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Abstract  

We extend polymorphic type inference to include subtypes. This paper describes the following 

results: 

, We prove the existence of (i) principal type property and (ii) syntactic completeness of the 

type checker, for type inference with subtypes. This result is developed with only minimal 

assumptions on the underlying theory of subtypes. 

• For a particular "structured" theory of subtypes, those engendered by coercions between 

type constants only, we prove that principal types are compactly expressible. This suggests 

that a practical type checker for the structured theory of subtypes is feasible. 

• We develop efficient algorithms for such a type checker. There are two main algorithms: 

MATCH and CONSISTENT. The first can be thought of as an extension to the unification 

algorithm. The second, which has no analogue in conventional type inference, determines 

whether a set of coercions is consistent. 

Thus, an extension of polymorphic type inference that incorporates the "structured" theory 

of subtypes is practical and yields greater polymorphic flexibility. We have begun work on an 

implementation. 

1 In troduc t ion  

Polymorphic type inference, as embodied in the type-checker for Standard ML, has attracted 

widespread interest in the programming language community. The main results therein [DM82] 

[Lei83] [Wan87b] are (i) the principal type property: type correct programs possess multiple types 

all of which are substitution instances of a unique principal type, and (ii) syntactic completeness of 
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the type checker, which always finds the principal type. This principal type may be instantiated, 

depending on the context of program use to yield an appropriate type. Thus, a program may be 

used in many different contexts, and yet be correctly type-checked. In addition, the type checker 

requires few type declarations, supports interactive programming and is efficiently implementable 

[Car85,Ma187]. 

In this work we extend type inference to include subtypes. This provides additional flexibility 

as a program with type t may be used wherever any supertype of type t is acceptable. Our subtype 

concept is based on type embedding or coercion: type tx is a subtype of type t2, written t l  ~> t2, if 

we have some way of mapping every value with type tl to a value of type t2. Traditional subtype 

relationships are subsumed by this framework: i n t  ~> real ,  char  ~> s t r i n g  etc. In addition, we 

accomodate subtype relationships between user-defined types. For example, the following natural  

relationship, which might arise when defining an interpreter or denotational semantics for a 

programming language, is expressible. 

t e r m  ~> ezzpr, var  t> t e rm,  const  ~> t e r m , i n t  ~> expr, bool E> expr  

Of course, in addition to indicating the relationship between types the user must also provide 

coercion functions that  map values from the subtype to the supertype. 

We have three main results: 

• We prove the existence of (i) principal type property and (ii) syntactic completeness of the 

type checker, for type inference with subtypes. This result is developed with only minimal 

assumptions on the underlying theory of subtypes. 

• For a particular "structured" theory of subtypes, those engendered by coercions between 

type constants only, we prove that principal types are compactly expressible. This suggests 

that a practical type checker for the structured theory of subtypes is feasible. 

• We develop efficient algorithms for such a type checker. There are two main algorithms: 

MATCH and CONSISTENT. The first can be thought of as an extension to the unification 

algorithm. The second, which has no analogue in conventional type inference, determines 

whether a set of coercions is consistent. 

Thus, an extension of polymorphic type inference that  incorporates the "structured" theory 

of subtypes is practical and yields greater polymorphlc flexibility. We have begun work on an 

implementation. 

1.1 W h a t ' s  t h e  problem? 

What are the problems caused by adding subtypes into a polymorphic type inference system? 

Consider the term I - Ax.x with (conventional) principal type. a --~ a.  Now, one type I possesses 

is i n t  -+ real,  as i n t  ~> real .  This type is not a substitution instance of a -+ a. A first "solution" 

is to redefine the principal type property: type -r is a principal type of term t if any type ~' that  
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t possesses is either a instance of ~- or is a ~upertype of ,ome instance of "r. From the standard 

semantics for -% we have: 

int  ~ r e a l ~ i n t - - ~ i n t  ~ i n t - ~ r e a l  

Hence, with the new definition, it appears that a --+ a is the principal type for I .  However, 

consider the term twice =__ ;~f .Az . f ( f  z) with principal type ~- =- (a  --~ a )  --~ (a  --~ a) .  One type 

twice possesses is (real --+ int) --~ (real --+ int).  A simple case-analysis demonstrates that  there 

is no substitution instance ~-' of r ,  such that 

int  ~ r e a l ~ T '  ~ ( r e a l - ~ i n t ) - * ( r e a l - - ~ i n t )  

1.2 A General Solution 

The example above demonstrates that in the presence of subtypes we carmot represent the set of all 

typings of a program by a type expression alone. Instead, types are represented by a pair consisting 

of a set of coercion statements {t~ 1> tj} (called a coercion set) and a type expression. The idea is 

that any substitution that satisfies the coercion set can be applied to the type expression to yield 

an instance of the type. Given a program how do we compute such a type expression? Our first 

result, described in Section 3, states that it is enough to carry out type inference in the standard 

manner with the additional requirement that  at each step during type inference we conclude we 

have inferred a supertype of the standard type. The collection of such conclusions yields the 

coercion set. Furthermor% with only minimal assumptions about the underlying structure of 

subtypes, we show that the resulting type is the principal type associated with the program. For 

example, we would compute the coercion set-type pair (C, 7) for the identity function I ,  where 

C -- {a --* fl t> 7 , a  1> fl}. Any substitution S that  satisfies every coercion in C yields a typing 

S(7 ) for I .  

1.3 A Structured Theory of Subtypes 

While the results in Section 3 provide a general framework for type inference in the presence of 

subtypes, it should be dear  that  types of the form shown above for I are not practically useful. 

In practice, we are interested in subtype theories with a great deal more "structure". One of 

the simplest such subtype theories is one in which ever v coercion is the consequence of coercions 

between type constants: in t  t> real~ term t> e~pr arid so on. Any coercion between structured 

types, say (tl, t2) t> (t~, t~), follows precisely from coercions between its components, tl  t> t~, t2 D t~. 

For such a subtype theory, in Section 5, we show that we can always transform the coercion set- 

type pair into a form where the coercion set consists only of atomic coercions: coercions between 

type constants and type variables. The typing for I would now take the form: 

({~ ~} ,~ -~  ~) 
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To build a type inference system based on this concept we need efficient implementations of 

two algorithms: MATCH and CONSISTENT. Both appear to be polynomial time algorithms and 

are described in Section 6. 

1 . 4  Polymorphlsm 

The framework described above does not deal with the problem of potymorphism: permitting 

user-defined names to possess multiple types. Our approach is to follow ML, and use the "let" 

syntax combined with a limited form of "bounded" type quantification. This provides preclsety as 

much flexibility as in ML and avoids the complexities of type inference with general quantification 

[Lei83][Mit84b]. This system is described in section 7. 

2 Related  Work 

Discussion on the semantics of subtypes in a very general category-theoretic setting has appeared 

in [Rey80]. In [Rey85] inference rules for type inference with subtypes are given. However, strong 

assumptions are made about the subtype structure: every pair of subtypes must possess a unique 

least supertype. In [Mit84a] it was first shown that  types with a "structured" subtype theory can 

be represented using coercion sets consisting only of atomic types. A type inference procedure was 

also outlined therein (in particular, we follow Mitchell in using the term MATCH), but algorithms 

were omitted. In [MR85] type inference methods for a theory of types with a general "type union" 

operator were developed, but the issue of completeness of the type checker was not addressed. 

In a different direction, Cardelli [Car84] has suggested that inheritance be modelled by subtyp- 

ing through the use of record structures with named fields. Recently, Wand [Wan87a] has given a 

type inference algorithm that models a form of inheritance based on record structures. In contrast 

to our work, Wand's algorithm is based on an extension of unification. We plan to investigate 

the possibility of extending our system to include some form of record-based inheritance. 

3 Pre l iminary  Definitions 

There are two basic components in any type inference system, the language of value expressions 

and the language of type expressions. Value and type expressions are defined by the following 

abstract syntax. 

N C Value Expressions 

z E Value Variables 

f'~ E Value Constructors 

t E Type Expressions 

a E Type Variables 

gn E Type Constructors 

N ::= ~ 1 f '~[2](N1,.. .  ,N,~) t ::= c~ I g'~(tl,... ,t~) 
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As examples, consider value expressions 

A[~](N), ifthenelse[](N,Ni,N2), fix [z](N), ? 

and type expressions int --+ (a ---+ boot), (int, a). 

A coercion is an ordered pair of types written tl t> t2. A coercion set C = {ti t> ri} is a set 

of coercions. A type assumption A is a finite mapping from value variables to type expressions, 

often written • : t. Let Z be a set of value variables; by AIz we mean A restricted to domain Z. 

A substitution S is a mapping from type variables to type expressions that is not equal to the 

identity function at only finitely many type variables. [tl /al , . . . ,  t,/an] is the substitution that 

maps a~ to t~ and is otherwise equal to the identity function. If t is a type expression, by S(t) we 

mean the simultaneous replacement of every variable in t by its image under S. The meanings of 

S(C) and S(A) are defined in the standard fashion. 

We will often consider some distinguished set of coercions as valid or true coercions. The only 

restriction we place on the set of valid coercions, is considered as a relation on Type x Type it 

should be (i) reflexive (it) transitive and (iii) dosed under substitution. Our intention here is that 

the set of valid coercions {t C> r} consists of those pairs of types such that the first component 

may reasonably be transformed into the second. The three conditions on the set of valid coercions 

indicate that any type should be transformable to itself, that transformations between types be 

composable and that the transformation be unaffected by instantiation of type variables. 

We say coercion t I> r is solvable or consistent if there exists some substitution S such that 

S(t) t> S(r) is valid. Define the relation ~- on coercions by: 

a ~ b ll- c ~ d . = .  s ( a )  ~ s(b)  v ~ d  entails s ( c )  ~ s (d )  v~ id  

We lift the relation [-  to coercion sets by considering a coercion set to be a conjunction of all its 

cOercions. Informally C1 ]~- 6'2 should be read as saying that substitution S renders the coercions 

in C2 valid, whenever it renders the coercions in C1 valid. Observe that ~- as a relation on 

coercion sets is (i) reflexive (it) transitive and (iii) closed under substitution. Observe that a I> b 

is valid iff 0 ]-  {a i> b}. 

3.1 Type Inference System 

A type inference system is a system of rules that defines a relation, called a typing, over the 

four-tuple: 

]Coercion Set × Type Assumption × Value Expression x Type Expression] 

A typing statement is written C, A ~- M : t. By A ; ~ : ~ we mean a type assumption identical 

to A, except that it maps value variable zl to type expression s~. In the rules below, we would 

expect to have an instance of a FUN rule for each value constructor symbol f'~. FUN rules for 
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zero-dry constants  may have empty antecedents.  

V A R  C, A ~- z : A(z )  

FUNs~ C , A  ;~  : f l  ~-h~ : r ~ , . . . , N , ~  : r ~  

C , A  F-/'~[~](N1,...  , N ~ ) :  a J 

C O E R C E  C, A ~- e : t, C [[- {t ~> p} 

C , A ~ - e : p  

For some instances of F U N  consider the following: 

C, A ; x : tl ~- N : tz 

C , A  ~- M [ x l ( N ) :  t l  ~ t2 

C , A  t- P : bool, M : t , N  : t 

C, A ~- if P then M else N : t 

C, A F- true : boot 

t C, A }- N : pj  is a typing if 

and c I~- {A( , )  ~ p}. 

IN -_- f~[~](N1,...,N~)] 
and 

(1) (G v~, u) is a subst i tut ion instance of ( f l , r / ,  a l ) ,  

(2) C, A ; ~ : q ~- N~ : vl are typings, 

(3) c I~- {~ > p}. 

Observe tha t  it  is an immedia te  consequence of the transi t ivi ty of t> that  in any typing we 

need at  most  a single C O E R C E  step after an applicat ion of a VAR or FUN step. 

D e f i n i t i o n  1 ( I n s t a n c e )  Typing statement C ~,A ~ ~- N : ff is an instance of typing statement 

C, A F- N : t, i f  there exists substitution S such that: 

t. t ' =  s( t ) .  

2. A']Fv(N) ---- S(A)[FV(N). 

s. c'  El- s ( c ) .  
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L e m m a  1 Typings are closed under the in, tance refation; i.e. i f  C, A F- N : t is a typing then so 

is every instance C', A ~ ~- N : t'. 

Proof: Proof is by induction on s~ructure of term N. The main property required is that 

C~ & C~ ~ S(C~) II- S(C~). [] 

3.2 Algor i thm T Y P E  

In this section, we describe an algorithm that  constructs a distinguished representative of all 

typings for a term M,  the principal type for M. We assume the existence of function new : 

(Type Express ion )  k --+ (Type E x p r e s , i o n )  k, such that n e w ( t ~ , . . . ,  tk) is obtained by consistently 

replacing all the type variables in types t~ by "new" type variables. 

I Algorithm TyPE:Type  Assumption x Value Expression ~ Type Expression × Coercion Set ] 

Input .  ( A ,  eo), where FV(eo) C do.~ai,~(Ao). 

Initially" 

C = 0, G = {(Ao, e0, as)}, where So is a new variable. 

W h i l e  G is no t  e m p t y  do: 

Choose any g from G; 

case g of: 

(A, f~[~](e l ,  ..., e . ) , t )  : 

(~,v, ,~)  = ne~(~ ,~ , ,~) ;  

C +- C u {ut>t}; 
G *- (G - {g}) U {(A[~ : ql, e , ,v ,)};  

( A , x , t )  : 

C *- C U  {A(x) t>t}; 

a ~ -  a - {g}; 

end ease; 

O u t p u t :  (ao, C). 

E x a m p l e  I Let N -- ) t f . ) t z . f~  and A : 0. Then 

ty ~> t1 -~ t2 

T Y P E ( A ,  N )  =( t l v ,  t~ --+ ty= ~> t~=.y= 

t2 ~> t yx 

t~ ~ fl 
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It is interesting to compare our algorithm with that given by Mitchell [Mit84a]. Mitchell's 

algorithm works for a particular "structured" subtype theory and interleaves the generation of 

the constraint set with the process of simplifying it and checking it for consistency. In contrast, 

our algorithm is designed to work for a class of subtype theories and is concerned only with 

the generation of the relevant constraint set. In this way, we separate the *'syntactic" aspects 

of type inference (traversal of the abstract syntax tree, generation of constraint set) from the 

details of processing the constraint set. One consequence is that we are able to give a generai 

proof of soundness and syntactic completeness that makes use only of the assumptions about the 

relations: typing, t> and ~- , that we have presented above. Further, as our algorithm does not 

commit itself to any particular method for processing constraint sets, it can serve as the basis 

for algorithms that utilize a variety of different methods. This is of importance as details of 

constraint set processing depend critically on the particulars of the subtype theory as well as on 

the particular application area of interest. 

T h e o r e m  1 TYPE is sound and (syntactically) complete. 

Proof i  Proof is given below. 

3 . 3  T Y P E  is  s o u n d  a n d  c o m p l e t e  

Our proof follows Wand's [Wan87b] concise proof of soundness and completeness of parametric 

type inference. One difference between his proof and ours is that we need to reason about coercion 

sets instead of sets of equations used in his work. 

A tri-tuple (A, e,t) is a goal if A is a type assumption, e is a value expression, and ~ is a type 

expression. The pair of coercion set and substitution, (C, ~r), solves the goal (A, e, t), denoted by 

(C, cr) ~ (A, e, t), if C, a(A) F e : or(t). Let G be a se t  of goals: (C,~) ~ G, ifVg e G, 

(C, cr) ~ g. We also say that (C,~r) ~ Co i fC  I~- a(C0). We can extend the notion of solvability 

to pairs of coercion set and set of goals: (C,a) ~ (Co, a) i f  (C,~r) ~ C0 and (C,a) ~ G. 

To prove soundness and completeness, it's sufficient to prove the following invariants: 

TYPE is Sound: (Y(O,a)) ((O,e)  ~ (C,G) ~ O,~'(Ao) F eo: a(ao)) 

TYPE is Complete: C,_4 ~- eo : { A 3~ A]FV(~0) = ~(Ao)]Fv(~o) 
:=~ (3o')(((?,a) p (C,G) A i]FV(~.)= o'(Ao)tFV(~o) A t = a ( a o ) )  

proof." (TYPE is sound) 

Basis:  Since G = {(Ao, eo,ao)}, by definition of ~ ,  C, cr(Ao) F- Co: ~r(ao). 

s tep:  (Let Co and G o denote the values of C and G before the iteration) 
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(A,:c,t) : 

(c ,g)  p (C,G) 

(C,c 0 p {A(x) I>t} 

=:~ (C,g) p (A,x,t) (by typing rule) 

(o, g) P (Co, Go) 
O,~(Ao) k co: g(ao) (By hypothesis) 

(A, f~[~](~,, ..., e~),0 : 
(o,g) p (c ,v)  
==~ (C,a) p {u I> t} and (O, g) p {A[~:q],e,,v,} 

===> e [~ ~r({u ~> t}) and O,g(A[~ : q]) t- e~: g(v~) (by definition of ~)  

O,~'(A) ~- f'~[e](el, ..., e,,) : o-(t) (By typing rule) 

(0,g) p (Co, Go) 
C,~r(Ao) [- co: c~(ao) (By hypothesis) 

proof: (TYPE is complete) 

Basis: 0, A k eo : [. Since ao is a new variable and 3~ AjFv(eo) = ~(Ao)jFV(,o), it's obvious that 

36t such that ti[vv(~o) = c~(Ao)[vv(~o) and t =  or(Go). 

step: (Let Co and Go denote the values of C and G before the iteration) 

(A,.,t) : 
C,A k e o : t  

(3tr) ((C,g) ~ (Co, Go) A AIRY(co) = o(Ao)IFY(~o) A ~--- g(ao))(By hypothesis) 

O !1- g({A(.) > ,}) (By typing rule) 
(O,g) b {A(*) ~*} (by definition o~ P) 

(A, 1"I~](~, -.-, e~), ~): 
C,A t- e o : t  

(3~o) ((O,~o) b (Co, Go) A iilrv(,o)= go(Ao)lFv(~o) A g= ~o(ao)) 
(By hypothesis) 

==* O, go(A) [- f'~[~](e~,...,e,): go(t) (hence (C, go) P (A, ff~[~](e~,...,e,),t)) 
(37)(O,(C~o(A))[ Z:  v(q)] k ei: 7(vi) A O I~ {'y(u) i> g0(t)} (by typing rule) 

Since 3' and go have disjoint domain, we can choose c~ to be 7 U q0 

O,u(A[£" : ~]) k el: g(v,) A G' ]]- g({u >t})  A -4[vV(~o)= g(Ao)lFV(~o) A [ =  

g(~o) 
(O,a) p (C,G) A .AIFv(~o)=a(Ao)IFv(~o) A t=o ' ( ao )  

[] 
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4 Well - typings  

A typing C, A F N : t should be viewed as standing for a set of all possible instances C', A' ~ N : t', 

where C' is valid. Informally, the set of all valid in~tance~ of a typing expresses the "information 

content" of a typing, in that it describes all possible "correct" ways of using a typing. For an 

example, all valid instances of {a 1> real} ,  0 ~- N : a are of the form {t' D real}  U C, A ~- N : t', 

provided the coercions in {t' ~> real} U C are valid. 

Typings of the form C, A ~- N : t which possess no valid instances are of no interest, to 

us. This is the case when C contains contradictory information; for an example take C to be 

{bool t> a , i n t  ~> ex, a D real}.  We cannot find any type t such that replacing a by t in C results 

in a valid coercion set. 

Define a well-typing to be a typing C, A ~- N : t, where C is consistent. Immediately, the 

question arises whether the theory developed in previous sections carries over to well-typings 

(instance, principal type property, algorithm TYPE). Lemma I holds with the following obvious 

modification: If C , A  F- N : t is a well-typing, then so is every instance CI, A ~ ~- N : t ~, whenever 

C ~ is consistent. 

How do we compute well-typings? We simply run algorithm TYPE and check the final coercion 

set for consistency. If it is consistent, we are done; otherwise, we fail and conclude that no well- 

typing exists. That this method is sound is obvious; its completeness is argued below: 

WTYPE :Type Assumption × Value Expression -+ Well Typing + { f a i l }  

let (p, C) = T Y P E ( A ,  N )  in 

if C is consistent then C, A ~- N : p 

else fail 

To see that algorithm WTYPE is complete, we need to consider two cases. For the first, we 

have that C is consistent. But then, the syntactic completeness of TYPE ensures the syntactic 

completeness of WTYPE. For the second case, let C be inconsistent. We will argue that no well- 

typing C', A' ~- N : p' exists. Assume otherwise; as TYPE is syntactically complete we can find 

substitution S with C' [-- S (C) .  Now, since C' is consistent we must have that S(C)  is consistent. 

But then C must be consistent as well and we have arrived at a contradiction. 

5 Structured Type  Inclus ion 

In this section, we develop type inference methods for the case where the underlying theory of 

type inclusion is structured. We study the simplest such case: all inclusions are the consequences 

of inclusions between type constants. 

The abstract syntax of types t, is given by: 
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C,A  t- z : A(x)  

C , A  ; {z  :h}~-  M :t~ 

C, A F )~x.M : tl --+ t2 

C , A  ~- N : tl ~ t 2 , M  : h 

C, A F N M  : t~ 

C, A ~- M : boolean, N : t, 0 : t 

C, A F i f M t h e n N e l s e O  : t  

C , A ;  {~ : t l }  F M : h C , A  F c :g~ 

C, A F flx z . M  : h 

C , A ~ - M : t l , C I - t l  ~>t2 

C, A F M : t2 

The following rules define the relation ]~- for the theory of interest. 

[AXIOM] M U {t~ t> t2} 1~- h t> t2 

[TRANS] M ~- t~ I> t2,t2 ~> ta 

[ A R R O  W - ±] 

[ A R R O W  - I I ]  

M ][- h 1> ts 

M ~ t~ t> t~,t~ I> t2 

M k ti -~ t'2 I> h ~ t2 

M ~- t~ --+ t' 2 I> tl --+ t2 
f # M ~ tl t> t 1,t 2 l> t2 

[CONST]  M t~- g~, ~> g:k 

[ R E F L E X ]  M I~- t t> t 

[ P R O D  - I] 

[PROD - II] 

M [l- h t> t~,t2 ~> t~ 

M ll- (h , t2)  t> (t'~,t'2) 

M [~ (h , t2)  t> (t~,t~) 

M U- tl I> t~,t2 t> t~ 

Rule [CONST] is the only means of introducing "new" statements about type inclusion in 

the system. Such statements are restricted to be relationships between type constants. Rules 

[TRANS] and [REFLEX] indicate that  the relation ~- is transitive and reflexive. Rules [ARROW- 

I], [PROD-I], [ARROW-II] and [PROD-II] are "structural" rules that  define coercions between 

structured types in terms of coercions between their components. 

An inclusion statement is written C 1~- t l  1> t2. A proof for C 1~- t l  ~> t2 is a sequence of 

inclusion statements IS1 , . . .  , ISk ~- C t]- tl t> t2, where each ISi  is a substitution instance of (i) 

[AXIOM], [CONSTANT] or [REFLEX] rules or (it) is derived by an application of a substitution 

instance of one of the remaining rules to some finite subset of I S 1 , . . ' ,  IS~-I. In such a case, we 

say that the statement C ~- q l>t2 is true. We say C~ t~- C2 if C1 I~ h t>ti for each {tl E>tj} E C2. 

It is decidable whether C1 [~- C2, where C1 and C2 are finite sets of coercions. 
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The description of t~- given above indicates that  the inclusion relationship between types 

is much more "structured" than the very general notion of 1~ studied in section 3. As a 

consequence, we will show that we need only consider coercion sets restricted to be of the format 

{tl t> tj} where each ti, tj is an atomic type: either a type variable or a type constant.  

5.1 Instant iat ing Coercion Sets 

In  section 4 we have defined the information content of a typing to be set of its valid instances. This 

suggests that  there may exist distinct typings with identical information content.  One way this 

might occur is if well-typing C, A ~- N : t and some instant iat ion C I, A'  ~- N : t ~, have identical 

information content. Further, it  seems reasonable to consider the second typing preferable to 

the first as it contains more "structural" information than the first and therefore reveals more 

information to the user. 

E x a m p l e  2 Consider the typing C,0 F N : a, where 

c:{~ >fl-~} 

Every valid instance of C requires a to be instantiated to an "arrow" type; hence in place of the 

above typing we can use one of the form C', 0 l- N : 6 --* p where 

C' = {6 ~ p ~. ~ --, ~}  

Both typings have identical information content but the second has more ezplicit "structural" 

information. 

The notion of information content is essential in defining the equivalence of typlngs under  

instant iat ion.  It  is not the case, in Example 2 above, that  C =_ C'. Neither C 1~- C '  holds, nor 

is it the case that  C'  I~- C. Further, arbitrary instant iat ion of coercion sets does not preserve 

information content: for example, if we instant ia te  a l> fl --~ 7 to 6 --* (o, --, v) i> p --* (~ --* # ) ,  

we are missing out on the possibility that  a can be instant iated to a type with a "single" arrow 

type in some valid instance of a E> fl --* 7. 

To see the general form of information content preserving instant ia t ions we first need to 

characterize the "shape" of valid coercion sets. Define the relation Match over pairs of type 

expression by: 

Match(t1, true, tt ,  t2 are types. t2) is if both  atomic 

I Mateh(h ~ t2, t~ --* t'2) whenever Match(h,  t~), Match(t2, t~). 

! Match((h,  t2), (t~, t~)) whenever Match(h,  t~), Match(t2, t'2). 

We say C is a matching coercion set if every coercion r t> s E C is matching. Matching is a 

necessary condition for coercion sets to be valid; whenever coercion set C is valid every coercion 

contained in C must be matching. Proof is by induct ion on the number  of proof steps needed to 

show 0 ~ C and is straightforward. 
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Given that  valid coercion sets are always matching, what kinds of instantiat ion preserve in- 

formation content? If t l  > t2 is a consistent coercion we will argue that  we can always find a 

information-content preserving substi tution S such that S(t~) t> S(t2) is matching. Further,  S 

is the least such substi tut ion,  in that  any other matching instance of t l  I> t2 must  also be an 

instance of S( t l )  I> S(t2). 

T h e o r e m  2 Let C , A  F- N : ~ be a welt-typing. There czists well-typing C , , A ,  ~- N : ~, with the 

property that: 

1. C , , A ,  ~- N : t ,  is a matching instance of C, A ~- N : t. 

2. C , , A ,  ~- N : t ,  and C , A  ~- N : t have identical information content. 

3. I f  C #, A'  ~- N : t' is any other typing that satisfies property (1); then C', A'  [- N : ff is an 

instance of C , , A ,  ~- N : t , .  

Proof." See technical report # 87-25, SUNY Stony Brook. [] 

We will speak of C , , A ,  ~- N : t ,  as the minimal matching instance of C , A  ~ N : t. 

Example 3 Let N =- )~ f .$x . f z ,  A = 0 and let T Y P E (  A , N )  = (tN, C) as in Ezample 1. 

C, = t~ ---+ f ix  ~> s t  -+ (x2 

t2 t> ti~ 

t~ t> tl 

, ( t N ) .  - (~3 ~ Z4) - -  (Zl  -~  8 , )  

Finally, we need to ensure that  representing a well-typing by its minimal matching instance 

does not per turb  the most general type property. We need to show the following: let well-typing 

C , , A ,  : ' is an  C ' , A ' } -  N : t '  be an instance of C, A ~- N : t ;  then, we must have that  ' ' ~- N ~, 

instance of C , , A ,  }- N : t , .  To see this, observe that Cr,,A', ~- N : t', is a matching instmlce of 

C, A }- N : t; hence, it must be an instance of the minimal matching instance C,, A, ~- N : t,.  

5 . 2  S i m p l i f y i n g  C o e r c i o n  S e t s  

Example 4 

c'a =- {(~ - -  ~) > (~ -+ ~)} 

Ca,C2 are equivalent in that each entails the other: Ca 1~ C2 and C2 1~- C~. As 

c~ II- c~ ~ s(c~) II- s ( c , )  



both have identical information content. 

therefore ~eems preferable to C1. 
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Finally, C2 contains less redundant information and 

SIMPLIFY C = C, if all coercions in C are atomic 

SIMPLIFY C U {tl ~ t~ t> r l  --* r2} = SIMPLIFY C e {rl t> h,t2 ~> r2} 

SIMPLIFY C U {(tl , t2) ~> (r l , r2)} = SIMPLIFY C U {q ~> r l , t2  I> r2} 

Funct ion SIMPLIFY maps matching coercion sets into the maximally simplified set of atomic 

coercions. It  is trivia~y clear that  S I M P L I F Y  preserves information content; as S I M P L I F Y  

does not effect in any way the type variables contained in an coercion set it is also obvious that  

the most general well-typing property is also preserved. 

E x a m p l e  5 Let C. be as in Ezample 3 above. 

S I M P L I F Y ( C . )  = {as t>/33, /34 ~> a4, 131 ~> al, as ~>/32, al ~> t . ,  ts~ ~> a2, tl ~> c~3, ~4 t> 

t2, t2 D t f ~ ,  t x [>tl} 

In a practical implementation, we would only be concerned with {/31 t>/33,/34 t>/32}. 

6 A l g o r i t h m  W T Y P E  Revis i ted  

W T Y P E  :Type Assumption × Value Expression --, Well Typing +{fai l }  

let (p, C) = T Y P E ( A ,  N)  in 

if C is consistent then 

let C. ,A .  i- N : p .  in 

S I M P L I F Y ( C . ) ,  A.  t- N : p. else fall 

In practice, determining consistency is overlapped with computing the minimal  matching 

instance for a typing. Instead of the "consistency check-instantiate-simplify" sequence given 

above, we use the following sequence of tests and reductions: 

MATCH : Coercion Set --+ Subst i tut ion +{fai l}  

SIMPLIFY : Coercion Set --~ Atomic Coercion Set 

CONSISTENT : Atomic Coercion Set ---+ Boolean +{fai l}  

If M A T C H ( C )  succeeds and returns subst i tut ion S, then S(C) is the minimal  matching 

instance of C. If it falls, C is structurally inconsistent: it either entails a cyclic inclusion (a  l> 

c~ ~ /3) or an inclusion where the type constructors differ at the top-level (a  --~ /3 I> (7, 5))- 

C O N S I S T E N T ( C )  determines whether C is consistent: whether there exists some S such that  

S(C) is valid. 
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6.1 A l g o r i t h m  M A T C H  

It is useful to consider MATCH as a variation on the classical unification algorithm [MM82]. A 

unification algorithm can be modelled as the process of transforming a set of equations E into 

a substitution S, such that S unifies E. Similarly, MATCH should be viewed as transforming a 

coercion set C into a substitution S, such that S(C) is the minimal matching instance of C. In 

addition to S ~a~d C, MATCH maintains a third data-structure M which represents an equivalence 

relation over atomic types occurring in C and M. The main idea is that if atomic types a, a '  belong 

to the same equivalence class in M, we must ensure that S(a),  S(a') are matching. Following the 

description of unification in [MM82] we describe MATCH in terms of three transformations on 

the tnple (C, S, M):  (i) Decomposition (it) Atomic Elimination and (iii) Expansion. 

We write {(a ,a ' )  I a M a'} for M. The following conventions are followed below: (1) 

v denotes type variables (2) a, a'  denote atomic type expressions (3) a,  fl, a ' ,  and fl' denote 

type expressions (4) t~ t '  denote non atomic type expressions. Let M be an equivalence relation 

defined as before, M~ is the equivalence relation obtained from M by deleting the equivalence 

class containing v and : 

[alM %f {a' [ (a ,a ' )  e M} 

it] M ~ {[a]M ! a occurs in t} 

If A is a set of pairs of atomic types then A* is the reflexive, symmetric, and transitive closure of 

the relation represented by A. A L L N E W ( t )  is the type expression obtained from t by substituting 

"new" variables for every occurrence of variable or constant in t. A L L N E W ( v  -~ v * int)  = a --+ 

/3 * 7, where a ,  fl, and 7 are new variables. 

P A I R ( t , t ' )  ~f {(a ,a ' )  [ a occurs in t at the same position as a' occurs in t'} 

D e f i n i t i o n  2 D e c o m p o s i t i o n  

(cu{t Dt'},S,M): 

case t ~> t' of: 

(1) a -~Z  ~ ~ ' -~Z ' :  

Replace CU {t Dt'}  by CU{a' be,  fl Dfl'} 
(2) a * ~  l> a ' * f l ' :  

ReplaceCU{t Dt'}byCU{a t>a',l 3 D l 3'} 
(3) else fal l  

D e f i n i t i o n  3 A t o m i c  e l i m i n a t i o n  

(c u {~ > ~'}, s, M): 
Replace M by ( M  U {(a,a')})* and delete the coercion a D a' from C. 

Def in i t i on  4 E x p a n s i o n  

(C u {e}, S, M)  where e is either v D t or t D v. 
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i f  [V]M E [t] M V [V]M contains type constant t h e n  fai l  else 

for  x E [VIM do 

b e g i n  

t' +--- A L L N E W ( t ) ;  

~ -  {t'/~}; 
( C , S , M )  ~ (<5(C),<5 o S , ( M  U f AIR(t, t ' ))*); 

e n d  

M e - - - M ~  

p r o c e d u r e  M A T C H ( C )  

b e g i n  

( C , S , M )  +-- (C, Id ,{ (a ,a)  l a e C}); 

whi l e  C ¢ O do  

b e g i n  

choose  any e C C; 

case  e of: 

(1) t t> t '  : perform D e c o m p o s i t i o n  

(2) a t> a'  : perform A t o m i c  e l i m i n a t i o n  

(3) v t> t V t t> v : perform E x p a n s i o n  

e n d  c a s e  

e n d  

r e t u r n  S 

e n d  

E x a m p l e  6 Let 0 = {a ~ fl t> int -~ int • 7, int ~> 7}. 

C 

0 

{int  ~> a, fl t> i n t * 7 , i n t  t> 7} 

{fl I> i n t * 7 ,  int ~> 7} 

S 

Id 

Id 
[ 

i I d  

M 

Id 

i {n '  * ~"/~} 

{{~}, {hi,  {~'}, {int}} 
{{~}, {Z}, {7}, {i,~t}} 

Action 

Decomposition 

AtomicEIim. 

{fl I> int * 7} {{a , in t ,  7}, {fl}} AtomicElim. 

0 {{a, int ,  fl ' , fl",7 } Expansion 

As ezpected, {fl' • f l"/~} is the minimal matching substitution for C. 

E x a m p l e  7 Let 0 = {v 

C 

0 
~ V  t ~ V It 

t> a --~ /3, v I> a},  the coercion set associated with the ezpression 

S M Action 

Zd {{,~},{~},{,,}} - 

~, ,~} { v ' ~ v " / v }  {{~, , , '} ,{~, , ,"}} E~,pansion 
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Now let e _= v' ~ v" ~ a .  As fo~]M = {a ,v '}  and [v' ~ v"] M = {{c~,v'},~ {/3,v"}}, Therefore the 

Ezpansion step fails, causing M A T C H  to fail and indicating that the coercion set C is inconsistent. 

The correctness of MATCH is proved below. 

6.2 M A T C H  is c o r r e c t  

We first introduce the concept of " a p p r o x i m a t i o n "  to model our algorithm. Let C be a coercion 

set, S be a substitution, and M be an equivalence relation on atomic types occurring in C or 

S. The tri-tuple (C, S, M)  is an a p p r o x i m a t i o n  to a coercion set C iff the following conditions 

hold: 

1. V A, A(C) is matching A ~ respects M D (A o S)(C) is matching. 

2. VO, 0(C) is matching D 3A such that :  

• O=AoS 

• t ( C )  is matching 

• A respects M 

where A respects M iff V a, a M a' ,  ~ )~(a) matches A(a'). Intutively, the first condition 

should be read as: if substitution A "solves" C and M then we can solve C by A o S. The second 

condition should be read as: any solution to C can be obtained from S by composing it with 

some solution to C and M.  Therefore, S is the partial  solution of C and C and M correspond 

to the unsolved part of C. In particular, let M = { (a ,d )}  iff a = a'  C C, C = C, and 

S = Id  then A0 ~f (C, S, M)  is an a p p r o x i m a t i o n  to C and further any substitution that makes 

match must make C match and respect M.  Moreover, if there exists an approximation 
(0, S, M)  to C then, by choosing A to be the identity substitution I d  in (2) above, we can show 

that  S is the most general matching substitution for C. As shown above, MATCH starting 

from A0, generates a sequence of a p p r o x i m a t i o n s  A0, A1, ... by nondeterministically executing 

Decomposition, Atomic Elimination and Expansion. If C is matchable the algorithm terminates 

with An = (0, Sn, M,,). Otherwise it fails. 

L e m m a  2 Let (C U {t I> t '}, S, M )  be an a p p r o x i m a t i o n  to C'. If Decomposition fails then 

is not matchable else the resulting (C, S, M)  is still an a p p r o x i m a t i o n  to C. 

proofi Trivial. [] 

L e m m a  3 Let (C U {a ~> a'}, S, M)  be an a p p r o x i m a t i o n  to C. The result of applying A t o m i c  

elimination is still an a p p r o x i m a t i o n  to C. 

proofi Trivial. O 
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L e m m a  4 Let (C U {e}, S, M)  be an a p p r o x i m a t i o n  to 0 ,  where e is either v I> t or ~ !> v. If 

E x p a n s i o n  fails then C is not matchable else the resulting tri-tuple is still an a p p r o x i m a t i o n  

to ~ .  

p roof i  By the fact that [VIM iS finite and left unchanged during the execution of the loop, the for 

loop must terminate. The rest of the proof is by induction on the number of times the for loop 

is executed. [] 

We now prove the termination of this algorithm. Let IM] be the number of equivalent classes 

in M and tCI be the number of occurrences of symbols in C. We define the lexicograpklc order 

< between pairs of M and C in the natural  way. More precisely, (2J1, C~) < (512, C2) iff either 

I i l  I < I Ms to r  I i l  I = [ Ms I and I 6'1 I < I C2 I. Obviously, the set of M,  C pairs is well 

founded under <. In the following Lemm% we show that  "MATCH" always terminates. 

L e m m a  5 "MATCH" always terminates. 

p roof :  Let M1, C~ and M~., C2 denote the values of M, C before and after any pass of the while 

loop. No matter  what transformation ~s made, we have (M2, C2) < (M~,C~). By the well- 

founded property, the algorithm must terminate. [] 

T h e o r e m  3 (Correctness of MATCH) 

If C is not matchable then MATCH fails else S is returned where S(C) is the minimal matching 

instance of C. 

p roof :  By previous lemmas. 

6 . 3  A l g o r i t h m  C O N S I S T E N T  

Let C be an atomic coercion set. C is consistent if we can find some substitution S, mapping type 

variables in C to type constants, such that  0 I~- S(C). As we are not interested in any details of 

the substitution S, CONSISTENT determines whether there is anyway C can be consistent. 

Let T be a finite set of type constants, TT = { i ]  ~t' E T ,  ~ - t '  l> t} and T j. -- {t ] 3t' C 

T, t~- t t> t'}. With each a E C we associate I~ to stand for the set of types that  a can be 

instantiated to. We set Ia = {*} to indicate there axe no constraints on a. Let a be an atomic 

type expression, var(a) is True, if a is a variable, False, otherwise. Let T1 and T2 be finite sets 

of type constants. 

COMPRESS(T1, T2) a~f if 7'1 N Ts -- 0 then fail 

else if T1 n T: = T1 then (True, T1) else (False, T1 N Ts) 

p r o c e d u r e  CONSISTENT(C); 

b e g i n  

for  each  a E C do  

ifvar(a) t h e n  Ia ~ {*} else Ia ~- -  {a}; 



end; 
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do 

stable e--- True; 

for a D a' E C do 

begin  

(stable, I~,) e - -  let (flag, I) = COMPRESS( I~ , ,  I~ T) in (stable A flag, I); 

(stable,I~) ~-- let ( f lag, I )  = C O M P R E S S ( I ~ , I  a, ~) in (stable A flag, I); 

end 

unti l  stable 

r e t u r n  True 

In CONSISTENT, we start by initializing I~ to {*}, if var(a), {a}, otherwise. During each 

pass of the loop, if some I~ converges to O then C is obviously inconsistent and the algorithm 

fails. Otherwise either all I~'s are left unchanged, causing the algorithm to terminate and return 

True, or at least one of them is decreased, causing the do loop to be executed again. Since there 

are only finitely many type constants and the assignment to t~ is finite therefore the algorithm 

must terminate. Moreover, when the algorithm terminates successfully, the following condition 

holds: 

Va e C, £ = (No, ~ o~,.,<o)Io, ~) n (N,,,, ~ ~,o.( . ) I .  " t )  

where above(a) = {a' 1 a ~ a' e C} and below(a) = {a" I a" ~> a e C}. We conjecture that this 

condition guarantees the consistency of C. However, how to prove this is still an open question. 

Example  8 Let posint ~> int , int  ~>real be the valid atomic coercions and let C = { int  ~> vl, vl D 

V2~ V 2 l>VSt V 3 

iteration 

0 

1 

1 

1 

1 

2 

2 

2 

2 

3 

3 

I> int}. 

edge I~.~ [ 
{int) 

int ~> vl { int } 

vl ~> v2 { int } 

v2 ~>vz { in t}  

vz ~> int { int } 

int i> vl { int } 

vl t> v2 { int } 

v:~ l> vz { int } 

Vs I> int { int } 

int t>vl { in t}  

vl t>v2 { in t}  

{,} {,} {,} 
{ int,~a~ } {,} {*} 
{ int, real} {int, real} {*} 

{ int, real} {int,~eal} {int,real} 

{ int, real) {int, r~aI} {int} 
{ int, real} {int, real} {int} 

{ int, real} {int, real} {int} 

{ int, real } {int} {int) 

{ int, real} {int} {int} 

{ int, reat ) {int) {int} 
{ int } {int} {int} 

The last change occurs in the third iteration; the algorithm will go through a fourth step and 

find that no I assignment has changed. 



113 

E x a m p l e  9 Let C = {int 

iteration 

0 

I 

1 

~>vl, v2 ~>vl, v2 ~>bool}. Let the valid atomic coercions be as before. 

edge /'~,~t 

{ int } 

int  t> vl { int } 

v2 D vl { int } 

v2 t> bool {int  } 

In the first iteration we 

~1 I'2 
{,} {,} 
{ int,real } {,} 

{ int,real } {int,real} 

{ int,real } 0 

[bool 

{bool} 
{boot} 

{bool} 
{bool} 

find that there is no consistent assignment to type variable v2. 

7 Polymorphism 

A major practical goal in type inference systems is to permit programmer-defined names to possess 

multiple types. This phenomenon has been given the name polymorphism. In the system described 

above, expressions may possess multiple typings but in any individual typing programmer-defined 

names can only behave monomorphically - possess single types. 

In ML this problem is resolved by the use of syntactic device: the let expression. Names 

defined using "let" are permitted to possess type-schemes (quantified types) instead of a type. 

Names defined in lambda-expression continue to behave monomorphicaUy, and may only possess 

types. Quantified type is suitably instantiated in different contexts to permit the let-bound name 

to behave polymorphically. 

We take a similar approach in our system. We distinguish between types, written % and 

type-schemes, written e. In contrast to ML the notion of a simple quantified type, as in Va.ct, is 

not adequate for our purposes. Instead, the relevant concept is that of a conditionally quantified 

type Valc.~r. The quantified variable a is conditioned by the constraints appearing in C. 

By a generic instance of a type scheme V~Io.~, we mean the p~r  (C', ~,') = [ t /~ ] (C,~) ,  provided 

no capture of free variables in t occurs. We also write (C', c,') e geninst(Valc.~,). 

C' C ~ a = C ' ,  w h e r e ( a s u b t e r m o f t ~ o r t j  A C I F t ,  >t;)  ~ IFti  t>t i 

C,A F N :  V~Io,.o,(G,,,') e ge,~i~(V,~lo,.o'), C It-- Cl" 
C, A F N : ~r' 

C, A F N : ~r, a ff F V ( A )  

C ,A  F N : Valclc,.G 

C, A F N : q ,  C , A ; x : c r F M : T  

C,A F let x--- N in M : ~" 
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