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4 Number Counts and the Background Radiation 

At last, we can get down to the business of working out the source counts and 
background radiation from a cosmological distribution of discrete sources or 
from the diffuse intergalactic medium. 

4.1 Number Counts of Discrete Sources 

Consider first of all a uniform distribution of a single class of source with 

space density No and luminosity L{u). We can consider L(i/) to be the spectral 

energy distribution of this class of source. From the considerations of sections 

2.5.4 and 2.5.5, the flux density of such a source at frequency I/Q is 

where Ui — 1/0(1 + 2;) and the number of sources per steradian in the interval 

of comoving coordinate distance dr is 

diV =r NoB^d^T (2.53) 

The integral source counts^ - ^ (^ •S'), are defined to be the numbers of sources 
per steradian with flux densities greater than or equal to some Umiting value 
5 at frequency I/Q. For a complete sample of sources with lower limiting 
flux density 5, a class of sources with identical spectral energy distributions 
L(i/) can be observed to a limiting comoving distance coordinate rmax which 
is the solution of the expression (2.47). Then, if the sources are uniformly 
distributed in space, that is, the sources have a constant comoving space 
density NQ, the integral number counts are 

/•''max 

N{> S) = / NoD'^dr (4.1) 

For any given cosmological model, R{t) is defined and so there is a known re­
lation between r and redshift z. The only point to beware of is that the above 
formalism assumes that S and diV(r) are monotonic functions of redshift and 
a little care has to be taken if they are not (see, for example. Chapter 11). 

In the limit of small redshifts, z —̂  0, D -^ r and so 

/*''max 1 

N{> S)=No r^dr = -
Jo ^ 

3 -^or^ax 

Since, in this limit, S — L/A^i^r'^^^^ it follows that 

3 / 2 

N{> S) = INO ( ^ ) S-3/^ (4.2) 
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Now, we need to integrate over all luminosity classes of source. This is 
found by integrating over the luminosity function of the sources which is 
defined such that No{L)dL is the comoving space density of sources with lu­
minosities in the luminosity range L to L-\-dL, We therefore have to integrate 
(4.1) over all luminosities, that is, we need to take the double integral 

N{> S)= No{L)D^drdL (4.3) 
JLJO 

In the small redshift limit, z —̂  0, we find 

Ni> S) = Is-'/' ^ No{L) (^^y ' dL (4.4) 

This is the famous 'three-halves' power law, N{> S) oc S'^^^ and is of­
ten known as the Euclidean source counts. Notice that the Euclidean source 
counts are independent of the form of the luminosity function of the sources 
since it only appears inside the integral in (4.4). This result can be written in 
alternative ways. Optical counts of galaxies are normally expressed in terms 
of the number of galaxies brighter than a given limiting magnitude m. Since 
771 — constant — 2.51ogio S^ it follows that 

N{< m) oc 10̂ -̂ "* (4.5) 

As described by Dr. Sandage, Hubble realised that this relation provided a 
test of the homogeneity of the distribution of galaxies in the Universe (see 
Section 2.2.1 and Fig. 2.4). 

One of the problems with the expression (4.3) is the fact that, in count­
ing all the sources brighter than each limiting flux density 5, the numbers 
counted are not independent at different flux densities and, to avoid this, it 
is preferable to work in terms of differential source counts which are defined 
to be the number of sources in the flux density interval 5 to 5 -f- dS. For the 
Euclidean source counts, this can be found by differentiating the expression 
(4.4). Then, 

dNo{S) a S-^f^dS (4.6) 

The use of integral versus differential source counts became an issue when 
they extended to low flux densities at which the counts began to converge 
(see Jauncey 1975). 

The various forms of the Euclidean source count can be regarded as null 
hypotheses since such counts are expected at small redshifts in all cosmo-
logical models. In consequence, it is often helpful to normalise the observed 
or theoretical counts to the Euclidean prediction, that is, ii AN{S) is the 
observed or predicted numbers of sources in d5, it is often convenient to 
work in terms of normalised, differential source counts which are defined as 
AN{S)/ANo{S) where ANo{S) is the Euclidean prediction. 
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In real world models, the source counts deviate from the Euclidean predic­
tion because D and r are not linear functions of redshift 2. As an illustration, 
it is useful to work out the normalised differential source count for a single 
luminosity class of source with a power-law spectral index S{u) oc j / ~ " . For 
the standard Friedman world models, it is can be shown that 

AN{S) _ 2 c ( l 4 - z ) - t ( i + « ) 

ANo{S) HoiOoz + 1)1/2 [ p ( i ^ ^) ^ 2(1 + z)^] 

In the case of the critical model, i7o = 1, this expression reduces to 

AN{S) _ ( l + 2 ) - t ( i+^) 

ANo{S) ~ [(1 + a ) ( l -f z)i /2 _ a] 

(4.7) 

(4.8) 

The expression (4.7) is plotted in Fig. 4.1 for world models having OQ = 0, 1 
and 2 assuming a spectral index a — 0.75. The redshifts at which the number 
counts have different values of AN/ANo are indicated on each curve. These 
curves make the important point that, for a uniform distribution of sources, 
the slope of the differential counts departs from the Euclidean value at re­
markably small redshifts. For example, for the critical model QQ — I^ the slope 
of the differential source counts at a redshift of 0.5 is —2.08, corresponding 
to an integral source count with slope —1.08. Even at quite smaU redshifts, 
say 0.2 — 0.3, the departures from the —1.5 law are significant. Notice that 
this calculation has been undertaken for a simple power-law spectrum but 
the result is generally true unless the source spectra are highly inverted, an 
example of which is discussed in Chapter 11. 

The above calculation has been carried out for a single luminosity class 
of source and, to find more realistic predictions, these counts have to be 
convolved with the luminosity function of the sources. It is apparent, however, 
that, in general, any population of sources which extends to redshifts z ^ 1 is 
expected to have a source count which has slope significantly less steep than 
- 1 . 5 . 

Finally, we have to take account of the effects of cosmological evolution of 
the population of sources. It is simplest to regard the evolutionary changes as 
changes to the luminosity function of the sources with cosmic epoch. These 
can be written as a modification of the comoving space density of sources as 
a function of cosmic epoch. Formally, we can write 

N{L, z) - No{L)f{L, z, a, type , . . . ) (4.9) 

where the evolution function f takes the constant value 1 if the source dis­
tribution does not change with cosmic epoch. The evolution function can be 
made as complicated as is necessary. For example, to work out the optical 
counts of galaxies, separate luminosity functions have to be evaluated for 
each class of galaxy and then, in place of simple power law spectra, the typ­
ical spectrum of each class of galaxy has to be used. This is often achieved 
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Fig. 4.1 The predicted normalised differential counts of sources for a single lumi­
nosity class of source with a power-law spectrum S oc u~^'^^. The redshifts at which 
the sources are observed are indicated on each of the curves. 

by working out the K-corrections for the different classes of galaxy which 
contribute to the counts (see the expression 2.50). In addition, evolutionary 
changes of the spectral energy distributions of galaxies with cosmic epoch 
can be built into the above evolution function. Formally, the integral source 
counts for any form of evolution function can be written 

N{> So) II 
JLJS 

L JS>So 
No{L)f{L, z, a, t ype , . . .)D^drdL (4.10) 

This formalism is exactly the same as that recommended by Drs. Kron 
and Sandage. An obvious concern is the great variety in the properties of 
galaxies. In the extreme case in which one wished to take account of the indi­
vidual properties of every galaxy, it is possible to work out the space density 
corresponding to each of them by selecting a complete flux density limited 
sample of objects and then evaluating the volume of space T^ax within which 
each object could have been observed and stiU remain within the sample. The 
local space density of such a object is V^ax ^^^ *^^ spectral energy distribu­
tion of the galaxy can be used to work out K-corrections. 

Notice also that, if it is known that cosmological evolutionary effects are 
influencing the counts, these effects have to be taken into account when evalu­
ating the local space density of sources from magnitude or flux density limited 
samples. 
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4.2 T h e B a c k g r o u n d R a d i a t i o n 

At last, we are able to work out the background intensity due to a cosmo-

logical distribution of discrete sources. For the sake of illustration, we wUl 

assume that the sources have power-law spectra of the form S <x v~^ and 

then the flux density-luminosity relation becomes 

Now, the numbers of sources per steradian in an increment of comoving 

coordinate distance dr in the case of a uniform distribution of sources is 

dN = NoD'^dr (4.12) 

Therefore, background intensity I{i^o) due to this uniform distribution of 
sources is 

I{uo)= f S{uo)dN 

Ljuo) I 
Jo 

0 4x1)2(1 + 2 ) l + « 

Liuo)No 

NoD^dr (4.13) 

i»00 

/ ( l + z) - ( i+«)dr 
Jo 47r 

For the Friedman world models, we find from the expression (3.18) 

cdz 

and so we obtain the important result 

c L{i^o)No p dz 

This result can be compared with the Newtonian version of the same calcu­
lation which, from the small redshift limit, z ^^ 0, r = CZ/HQ, becomes 

This is the naive version of what is referred to as Others' paradox, namely, 
that, in a isotropic, infinite, stationary Euclidean Universe, the background 
radiation diverges. This naive sum has not taken account of the finite sizes 
of the sources and eventually we have to take into account of the overlapping 
of their images. Nor does the argument take account of thermodynamics 
since in such an infinite static Universe eventually all the matter comes into 
thermodynamic equilibrium at the same temperature. 
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Unlike the Olbers' sum, it is apparent that the integral over redshift in 
(4.14) converges provided a > —1.5. Any realistic spectrum must eventually 
turn over at a high enough frequency and so a finite integral is always ob­
tained. It is useful to work out the background intensity for two typical world 
models. For the cases i7o = 0 and /?o = Ij we find 

(l.b-\-a)Ho 47r 

Thus, it can be seen that, for typical values of a, to order of magnitude, the 
background intensity is just that originating within a typical cosmological 
distance (C/HQ), that is, 

c L{i/o)No f. . _ . 

A combination of factors leads to the convergence of the integral for the 
background intensity. Inspection of the integral (4.13) shows that part of 
the convergence is due the redshift factor (1 + z)~(̂ "*""̂  which is associated 
with the redshifting of the emitted spectrum of the sources. The second is the 
dependence of r upon redshift z. This relation is only linear at small redshifts, 
2 < 1. In the case of the critical model, r = {2c/Ho)[l - (1 -h z)~^^^] which 
converges to the value 2c/HQ as Z —* oo. This convergence is associated with 
the fact that the Friedman models of the Universe have a finite age and 
consequently there is a finite maximum distance from which electromagnetic 
waves can reach the Earth. 

Let us look in a little more detail at the origin of the background radiation 
in the uniform models. We take as an example the critical model f?o = 1 with 
a == 1. Then, the background intensity out to redshift z is 

From this it is easy to show that half of the background intensity originates 
at redshifts z < 0.31. A similar calculation for the case of the empty world 
model, Oo — 0, shows that half the intensity comes from redshifts less than 
0.42. So much for the cosmological significance of the background radiation! 
I am sure it must come as a disappointment to the organisers of a school 
entitled 'The Deep Universe' that the background radiation mostly originates 
at small redshifts. What is more to the point is the fact that, because half of 
the background is expected to originate at redshifts less than about 0.5, the 
principal contributors to the background radiation are not difficult to identify 
nowadays, provided their positions are accurately known. If the main sources 
of the background are associated with galaxies, there should be no difficulty in 
discovering the principal contributors to the background radiation, provided 
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the sources are uniformly distributed in space. This statement is not correct 
if the properties of the sources have evolved strongly with cosmic epoch and 
we take up tha t topic now. 

4.3 T h e Effects o f E v o l u t i o n - T h e Case of t h e R a d i o B a c k g r o u n d 
E m i s s i o n 

Just as in the case of the source counts, we can write the expression for 
intensity of the background radiation if the properties of the sources evolve 
with cosmic epoch in terms of the evolution function. By the same type of 
analysis as in the case of the source counts (expression 4.10), we find 

c X(t/o)JVo r / ( £ , z , t y p e , . . . ) d z 

^^'''^ - To-^^i inoz + iymi + zr^'' ('• '̂) 
The simplest example of the effects of evolution upon the background radi­
ation and the source counts is the radio background emission. This is a well 
known story (see, for example, Wall 1990, Peacock 1993). The counts of ra­
dio sources and optically selected quasars show an excess of faint sources as 
compared with the expectations of uniform world models (Fig. 4.2). At high 
flux densities, the source count is roughly N{> S) oc S~^'^ which represents 
an excess of faint sources even compared with the EucUdean prediction. It is 
now known tha t the radio galaxies and quasars which display the excess of 
faint sources have redshifts about 1 and so the difference between the uniform 
models and the observations is very significant indeed. This is illustrated by 
the comparison of the expected counts of sources with the observations in 
Fig. 4.2. Notice tha t , at the faintest flux densities, there is a flattening of the 
source counts and these are probably low luminosity radio sources associated 
with star burst galaxies (Rowan-Robinson et al 1993). 

The interpretation of radio source counts has been the subject of many 
studies, the most complete analysis of a very large body of high quality 
da ta being due to Dunlop and Peacock (1990). They employed the free-form 
modelling techniques developed by Peacock and Gull (1981) and Peacock 
(1985) to determine best-fits models for the evolution of the radio source 
populations. An example of the results of the modelling procedures is shown 
in Fig. 4.3 which shows how the comoving luminosity functions of the radio 
galaxies and quasars change with redshift. It appears as though the luminosity 
function is shifted to higher luminosities out to redshifts of about 2 and then 
begins to shift back again. According to these analyses, it looks as though 
there is a 'cut-off' to the evolving source distribution beyond redshifts of 2 
but this is not well established because of the statistical difficulty of finding 
sufficient sources at large redshifts (Peacock 1993). The volume elements 
decrease rapidly with increasing redshift and so it becomes progressively more 
and more difficult to find large redshift sources even if there is no cut-off. 

In his most recent analyses of the observations, Peacock has concluded 
tha t the simplest description of the forms of evolution necessary to account 
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Fig. 4.2 Comparison of the counts of radio sources at 5 GHz with the expectations 
of uniform world models based upon the radio luminosity function of radio souices 
determined from complete high flux density samples (After Wall 1990). 

for both the radio source counts and the optical counts of quasars (Boyle 
1993) have the same form. Both sets of data can be satisfactorily described 
by 'luminosity evolution' models in which it is assumed that the luminosities 
of the sources change in the following manner with redshift: 

L{z) = Lo{l -^zf 0 < 2 < 2 

L{z) = 21 LQ Z>2 
(4.20) 

Notice that this represents very strong evolution of the source population 
between redshifts 0 and 2. 

Let us illustrate by a simple calculation how such evolution can strongly 
influence the intensity of the background radiation. It is a simple calculation 
to work out the integrated background emission from a population of sources 
which locally has luminosity LQ and space density NQ with and without this 
form of evolution. From the expressions (4.13) and (3.18), the integrated 
background intensity is 

L{z)dz 
{i + z)y^ 

(4.21) 

where we have assumed that the spectral index of the sources a is 1 and that 
Oo = 1. 
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Fig. 4.3 Illustrating the evolution of the luminosity function of extragalactic radio 
sources with steep and flat radio spectra with redshift (or with cosmic epoch). Note 
that these luminosity functions are presented by per unit comoving volume so that 
the changes in the functions are over and above the changes in number density 
associated with the expansion of the Universe (Dunlop and Peacock 1990) 

In the 710 evolution case, L{z) = LQ and the background intensity is 

In contrast, in the evolution case, adopting the variation of luminosity with 
redshift given by the expressions (4.20), the background intensity is 

I{i^o) = 
12\/3 c fNoLo\ 

5 ffo V 4x ; 
(4.23) 
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Inclusion of the effects of cosmological evolution into the calculation results 
in a background 6\ /3 ~ 10 times greater than without evolution. This simple 
calculation is entirely consistent with the discussion presented in Section 1.4.1 
on the extragalactic radio background emission in which it was stated tha t 
the background due to strong radio sources would amount to only 1 — 2 K if 
there were no evolution but amounts to about 16 — 19 K when the effects of 
evolution are taken into account. 

Thus, in this case, the background emission does come from the *deep 
Universe', the bulk of the background originating at redshifts of the order 
2. Note, however, tha t this only occurs because of the very strong effects 
of cosmological evolution. Inspection of Fig. 4.3 shows that , although the 
luminosities of the sources only increase by about 27 between redshift 0 and 
2, the comoving space density of high luminosity sources increases by about a 
factor of 1000. These calculations make the point that the evolution has to be 
very drastic, which it is for radio galaxies and quasars, to make a significant 
impact upon the intensity of the background emission due to discrete sources. 

4.4 T h e B a c k g r o u n d R a d i a t i o n a n d t h e Source C o u n t s 

Let us look at the relation between the observed source counts and the back­
ground radiation. The background radiation from a population of sources 
with differential source count dN oc S~^dS is 

/ oc / SdNoc f S-^^-'Us = - ^ 5(2-^) (4.24) 

Thus, there is a critical value /3 = 2 for the slope of the differential source 
counts. If the slope of the counts is steeper than /3 = 2, the background 
intensity Ijy oc S^^ K On the other hand, if the slope of the differential 
source counts is less than /3 = 2, the background intensity is proportional to 
'̂ max- Thus, most of the background radiation originates from tha t region of 
the counts with slope (3 = 2. 

Now, for a Euclidean population of sources /3 = 2.5. In real world models, 
the slope is 2.5 at small redshifts but decreases at larger redshifts as discussed 
in Section 4 .1 . From the considerations which led to the expression (4.8), we 
showed tha t the slope of the differential counts is about 2 by a redshift of 
0.5, showing again tha t the bulk of the background emission originates from 
redshifts z < 1. 

4.5 F l u c t u a t i o n s in t h e B a c k g r o u n d R a d i a t i o n d u e t o D i s c r e t e 
S o u r c e s 

Another topic of interest is the amplitude of fluctuations in the background 
radiation due to discrete sources. This is a well-known problem, first solved 
for the more difficult case of observations made with a radio interferometer 



406 M.S. Longair: The Physics of Background Radiation 

Deflection on survey record D 

Probable real sources 

Angle across the sky 

Fig. 4.4 Illustrating the fluctuations in the intensity of the background radiation 
due to the superposition of faint sources. 

by Scheuer (1957). The problem may be stated as follows. Suppose the sky is 
observed with a telescope of beamwidth 6 and the integral counts of sources 
are given by N{> 5 ) oc 5~^. Then, if the survey extends faint enough, 
eventually a flux density is reached at which there is one source per beam area 
and fainter, more numerous sources cannot be detected individually. In this 
circumstance, the noise level of the survey is due to the random superposition 
of faint sources within the beam of the telescope. The situation is illustrated 
schematically in Fig. 4.4. The problem of making observations of radio sources 
when the * noise' is due to the presence of faint unresolved sources in the 
beam is often referred to as confusion. This problem afflicted the early radio 
surveys and is the source of fluctuations in the X-ray background emission 
when observed at low angular resolution (Fig. 4.5). 

Scheuer (1957) provided the complete solution to the problem of deter­
mining the source counts in radio surveys which are confusion limited. In 
his analysis, he found the correct slope for the counts of radio sources from 
the early radio surveys, N{> S) oc S~^'^. This result was only in apparent 
contradiction with the counts of sources themselves which suggested a much 
steeper slope but which were very badly aff'ected by confusion. Subsequent 
surveys carried out with radio telescopes with narrower beam patterns and 
consequently much less subject to the problems of confusion confirmed his 
result. I consider this to be a very important and original paper but one 
which is scarcely known. It was the first paper to find the correct result for 
the slope of the source counts at high flux densities. The steep slope showed 
that the counts were inconsistent with the Euclidean world model and with 
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Fig. 4.5 (a) The X-ray map of the sky observed by the HEAO-1 A2 telescope at 3° 
resolution in Galactic coor(iina:ies. (b) A contrast enhanced image of the X-ray sky 
as observed by the HEAO-1 A2 experiment in the 2 — 10 keV energy band, showing 
flucutations in the X-ray background intensity at high Galactic latitudes (Fabian 
and Barcons 1992). 

uniform Friedman models. I should declare an interest in that Peter Scheuer 
was my Ph.D. supervisor. 

The simplest presentation I know of the problem for a single beam tele­
scope is also by Scheuer (1974) who went on to solve the easier problem for 
surveys of the sky made by early X-ray telescopes. His approach was to forget 
all about the detection of individual sources but to deal directly with the am­
plitude of the intensity fluctuations on the map. If the map is sampled at the 
information rate for observations with a telescope of beam-width 6, that is, 
at twice per beam-width, a probability distribution is found of the amplitude 
of the deflection D of the record from some zero level. The term * deflection' 
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D was used since the original radio astronomy surveys were recorded on strip 
charts and the deflections really were the deflections of the recording pen. 
Typical probability distributions, known as P{D), are illustrated in Fig. 4.6. 
It can be seen that the distributions are non-Gaussian but, according to the 
central limit theorem, the noise level is given by the standard deviation of 
the probability distribution P{D), The very large deflections are identified as 
discrete sources and the P{D) distribution tends asymptotically to the differ­
ential source count P{D) oc D~^. A criterion for their identification as real 
sources has to be established. Normally some criterion such as 5 times the 
standard deviation of the confusion noise or one source per twenty or thirty 
beam-areas is selected. The problem is that, in a confusion limited survey, 
the flux densities of sources are systematically overestimated because of the 
random presence of faint sources in each beam. It was this effect which led 
to the overestimation of the flux densities of faint radio sources in the early 
radio source catalogues and hence to an excessively steep source count (see 
Scheuer 1990 for the history of these problems). 

By carrying out a statistical analysis of the expected function P{D) 
for sources selected randomly from a differential source count of the form 
diV(5) oc 5~^, Scheuer showed how the slope of the source counts could be 
found. Fig. 4.6 shows the normalised P{D) distributions for different value of 
/3. It can be seen that the shape of the P{D) distribution provides a means 
of determining the form of the source counts. To order of magnitude, the 
most probable value oiP[D) corresponds to the flux density of those sources 
which have surface density of roughly one source per beam-area — Scheuer 
(1974) gives a simple statistical argument to show why this should be so. At 
higher flux densities, the sources are too rare to make a large contribution 
to the beam-to-beam variation in background signal. At lower flux densities, 
many faint sources add up statistically and so contribute to the background 
intensity but the fluctuations are dominated by the brightest sources present 
in each beam. At roughly one source per beam area, the fluctuations can be 
thought of as arising from whether or not the source is by chance within the 
beam. Thus, whereas the rehable detection of individual sources can only be 
made to about 5 or 6 times the confusion noise level, statistical information 
concerning the source counts can be obtained to about one source per beam 
area. 

Scheuer's analysis was entirely analytic but it is nowadays much simpler 
to use Monte Carlo methods to work out the functions P{D) for the assumed 
form of source count. The first of these statistical studies using Monte Carlo 
modelling procedures was carried out by Hewish (1961) in his analysis of 
the original records of the 4C survey. He found the first evidence for the 
convergence of the radio source counts at low flux densities at a frequency of 
178 MHz. These procedures have been used to determine the source counts 
to the very faintest flux densities in the radio waveband (see, for example. 
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Fig. 4.6 Examples of the theoretical P(D) distributions for observations made 
with a single-beam telescope for different assumed slopes of the differential source 
counts dN{S) oc S'^dS, The zero point of the abscissa is the mean amplitude D 
and the areas under the probability distributions have been normalised to unity. 
The distributions tend asymptotically to dN cc D~^ dD at large deflections D. 
(From Scheuer 1974). 

Fomalont et al 1988) and in the deep ROSAT surveys by Hasinger at al (1993) 
(see Section 5.1). 

Another approach to the interpretation of fluctuations in the background 
radiation is to look for a signal in the correlation function of the fluctuations. 
This has been carried out succesfully in the optical waveband by Shectman 
(1974) who found a clear signature corresponding to the two-point correlation 
function for galaxies. The observed fluctuation spectrum is in quite remark­
able agreement with the standard correlation function found in studies of 
large samples of galaxies. The most recent application of this approach is the 
heroic work of Martin and Bowyer (1989). In a short rocket flight, they were 
able to make a survey of a small region of sky and found a significant corre­
lated signal among the spatial distribution of the counts. With a number of 
reasonable assumptions, they were able to show that they had detected the 
ultraviolet emission from galaxies (see Section 1.8). 
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Similar analyses have been carried out for the fluctuations in the X-ray 
background as observed by the HEAO 1 A-2 experiment (Persic et al 1989). 
The binning of the background counts was in pixels 3° in size. No signifi­
cant signal was found in the two-dimensional autocorrelation function on all 
angular scales greater than 3°. This constrains the clustering of the sources 
which might make up the background radiation to scales less than about 50 
Mpc. They showed tha t the observed upper limits to the clustering would be 
consistent with the observed cross-correlation function for galaxies 

and clusters of galaxies. A similar analysis has been carried out by Barcons 
and Fabian (1989) who have studied fluctations in five deep Einstein IPC 
fields. A signal is observed on the scale of 5 arcmin but it is not certain tha t 
this is of astrophysical origin. A maximum comoving clustering scale of 10h~^ 
Mpc is found. This rules out models in which the background is associated 
with clusters of galaxies at low redshifts, z < 1. 

It is probably true to say tha t the epoch of studies of fluctuations in 
the background radiation due to discrete sources comes to an end as soon 
as source counts extend to such faint flux densities tha t the bulk of the 
background emission can be accounted for. This is now the case for the radio 
waveband and for the X-ray background at 1 keV. 
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