
allowed that P;, exchanges three units of io by one unit of 7; with P;, because
both subsystems get worse, and thus the whole system deteriorates.

The formal language PAMR has been already applied to very different frame-
works: A variant of e-commerce [T5], the management of software projects [20],
and the definition of (part of) the behavior of agents in a cooperative learning
environment [16]. However, the current formulation of PAMR lacks two character-
istics that could strongly increase its application to the specification and analysis
of communication protocols. First, there is no notion of input/output actions.
Second, no notion of time appears in the language. In this paper we deal with
these two limitations by considering a model where PAMR fits. We will consider the
well-known formalism of Extended Finite States Machines [13] (in short EFSM).
Our aim is to show how the concepts underlying the conception of PAMR can be
encoded into a kind of EFSM. In order to include time aspects, we consider that
some actions take time to be performed. This time will mainly depend on the
available resources, that is, in order to perform an action the bigger amount of
suitable resources a process may use the faster this action will be performed.
In PAMR (and in the mechanism presented in this paper) processes have a ne-
cessity function. Given an action, this function returns a positive real value if
the process has enough resources to perform this action; otherwise, the value co
is returned. We will consider that this value denotes the time that it takes to
perform the corresponding action (with respect to the available resources).

In addition to the presentation of our formalism we study conformance testing
relations in our framework. Conformance is the term used by system analyzers
to describe the situation in which an implementation is adequate with respect
to a given specification. In order to properly define this notion, and thus to have
the formal basis for the process of testing, there has been a considerable effort,
that in particular has been the seed for the joint ISO/ITU-T working group on
“Formal Methods in Conformance Testing” (in [6] a summary of the work carried
out by the group is presented). In order to formalize the notion of conformance

Encoding PAMR into (Timed) EFSMs 3

two are the most extended methods: by means of an implementation relation or
by requirements. We will concentrate on the first approach. An implementation
relation relates implementations from a given set Imp with specifications from
another set Spec. Our study considers relations based on conf [5] and more pre-
cisely on the update of this relation to deal with inputs and outputs: ioco [25]
26]. In order to cope with time, we will not take into account only that a sys-
tem may perform a given action, but we will also record the amount of time
that the system needs to do so (according to the resources that it owns). Un-
fortunately, conformance testing relations for timed systems have not been yet
extensively studied. We propose three conformance relations according to the
interpretation of good implementation for a given specification. Regarding our
relations, time aspects add some extra complexity. For example, even though
an implementation I had the same traces as an specification S, we should not
consider that I conforms to S if the implementation is always slower than the
specification. Moreover, it can be the case that a system performs a sequence of
actions for different times. These facts motivate the definition of several confor-
mance relations. For example, it can be said that an implementation conforms
to a specification if the implementation is always faster, or if the implementation
is at least as fast as the worst case of the specification. We think that the rela-
tions that we introduce in this paper can be useful for the study of conformance
for other models of timed systems. For example, the definitions can be easily
adapted to timed automata [1]. Other definitions of timed I/O automata (e.g.
[10/24]) are restricted to deterministic (regarding actions) behavior. In this case,
some of our relations will be equivalent among them (i.e. they will relate the
same automaton).

In terms of related work, there are models to specify systems sharing re-
sources (e.g. [4]), but in this case resources are just accessed, not traded; this
access induces some delays in the behavior of processes. Our proposal is some-
how related to the ODP trading function [I1]. Nevertheless, in our case a process
only uses (and nobody else can use them until they are exchanged) the resources
that it owns. Finally, management of resources appears in fields like operating
systems or concurrent programming. Resources are usually owned by a mediator
which allows processes to use them. Regarding conformance testing for timed
systems, some proposals have already appeared in the literature (e.g. [I8[710]
24]). Our proposal differs from these ones in several points, mainly because the
treatment of time is different. We do not have a notion of clock(s) together with
time constraints; we associate time to the execution of actions (the time that it
takes for a system to perform and action).

The rest of the paper is organized as follows. In Section 2] we define our lan-
guage in terms of processes and systems. In Section Bl we study implementation
relations for our framework where we make an interpretation of the behavior
with respect to time. We relate these implementation relations. We also intro-
duce a new relation that classifies policies for exchanging resources with respect
to a specification. In Section Ml we show how test cases are defined and describe
how to apply them to implementations. Finally, in Section Bl we present our
conclusions and some directions for further research.

4 M. Nufiez and 1. Rodriguez

2 PAMR Processes as (Timed) EFSMs

In this section we show how the concepts behind the definition of PAMR can be
encoded into an extended notion of EFSM. The main differences with respect
to usual EFSMs consist in the addition of time and the existence of symbolic
transitions denoting exchanges of resources. Next we introduce the definition of
Timed EFSM. We suppose that the number of different variables is equal to m.

Definition 1. A Timed Extended Finite State Machine, in the following TEFSM,
is a tuple M = (S,1,0,Tr, s;n,y) where S is a finite set of states, I is the set of
input actions, O is the set of output actions, Tr is the set of transitions, s;, is
the initial state, and g € R is a tuple of variables.

Each transition ¢ € Tr is a tuple t = (s,5',4,0,Q, Z,C) where s,s' € S are
the initial and final states of the transition, i € I and o € O are the input and
output actions, respectively, associated with the transition, @ : R" — Bool
is a predicate on the set of variables, Z : R" — R]" is a transformation over
the current variables, and C': R" — R U {oo} is the time that the transition
needs to be completed according to the available resources.

A configuration in M is a pair (s,Z) where s € S is the current state and &
is the current tuple of variable values.

We say that tr = (s, ¢, (i1/01,...,ir/07),Q, Z,C) is a (timed) trace of M if
there exist transitions t1, ..., ¢, € T'r such that t; = (s, s1,41,01,Q1, Z1,C1),. - -,
tr = (8$y-1,,ir,0r, Qr, Zr,C.), the predicate @ is defined such that it holds
Q) = (Q1(Z) N Q20Z1(Z)) N oo AN Qr(Zr—1(-..(Z1(F))...))), the trans-
formation Z is defined as Z(z) = Z,.(Z,—1(...(Z1(Z))...)), and C' is defined as
C(z)=Ci(z)+ Ca(Z1(2)) + - - + Cr(Zr—a (... (Z1(T)) ..).

Let I’ C I. The first occurrence of I in the trace tr, denoted by First(ir, I'),
is defined as the first input ¢; € I’, with 1 < j <r, appearing in the trace. O

Intuitively, for a configuration (s, Z), a transition t = (s, s',4,0,Q, Z,C) in-
dicates that if the machine is in state s, receives the input ¢, and the predicate
Q holds for Z, then after C(Z) units of time (assuming C(Z) # oo) the machine
emits the output o and the values of the variables are transformed according to
Z. Traces are defined as a sequence of transitions. In this case, the predicate, the
transformation function, and the time associated with the trace are computed
from the corresponding to each transition belonging to the sequence. We sup-
pose that addition in real numbers is extended in the following way: co+1r = oc.
Finally, the notion of first occurrence will be used when deleting internal actions
from the composition of machines.

Ezample 1. In Figure[ll we present two TEFSMs. For example, let us suppose that
the initial value of variables is T = (2,0, 0,2) and that the initial state of M; is
the state labelled by 1. Then, the transition ¢12 can be performed, it will take
time %, and after that, the value of the variables will be given by (3,0,0,1). O

As we said in the introduction, we separate between the behavior of the
process and the management of resources. We introduce three functions that are

Encoding PAMR into (Timed) EFSMs 5

My Mo
e Ne:
as/ts a1 /by az/bz

I ={by,b2},0 = {ag,as}

t1 = (s1,s1,b1,a4,Q1,21,Cq)

@—@ to (s1,s1,b2,a3,Qa, Z3,Cg)
1%

as/bs
ay /by Z;(Z)

(1,1, =1, —1) if i = 1
T +

(1,0,0,0) ifi=2
I ={ay,az,a3,a4}, 0 = {by,by,b3,bg}

~ 21 >0 A w9 >0 if i=1

(2) = Z;(Z 0 A
t12 = (s1,s2,a1,b1,Q1,Z1,C1) Qi@ (@) 2 @y >0 ifi=2
t13 = (s1,s3,a2,b2,Qa, Z3, C3) L
t3o = (s2,s3,a3,b3,Q3, Z3,C3) 7; 73 ifi=1A 1 #0 A g #0
t21 = (82,51, 04,04, Q4, 24, C4) Ci@) =4 L ipi—o
tog = (s2,s2,a1,b1,Q5,Z5,Cs) g z3 =

oo otherwise
- (1,0,0,—1) if i € {1,2,5}
Zi(z) = o
(0,1, —1,0) if i € {3,4}

_ z; >0 if i € {1,2,3,4}
Qi(®) = Z;(8) 20 A
z1 >0ifi=5

L ifie{1,2,3,4} A 2; #0

Il
el

Ci(z) L ifi=5 A z1 #0

oo otherwise

We suppose that & € RY. We denote by 2; the i-th component of Z.

Fig. 1. Examples of TEFSM.

responsible for controlling all the details related to the resources that a machine
may use at a given state. Consider M = (S,I,0,Tr, Sin, 7).

— Utility functions. A function v : S x R" — R™* such that u is monotonidl
and non-decreasing in the second argument. A utility function makes, for
each state, a classification of the different basket of resources. For instance,
u(s,Z1) < u(s,Z2) means that if the corresponding machine is currently in
the state s then it prefers to have the basket of resources T to the basket
Z1. Note that this function depends on the state as preferences are not the
same in all the states of the machine (they are usually strongly influenced
by the actions that can be performed).

— Necessity functions. A function n : O x R}' — R™ U {oo} such that n is
monotonic and non-increasing in the second argument. The purpose of this
function is to decide whether the machine owns enough resources to perform
the corresponding output action (i.e., it returns a value different from oo).
We consider that only output actions need resources to be performed because
input actions are passive entities in the sense that they are performed once
a suitable signal is received. In this case, the machine performing the cor-
responding output action will use resources to perform the communication.
Time will be introduced into our processes by means of this function.

— Consumption functions. A function ¢ : O x R}" — R}". They indicate how
resources are created/consumed after performing an action. For example,

! In the following we consider that RT is ordered by the relation (z1,...,Zm) <
(y17"-aym) lﬁwz Syl, for any 1 stm

6 M. Ntifiez and I. Rodriguez

¢(o0,T) = § means that if the machine currently owns the basket of resources
Z then the amount of resources owned after performing o is given by .

A process is a TEFSM where transitions adequately reflect the corresponding
associated functions. Intuitively, predicates in transitions will indicate that the
machine has enough resources to perform the corresponding action and that after
creating/consuming resources no debts are generated; transformation functions
will record the new basket of resources after the transition is performed; finally,
the time associated with transitions is given by the necessity function.

Definition 2. Let M = (S,1,0,Tr,$;n,y) be a TEFSM and w,n,c be utility,
necessity and consumption functions, respectively. We say that P = (M, u,n,c)
is a process if for each t = (s,5',4,0,Q,Z,C) € Tr the predicate @, and the
functions Z and C fulfill Q(z) = (n(0,z) < oo A Z(z) > 0), Z(z) = c(o0,Z), and
C(z) =nlo,). |

Ezample 2. Consider the machine M; presented in Example[d. Let n and ¢ be
two functions defined, respectively, as

L oifx; >0
n(bj7a_:):{zj e c(bha_:):a_:—’—{gé’

oo otherwise s

0,0,—1) if j € {1,2}
1,-1,0) if j € {3,4}

If uy is a utility function for M; then we have that (M, u1,n,c) is a process.
Accordingly, if we extend n and ¢ in the following way

n(a;,x) = é if j=3 A z3>0 claj,) :37;-‘,—{

(1,1,-1,-1) if j=4
1
oo otherwise

1
(1,0,0,0) if j=3

and ug is a utility function for My then (Ma,uq,n,c) is also a process. 0

In this paper we do not consider usual variables. That is, variables are always
associated with resources/ Let us remark that, for each transition, Z, @, and
C will be applied to the current amount of resources (they will be indicated by
the current configuration). Let us also note that even though the utility function
does not explicitly appear in the definition of transitions, it will be taken into
account when processes exchange resources.

We will define systems by composing several processes. Processes will com-
municate among them in two ways. First, they will jointly perform actions by
sending an output action from one process that will be received (as an input)
by another one. Besides, in order to improve their performance, processes will
exchange resources. These exchanges will be guided by a policy. We consider the

2 In order to cope with this restriction it is enough to consider that the whole set of
variables ranges over AX IR, being A the type of the variables keeping track of data.
Note that A may possibly be a cartesian product of different sorts. Predicates and
functions associated with transitions should be adapted accordingly. For example,
for a transition t = (s,s,4,0,Q, Z,C) we would have Q = Q1 A Q2 where Q1 is a
predicate over A while Q2 is a predicate over R’".

Encoding PAMR into (Timed) EFSMs 7

two policies already introduced in [19J Under a preserving utility policy ex-
change of resources are allowed only if, after the exchange, at least one process
improves and no process gets worse. Intuitively, processes are the owners of the
resources and they will not give up them if they do not receive a compensation.
Under a mazimizing utility policy exchanges are allowed only if the whole sys-
tem improves (even if some of the components deteriorate). In order to measure
when a process/system improves we take into account the corresponding util-
ity functions. Exchanges are denoted by a matrix £ € (R7')"*". An element
Eivi, = (1,...,24,...,x,) indicates that the process i; gives to the process io
a total of x; units of the i-th resource. So, the total tuple of resources given by
the process i1 to the rest of processes is), &, while it receives from other
processes the tuple >, Ei, -

Definition 3. Let Py, ..., P, be processes such that P, = (M;, u;, n, c), for some
utility functions u;, and some necessity and consumption functions n and c,
respectively. For each 4, let ¢; = (s;,T;) be configurations over P;.

An ezchange matriz (usually denoted by £,&’,...) is an n X n matrix where
the components belong to R

We say that the exchange indicated by & is allowed under the preserv-
ing policy (resp. maximizing policy) for the configurations cy,...,c,, denoted
by allowed, es(ci, ..., Cn,E) (resp. allowedyqez(ca, .- -, Cn, E)), if we have that
V1<i<n:Z; — >, &k > 0 and the following conditions hold:

— Preserving policy:
o 31 <r<n:up(Sr,Tr + Y) Ekr — 21 Erk) > Ur(Sr, ZTr), and
o V1<i<n:ui(s,Zi+ D, Ei— > kCik) > ui(si,T;)

— Mazximizing policy:

o > uilsi, Ti) < Do ui(si, Ti + Yy Eri — 2y Eik) O

The three conditions defining the preserving policy indicate, respectively, that
no process gives resources that it does not own, that (at least) one process im-
proves after the exchange, and that no one deteriorates. The second condition of
the maximizing policy expresses that the total utility of the processes (measured
as the addition of the corresponding utilities) increases after the exchange.

We compose processes to define systems. Some of the actions of the pro-
cesses will be hidden indicating that they are not visible, that is, they can be
neither controlled nor observed. In order to facilitate the understanding, we have
not defined a compressed version of systems where internal communications are
omitted. So, we generate the whole graph (including both internal and external
actions) and then we delete internal communications (getting what we call a sim-
plified system). In addition to the usual input/output transitions, systems have a
kind of symbolic transitions indicating exchange of resources. These transitions
are parameterized by the allowed exchange matrixes for the current configu-
ration. In this case, transition will be labelled with special input and output

3 The choice of a good policy is not a trivial task, as this problem is related with the
social welfare aggregator problem. Arrow’s impossibility theorem [2] shows that there
does not exist such an aggregator fulfilling a certain set of desirable properties.

8 M. Ntifiez and I. Rodriguez

symbols (the symbol * and the corresponding exchange matrix, respectively). A
system will be able to perform a transition labelled by an external input only
when no more exchanges are allowed. That is, processes exchange resources un-
til they reach a good distribution. In this case, transitions take into account the
current configurations of the processes.

Definition 4. Let Pi,..., P, be processes, where P, = (M;,u;,n,c), for some
utility functions u;, and some necessity and consumption functions n and c,
respectively; each M; is given by M; = (S, 1;, 0;, Tri, 8in,, ¥i)- Let I C U, I;
and O C |J; O;, such that I N O = . The system created by the composition
of Py,..., P, under the exchange policy Pol with respect to the actions sets I
and O, denoted in short by Sys(Pi,..., P,,I,0, Pol), is defined as the TEFSM
(S, TU {x},OU (RY)" ™, Tr, s;,,7) where:

— The initial state s;, is defined as s;, = (Siny, - - -, Sin,,)-

The initial tuple of (tuples of) variable values is § = (71, ..., Jn)-

— 8§ =05 x---x8,. Actually, it is enough to consider those states reachable
from s;,, by sequences of transitions belonging to T'r.

— Let s € S with s = (s1,...,8,). We have (s,s,%,&,Q,Z,C) € Tr, where Q
and Z are defined as Q(Z1,...,%T,) = allowedpy((S1,%1),- .-, (Sn,Zn),E)
and Z((El, . ,i’n) = (i’l + 21, [N ,i’n + Zn), where Zi = Zk Ekl - Zk 5ik~
Besides, the time function C'is defined as C(z1,...,Z,) = 0.

— Let s = (s1,...,8j,...,8,) and 8’ = (s1,...,8},...,8,) be two states.
We have (sj,s},i,0,Qy,Z;,C;) € Tr; implies (s,s',i,0,Q,2,C) € Tr,
where Q(Z1,...,2Z,) = Q;(%;) AN (i € I = H(s,5%xE,Q,2',C") €
Tr : Q(ZT1,...,%n)), Z(Z1,...,Tn) = (T1,...,4;(Zj),..., %), and
C(Z1,...,%n) = Ci(Z5).

Let tr = (s, (i1/01, .. .,4./0.),Q, Z,C) be a trace for the previous TEFSM.
We say that tr is a chained trace if o, € O and there exists 1 < k < r such that
i, € I, for any 1 < j < k —1 we have i; = x and o; € (R]')"*", and for any
k+1<I1<rwehavei ¢ TUO and i; = 0;_;. O

Let us note that actions not belonging to I U O are considered as internal.
For the sake of simplicity, we consider that exchanges do not consume timed
A chained trace consists of a sequence of exchanges, an external input action,
a consecutive sequence of paired output/input actions, and finally an external
output action. Let us remind that the predicate @) and the functions Z and C'
associated with chained traces take into account the exchanges performed before
the first visible input appears in the trace (see Definition [I).

In order to abstract internal computations, systems are transformed into
simplified systems. The idea is that transitions of a simplified systems are those
chained traces belonging to the original system.

4 Time can be associated with exchanges of resources by replacing the assignment
C(z) = 0 in the fourth clause of the previous definition by C(Z) = e(Z), where e is
a function computing time with respect to the amount of exchanged resources.

Encoding PAMR into (Timed) EFSMs 9

Iu/a4

SQ SS
a1 /ba(a1 /ba(
as/ba .b ba/as
by fas /a]/bl az/ba (, s ay /by az /bs a1/by las /bs

az /by
az/b& \) C

ul/bl bz/‘li b/
2/a3

Fig. 2. Examples of Systems and Simplified Systems.

Ezample 3. In Figure[2 (left) we present the composition of the processes defined
in Example P}l We have omitted transitions related to exchanges. Let us consider
that their utility functions are respectively defined as:

z1+aif j=1
U1(Sj,£)—{l‘1 +axq4if j=2 u2(s1,i):xl-x2+x3
T3 if j =3

Suppose that the initial distributions are z; = (1,1,2,1) and Z» = (5,1,0,0),
respectively, and that we are in the initial state (state (1, 1) of the composition).
A possible exchange under the maximizing policy would transform these distri-
butions into Z; = (0,0,0,1) and T2 = (6,2,2,0). Note that this exchange is not
allowed under a preserving policy. In the latter case we could have, for example,
an exchange leading to z; = (3,0,0,1) and z2 = (3,2,2,0).

We suppose that the sets of actions I and O are respectively defined as
I = {aj,a2} and O = {b3,bs}. These sets are more relevant when defining
the associated simplified system. In Figure 2] (center) we present the simplified
system corresponding to the previous system. O

Definition 5. Let Comp = (S,1U {x},0 U (R")"*", T, si,,7) be a system.
We say that M’ = (S',1,0,T7', s;n,7) is the simplified system associated with
Comp, denoted by Simp(Comp), if S’ and Tr' fulfill the recursive definition:

— 8, €5, and
—If s € 8 and tr = (s,¢,(i1/01,...,4r/0r),Q, Z,C) is a chained trace of
Comp then s’ € S and (s, s',First(tr,I),0.,Q, Z,C) € Tr'.

We say that 1/01,...,%./0, is a non-timed evolution, or simply evolution,
of M’ if there exists a trace (S;n, s, (i1/01,...,4r/0),Q, Z,C) of M’ such that
Q(7) holds. Given a simplified system Scomp, we denote by NTEvol(Scomp) the
set of non-timed evolutions of Scomp.

We say that the pair ((i1/01,...,ir/0r),t) is a timed evolution of M if there
exists a trace (sin, s, (41/01,- .., ir/0r), @, Z,C) of M’ such that Q(g) holds and
t = C(y). Given a simplified system Scomp, we denote by TEvol(Scomp) the set
of timed evolutions of Scomp. O

10 M. Nufiez and 1. Rodriguez

Let us remind that First(tr,I) denotes the first (an unique) occurrence of
an external input in the chained trace tr. As we said before, a chained trace
is converted into a single transition. Then, an evolution is a trace from the
initial state of the simplified system. Let us note that all the actions appearing
in evolutions are visible (as both internal actions and exchanges are removed
by considering transitions formed from chained traces). We distinguish between
timed and non-timed evolutions (where we simply forget the associated time)
because it simplifies the forthcoming definitions of implementation relations.

3 (Timed) Implementation Relations

In this section we introduce our implementation relations. All of them follow
the same pattern: An implementation I conforms to a specification S if for any
possible evolution of S the outputs that the implementation I may perform
after a given input are a subset of those for the specification. This pattern is
borrowed from ioco [2526] but we do not consider quiescent states (that is,
states where no external outputs are available). In addition to the non-timed
conformance of the implementation, we require some time conditions to be hold
(this is a major difference with respect to ioco where time is not considered).
For example, we may ask an implementation to be always faster than the time
constraints imposed by the specification. The different considerations of time
produce that there is not a unique way to define an implementation relation.
Next, we formally define the sets of specifications and implementations: Spec
and Imp. A specification is the composition of a set of processes, that is a system,
or equivalently its associated simplified system. Regarding implementations, we
have to determine what is visible. We consider that exchanges of resources are
autonomous as they only concern internal planning of the corresponding pro-
cesses. Even in this case, these exchanges strongly influence the behavior of
implementations as they may allow/disallow some actions to be performed. Let
us remind that a necessary condition for an action to be performed is that the
corresponding process owns enough resources. Another approach could be to
consider that exchanges can be either observed or controlled (by adding ade-
quate points of control and/or observation into the implementation). However,
we think that such framework could be more appropriate for a kind of test-
ing in context (see e.g. [21YT4]) where we desire to test one component of a
system (in this case a process) assuming that the rest of the system is cor-
rect. We will comment on this approach in the conclusions of this paper. Be-
sides, we assume that all the input actions are always enabled in any state of
the implementation (a similar assumption is taken in [26]). So, we can assume
that for any input ¢ and any state of the implementation s there always ex-
ists a transition (s,s,i,null, @, Z,C) where null is a special (empty) output
symbol, Q(z) = - \V{Q'(Z) | I a transition (s,s’,i,0,Q’, Z',C")}, Z(Z) = &, and
C(z) = 0. Other solutions consist in adding a transition leading to an error state
or generating a transition to the initial state. Finally, we consider that imple-
mentations may not present non-observable non-deterministic behavior (see [22]

Encoding PAMR into (Timed) EFSMs 11

for a framework for deterministic implementations and non-deterministic specifi-
cations). For example, an implementation cannot have simultaneously two tran-
sitions as (s, s1,14,0,Q1, Z1,C1) and (s, s2,1,0, Q2, Z2, Cs). Note that we do not
restrict observable non-determinism, that is, we may have both the transition
(s,s1,4,01,Q1,21,C1) and (s, sa,1,092,Q2, Z2,C3), with 01 # 09.

First, we introduce an implementation relation where time is not considered.

Definition 6. Let S and I be two simplified systems. We say that I non-
timely conforms to S, denoted by I conf,; S, if for each non-timed evolu-
tion e = (i1/01,...,4p-1/0r-1,%r/0,) € NTEvol(S), with r > 1, we have that
e =(i1/o1,-..,4r—1/0r_1,1,/0]) € NTEvol(I) implies ¢’ € NTEvol(S). O

Ezample 4. Consider the simplified systems Sy and S3 depicted in Figure
(center and right). Suppose that we have an initial distribution such that all the
transitions can be performed. We have S3 conf,; So. Note that the non-timed
evolutions from S3 having as prefix the sequence as/bs, as/bsy are not checked
because Sy (playing the role of specification) cannot perform those evolutions.
Let us now consider that the system S is extended with the (implicit) tran-
sition ((2,1),(2,1), az,null, true, Z,C) where Z(Z) = & and C(Z) = 0, so that
it fulfills the conditions required for implementations (input enabling). Then, Sy
does not conform to S3. For example, S3 may perform the non-timed evolution
e = ag/bs, as/by, Sz has the non-timed evolution e’ = as/bs, as/null, but €’
does not belong to the set of non-timed evolutions of S3. Note that e and e’ have
the same prefix as/bs, as. 0O

Next, we introduce our timed implementation relations. In the following,
we call an instance of an evolution e = (i1/01,...,4./0,) to a pair (e, t). In
the conf, relation (conforms always) we consider that for any timed evolution
(e,t) of the implementation we have that if e is a non-timed evolution of the
specification then (e,) is also a timed evolution of the specification. In the conf,,
relation (conforms in the worst case) the implementation is forced, for each timed
evolution fulfilling the previous conditions, to be faster than the slowest instance
of the same evolution in the specification. The conf, relation (conforms in the
best case) is similar but considering the fastest instance. Let us remind that
different instances of the same evolution may appear in a specification as result
of the different configurations produced by exchanges of resources.

Definition 7. Let S and I be two simplified systems. We define the following
implementation relations:

— I conf, S iff I conf,; S and for any timed evolution (e,t) € TEvol(l) we
have e € NTEvol(S) = (e, t) € TEvol(S).

— I conf,, S iff T conf,: S and for any timed evolution (e,t) € TEvol(I) we
have e € NTEvol(S) = (3t : (e,t’) € TEvol(S) A t < t/).

— I confy, S iff I conf,; S and for any timed evolution (e,t) € TEvol(l) we
have e € NTEvol(S) = (V' : ((e,t') € TEvol(S) = ¢ < t')).

12 M. Nufiez and 1. Rodriguez

Theorem 1. The relations given in Definition [7 are related as follows:
I conf, S = Iconf, S« Iconf, S

Proof Sketch: We only need to consider the evolutions of I belonging also to
S (for the rest of evolutions, the premises of the corresponding conformance
relation do not hold). First, note that the condition about the non-timed confor-
mance is the same in all the definitions. So, we only need to take into account the
conditions on time appearing in the second clause of the corresponding relations.
If I conf, S then we have that each timed evolution in I fulfilling the conditions
given in the definition of conf, does also appear in S, so we have I conf,, S.
If I confy S then each timed evolution of I fulfilling the conditions given in the
definition of confy is faster than the fastest instance of the same evolution for
S. Therefore, it is also faster than the slowest one for S, and so I conf,, S. O

It is interesting to note that if specifications are restricted to take always the
same time for each given evolution (independently from the possible derivation
taken for such evolution) then the relations conf, and conf,, would coincide,
but they would be still different from the conf, relation.

Lemma 1. Let M = (S,1,0,Tr, sin,y) be a simplified system. Let us suppose
that there do not exist ((i1/01,...,4/0r),t), ((i1/01,...,ir/0r),t") € TEVOL(M)
with ¢ # /. For any simplified system I we have I conf, M iff I conf,, M. O

We also introduce a new implementation relation parameterized by the cho-
sen policy for the exchange of resources. In this case, we suppose that the tester
can indicate to the implementation under test which policy should be followed to
perform exchanges. So, given a set of possible policies, we provide a mechanism
to decide which one is more suitable for a given specification. First, we rephrase
the definition of systems and simplified systems. We consider them as functions
depending on one parameter (the corresponding policy).

Definition 8. Let us consider the set 7 of all the policies.

Let Systems be the set of systems. The parameterized system created by the
composition of the processes Py, ..., P, with respect to the sets I and O is defined
as the function PS :m — Systems such that PS(Pol) = Sys(Py, ..., P,, 1,0, Pol).

Let SimpSystems be the set of simplified systems. The parameterized simpli-
fied system created by the parameterized system PS is defined as the function
SPS :7 — SimpSystems such that SPS(Pol) = Simp(PS(Pol)).

Let Poly, Pols be two policies and SPS be a simplified parameterized system.
Let us consider I; = SPS(Poly) and I = SPS(Pols). Let S be a simplified system.
We say that the policy Poly is preferred to the policy Pols for SPS to conform
to S, denoted by Poly Cgps g Poly, if we have that for any conformance relation
conf, such that I, conf, S there exists another conformance relation conf, such
that I; conf, S and conf, = conf,. O

Encoding PAMR into (Timed) EFSMs 13

T T Ts Ty
[}
ay ay l ay ai
o.
b/ Nuu b:/ Null b/ lNull b/ Null
o . o . o . . o .
fail ap fail fail ap [fail fail pass fail fail ay fail
b4)/ Nul 1 l/ N{tl 1 b,i/ N ull
o . o . o .
fail a; fail fail pass fail fail ay fail
b/ Null b:/ Null
o . o 0

pass fail fail pass fail fail

Fig. 3. Examples of Test Cases.

4 Definition and Application of Test Cases

A test represents a sequence of inputs applied to the implementation. Once
an output is received, we check whether it is the expected one or not. In the
latter case, a fail signal is produced. In the former case, either a pass signal
is emitted (indicating successful termination) or the testing process continues
by applying another input. If we are testing an implementation with input and
output sets I and O, respectively, tests are deterministic acyclic I/0 labelled
transition systems (i.e. trees) with a strict alternation between an input action
and the set of output actions. After an output action we may find either a leaf
or another input action. Leaves can be labelled either by pass or by fail. In the
first case we add a time stamp. This time will be contrasted with the one that
the implementation took to arrive to that point.

Definition 9. A test case is a tuple T = (S,1,0,Tr,so,Sr,S0,SF,Sp,C)
where S is the set of states, I and O are disjoint sets of input and output
actions, respectively, Tr C S x TUQO x S is the transition relation, sq € S is the
initial state, and the sets Sy, So, Sp, Sp C S are a partition of S. The transition
relation and the sets of states fulfill the following conditions:

— Sy is the set of input states. We have that s € S;. For any input state s € Sy
there exists a unique outgoing transition (s,a, s’) € Tr. For this transition
we have that a € I and s’ € Sp.

— Sp is the set of output states. For any output state s € Sp we have that for
any o € O there exists a unique state s’ such that (s, 0,s’) € Tr. In this case,
s' ¢ So. Moreover, there do not exist ¢ € I, s’ € S such that (s,i,s") € Tr.

— Sr and Sp are the sets of fail and pass states, respectively. We say that these
states are terminal. Besides, for any state s € Sp U Sp we have that there
do not exist a € TUO and s’ € S such that (s,a,s’) € T'r.

Finally, C': Sp — R is a function associating time stamps with passing states.

14 M. Nufiez and 1. Rodriguez

Let o = i1/01,...,i,/0,.. We write T == s, if s € Sy U Sp and there exist
states sio, S21, S22, - .. Sr1, Sp2 € S such that {(so, %1, $12), (Sr2,0r,8)} C T'r, for
any 2 < j < r we have (s;1,%;,5j2) € Tr, and for any 1 < j < r — 1 we have
(852,05, 5(+1)1) € T'r.

We say that a test case T is an instance of the test case T” if they only differ
in the associated function C assigning times to passing states.

We say that a test case T is valid if the graph induced by T is a tree with
root at the initial state sq.]

In Figure [3] we present some examples of test cases (time stamps are omit-
ted). Next we define the application of a tests suite (i.e. a set of tests) to an
implementation. We say that the tests suite 7 is passed if for any test the ter-
minal states reached by the composition of implementation and test belong to
the set of passing states. Besides, we give timing conditions according to the
different implementation relations.

Definition 10. Let I be a simplified system and T be a valid test. We write
I|T=%;s"if T =% s and (o,t) € TEvol(I).

We say that I passes the set of tests 7, denoted by pass(I,7), iff for any
test T = (S,1,0,Tr,s,Sr,S0,5r,Sp,C) € T and o € NTEvol(I) there do not
exist s and t such that I || T == s” and s” € Sp.

We say that I passes the set of tests T for any time iff pass(I,7) and
for any (o,t) € TEvol(I) such that 7" =% s for some T’ € 7T, there exists
T=(510,Trs,51,5,5r,Sp,C) €T such that I || T =, sT with s7 € Sp
and t = C(sT).

We say that I passes the set of tests 7 in the worst time iff pass(I,7) and
for any (o,t) € TEvol(I) such that 7" =% s for some T’ € 7T, there exists
T =(S,1,0,Tr,s,51,50,8r,Sp,C) € T such that I | T ==, sT with s” € Sp
and t < C(sT).

We say that I passes the set of tests 7 in the best time iff pass(I,7) and
for any (0,t) € TEvol(I) such that 7" == sT" for some 7" € T, we have that
for any T = (S,1,0,Tr,s,St,So,Sr,Sp,C) € T such that I || T ==, s with
s € Sp it holds that t < C(sT). O

Due to space limitations we cannot include a test derivation algorithm. The
algorithm is based on that given for ioco [26] but taking into account the time
associated with transitions. These times will be used to define the function as-
signing time to successful states. For instance, the first three tests in Figure Bl
are derived for the system S appearing in Figure 21 Moreover, the last test
in the same figure can be used to determine that S, does not conform to Ss.
Given a specification S, if we call tests(S) to the set of tests returned by the
derivation algorithm, and we replace 7 in the previous definition by tests(S),
we obtain alternative characterizations for the conformance relations presented
in Definition [71

Encoding PAMR into (Timed) EFSMs 15

5 Conclusions and Future Work

In this paper we have shown how the concepts underlying PAMR can be added in
a natural way to the formalism of EFSMs. We have defined different implementa-
tion relations by taking into account timing relations between specifications and
implementations. We consider that this paper represents only the basis of our
study, so some points should be extended or improved. A line for future work
consists in considering that exchanges can be controlled and/or observed. In this
case, we would be able to control the exchanges that a process (that is, a part of
a system) can do. Therefore, the definition of simplified systems should be mod-
ified to consider that exchanges may appear in the corresponding traces. This
extension can be also used to perform a better study of the role played by policies
in systems. Finally, we are also studying how the testing equivalence presented
in [9], where the transitive closure of conf is studied as a testing equivalence,
can be adapted to deal with our new implementation relations.

Acknowledgments. We would like to thank Alex Petrenko for useful discus-
sions on conformance testing relations and in the application of these relations
to PAMR. We would also like to thank Natalia Lépez for her help while preparing
this paper. Finally, we thank the anonymous referees for their helpful remarks.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

2. K.J. Arrow. Social Choice and Individual Values. Wiley, 2nd edition, 1963.

3. M. Barbuceanu and W.K. Lo. Multi-attribute utility theoretic negotiation for
electronic commerce. In AMEC 2000, LNAI 2003, pages 15-30. Springer, 2001.

4. P. Brémond-Grégoire and I. Lee. A process algebra of communicating shared
resources with dense time and priorities. Theoretical Computer Science, 189(1-
2):179-219, 1997.

5. E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS specifications, their imple-
mentations and their tests. In Protocol Specification, Testing and Verification VI,
pages 349-360. North Holland, 1986.

6. A. Cavalli, J.P. Favreau, and M. Phalippou. Standardization of formal methods in
conformance testing of communication protocols. Computer Networks and ISDN
Systems, 29:3-14, 1996.

7. D. Clarke and I. Lee. Automatic generation of tests for timing constraints from
requirements. In 8rd Workshop on Object-Oriented Real-Time Dependable Systems,
1997.

8. M. Dastani, N. Jacobs, C.M. Jonker, and J. Treur. Modelling user preferences and
mediating agents in electronic commerce. In Agent Mediated Electronic Commerce,
LNAT 1991, pages 163-193. Springer, 2001.

9. D. de Frutos-Escrig, L.F. Llana-Diaz, and M. Nufiez. Friendly testing as a con-
formance relation. In Formal Description Techniques for Distributed Systems and
Communication Protocols (X), and Protocol Specification, Testing, and Verification
(X VII), pages 283—298. Chapman & Hall, 1997.

16

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

M. Nufiez and 1. Rodriguez

T. Higashino, A. Nakata, K. Taniguchi, and A. Cavalli. Generating test cases for
a timed I/O automaton model. In 12th Workshop on Testing of Communicating
Systems, pages 197-214. Kluwer Academic Publishers, 1999.

ISO/IEC. ODP Trading Function. Draft International Standard 13235, ISO -
Information Processing Systems, 1995.

S. Kalyanasundaram, E.K.P. Chong, and N.B. Shroff. Optimal resource allocation
in multi-class networks with user-specified utility functions. Computer Networks,
38:613-630, 2002.

D. Lee and M. Yannakakis. Principles and methods of testing finite state machines:
A survey. Proceedings of the IEEE, 84(8):1090-1123, 1996.

L.P. Lima and A. Cavalli. A pragmatic approach to generating tests sequences
for embedded systems. In 10th Workshop on Testing of Communicating Systems,
pages 288-307. Chapman & Hall, 1997.

N. Lépez, M. Nuifiez, I. Rodriguez, and F. Rubio. A formal framework for e-
barter based on microeconomic theory and process algebras. In Innovative Internet
Computer Systems, LNCS 2346, pages 217-228. Springer, 2002.

N. Loépez, M. Ntiez, I. Rodriguez, and F. Rubio. Including malicious agents into
a collaborative learning environment. In 8th Intelligent Tutoring Systems, LNCS
2363, pages 51-60. Springer, 2002.

S.H. Low and D.E. Lapsley. Optimization flow control I: Basic algorithm and
convergence. IEEE/ACM Transactions on Networking, 7(6):861-875, 1999.

D. Mandrioli, S. Morasca, and A. Morzenti. Generating test cases for real time
systems from logic specifications. ACM Trans. on Computer Systems, 13(4):356—
398, 1995.

M. Nunez and I. Rodriguez. PAMR: A process algebra for the management of re-
sources in concurrent systems. In FORTE 2001, pages 169-185. Kluwer Academic
Publishers, 2001. An extended version of this paper is available at:
http://dalila.sip.ucm.es/ manolo/papers/panr.ps.

M. Nufiez and I. Rodriguez. Applying PAMR to the management of software projects:
Humans as resources, 2002. Submitted for publication.

A. Petrenko, N. Yevtushenko, and G. von Bochmann. Fault models for testing in
context. In Formal Description Techniques for Distributed Systems and Communi-
cation Protocols (IX), and Protocol Specification, Testing, and Verification (XVI),
pages 163-178. Chapman & Hall, 1996.

A. Petrenko, N. Yevtushenko, and G. von Bochmann. Testing deterministic imple-
mentations from their nondeterministic specifications. In 9th Workshop on Testing
of Communicating Systems, pages 125-140. Chapman & Hall, 1996.

L. Rasmusson and S. Janson. Agents, self-interest and electronic markets. Knowi-
edge Engineering Review, 14(2):143-150, 1999.

J. Springintveld, F. Vaandrager, and P.R. D’Argenio. Testing timed automata.
Theoretical Computer Science, 254(1-2):225-257, 2001.

J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Soft-
ware — Concepts and Tools, 17(3):103-120, 1996.

J. Tretmans. Testing concurrent systems: A formal approach. In CONCUR’99,
LNCS 1664, pages 46—65. Springer, 1999.

H. Yaiche, R.R. Mazumdar, and C. Rosenberg. A game theoretic framework for
bandwith allocation and pricing in broadband networks. IEEE/ACM Transactions
on Networking, 8(5):667-678, 2000.

	Encoding PAMR into (Timed) EFSMs
	Introduction
	PAMR Processes as (Timed) EFSMs
	(Timed) Implementation Relations
	Definition and Application of Test Cases
	Conclusions and Future Work
	Acknowledgments
	References

