
Modeling of Service-Level Agreements for
Composed Services�

David Daly1, Gautam Kar2, and William H. Sanders1

1 Center for Reliable and High-Performance Computing,
Coordinated Science Laboratory and

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign,

Urbana, Illinois 61801, USA
{ddaly, whs}@crhc.uiuc.edu,

http://www.crhc.uiuc.edu/PERFORM
2 IBM T.J. Watson Research Center

P.O.Box 704
Yorktown Heights, NY 10598

gkar@us.ibm.com

Abstract. As Web services are increasingly accepted and used, the next
step for them is the development of hierarchical and distributed services
that can perform more complex tasks. In this paper, we focus on how
to develop guarantees for the performance of an aggregate service based
on the guarantees provided by the lower-level services. In particular, we
demonstrate the problem with an example of an e-commerce Web site
implemented using Web services. The example is based on the Trans-
action Processing Performance Council (TPC) TPC-W Benchmark [8],
which specifies an online store complete with a description of all the func-
tionality of the site as well as a description of how customers use the site.
We develop models of the site’s performance based on the performance
of two sub-services. The model’s results are compared to experimental
data and are used to predict the performance of the system under varying
conditions.

1 Introduction

Web services are increasingly being referred to as the future of outsourcing on
the Internet, because they allow remote services to be discovered and accessed
in a uniform manner to execute some functionality. The infrastructure for Web
services is already being developed in the form of open standards such as SOAP,
� This material is based upon work supported in part by the National Science Foun-

dation under Grant No. 9975019 and IBM. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation or IBM. This
work was done in part while Mr. Daly was an intern at IBM T.J. Watson Research
Center.

M. Feridun et al. (Eds.): DSOM 2002, LNCS 2506, pp. 4–15, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Modeling of Service-Level Agreements for Composed Services 5

UDDI, and WSDL, as well as other closed standards. A Web-service customer
can query a UDDI [10] (Universal Description, Discovery, Integration) server to
find needed services, and access WSDL [2] (Web Service Description Language)
descriptions of the services using the SOAP [1] (Simple Object Access Proto-
col) protocol. The customer and service provider negotiate a contract, including
service-level agreements (SLAs), once the customer finds the appropriate service.

The development of outsourced Web services allows service providers to be
more specialized and efficient, and to provide improved, more flexible services.
A logical result of this outsourcing is the development of hierarchical services
(which are themselves made of outsourced services) as well as service aggregators
that can develop a complete Web service for a customer using outsourced ser-
vices. With little overhead, a service aggregator would be able to quickly develop
and deliver a service for a customer; It would contract only for the needed levels
of service, and would increase those levels as needed. We focus on the modeling
of such services to determine the service levels that can be guaranteed.

2 Problem Overview

Hierarchical and aggregated services are also Web services, and require that con-
tracts, including SLAs, be negotiated. SLAs stipulate minimum standards to be
provided by the service and usage constraints for the customer of the service.
The agreements also generally include penalties if the service levels do not meet
the guarantees (that is, if there is an SLA violation). It is a relatively straightfor-
ward (although not necessarily easy) problem to determine what levels of service
can be guaranteed when the service is provided entirely by one entity (no out-
sourcing of subcomponents); the prediction of performance of individual services
has been examined in many areas. However, it is more difficult to determine the
level of service that can be offered for a service composed of multiple services.
The service provider may know only the guarantees offered in the SLAs of the
component services, and therefore will need a method to compute the overall
SLA of the composite service.

Thus, the problem is to develop contracts between the customer, the service
integrator, and all of the service providers. The service integrator guarantees
overall performance to the customer, while the service providers guarantee the
performance of their services to the service integrator. The problem is compli-
cated by the fact that the service level of the composite service may not be a
simple combination of the service levels of the sub-services. This situation re-
quires a simultaneous analysis of all the relevant outsourced services, which is
the focus of this paper.

Before we can address the problem of relating SLA terms, we first must under-
stand the type of guarantees offered by an SLA. Providers commonly guarantee
that service will be completed within a certain time, a certain percentage of
the time, when the load is below a certain value. This will normally be worded
as “X% of requests respond in under Y seconds, when the load is less than Z
requests per second.” We used SLAs of that form for the component services.



6 D. Daly, G. Kar, and W.H. Sanders

2.1 Focus Area: E-commerce and TPC-W

For this paper, we focused on a situation in which a service integrator implements
an e-commerce Web site for a client. The integrator may use a combination of
traditional service providers and outsourced Web services to implement the e-
commerce site, providing the integrator with the flexibility to scale the services as
needed with low overhead. Whether the service integrator is an external vendor
or an internal organization is immaterial. It will still need to provide performance
guarantees to the client.

The e-commerce example we specifically examine is the TPC-W bench-
mark [8], which was developed by the Transaction Processing Performance Coun-
cil (TPC) [9]. It is a benchmark based on an online bookstore. Users may search
for books, view bestsellers, track orders, and perform other functions. All of the
pages are dynamically generated using an application server, and all product
and customer data are stored in a back-end database. The TPC-W benchmark,
therefore, requires two main services: the application server and the back-end
database. While the benchmark is intended to test unified system offerings from
a vendor, there is no reason why both services could not be outsourced.

The standard SLA guarantee based on the percent of satisfied requests, while
satisfactory for simple services, is not sufficient for an e-commerce site, such as
the example one. A shift towards business metrics is necessary to properly meet
the requirements of the client. The client does not inherently care about response
time, but about the satisfaction of the customers using the site. Ultimately, the
client is concerned with revenue and profit, but the service provider cannot make
guarantees on revenue and profit, as there are many factors other than service
level that influence those metrics. However, if a customer becomes dissatisfied
with the site and leaves, the client loses potential revenue. Therefore, we propose
to relate the business metrics that a client is interested in to the service-related
metrics that the provider is able to measure and report: the number of customers
who leave a transaction prematurely.

Therefore, we suggest SLA terms for an e-commerce site of the form “less
than X% of the customers leave the site prematurely because of the service level.”
The fraction of customers who leave the site prematurely will be dependent on
the response time and the service levels of the component services, but cannot
be represented by a single response time guarantee. We do use the original SLA
form presented earlier for the component services, since they are simple services,
but the more sophisticated SLA is required for the complete e-commerce site.

2.2 Related Work

Menascé et al. [6] have performed some relevant related work on modeling e-
commerce systems. They use revenue as the key metric, and determine what
effect several options have on revenue. In [5] Menascé and Almeida develop
several queuing models of e-commerce systems to determine the resources needed
to meet the demands on the system. Adjustments are made for variability in
workload, and for multiple classes of requests. The demand for the system is



Modeling of Service-Level Agreements for Composed Services 7

generated using a Customer Behavior Model Graph (CBMG) that is solved to
determine arrival rates in the queuing systems. The authors have extended the
work to make it business-focused by concentrating on revenue, with metrics
such as revenue throughput and potential lost revenue [6]. The work assumes
that all resources (application server, database, and so forth) are controlled by
the company hosting the e-commerce site. Based on that assumption, it is valid
to focus directly on the revenue and profits of the site.

Our work deals with similar systems, but in the context of outsourced Web
services. The use of outsourced Web services invalidates the assumption that all
resources are under the direct control of any one service provider. In addition,
since a Web service aggregator is merely developing and implementing the e-
commerce site for the company, and does not control the products offered by
the site, it is not reasonable to expect revenue guarantees from the aggregator.
Therefore, instead of focusing on revenue, we measure other factors that impact
revenue, and can be controlled by the aggregator.

3 E-commerce SLA Models

To determine the SLA guarantees that a service integrator can offer to a cus-
tomer based on the SLA guarantees of outsourced services, we develop a model of
the service using many submodels. The model has two major components that
it uses to determine SLA guarantees. The first is the workload model, which
models the load applied to the system. It incorporates the behavior of the users
to determine how many requests are made. In addition, since our SLA for an
e-commerce site is based on user behavior (how many users leave the site pre-
maturely because of poor service), the workload model must explicitly model
users leaving the site both prematurely and after completion of normal activity.
The second component is the system model. The system model captures the
performance of the services as they process the user requests.

The workload model needs to determine the load offered to the services, and
must also predict how many customers will leave the site prematurely. We must
therefor understand what makes a user leave a Web site. For that reason, the
workload model includes models of several users accessing the services. We have
used a simple model of user behavior in the workload model. The users wait a
certain amount of time for each page. If the page takes longer than the allowed
time to load, the user attempts to reload the page. After he/she attempts to
reload a page a certain number of times, he/she becomes frustrated and leaves
the site. We model this by tracking how many times a user reloads a page, and
when the number of reloads gets above a preset threshold, the modeled user
leaves the site. We could construct a slightly more complicated model in which
the user leaves the site only if he/she must retry too many pages in a certain
span of time. That scenario is more complex and will be dealt with in future
research.

We need a model of the system to use with the workload model. The system
is made up of the individual services. The model of the services has a latency



8 D. Daly, G. Kar, and W.H. Sanders

and a throughput component to determine the total delay experienced by a user
request. The latency component in the model represents the network latency in
sending the request to the server and getting the response from the server. All
the network latencies are combined into an aggregate latency for each service,
which is not affected by the load on the server. If the local network itself is
expected to be a bottleneck, it should also be modeled as a service.

We represent the latency as a constant time delay. This corresponds well to a
low network load condition, in which all requests of the same size take the same
amount of time to traverse the network. However, if the network is the Internet,
it may experience local bottlenecks and varying delays. We do not attempt to
account for that factor at this time.

The second factor in the total delay a request experiences in accessing a
service (over and above the latency) is the service time. The service time is the
total time to process a request, once that request has arrived at the service. For
example, a number of factors affect the service time of a request, including the
size of the request, the speed of the service, and other requests at the service.
If the service exhibits parallelism, it can process multiple requests at the same
time with no degradation of service to the requests. The number of requests that
can be processed at the same time with no degradation of service to each request
is the degree of parallelism of the service. If the number of requests is greater
than the degree of parallelism, then all requests are processed at the same time,
and they all experience a slowdown in processing.

The service time, combined with the level of parallelism, determines the
throughput of the service. The throughput is important to the system operator,
as the operators will want to process as many requests as possible on the given
hardware. However, the user ultimately does not care about the throughput of
the service, only the delay experienced in accessing it. The parallelism and service
time allow us to determine the delay, which we would be unable to compute solely
from the throughput.

3.1 Parameters Based on SLA Values

The server processing delay is selected to match the SLA guarantee on loss for
that service if no more detailed information is available. Recall that the service
SLA was defined in Section 2 to have the form “no more than X% of requests
take longer than Y seconds to complete when the load is less than Z requests
per second.” Values for the service delay and for the parallelism of the service
need to be determined from those SLA values.

We select the average service delay to meet the SLA guarantee on an un-
loaded machine. This delay is specified by the delay distribution of the service;
the specification includes both the type of the delay distribution (e.g., normal
or negative-exponential) and any parameters used to describe the particular
distribution type. We use a negative-exponential delay distribution if no other
information is available. The negative-exponential distribution requires only the
average service time as a parameter. It is a simple matter to determine the
parameter for a negative exponential distribution such that X% of the time a



Modeling of Service-Level Agreements for Composed Services 9

sample value will be greater than Y. The service time of a request on a loaded
server is more complicated, since the request may need to compete for resources,
leading to longer service delays. The effect that load has on the request is re-
flected in the degree of parallelism of the service; by setting the parallelism to
Z times the service delay we can select the parallelism such that the server can
process more than Z requests per second without experiencing any slowdown.

4 Experimental Validation

We demonstrate the models and ideas developed in the previous section by
simulating experiments in the Möbius tool [3,4] and running experiments on
an experimental TPC-W configuration to determine the lost user rate for the
e-commerce system represented in TPC-W. We do not explicitly develop SLAs
for the two services, but instead use the models developed for Web services
and perform measurement on experiments to determine the model parameters
(as suggested in the previous section). Therefore, our experiment is unusually
detailed, and should demonstrate the accuracy of the models. In addition, the
measurements show how the SLA guarantees for the component services could
be determined.

4.1 Simulation Environment: Möbius

The models were simulated using the Möbius tool. Möbius is a multi-formalism,
multi-solution extensible modeling tool for discrete event stochastic models [3,
4]. Using Möbius, a user can develop models of parts of a system using differ-
ent formalisms (or ways of describing a model) and combine those models to
form a complete model. For this study we used the Stochastic Activity Network
(SAN) [7] formalism, because of its generality. SANs consist of places (repre-
sented by circles), which contain tokens; activities (represented by bars), which
remove and place tokens in places; and gates (represented by triangles), which
control the behavior of activities, allowing for more complex behavior.

Figure 1 shows the SAN model of a user accessing the home page of the
site. The process starts when a token is placed in Home by another submodel.
(That submodel is composed with other submodels to form the complete model.
Composition is explained below.) When the user generates requests, the Request
activity fires, removing the token from Home and placing one token apiece in
Home in and Req in Prog. The user waits for a token to be placed in place
Home out, which represents a response. When the token is placed in Home out,
that token and the token in Req in Prog are removed, and a token is placed
in viewing. After that occurs, some time will pass (representing the time the
user spends reading the page) before the Done Viewing activity fires, removing
the token from viewing and putting it in a place that determines which page to
visit next. Alternatively, if the response to the request takes too long, the activity
Timeout will fire, and the user will retry the request. The Drain Lost activity
ensures that the lost request will eventually be removed from the system.



10 D. Daly, G. Kar, and W.H. Sanders

Fig. 1. SAN Model of a User Accessing the Home Page

Fig. 2. SAN Model of Application Server Fig. 3. SAN Model of DB
Access for Home Page

The model does not explain how a token goes from Home in to Home out. The
home service model, shown in Fig. 2, controls that. The Home in and Home out
places will be shared between the two models, so both models will always have
the same number of tokens in each place. The Latency activity will remove a
token from the Home in place and place one token a piece in Processing and
IIS Queue. The delay of the Latency activity represents the network latency
experienced by the request. The IIS Queue is shared by all the services that
use the application server. The processing time of the home page is scaled by
the IIS Queue value combined with the degree of parallelism in the server. The
home page also requires a DB access, and the time for this access is modeled
after the application server processing time. A token is placed in DB in, and
when the DB request is done, a token is placed inDB out.

Figure 3 shows the model of the DB access. It is similar to the home page
access. When the token is placed in DB in, there is a delay for the firing of
Latency, and then some processing time, which is scaled by the number of other
requests currently in the DB. Similarly, there are models that represent the user
access to each of the pages in the site and the processing of those requests. In
our earlier description of the user behavior model, we stated that the user leaves
if too many requests are retried. That is modeled in a separate model that we
do not describe here because of space consideration. When a user retries too
many pages, he/she ends the session prematurely. A user session can also end
normally. According to the TPC-W definition, a session ends on the home page
request after a random timer expires. This behavior is included in our model.

Möbius allows multiple models to be composed together, with certain places
held in common or shared through the Rep/Join formalism. A join node combines
multiple different models, while a rep node creates multiple replications of one
model. In both cases, some places are held in common between the submodels.



Modeling of Service-Level Agreements for Composed Services 11

Our models are joined together, sharing all identically named places, to create a
model of one user accessing the site. The model is then replicated to represent a
population of users accessing the site. The replicas in the final composed model
share only specific places, such as IIS queue and DB queue.

The measure of interest for this model is the percentage of user sessions that
end prematurely. Therefore, measures are defined to determine the number of
sessions that end prematurely, and the total number of sessions. The ratio of
those two numbers is the user loss rate.

4.2 Experimental Environment: TPC-W Running in Lab

In our lab we set up an application server and a database to run the TPC-W
benchmark on a local network. The application server ran using IIS and Jakarta
on an IBM RS/6000 workstation, while the back-end database resided on an
AIX box, using DB2. The two servers and the client were connected using 100
Mbit Ethernet. The client ran under Linux on a Pentium III workstation.

In TPC-W, users wait for each request to complete and end sessions normally.
We adjusted our TPC-W client emulators to retry requests if too much time
elapses, and to leave the site if the client has to retry too many requests. With
that adjustment, the model should match the behavior of the experimental setup
after one additional step: the model needs to be parameterized to match the
experimental system. Since we did not have actual SLAs from which we could
determine the parameters, we instead attempted to experimentally determine
the response times and parallelism of the services. We calibrated these values by
performing experiments without user timeouts; in other words, the users would
never retry requests. Single-user experiments were run to determine the response
time of the servers, while multiple-user experiments were run to determine the
effect of load on the services, and therefore the parallelism. A service provider
would perform similar experiments to determine the SLA terms that could be
offered for a service. We analyzed each page on the TPC-W, since each one
makes different demands on the outsourced services.

5 Results

We start with the calibration results. Calibration was needed to determine the
service delay and parallelism of the two services (application server and database
server), as well as the size of the requests made by each page. The step can be
thought of as determining what terms could be offered for an SLA on those ser-
vices, and translating them into the needed parameters. Indeed, this calibration
was equivalent to having SLA terms that were very accurate plus the distribution
information.

We had to calibrate the pages individually. Each page had multiple database
accesses and varying usage of the application server. Figure 4 shows the inverse
cumulative distribution function for the delay for accessing the buy confirm page
and the home page. The simulated results closely reflect the experimental results.



12 D. Daly, G. Kar, and W.H. Sanders

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

%
 In

te
ra

ct
io

ns

Time (s)

Response Time (Simulated)

Home
Buy Confirm

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Time (s)
%

 In
te

ra
ct

io
ns

Response Time (Experimental)

Home
Buy Confirm

Fig. 4. Inverse Cumulative Delay Distributions for Page Accesses

The services had a low variance on the completely unloaded systems; we accom-
modated that by using an Erlang distribution instead of a negative exponential
for those services. The Buy Confirm page had a large outlying probability den-
sity; it was around 10 seconds for our experiments. To accommodate that we
adjusted the DB access to occasionally require larger amounts of resources. The
other pages performed similarly well, with the Buy Confirm page being one of
the slowest pages, and the Home page being one of the quickest pages.

A service integrator would determine how many requests each page made to
the outsourced services and the size of the requests, and would then determine
the model parameters by combining that information with the performance guar-
antees offered by the service providers for the outsourced services. We determined
relative request sizes and performance for the service based on measurements of
the delays of the pages and an understanding of the requests generated for each
page.

5.1 Validation of Model Predictions

With the models calibrated, we ran complete experiments to compare the loss
rate of the modeled and experimental systems. We found that the two systems
gave similar overall loss rates and component loss rates, as shown in Table 1. The
table shows user retries and the number of lost users when there are 30, 45, or 60
users with users willing to wait 10, 12, or 15 seconds. All experiments were for
15 minutes after a 90-second warmup period. The simulations solved the model
several times to generate 95% confidence intervals compared to the experiments
that were solved once. We note two things about the results: 1) at lower loss
rates, our model reports more losses and timeouts, and 2) at higher loss rates,
there appears to be a higher probability that a retried request will take too long,
leading to loss that was not captured by our models. Therefore we expect our
models to be conservative (to overestimate loss) at low loss rates. We might be



Modeling of Service-Level Agreements for Composed Services 13

able to account for the higher loss rate when there are more retried requests by
making retried requests have a higher demand on the services, especially since
requests that need to be retried are likely larger than average to begin with.

Table 1. Simulation and Experimental Results

Timeout
Length 10 12 15

Number
of Users

Exper. Simulation Exper. Simulation Exper. Simulation

Timeouts 12 9.65 ± 0.55 0 2.30 ± 0.27 0 0.46 ± 0.1030
Loss 7 1.76 ± 0.18 0 0.20 ± 0.07 0 0.02 ± 0.02

Timeouts 13 15.19 ± 0.81 4 4.35 ± 0.40 0 1.47 ± 0.2045
Loss 7 3.09 ± 0.28 0 0.52 ± 0.12 0 0.12 ± 0.05

Timeouts 26 20.92 ± 1.21 7 7.67 ± 0.71 1 3.49 ± 0.4060
Loss 13 4.68 ± 0.47 1 2.30 ± 0.27 0 0.42 ± 0.10

From the results, we could determine the SLA that could be offered by the
service integrator, based on the amount of time that a user will wait for a page.
For instance, if a user could be expected to wait 12 seconds, the SI could guar-
antee that there would be less than 1% loss when the load is less than 60 users.

One problem we discovered was that the system could become unstable at
high loss rates. The TPC-W benchmark starts a new user session immediately
when another one ends, in order to maintain a constant number of users. That
can lead to an increased load when loss is considered. Normally, a user would
leave, causing the load and loss rate to drop; but in our experiment, the new
user will also keep retrying requests, increasing the load instead of decreasing it.

5.2 Analyzing Results from Varying Parameters in the Simulation
Models

Once we verified that the model performed well for the base case, we conducted
some studies using the model to better understand the dynamics of the system
and their ramifications for the performance that could be guaranteed. Some of
the studies could not have been done with the experimental setup, while others
would have been time-consuming. The studies focused on ways to lower the
overall loss rate, in order to improve the service guarantees that could be offered.

The first two studies focused on the user model and on determining the
effect of timeout value and loss threshold on overall loss rate. We varied the two
parameters separately in two studies. Figure 5 shows that increasing the timeout
value did decrease the loss rate, and increasing the timeout value to 14 seconds
would ensure a loss of no more than 1%. Similarly, Fig. 6 shows that if the users
are willing to retry three requests before leaving, instead of one, the loss rate
also drops below 1%.

However, since the timeout length and the loss threshold are given values, we
cannot change them. Instead, we have to focus on ways to speed up the site to



14 D. Daly, G. Kar, and W.H. Sanders

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

10 11 12 13 14 15

F
ra

ct
io

n 
of

 U
se

r 
S

es
si

on
s 

th
at

 E
nd

 in
 L

os
t U

se
r

Time (in Seconds) a User Waits Before Retrying a Request

User Retry vs. Lost User Probability

Fig. 5. Loss Rate as a Function of
How Long a User Will Wait for a Re-
quest

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5

F
ra

ct
io

n 
of

 U
se

r 
S

es
si

on
s 

th
at

 E
nd

 in
 L

os
t U

se
r

Number of Times a User Will Retry a Request

Number of Retries vs. Lost User Probability

Fig. 6. Loss Rate as a Function of
How Many Times a User is Willing
to Retry More Requests

0

0.005

0.01

0.015

0.02

0.025

0.03

100 120 140 160 180 200

F
ra

ct
io

n 
of

 U
se

r 
S

es
si

on
s 

th
at

 E
nd

 in
 L

os
t U

se
r

DB Processing Rate (Baseline 100)

DB Processing Rate vs. Lost User Probability

Fig. 7. Loss Rate as a Function of DB
Performance

0

0.005

0.01

0.015

0.02

0.025

0.03

2 2.5 3 3.5 4

F
ra

ct
io

n 
of

 U
se

r 
S

es
si

on
s 

th
at

 E
nd

 in
 L

os
t U

se
r

DB Degree of Parallelism (Baseline 2)

DB Parallelism vs. Lost User Rate

Fig. 8. Loss Rate as a Function of DB
Parallelism

lower the loss rate. Since the two services we were evaluating were the application
server and the back-end database, we also varied the performance of those two
services. Minimal speedup was observed from increasing the application server
performance, but performance degradation was observed if the application server
is slowed down. However, increasing the performance of the database has a dra-
matic effect on the overall loss rate, as shown in Fig. 7. Therefore, the database
is the key bottleneck, and we should investigate ways to lower the response time
of requests to the database. Figure 8 shows that increasing the parallelism of the
DB will also lower the loss rate. It should be easier to increase the parallelism of
the DB than to reduce the response time. The two graphs show that the service
integrator would want to negotiate to improve the guaranteed level of service in
the SLA for the database service, thus increasing the number of requests that
can be processed without changing the response time criterion.

The baseline results also showed that the Buy Confirm page was the dominant
source of timeouts in the site. Further results (not shown) from solving the model
showed that decreasing the processing requirements for the Buy Confirm page
would lower the loss significantly.



Modeling of Service-Level Agreements for Composed Services 15

6 Conclusion

In this paper we have framed the problem of coming up with SLA guarantee
terms for a Web service that is composed of a collection of Web services. The
problem is that of relating the SLA terms of the sub-services to the aggregate
service in a useful manner. Focusing on Web-commerce, we showed how the
aggregated service might need to provide types of guarantees that are different
from those obtained from the sub-services. We have proposed a model of the
Web services to relate the different guarantees to each other.

We realized our model using a TPC-W benchmark implementation, and set
up the same implementation experimentally to relate the performance and SLA
guarantees of the sub-services to the performance and SLA guarantees of the
complete Web-commerce site. The results from the model agreed closely with
the experimental values and also allowed us to answer questions that could not
have been answered through experimentation alone. For instance, we determined
that speeding up the database response time in our example would significantly
improve performance. We did so by varying the database response time, which
would have been very difficult to do in an actual database and demonstrates the
usefulness of the model.

References

1. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen,
S. Thatte, and D. Winer, “Simple object access protocol (SOAP) 1.1,” Tech. Rep.,
W3C, 2000.

2. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web services
description language (WSDL) 1.1,” Tech. Rep., W3C, 2001.

3. G. Clark, T. Courtney, D. Daly, D. D. Deavours, S. Derisavi, J. M. Doyle, W. H.
Sanders, and P. G. Webster, “The Möbius modeling tool,” in Proceedings of the
9th International Workshop on Petri Nets and Performance, September 2001, pp.
241–250.

4. D. D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J. M. Doyle, W. H.
Sanders, and P. G. Webster, “The Möbius framework and its implementation,”
Transactions on Software Engineering, vol. 28, no. 10, October 2002.

5. D. A. Menascé and V. A. F. Almeida, Scaling for E-Business: Technologies, Models,
Performance, and Capacity Planning, Prentice Hall, 2000.

6. D. A. Menascé, V. A. F. Almeida, R. Fronseca, and M. A. Mendes, “Business-
oriented resource management policies for e-commerce servers,” Performance Eval-
uation, vol. 42, pp. 223–239, 2000.

7. J. F. Meyer, A. Movaghar, and W. H. Sanders, “Stochastic activity networks:
Structure, behavior and application,” in Proc. International Conference on Timed
Petri Nets, 1985, pp. 106–115.

8. Transaction Processing Performance Council (TPC), TPC Benchmark W (Web
Commerce), August 2001.

9. Transaction Processing Performance Council (TPC) Web Page,
<http://www.tpc.org>

10. UDDI Executive White Paper, November 2001 <http://www.uddi.org>.


	Introduction
	Problem Overview
	Focus Area: E-commerce and TPC-W
	Related Work

	E-commerce SLA Models
	Parameters Based on SLA Values

	Experimental Validation
	Simulation Environment: M{accent 127 o}biusfuturelet next 
	Experimental Environment: TPC-W Running in Lab

	Results
	Validation of Model Predictions
	Analyzing Results from Varying Parameters in the Simulation Models

	Conclusion

