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Abstract In addition to the SARS coronavirus (treated separately elsewhere in this
volume), the complete genome sequences of six species in the coronavirus genus
of the coronavirus family [avian infectious bronchitis virus-Beaudette strain (IBV-
Beaudette), bovine coronavirus-ENT strain (BCoV-ENT), human coronavirus-229E
strain (HCoV-229E), murine hepatitis virus-A59 strain (MHV-A59), porcine trans-
missible gastroenteritis-Purdue 115 strain (TGEV-Purdue 115), and porcine epidem-
ic diarrhea virus-CV777 strain (PEDV-CV777)] have now been reported. Their
lengths range from 27,317 nt for HCoV-229E to 31,357 nt for the murine hepatitis
virus-A59, establishing the coronavirus genome as the largest known among RNA



viruses. The basic organization of the coronavirus genome is shared with other
members of the Nidovirus order (the torovirus genus, also in the family Coronaviri-
dae, and members of the family Arteriviridae) in that the nonstructural proteins in-
volved in proteolytic processing, genome replication, and subgenomic mRNA syn-
thesis (transcription) (an estimated 14–16 end products for coronaviruses) are en-
coded within the 50-proximal two-thirds of the genome on gene 1 and the (mostly)
structural proteins are encoded within the 30-proximal one-third of the genome (8–9
genes for coronaviruses). Genes for the major structural proteins in all coronavirus-
es occur in the 50 to 30 order as S, E, M, and N. The precise strategy used by coron-
aviruses for genome replication is not yet known, but many features have been es-
tablished. This chapter focuses on some of the known features and presents some
current questions regarding genome replication strategy, the cis-acting elements nec-
essary for genome replication [as inferred from defective interfering (DI) RNA mole-
cules], the minimum sequence requirements for autonomous replication of an RNA
replicon, and the importance of gene order in genome replication.

1
Introduction

Despite its unique property as the largest of the known plus-strand RNA
genomes, the coronavirus genome shares with those of other plus-strand
RNA viruses (excepting retroviruses) the properties of (1) infectiousness
[and not using a packaged RNA-dependent RNA polymerase (RdRp)]
(Brian et al. 1980; Schochetman et al. 1977) and (2) replication in the cy-
toplasm in close association with cellular membranes (Denison et al.
1999; Dennis and Brian 1982; Gosert et al. 2002; Sethna and Brian 1997;
Shi et al. 1999; van der Meer et al. 1999). Many of the basic features of
coronavirus genome structure and replication have been described in re-
cent reviews (Cavanagh et al. 1997; Enjuanes et al. 2000a, 2000b; Lai and
Cavanagh 1997; Lai and Holmes 2001; Luytjes 1995; van der Most and
Spaan 1995). With the advent of reverse genetics enabling site-directed
mutagenesis of any part of the genome (Almazan et al. 2000; Casais et al.
2001; Masters 1999; Thiel et al. 2001; Yount et al. 2000, 2002), many of
the mechanistic features of coronavirus genome replication that could
previously be learned only from direct manipulation of defective inter-
fering (DI) RNA can now be examined in the context of the whole virus
genome. In this chapter, we review the current knowledge of coronavirus
genome structure and organization and the cis-acting elements in coro-
navirus replication and raise selected questions that we believe are im-
portant for approaching a better understanding of coronavirus genome
replication.
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2
Common Features of Genome Structure Among Coronaviruses

In addition to the SARS coronavirus (treated separately elsewhere in this
volume), the genomes of six species of coronaviruses have now been
fully sequenced and reported in GenBank (as of November 2002):
IBV-Beaudette (NC 001451, Boursnell et al. 1987), BCoV-ENT (NC
003045, Chouljenko et al. 2001), MHV-A59 (NC 001846, Leparc-Goffart
et al. 1997), HCoV-229E (NC 002645, Herold et al. 1993; Thiel et al.
2001), TGEV-Purdue (NC 002306, Almazan et al. 2000; Eleouet et al.
1995; Penzes et al. 2001), and PEDV-CV777 2001 (NC 003436, Kocher-
hans et al. 2001). These, representing all three coronavirus serogroups
(Siddell 1995), are schematically depicted in Fig. 1. Additional strains of
BCoV [BCoV-LUN (AF391542, Chouljenko et al. 2001)], BCoV-Mebus
(U00735, Nixon and Brian, unpublished data) and BCoV-Quebec
(AF220295, Yoo and Pei 2001), and MHV [MHV-2 (AF201929, Sarma et
al. 1999)] have also been reported. The genome sizes range from
27,317 nt for HCoV-229E to 31,357 nt for MHV-A59, establishing them
as the largest known among RNA viruses (Enjuanes et al. 2000a; Lai and
Cavanagh 1997). The following similarities in genome structure among
the six can be noted:

1. The 50 UTRs ranging in length from 209 to 528 nt contain a similarly
positioned short, AUG-initiated open reading frame (ORF) relative to
the 50 end [Table 1; a situation that, by current terminology, is problem-
atic because the “untranslated region” now becomes in part potentially
translatable and thus should preferably be called a “leader” (Morris and
Geballe 2000). The term “leader,” however, has an established meaning
in the nidovirus lexicon (Lai and Cavanagh 1997; see subsequent chap-
ters, this volume) of a 5�-terminal, genome-encoded sequence of 65–
98 nt appearing on the 50 terminus of each subgenomic mRNA species].
For purposes of this review, “50 UTR” will refer to the sequence up-
stream of ORF 1 (gene 1) despite the internally positioned short ORF.
The short AUG-initiated ORFs (except for HCoV-229E) begin in a sub-
optimal Kozak context for translation (Table 1) (Kozak 1991) and po-
tentially encode peptides of 3–11 amino acids.

2. The 30 UTRs range from 288 to 506 nt [although some strains of IBV
have 30 UTRs of greater length because of internal sequence duplica-
tions (Williams et al. 1993)], all possess an octameric sequence of
GGAAGAGC beginning at base 73 to 80 upstream from the poly(A) tail,
and all possess a 30-terminal poly(A) tail (Table 1).

Coronavirus Genome Structure and Replication 3



Fig. 1. Genomes of the six sequenced species of coronaviruses known prior to the
discovery of the SARS coronavirus. Maps are drawn to approximate scale, and spe-
cies are shown in decreasing order of size within each of the three groups. The rep-
resentations are derived from data in the GenBank as of November 2002. For gene 1
(ORFs 1a and 1b) the predicted protease cleavage sites are indicated by numbers
and domains of known or predicted function are shaded and identified (PL, papain-
like protease; 3CL, poliovirus 3C-like protease; TM, transmembrane domain; RdRp,
RNA-dependent RNA polymerase; Z, zinc finger (metal-binding) domain; Hel, heli-
case domain; C, conserved sequence domain). Genes 2–8 (or 9) are identified by
their transcript name (1a, 1b, etc.) or their abbreviated name of the protein product
(S, spike; E, envelope; M, membrane; N, nucleocapsid; HP, hydrophobic protein; HE,
hemagglutinin-esterase; I, internal). Literature references are described with the
GenBank information (see text)
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3. All have an extremely large gene 1 (separated into ORFs 1a and 1b and
extending over approximately two-thirds of the genome) encoding non-
structural proteins involved in proteolytic processing of the gene 1
polyprotein products, virus genome replication, and sgmRNA synthesis
(transcription). In each, gene 1 is translated as ORFs 1a and 1ab, with
1ab resulting from a pseudoknot-induced 	1 ribosomal frame shifting
event at a slippery sequence of UUUAAAC at the ORF 1a/1b junction
(Fig. 2) (Brown and Brierley 1995).

4. All encode the structural spike (S) glycoprotein, small envelope (E) pro-
tein, membrane (M) glycoprotein, and nucleocapsid (N) protein, in that
order, 50!30 within the 30-proximal one-third of the genome. A variable
number of other ORFs appearing to be virus- or group-specific, many
apparently encoding nonstructural proteins, are also found here. These
(and their potential products) include ORF 3a (7.7-kDa protein), ORF
3b (27.7-kDa protein), and ORF 7 [0.7-kDa hydrophobic protein (HP)]
in TGEV; ORF 3 (25.3-kDa protein) in PEDV; ORF 4a (15.3-kDa protein)
and ORF 4b (10.2-kDa protein) in HCoV-229E; ORF 2a (32-kDa pro-
tein), ORF 2b [65-kDa complete or 34.6-kDa truncated hemagglutinin-
esterase (HE) protein, depending on the strain], ORF 4 (17.8-kDa
protein), ORF 5a (13.1-kDa protein), and an ORF internal to gene 7
[23-kDa internal (I) protein] in MHV; ORF 2a (32-kDa protein), ORF
2b (65-kDa HE protein), ORF 4a (4.9-kDa protein), ORF 4b (4.8-kDa
protein), ORF 5 (12.7-kDa protein), and an ORF internal to gene 7
(23-kDa I protein) in BCoV; and ORF 3a (6.7-kDa protein), ORF 3b
(7.4-kDa protein), ORF 5a (7.5-kDa protein), and ORF 5b (9.5-kDa pro-
tein) in IBV (Fig. 1; Brown and Brierly 1995, and references listed in the
GenBank information noted above). Some of these, such as ORFs 3a
and 3b in TGEV (McGoldrick 1999; Wesley et al. 1991) and ORFs 2a

Fig. 2. Pseudoknotted structures and slippery sequences responsible for highly effi-
cient (25%–30%) –1 ribosomal frameshifting at the ORF 1a and 1b junction in gene
1 of the six coronaviruses shown in Fig. 1. The slippery sequence UUUAAAC, identi-
fied in bold, is the same in all sequenced genomes. The IBV pseudoknot-induced
frameshifting was the first nonretroviral example of ribosomal frameshifting in
higher eukaryotes (Brierley et al. 1987, 1989). The pseudoknots in MHV (Breden-
beek et al. 1990) and BCoV (Yoo and Pei 2001) are nearly identical and are similar to
the structure in IBV. In HCoV-229E an elaborated pseudoknot with three stems was
shown by mutation analysis to be the functional frameshifting structure (Harold
and Siddell 1993). In TGEV (Eleouet et al. 1995) and in PEDV (Kocherhans et al.
2001) an elaborated pseudoknot was also predicted based on similarities to HCoV-
229E

t
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(Schwarz et al. 1990), 2b (HE) (Luytjes et al. 1988), 4 (Weiss et al. 1993;
Yokomori and Lai 1991), 5a (Yokomori and Lai 1991), and I (Fischer et
al. 1997) in MHV, have been shown to be nonessential for replication in
cell culture, and their function in virus replication remains undeter-
mined (de Haan et al. 2002).

Presumably all coronavirus genomes are capped with a 50 methylated
nucleotide, but so far this has been demonstrated only in MHV (Lai et
al. 1982).

3
Cis-Acting RNA Elements in Coronavirus Genome Replication

3.1
The 50 UTR and the Translation Step(s) Preceding Genome Replication

As with all nonretroviral plus-strand RNA viruses, a necessary early step
in genome replication is translation of the genome for production of the
RdRp and other proteins required for viral genome replication. The
presence of a 50 terminal methylated cap on MHV genomic and subge-
nomic mRNAs (Lai et al. 1982) would suggest that coronaviruses use a
cap-mediated ribosomal entry mechanism for translation. Mutation
analyses of the 50 UTR of BCoV indicate that a scanning mechanism is
used for entry of ribosomes onto ORF 1 (Senanayake and Brian 1999).
Curiously in light of these results, a methylated cap on DI RNA tran-
scripts is not required for initiation of replication of BCoV DI RNA,
which contains a genomic 50 UTR. This molecule has a cis-acting depen-
dence on translation for replication (Chang et al. 1994; Chang and Brian
1996). It remains to be determined whether capping is required for
translation and replication of the intact viral genome. It remains to be
determined what enzyme functions to cap the viral RNAs (Ziebuhr et al.
2000).

In MHV it has been demonstrated that the viral nucleocapsid protein
N binds tightly (Kd=14 nM) to the UCUAAAC intergenic region (also
named transcription-regulating sequence, TRS) of the genomic leader
and consequently may influence translation rate (Nelson et al. 2000;
Tahara et al. 1998). Is this property of N common to all coronaviruses?
If so, what role does it play in the regulation of genome replication?

Does the intra-50 UTR short ORF play a role in translation (or in sub-
sequent replication) of the genome? With reverse genetics, disruption of

8 D.A. Brian · R.S. Baric



an analogous ORF in equine arterivirus had no apparent effect on virus
replication in cell culture (Molenkamp et al. 2000), but the ORFs may
not have homologous function in the two virus groups. Certainly, short
upstream ORFs can have profound enhancing or suppressing effects on
the translation of a downstream ORF (Morris and Geballe 2000), and
their universal existence in coronavirus 50 UTRs, albeit with little or no
conservation in size or amino acid sequence (Table 1), would suggest
that they function in the regulation of replication or gene expression.
One possibility is that the intra-50 UTR short ORF or some other 50 UTR
element, such as the binding site for N described above, is responsible
for the repression of translation from the ORF 1 start codon in virus-in-
fected cells (Senanayake and Brian 1999).

Some observed phenomena in coronavirus genome and DI RNA rep-
lication hint that the 50 UTR might be bypassed altogether in order to
meet the translation requirements for genome replication. One set of
observations relates to a possible role for N in genome replication (Baric
et al. 1988; Compton et al. 1987; Kim K and Makino 1995; Laude and
Masters 1995; Nelson et al. 2000; Stohlman et al. 1988), a role that would
set coronaviruses apart from arteriviruses in this regard because only
gene 1 products have been shown to be sufficient for arterivirus genome
replication (Molenkamp et al. 2000). N protein, for example, binds lead-
er sequence with high affinity (Nelson et al. 2000), is present in a sub-
population of coronavirus RNA replication complexes (Sethna and Brian
1997; Sims et al. 2000), and is essential for infectivity of recombinant
IBV full-length transcripts (Casais et al. 2001). If N is required, then
some mechanism for the translation of N from the polycistronic ge-
nome, such as an internal entry of ribosomes onto genomic RNA or for-
mation of an early subgenomic mRNA transcript, would be needed, at
least when infection is initiated by the genome alone (as in transfection
experiments). Some evidence for internal ribosomal entry has been
demonstrated for IBV mRNA 3 (Liu and Inglis 1992), MHV mRNA 5
(Thiel and Siddell 1994; Jengrach et al. 1999), and TGEV mRNA 3
(O�Connor and Brian 2000), making it prudent to consider an internal
entry at these or other sites on the genome for protein synthesis. Anoth-
er set of observations relates to a requirement for translation in cis of
the DI RNA molecule to be replicated. Although some DI RNAs with a
single ORF do not appear to require translation in cis for replication
(Liao and Lai 1995), others do (Chang and Brian 1996; De Groot et al.
1992; Van der Most et al. 1995). Might a cis-acting requirement for DI
RNA translation reflect a similar cis-translation-dependent mechanism
for genome replication as described for picornaviruses (Egger et al.

Coronavirus Genome Structure and Replication 9



2000; Gamarnik and Andino 1998; Novak and Kirkegaard 1994) and fla-
viviruses (Khromykh et al. 1999)? If so, then perhaps an internal ribo-
somal entry for translation onto the 30 proximal region of the genome
might be needed for coronavirus genome replication.

3.2
The Pseudoknot and Slippery Sequence
Involved in the � 1 Ribosomal Frameshifting at the ORF 1a/1b Junction

Ribosomal frameshifting in coronaviruses was the first described non-
retroviral example of ribosomal frameshifting in higher eukaryotes
(Brierly 1987), and the earliest described higher-order RNA structure
recognized as a cis-acting element in coronavirus genome replication
was the pseudoknot located immediately downstream of the UUUAAAC
slippery sequence in the IBV genome (Brierly et al. 1987, 1989; Brown
and Brierly 1995) (Fig. 2). The pseudoknot in IBV was described as a
hairpin-type and was shown by mutation analyses to be responsible for
the highly efficient (25%–30%) frameshifting. Subsequently, a pseudo-
knot with similar properties was found in gene 1 of MHV (Bredenbeek
et al. 1990) and BCoV (Yoo and Pei 2001). Interestingly, the pseudoknot
found in gene 1 of HCoV-229E was found to be quite different in struc-
ture, possessing an extremely large loop 2 and a stem 3 (Fig. 2). This
structure was termed an “elaborated” pseudoknot and was shown to
function as such in in vitro measurements of frameshifting (Herold and
Siddell 1993). The predicted pseudoknots in TGEVand PEDV gene 1 ap-
pear to be quite similar to that in HCoV-229E (Eleouet et al. 1995;
Kocherhans et al. 2001). The pseudoknot-associated slippery sequence is
UUUAAAC in all sequenced coronaviruses described to date.

3.3
Cis-Acting Elements Required for Membrane Association
of the RNA with the Replication Complex

Once made, or possibly concurrent with synthesis, viral proteins and
(possibly) associated cellular proteins function to form the membrane-
associated RNA replication complexes. Membrane association is a hall-
mark of replication complexes of plus-strand RNAviruses, but the origin
of the membrane and the anatomy of the replication complexes appear
to differ among virus families. A preliminary understanding of the coro-
navirus replication complex has come primarily from studies with MHV
and partly from studies with TGEV. The following features have been
observed:

10 D.A. Brian · R.S. Baric



1. The membrane in the MHV replication complex has shown markers for
the endoplasmic reticulum and Golgi (Shi et al. 1999; Gosert at al. 2002)
and, alternatively, the late endosomes (van der Meer et al. 1999; Sims et
al. 2000).

2. The replication complex is intimately associated with double membrane
structures, and the anchored proteins are the hydrophobic sequence-
containing intermediate cleavage products p290 and p150, and p210
and p44, of ORF 1a (Gossert et al. 2002).

3. There appear to be two populations of membrane-associated replication
complexes separable by isopycnic sedimentation (Sethna and Brian
1997; Sims et al. 2000). In MHV the less dense fraction (1.05–1.09 g/ml)
was found to contain p65 and p1a-22, products of ORF 1a, whereas the
denser fraction (1.12–1.25 g/ml) contained p28 and helicase from ORF
1b, and N (Sims et al. 2000).

In TGEV two buoyant density populations (1.15–1.17 g/ml and 1.20–
1.24 g/ml) were also found, and both had associated with them genome-
and subgenome-length plus- and minus-strand RNAs (Sethna and Brian
1997). Some S, M, and N proteins were associated with the denser popu-
lation. The TGEV membrane replication complexes, furthermore, ap-
peared to have an unusual impermeability to micrococcal nuclease. It re-
mains to be determined precisely what proteins, viral and cellular, func-
tion together to make up the coronavirus replication complexes and
how they might be associated with the membranes and with one anoth-
er. How might they differ between the processes of minus- and plus-
strand synthesis? Between replication and transcription? Which proteins
bind the RNA, both genomic and subgenomic, both plus and minus
strands, within the complex? What is the stoichiometry of the compo-
nents in the various complexes? What is the relationship between the
RNA replication complex and the site of virus assembly at the Golgi and
intermediate Golgi membranes? How is the genome selected and trans-
ported from the replication complex to the site of virus assembly? Does
the evidence of resistance of coronaviral RNAs to ribonuclease suggest
existence of a compartmentalized replication complex and have implica-
tions for resistance to RNA silencing (Ahlquist 2002) and long-term
persistent coronaviral infections (Adami et al. 1995; Baric et al. 1999;
Okumura et al. 1996; Stohlman et al. 1999)?

Coronavirus Genome Structure and Replication 11



3.4
50 and 30-Proximal RNA Cis-Acting Elements
for DI RNA (and Presumably Genome) Replication

Since the first description of their cloning and replication in helper vi-
rus-infected cells, coronavirus DI RNAs have been used in attempts to
define the minimal cis-acting sequence requirements for their replica-
tion (Brian and Spaan 1997; Makino et al. 1985, 1988a, 1988b; van der
Most et al. 1991). Through deletion analyses the regions harboring mini-
mal cis-acting sequences have been mapped for DI RNAs from TGEV,
MHV, BCoV, and IBV (noted as filled regions in the DI RNA maps in
Fig. 3). For most of the DI RNAs it can be seen that these sequences re-
side at the termini of the viral genomes for distances of 467–1,348 at the
50 end and 338–1,635 at the 30 end. Further reduction in the sizes of
these regions may result from further deletion analyses. Requirements
for internal genome sequence elements appear to be DI RNA specific
but may reflect requirements of the intact genome (see below). What is
the nature of the terminal cis-acting RNA elements? Is a specific se-
quence alone sufficient, or are higher-order structures required? So far,
these questions have focused primarily on the small (2.2–2.3 kb) DI
RNAs of the group 2 coronaviruses MHVand BCoV.

With regard to the 30 UTR of MHV-A59 and BCoV-Mebus, common
replication signals exist between the two viruses. This was demonstrated
by experiments in which the entire 30 UTR of the MHV genome was re-
placed with the equivalent region of the BCoV genome without loss of
virus viability (Hsue and Masters 1997) and in a BCoV DI RNA chimera
in which the BCoV 30 UTR was replaced with the MHV 30 UTR with no
detectable loss of replicating ability (Ku, Williams, and Brian, unpub-
lished data). More recently, BCoV DI RNA has been shown to replicate
in the presence of MHV as helper virus (Wu et al. 2003). To date, three
higher-order cis-acting elements mapping within the 30 UTR have been
characterized in MHVand BCoV (Fig 4):

Fig. 3. Map positions of minimal cis-acting sequences for RNA replication (solid
boxes) and signals for packaging (stippled boxes) as determined from studies on DI
RNAs and their derivatives. The schematic diagrams of the four coronaviruses stud-
ied in this manner are shown. (a) Izeta et al. 1999; deletion analyses were done on
derivatives of TGEV DI RNA C (9.7 kb) (Mendez et al. 1996); M21 contains minimal
sequence elements for replication and inefficient packaging; M33 and M62 contain

t
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small nonoverlapping regions of ORFs 1a and 1b that contribute to packaging; (b)
Luytjes et al. 1996; van der Most et al. 1991, 1995; deletion analyses were done on
derivatives of MHV-A59 DIa RNA (5.5 kb); (c) Lin and Lai 1993; Makino et al. 1990;
deletion analyses were done on DIssF; (d) Fosmire et al. 1992; Kim et al. 1993; Kim
and Makino 1995; deletion analyses were done on DIssE; (e) Masters et al. 1994; DI
B36 is synthetic and was designed after the BCoV-Mebus DI RNA; (f) Chang et al.
1994; deletion analyses were done on reporter-containing DI Drep1; (g) Dalton et
al. 2001; deletion analyses were done on derivatives of 9.1-kb IBV DI RNA CD-91
(Penzes et al. 1994); unknown regions within the UTRs suffice for packaging of DI
RNA, but packaging is inefficient

Coronavirus Genome Structure and Replication 13



1. A 68-nt bulged stem-loop beginning immediately downstream of the N
stop codon consists in MHV of four stems (B, C, D, and F) and a 14-nt
terminal loop (Hsue and Masters 1997; Hsue et al. 2000). Stems C, D,
and F have been shown to be required for replication of both the DI
RNA and virus genome.

2. A 54-nt hairpin-type pseudoknot beginning 60 nt downstream of the
bulged stem-loop (Williams et al. 1999). Both stems of the pseudoknot
have been shown to be required for replication. The pseudoknot se-
quence overlaps the downstream arm of stem F in the bulged stem-loop

Fig. 4A, B. Terminal cis-acting replication sequences and higher-order structures
identified to date in the smallest of the MHV and BCoV DI (group 2) RNAs. A The
DI RNA illustrated is that for BCoV, but the structures drawn (with the exception of
the 50-proximal stem-loops I and II and the upper portion of the 30-proximal oc-
tamer-associated stem loop) are phylogenetically conserved between MHV and
BCoV. The open rectangle represents an open reading frame formed by the fusion of
the first part of ORF1a and the entire N gene. The 30 higher-order structures are a
61-nt bulged stem-loop (Hsue et al. 2000), a hairpin-type pseudoknot (Williams et
al. 1999), a helix formed at the base of a long stem-loop and adjacent to the phyloge-
netically conserved octameric sequence (Liu et al. 2001). The poly(A) tail is required
for replication (Lin and Lai 1993;, Spagnolo and Hogue 2000), and the 50-terminal
55 nt are the minimal sequence requirements for minus-strand RNA synthesis in
MHV (Lin et al. 1994). The 50 higher-order structures are a stem-loop III and stem-
loop IV within the 50 UTR (Raman et al. 2002) and stem V within the partial ORF 1a
sequence (Brown et al. 2002). B Experimental evidence for replication (accumula-
tion) of reporter-containing DI RNA but not mRNA7 containing the same reporter
after transfection into helper virus-infected cells (Chang et al. 1994). The only differ-
ence between the two molecules is a sequence of 421 nt mapping between nt 74 and
497 in the BCoV DI RNA
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such that the two structures cannot exist simultaneously. This led
Hsue et al. (2000) to suggest a possible interaction between the two ele-
ments, with the alternative conformations acting as a possible “switch-
ing” mechanism. This switch has now been confirmed experimentally
(Goebel et al. 2004).The pseudoknot appears phylogenetically conserved
to some degree in all coronaviruses.

3. A 74-nt bulged stem-loop mapping from nt 68 to 142 from the 30 termi-
nus in MHV contains two stems that demonstrated importance as cis-
acting replication structures (referred to as stems A and B in Fig. 4)
(Liu et al. 2001). Stem B, which shows greater importance in DI RNA
replication, is phylogenetically conserved in structure between MHV
and BCoV. Stem B is immediately adjacent downstream to the phyloge-
netically conserved 30 UTR octamer GGAAGAGC (Liu et al. 2001).
Unidentified cellular proteins of 120, 55, 40, and 25 kDa molecular mass
bind to nt 130–142 which is the upstream half of the internal loop in
stem B (Liu et al. 1997; Yu and Liebowitz 1995).

Proteins identified to date that bind within the 30 region (or the mi-
nus-strand counterpart of this region) include the poly(A) binding pro-
tein (Spagnolo and Hogue 2000), mitochondrial aconitase, which binds
within the 42-nt 30-terminal region in MHV (Nanda and Leibowitz
2001), and the polypyrimidine tract-binding protein, which binds to mi-
nus-strand sequence complementary to nt 53–149 (strongly) and 270–
307 (weakly) in MHV (Huang and Lai 1999). What roles the 30 UTR
higher-order structures play in RNA replication are not known. Because
the 30-terminal 55 nt were shown to be a minimal sequence requirement
for minus-strand synthesis in MHV (Lin et al. 1994), the higher-order
structures mapping upstream of the 55-nt sequence possibly play no
role in minus-strand synthesis. Do they play a role in initiating or regu-
lating plus-strand synthesis? Precedents in picornaviruses (Barton et al.
2001; Herold and Andino 2001), alphaviruses (Frolov et al. 2001),and
flaviruses (You et al. 2001) would suggest they might. Certainly the
poly(A) tail through the poly(A)-binding protein is a candidate for
such a process, perhaps through genome circularization (Spagnolo and
Hogue 2000).

With regard to the 50 UTR it is known that the 50-terminal sequence is
required for DI RNA replication (Chang et al. 1994; Kim et al. 1993) and
at least two stem-loops (stem-loops III and IV in Fig. 4) function as
higher-order cis-acting signaling elements (Raman et al. 2003; Raman
and Brian, unpublished data). A higher-order cis-acting structure map-
ping within the first 290 nt of ORF1 (stem-loop V in Fig. 4) has also been
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found (Brown, Nixon, Senanayake, and Brian, unpublished data). Pro-
teins shown to bind within the 50 UTR include the viral N protein, which
binds in and around the leader-adjacent intergenic sequence motif
UCUAAAC (Nelson et al. 2000), the polypyrimidine tract binding pro-
tein, which also binds near the leader-adjacent UCUAAAC sequence mo-
tif (Li et al. 1999), and hnRNP A1, which binds the minus-strand com-
plement of the leader-adjacent UCUAAAC sequence motif (Li et al.
1997). None of these has been reported to bind regions covered by stem-
loops III, IV, or V depicted in Fig. 4. Might there be a process of leader
priming of genome replication (Zhang and Lai 1996), as suggested by
the phenomenon of high-frequency leader switching on DI RNAs during
DI RNA replication (Chang et al. 1996; Makino and Lai 1989; Stirrups et
al. 2000)?

The question of what cis-acting sequences act in coronavirus RNA
replication has relevance not only for genome replication but also for
poorly understood features of sgmRNA behavior. It has been suggested
that coronavirus sgmRNAs amplify by a replication mechanism (Brian
et al. 1994; Hofmann et al. 1990; Sethna et al. 1989). This hypothesis
made use of the argument that the termini on the sgmRNAs and ge-
nome, identical at the 50 end for the length of the leader (65–98 nt, de-
pending on the virus species) and at the 30 end for greater than the
length of the 30 UTR (i.e., greater than 300 nt), are larger than the known
promoters for a viral RdRp [replication promoters in influenza and
Sindbis viruses are less than 20 nt in length (Levis et al. 1986; Li and
Palese 1992)] and are therefore large enough to harbor promoters for
replication. The hypothesis was also consistent with the observations
that (1) the molar ratios of minus-strand to plus-strand RNA are equiva-
lent for sgmRNA and genome (i.e., 1:100), (2) the rate of sgmRNA accu-
mulation is inversely proportional to the length of the molecule, (3) the
rate of sgmRNA minus strand disappearance parallels that of antige-
nome, and (4) sgmRNA minus strands possess 30-terminal sequences
complementary to the leader (Sethna et al. 1989). Furthermore, (5) dou-
ble-stranded subgenomic mRNA-length RFs and RIs (Hofmann and
Brian 1991; Hofmann et al. 1990; Sawicki and Sawicki 1990; Sethna et al.
1989) were shown to be active in subgenomic mRNA synthesis (Baric
and Yont 2000; Sawicki and Sawicki 1995, 1998; Sawicki et al. 2001;
Schaad and Baric 1994). If the 30-terminal 55 nt are the only requirement
for minus-strand RNA synthesis (Lin et al. 1994), the possibility is left
open that the subgenomic mRNAs function as a templates for minus-
strand synthesis. At no time, however, has it been directly demonstrated
that sgmRNA transcripts, with or without a reporter, are replicated in
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the presence of a helper virus after transfection into helper virus-infect-
ed cells (Fig. 4B) (Chang et al. 1994; Makino et al. 1991). Therefore, what
features enable the replication of the DI RNAs but not sgmRNAs on
transfection into helper virus-infected cells? The answer could lie in the
function of the 50-proximal stem-loops III, IV, and V residing within the
421-nt region found in BCoV DI RNA but not found in sgmRNAs
(Fig. 4A) (Chang et al. 1994). Do these higher-order structures bind viral
or cellular proteins? Might they be signals working through long-dis-
tance RNA-RNA or RNA-protein interactions?

3.5
Internal Cis-Acting Signals
for DI RNA (and Possibly Also for Genome) Replication

Most DI RNAs described for coronaviruses are comprised of more than
just the terminal genomic sequences. That is, they are mosaics of inter-
nal and terminal genome sequences. Replication of MHV-JHM DI RNAs
has been found to be dependent on a 57-nt sequence mapping within
ORF 1a (Kim and Makino 1995; Lin and Lai 1993). This sequence has
been shown to form a secondary structure in the positive strand, and
both the higher-order structure and its sequence are important for func-
tion as a replication signal (Repass and Makino 1998). Does this struc-
ture represent a cis-acting replication signal required for replication of
the intact genome?

4
Packaging Signals

Perpetuation of coronavirus infection via cell-to-cell spread requires that
the genome be packaged into virions via one or more cis-acting packag-
ing signals. Inasmuch as several small DI RNAs containing only terminal
sequences are packaged, some form of signal sufficient for incorporation
into virions must reside in the termini. This idea is consistent with the
observed packaging of subgenomic mRNAs in TGEV (Sethna et al.
1989), BCoV (Hofmann et al. 1990), and IBV (Zhao et al. 1993). Howev-
er, these packaging signals may not be the ones used by the virus ge-
nome for packaging. A candidate 69-nt genome packaging signal has
been identified in mosaic DI RNAs of MHV (Fosmire et al. 1992; Makino
et al. 1990; van der Most et al. 1991) that maps to a region within ORF
1b, shows correlation of function with maintenance of secondary struc-
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ture (Fosmire et al. 1992), and confers packaging on reporter RNA mole-
cules (Bos et al. 1997; Woo et al. 1997). A homologous structure in BCoV
ORF 1b also leads to packaging of nonviral RNAs (Cologna and Hogue
2000). Do these represent the bona fide packaging signals for the viral
genome? Is there perhaps more than one packaging signal, as suggested
by the ability of more than a single region of ORF 1b to contribute to
packaging efficiency in large TGEV DI RNAs (Izeta et al. 1999)? Perhaps
not since a recent study shows only a single packaging signal encoded
within the 5�-terminal 649 nts of the TGEU genome is sufficient (Escors
et al. 2003). In addition to the N protein (Laude and Masters 1995),
might the packaging signals interact with other components of the viri-
on? Perhaps so since in MHV the envelop (E) protein (Narayanan and
Makino 2001) and M protein (Narayanan et al. 2003) have been shown
to play roles in packaging.

5
Minimum Sequence Requirements
for (Autonomous) Genome Replication

Although gene 1 products are the only ones required for arterivirus ge-
nome replication and sgmRNA synthesis (Molenkamp et al. 2000), the
story might be different for coronaviruses. Gene 1 of HCoV-229E in the
presence of the genomic 50 and 30 UTRs was shown to be sufficient for
sgmRNA synthesis when the intergenic sequence for mRNA 7 (N mRNA)
and an mRNA body (gene for the green fluorescence protein) were pres-
ent just downstream of gene 1 (Thiel et al. 2001). The authors, however,
were unable to conclude that these sequences alone were sufficient for
RNA replication or to rule out a role for N as an enhancer for transcrip-
tion. These results, therefore, leave open the possibility that another
gene function is important for replication. Autonomous replicons of
TGEV containing only genes 1, 2, part of 5, and all of 6 and 7 have been
described (Curtis et al. 2002). Reverse genetics with these and other
coronaviruses now make feasible the analysis of the minimal sequences
required for genome replication and should lead to a definitive resolu-
tion of the question of the role of N protein in RNA replication.
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6
Importance of Gene Order for Genome Replication

The gene order for coronaviruses, as for many positive- and negative-
stranded RNA virus families, is highly conserved. In coronaviruses the
essential genes pol, S, E, M, and N are invariably found in that order, 50

to 30, although they are sometimes interspersed with genes showing no
essential function for virus growth in cell culture (discussed above).
What is the significance of this gene order? If it is altered, what might
the consequences be on virus growth? Might pathogenesis be altered
such that the variants could be used as vaccines or vectors for other
uses?

The presence of nonessential genes 3a and 3b in TGEV for cell culture
growth has enabled development of TGEV as a heterologous expression
vector (see the chapter by Enjuanes et al., this volume) and as a virus to
study the effects of gene rearrangements. In initial studies on the effect
of gene rearrangement, the N gene has been duplicated (producing the
genotype SNEMN) and repositioned (producing the genotype SNEM) by
making use of gene positions 3A and 3B (K. Curtis and R. Baric, unpub-
lished data). The N gene was chosen for repositioning because it en-
codes the most abundantly expressed sgmRNA and is translated into the
most abundant of the viral proteins. On the basis of general gene expres-
sion patterns relative to the 30 end of the genome in coronaviruses it was
anticipated that expression of E and M would increase relative to N in
the rearranged SNEM construct. When tested by transfection, the TGEV
mutants SNEMN and SNEM were found to be viable but to replicate at
about 10-fold and 1,000-fold less than wild-type virus levels, respective-
ly. These results indicated that a specified gene order per se is not essen-
tial for coronavirus replication in cell culture, but that order contributes
in some way to a more robust virus yield. When TGEV SNEM was seri-
ally passaged 15 times, the mutant gene order SNEM was maintained,
but, surprisingly, virus growth was restored to near wild-type levels.
Restoration of TGEV SNEM fitness as defined by virus yield was associ-
ated with changes within the N-(partial) D3B-E junction region. These
included removal of most of the residual (partial) DORF3B sequence, de-
letion of the wt E intergenic sequence element, and activation of a new,
highly transcriptionally active E intergenic sequence element just down-
stream of the newly inserted N gene (Fig. 5B). These results indicate that
high-frequency RNA recombination does not function to restore a spe-
cific coronavirus gene order, at least over the short term, because the
new N gene position in SNEM was stable for many passages. Rather, the
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Fig. 5A, B. Effects of moving the N gene within the TGEV genome from its normal
position to an upstream site. The N gene including its immediate transcription stim-
ulating element (TSE)-containing upstream sequence of 24 nt was placed just down-
stream of the 3a TSE sequence in a TGEV genome from which the entire 3a and a
portion of the 3b gene had been deleted (A). Transcripts of the recombinant TGEV
genome, designated SNEM, were transfected into cells, and progeny viruses were
studied (B). Immediately after transfection (passage 0) the titer of progeny was low
(<105 PFU/ml) and the genome sequence was identical to the original construct. The
progeny (SNEM-1 and SNEM-4) grew more efficiently (~5.0�106 PFU/ml) after 9
passages and reached wild-type levels (~1.0�108) after 24 passages. In all progeny
the upstream 3a TSE sequence was used for leader fusion of the N transcript. For
expression of the E gene, however, the story was different. At passage 0 (SNEM-0),
transcripts of the E gene used the wt TSE as well as two additional sites, designated
a and b within the ORF3b residual sequence, for leader fusion. In the SNEM-1 and
SNEM-4 viruses the wt E TSE was deleted and transcripts of the E gene used the two
new TSEs formed within the residual gene 3b sequence (a=4/5 clones, b=1/5 clones)
in SNEM-1. In SNEM-4 only the a site was used for E gene expression. Thus the re-
ordered TGEV genome was stable with regard to the new (upstream) position of N
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coronavirus genome can rapidly develop compensatory changes to re-
store virus replication rate (fitness) while maintaining a new gene order.
Mechanisms of fitness restoration appeared to include recombination
events and point mutations (Baric et al., unpublished data). It is likely
that gene order mutants will provide novel insights into the regulation
of coronanvirus transcription and replication, identify protein-protein
interactions that function cooperatively to maintain robust virus fitness
and growth, and assist in the identification of core sequence elements
that function in sgmRNA synthesis.

7
Future Directions

It is anticipated that reverse genetics, which now enables an alteration of
any part of the coronavirus genome, will facilitate examination of the
cis- and trans-acting elements in RNA replication and transcription
within the context of the intact genome. These elements have until now
been studied primarily in DI RNAs. In light of precedents established
with many much smaller plus-strand RNA viruses of animals and plants,
it would not be surprising to find novel long-distance RNA-RNA and
protein-RNA interactions involving genome sequences not present in DI
RNAs. Long-distance interactions are hinted at in comparative studies of
DI RNAs (which replicate) and sgmRNAs (which do not replicate). What
genes are important in regulation of replication and transcription, and
how important is gene order in these processes? These questions can
now be rigorously approached with reverse genetics. It is also anticipat-
ed that a greater understanding of the assembly, stoichiometry, and
function of the RNA synthesizing complexes will be gained through sim-
ilar rigorous analyses. It is anticipated that one practical outcome of re-
verse genetics will be the development of safe coronavirus-based repli-
con vectors, not necessarily only those that become packaged, for vac-
cine and other biomedical uses. Still in waiting is the development of an
in vitro virus replication system such as that used for poliovirus (Molla

for over 24 passages, but in SNEM-1 and SNEM-4 additional mutations were selected
upstream of the 3aTSE and in the M gene that greatly enhanced virus fitness and N
gene expression. In SNEM the sequences of the TSEs are AACTAAACT for 3a, and
ACAAAAC for E, TAACTAAACT for N, AACTAAAG for a, and AACACAAAAC for b

t
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et al. 1991), in which complete virus replication can be accomplished in
cell lysates. This approach would enable still more detailed analyses of
the requirements for genome replication beginning with the infectious
genome transcript. All in all, it is likely that the next decade will bring
significant breakthroughs regarding our understanding of the mecha-
nisms involved in coronavirus genome replication and transcription, the
function of the replication complexes, and the development and applica-
tion of coronavirus recombinant vectors for the treatment of animal and
human diseases.
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