
On i m p l e m e n t i n g logic p r o g r a m m i n g languages on a da t a f low a r c h i t e c t u r e

Patrick Weemeeuw 1
Maurice Bruynooghe 2

Marleen De Hondt 3

K.U.Leuven
Department of Computer Science

Celestijnenlaan 200 A
B-3030 Heverlee

Belgium

Abstract

An implementation scheme for a logic programming language on the Manchester Dataflow
Computer is presented. The Manchester Dataflow Computer is a parallel data-driven computer
based on the tagged-token model. The logic programming language is derived from PROLOG, with
addition of modes and types. The cut operator has been replaced by guards. The implementation
scheme supports OR-parallel evaluation of don't-know and don't-care non determinism.

In troduc t ion

Exploiting parallelism is currently one of the major research goals in computer science. At the
hardware level, an important approach is the development of dataflow architectures. A well
known example is the Manchester Dataflow Computer [Gurd et al. 85]. At the software level,
logic programming is a promising approach. In this paper, we explore how a simple logic
programming language can be executed on the Manchester Dataflow Computer. We concentrate on
aspects of OR-parallelism.

In section 1, we give a brief survey of the Manchester Dataflow Computer. This is followed by a
description of our simple logic programming language in section 2. The implementation scheme is
presented in section 3, and some experimental results are discussed in section 4. In section 5, we
refer to some related work, and we finish with some discussion in section 6.

1. S u r v e y o f t h e M a n c h e s t e r da ta f low c o m p u t e r

We briefly summarize the main features of the Manchester Da~flow Computer, for more details,
the reader is referred to [Gurd et al. 85] and [Kirkham 84]. A recent survey of dataflow machine
architectures is in [Veen 86].

A dataflow graph is a directed graph; the nodes represent functions and the arcs represent data
paths between these functions. A state of the computation is represented by a set of tokens on the
arcs of the graph. A node is activated as soon as each input arc contains a token. The active node
removes the tokens from its input arcs and puts tokens on (some of) its output arcs.

Due to hardware limitations, a node has one or two input arcs, and zero, one or two output arcs.
Multiple copies of a token can be obtained by a tree of DUP nodes: the DUP (DUPlicate) operation
produces two copies of its only input.

Conditional computation is possible with the BRR (BRanch on boolean - Repeat) node, which
copies its left (or first) input token to its left or right output arc, according to the boolean value of
its right (or second) input token.

1. Currently supported by CEE Biotechnolog7 Action Programme
2. Supported as research associate by the Belgian National Fund For Scientific Research
3. Currently at BIM, Kwikstraat 4, B 3078 Everberg

360

The graph structure has only an implicit representation in the hardware, all tokens travel on the
same ring structure. Besides a (typed) data value, tokens also contain their destination specifying
the address and input port of the node which has to process the token. Arcs are usually static and
the destinations are known at compile time, however, to allow e.g. returning the result of a
procedure to the caller, one has also dynamic arcs, the destination of tokens on such arcs is only
known at run-time. Finally, to allow multiple simultaneous activations of the same node
(reentrant code), tokens also contain a label (tag) consisting of an index, an iteration 1eve1 and an
activation name. A node J~res only when there are tokens with the same label on each input port.
A fatal error, called a token clash occurs when there is more than one token with the same label
on some edge of the graph (input port of a node). Graphs which are free from token clashes are
called safe.

The index differentiates between different parts of the same data structure (e.g. an array); the
iteration level differentiates between the (possibly parallel) activations of the body of a loop, and
the activation name is intended to differentiate between (possibly parallel) activations of a
procedure body.

Iteration level and activation name together form the colour of a token; the context of a token
consists of its destination and its colour. Instructions involving labels or destinations will be
introduced when needed.

To introduce the notion of matching functions, we first explain the matching unit. The matching
unit is a sort of associative memory, where tokens destinated for a node with two input ports
wait for the arrival of a token with a corresponding (matching) label This is the standard use of
the matching unit, achieved with the matching function EW (Extract/Wait).

The matching function is also included in the destination field. If the destination is a unary
operator, the matching function is always BY (BYpass): the token passes the matching store and
the operator is activated. The success action prescribes what happens to the already stored
matching token before activating the operator, the fail action prescribes what happens to the
arriving token when a matching token is not available. So, EW means: if the matching token is in
the matching unit, then extract it, otherwise wait (i.e. store the arriving token in the matching
unit).

Other matching functions are: ED, DD, ID, DD and PG. We only explain here those that are
needed for our purposes.

• PD (Preserve/Defer): preserve as success action leaves a copy of the matching token in the
matching unit; defer as fail action does not store the token in the matching unit but put it back
on the ring structure for another cycle.

• DD (Decrement/Defer): decrement as success action leaves a copy of the matching token in the
matching unit with the value decremented; defer as fail action.

• ID (Increment/Defer): analogons to DD.
Note: it is the matching function of the arriving token that determines the action to be performed.

A datafiow graph is we//formed if no tokens are left in the matching unit after execution. This is
an important property, because the capacity of the matching unit is finite and the performance
decreases quickly when overflow occurs.

It is often necessary, for reasons of efficiency, to store some data structures (see [Bowen 81],[Veen
86]). For the time being, this is done in the matching unit by means of special matching functions.
A special unit, called the structure store, is announced to cope with this needs without burdening
the matching unit,

36t

2. Description of the source language

Our source language is derived from PROLOG. The language is different from PROLOG in three
major points:

• guards as a means of control instead of cuts;
• modes;
• types.

We do not allow cuts in our source language because the effect of the cut-operator depends on the
sequential execution of the program. Instead of this, we introduce don't-care non determinism by
means of guards. We distinguish between don't-know and don't-care predicates.

Don't-know procedures do not contain any guards; all clauses can be initiated in parallel, and
several clauses may succeed.

A don't-care procedure has in each clause one (possibly empty) guard. The guards of the different
clauses can be started in parallel; only one of the clauses with succeeding guard commits and is
selected for further execution. A procedure call fails ff either all guards faiI or the remainder of
the body of the commited clause fails. Procedures occurring in a guard are not atlowed to produce
s/de-effects; but may bind variables.

To simplify compilation in this first attempt, we have also used type and mode declarations; this
avoids real unification. We distinguish between modes in and out: an argument on an in-position
must be ground at run-time before executing the call; an argument on an out-position must be
free at-run time before executing the call, ground after. This mode restriction is often made and a
lot of practical programs obey it. [Drabent 87] has a thorough discussion on this topic. Both types
and modes can often be Inferred with sufficient precision by abstract interpretation, see a.o.
[Bruynooghe et al 87].

Currently we handle only types built from the primitive "integer" and the structure "list".

As an illustration, we show some well known examples:

A. append: concatenates two (generic) lists to form a new list.

modes: in/inYout
types: List(T)/List(T)/List(T)

append (L1, L2, L3) :-
L l = n i l l L 3 < ~ L 2 ;
L1 < > n i l l L l = = > (X . L I ') ,

append(LI ' , L2, L3'),
L3 < - - (X . L3') .

N o t e s : - we use the infix notation for lists.
- ' < - - ' means construction, ' = = > ' means selection.
- '=' is a test for equality.
- T i s the commit sign.

362

B. delete: takes one element (the first argument) out of a list of integers (the second argument)
and returns also the remainder of the l ist(the third argument).

modes: o u t / i n / o u t
types: Integer/List(Integer)/List(Integer)

delete (E , L , R) : -
L < > nit, L ~ > (E . R) ;
L < > nil, L ~ > (X . L ') ,

delete (E, L' , R'),
R < ~ (X . R ') .

C. perm: generate a permutat ion (second argument) of the list given in the first argument.

modes: in /ou t
types: Lis t (T) /Lis t (T)

perm (L, PL) :-
L = nil] PL < = = nil;
L < > nil I delete (E, L, R),

perm (R, PL'),
P L < ~ (E . PL').

In the remainder of the text, we mean by 'in line code' al l code associated wi th (explicit ly
wri t ten) unification, i.e. tests, selections and constructions.

3. Implementation scheme

In this section we present our implementat ion scheme. This is done in an incremental way: we
start w i th introducing the chosen data representation. This is fo l lowed by a discussion of the
implementat ion of the basic building blocks and an example. Then we discuss the extensions
needed to include garbage collection and to abort the guards.

The figures below are d rawn according to the fol lowing conventions:

- - nodes are indicated by boxes; macro-nodes are d rawn wi th double lines at the sides of the box.

- - continuous arrows represent static arcs; dashed arrows represent dynamic arcs.

- - matching functions, if different f rom the defaul t values, are wr i t t en close to the arc they refer
to.

- - a l i teral on an input arc is represented between double quotes at a T symbol; a ± represents a
cutted output arc (no tokens are produced).

- - tokens are indicated wi th their symbolic name or their type and value fo l lowed (if necessary
for good understanding) by (a part of) their label between ' < ' and ' > ' . E.g. L .<col(c)>
means the token representing the value of L wi th the colour c in its label; cxt(dest(d),col(c0))
stands for a context token consisting of the destination d and the colour cO, wi th concealed
label.

- - when an input port of a node is explicit ly labeled in a figure (because there is a destination
token referring to it), then tha t label is in italics.

- - DUP nodes are usua l ly indicated by the split t ing of an arc,

3.1 Implementat ion of data structures

In [Bowen 81] a profound justification of possible implementat ion schemes can be found.

For objects of a scalar type, the implementat ion is s t raightforward: they are represented by a
token wi th an appropriate data value.

363

The representation of structured objects (only lists in our case) is more complex. An empty last is
a scalar object whose data value type is nu//, nonempty lists are represented by a token whose
data value type is a context-type; the data value itself consists of a context: a colour-destination
pair c-d.r; the destination d.r is always the right input port of a SCD node (Set Colour and
Destination, see below). The information stored in the list is represented by three distinct tokens,
which have colour c, destination d.l and which have as index respectively 1, 2 and 3. The first
token is a reference count, the data value is an integer, it is used for garbage collection (see below).
The second token represents the head, the data value represents either a scalar or another
structured object. The third token represents the tail, which is either the empty list or again a
structured object. These three tokens reside on the left input port (d.l) of a SCD node, which
means that they occupy the matching unit, waiting for a matching token to arrive on the other
port of the SCD node. (Thus a n-element list occupies 3 n entries in the matching unit, these are
the tokens to be moved to the announced "structure store".) One of these tokens can be selected
by sending an appropriate token to the other port of the SCD node, this is illustrated in fig. 3.1.

Figure 3.1: Selection of a token residing
on a SCD node
SCD node wi th address d; three tokens
representing a list are on the left input
port. Arrival o f a context token with the
same color c selects the token with index j ,
gives it the color c l and forwards it to
destination d l (va/~j is either R, H or T).
I f the matching function of the context
token is PD, the selection is non
destructive.

3.2 List operators

{ tt <ix(1),col(c)>,
H < ix(2),col(c) >,
T <ix(3),col(c)> }

cxt(col(cl),dest(dl))
, <col(c)ix(j)>

valuej
<ix(j),col(cl),dest(dl)>

The macros we use, resemble very much the macros given in [Bowen 81]. The only difference is
that we use the Information that there are exactly 3 fields needed for a list cell; this allows to
optimise the COLLECT-macro described there. For details, we refer to [Bowen 81], we only show
a specification of the macro's we will use.

3.2.1 Construction
As a list construction always succeeds, we can use the (slightly modified) STORE-macro of
[Bowen 81]. Consequently L < ~ (X.L') is represented as shown in fig. 3.2.

Figure 3.2: List construction X and L"
have the same color c; a token L with color
c is created whose data value is
cxt(col(c),dest(d.r)), with d.r the address
o f the right input port o f a SCD node.
Also the three list tokens (reference count,
head and tail) wi th colour c and
destination d2 are created by the STORE
macro.

3.2.2 Testing for an empty list
Fig. 3.3 shows the graph for this test. Failure of the test must absorb all tokens related to the
clause under consideration, so, atl these tokens are inputs for the macro BRR. The test is done
with the CET (Compare Equal Type) node which compares the type of the data value with the
type nu//, The result of the test is fed into a BRR node and decides whether the inputs are
forwarded on the F branch or absorbed on the T branch.

364

. . . . Other parameters

B Ir
Head Tail

Figure 3.3: Test L < > nil Figure 3.4: Selection L - - > (Head.Tail)
(type of nil is "N")

3.2.3 Selection
Selection of the head or the tail of a list is accomplished by sending the index of the corresponding
field of the first list cell, together with the context-token representing the list to the SELEC~
macro as given in [Bowen 81]. For the sake of simplicity, we wil l always select both the head and
the tail, and we represent this by the single macro 'select-fields' as shown in figure 3.4. If the list
is possibly empty, a test on nil has to be inserted before the selection.

3.3 Proc~ure calls

3.3.1 Non tail-recursive calls
To execute a procedure call, all tokens representing input parameters are sent to the body of the
procedure; for each output parameter, the destination for that parameter is sent. Some other
values are also passed to the procedure; they are explained in fig. 3.5. All tokens passed to the
procedure have the same unique colour.

As a procedure may be non deterministic and may produce multiple solutions, all solutions have a
distinct colour to distinguish between them. This colour is an extra output parameter of the
procedure (the "colour token"). For each solution, a copy in the correct colour has to be produced
of all values stfli alive after the procedure call, because together with the result of the procedure
they activate the remainder of the body in that branch. As a result, all this values have to be
stored, as can be seen in fig. 3.5. This is the general scheme without garbage collection for non
tail-recursive calls.

3.3.2 Tail-recursive calls
Problems arise if, ignoring in-line instructions, the last call of a procedure is a recursive call as in
the second alternative of delete. The results of a call delete (E,L',R') at recursion level n are E, R'
and a result color ci. These results are fed into the in-line instruction R < ~ (X.R') of delete at
level n-1. This in-line instruction does not change the color, thus we obtain a result at level n-1
having also the color ci. This cannot yield clashes for R' tokens in the instruction R < ~ X.R'
because the level n result with color ci is consumed before the level n-1 result with the same color
is produced. However, the result colour ci is produced independently from R and is used to colour
the X token required by the instruction R < ~ X.R'. Thus the result color ci at level n-1 and the
X token with color ci at level n-1 can be produced before the X token with color ci is consumed at
level n. In such a case we have a token clash.

Two solutions are possible, we can delay the creation of the result colour unti l the in-line
instructions have finished, or we can take care that colours become different. We have opted for
the last solution: we change the colour. Before entering such problematic calls, we increment the
iteration level of the colour, after returning, we decrement the iteration level. This assures that
the results of the two levels have a different colour.

365

Figure 3.5: Procedure call for
delete (E, L', R')
L' is an input parameter. A trigger
token Trigger is also sent to the
procedure, to activate parts of the
dataflow graph that are not
activated automatically by the data.
As E and R" are output parameters,
the destination for each of them is
sent to the procedure, together with
the destination of the colour token
(dest ' .col) and the colour of the
caller (cO), both combined in one
context token
cxt(col(cO)dest(dest'.col)) at (*). All
outputs of generate new activation
name have a new color ci. For each
solution, delete returns the tokens E
and R' as results. They have colour
ci); also a colour token is returned,
it has as value col(ci) and as colour
the initial colour cO. This token is
fed into STOGEN, where it matches
the other tokens of the clause.
STOGEN forwards its other inputs
with new colour el. These tokens,
combined with the results of delete
are used to complete the computation
(the statement R < ~ (X.Rg).

dest.E dest.R X c x t c a l l e r

....... I STOGEN

i11
All values wi th eolour ci

L' <col(cO)> Trigger <col(cO)>
!

"d~f.E" "d~U.R ~ "d~sf.¢ol" I
T T T t

Generate New
Activation Name 1

I

n
I

~ s t ' .coh t

E < eo1(ei),dest(d~st'.E) >

R' < co1(ci),dest(desf.R') >

This problem of clashing arises in all cases where, after finishing a call P, an ancestor P' of the
same predicate can be completed only by executing in-line code.

3.4 The generate block

At the end of each branch, the results, and the colour of each of them, are returned to the calling
procedure by the generate block. For each result we have to return, we use a SDS (Set
DeStination) node to send the result to its proper destination (fig. 3.6). The scheme of fig. 3.7
produces the resulting colour token and sends it to its proper destination.

X <col(ci~' <col(cO>

~ dest.R < col(ci) >

i
i

R < col(ei),des t(gest.R) >

E
coI(ci) < col(ci)>

E

cxt.ealler < col(c0 >

i

eol(¢i) <col(col._caller)>
= col(ci) <col(cO) >

Figure 3.6: R < ~ (X.R') and returning of R Figure 3.7: Part of generate block
The YLB (Yield LaBel) node returns the label field of the incoming token.

366

3.50r-l~rallel ism

The branches in a procedure body are activated in parallel. Branches wi thout procedure calls are
given a new activation name, except the first one. Because procedure calls s tar t w i th giving a new
activation name (fig. 3.5), this assures that solutions computed in different branches have different
activation names.

The duplication of incoming values, and the computat ion of new activation names for the
branches which need it, is done by a split block at the beginning of each branch.

Our scheme for assigning new activation names is as in fig 3.9 (where '&' indicates the generation
of a new activation name, and '...' in-l ine code). This scheme is equivalent wi th the scheme in
figure 3.8, but more economical in activation names, because the third and the four th branch may
fail in the in-line part before generating a new activation name. For procedures which are
recursive in more than one branch (as our example), the difference becomes more important,
because the difference in use of activation names at the bottom level of recursion is mult ipl ied for
each level of recursion. For branches wi thout procedure calls, i t wou ld be better to generate new
activation names at the end of the branch instead of at the beginning, but this has not been
implemented.

Query: a Query: & a

a : - & . . . ;
& . . . ;
& ..., a, ,.. ;

Figure 3.8: A simple scheme for the
generation of new activation names.

3.6 An example: delete

a : - . . . ;

& . . . ;
..., & a, ... ;

Figure 3.9: A more economical scheme for
the generation of new activation names.

Here fol lows the complete scheme for the procedure delete wi thou t garbage collection (see fig.
3.10).

3.7 Garbage collection

Up t i l l now, we d idn ' t pay any at tention to make our programs wel l formed. In fact, there are
two sources of tokens which remain in the matching store af ter execution of the program: i.e. lists
and the values that have to surv ive a procedure call.

The garbage collection on lists can be done automatical ly by introducing a reference count for each
cell of the lists, as can be found in [Bowen 81]. This introduces some synchronisation constraints
when manipulating lists, in order to guarantee that the counters should not be decremented to
soon. This is not fu r the r discussed here.

On the other hand, stored values are deleted when the called procedure sends a finish signal to the
calling procedure, which means that no more solutions wi l l be generated (see fig 3.11: partial
expansion of the modified macro STOGEN). The value to be stored comes on the lef t input part of
the SCD node. Each arriving colour token combines wi th the destination of the stored value to
send a copy of the stored va lue to the desired destination in the r ight colour. The finish signal
extracts the stored va lue and sends it to a ki l l node (this is the reason w h y the outcoming arc is
dynamic). To generate this finish signal, several other synchronisation signals are necessary, but
let us first ment ion the implementat ion goals for this garbage collection:

• garbage should be removed as soon as possible;

• its effect on performance should be minimal.

367

Select ~ /
F i e l d ~

il
:: E i R i Colour token

Select ~

Fields ~]

X L'

i l
BRR

(See fig 3.5)
T T T

STOGEN
[Gem New Act, Name

and Iaer. Iter. Level]

I I 1
[Delete I

- - : : . !

CoiSii~'tS~/a i -~ i " "

i t

~E iR iColour token

Figure 3.10: Delete without garbage collection
Remark: SBL subtracts 1 from the iteration level in the label, the "Decr ~ macro subtracts I
from the iteration level in the value of the colour token.

Figure 3.11: Part of STOGEN with
garbage collection
The FCX node (Form ConteXt) combines
the colaur of the solution of the called
procedure with the destination of the node
where the stored token is further
processed. When the l~nish signal arrives,
it triggers the literal "dest.kill", which is
the address of a K I L node (a K I L node
consumes its input tokens w/thout Stored I
producing any output tokens). This t o k e n]
destination token has the same colour as
the finish token: el}. The CCD node
(Combine Colour and Destination)
transforms the destination token in a
context token, which is sent to the SCD t
node with matching function EW to *
remove the stored token.

Colou~
token

Finish <col(cO)>

368

3.7.1 Principle
A procedure call is finished when all branches are finished, so for each branch we need an end-of-
branch signal Further, we do not generate a finish signal for a procedure until we know that all
produced solutions are accepted by the calling procedure, because the copies of the stored values at
the call may be destroyed as soon as the finish signat arrives. So we need two auxiliary signals: a
generate signal that indicates that some branch has produced a solution, and an accept signal that
indicates that the calling procedure has processed the solution.

To synchronise this exchange of messages between caller and callee, the callee increments a
counter before sending a solution and decrements a counter when the accept signal is received.
The finish signal is only forwarded when all solutions are sent and the counter has its initial
value.

An end-of-branch signal is derived from the finish signals of the calls or in-line code in the
branch. The finish signals travel from right to left in the branch.

When a test fails, a finish signal is generated. When a solution is produced at the end of the
branch, a finish signal is released as soon as the generate signal has been registered. Each procedure
call in the body of the branch sends a finish signal to its left when

• the called procedure is terminated, i.e. it will produce no more solutions;

• for each solution produced by the called procedure, the part of the branch to the right has been
terminated, i.e. it has received a finish signal for each of them.

3.7.2 Algorithm
The behaviour described above is accomplished by extending the function of the already defined
blocks. We sum up the functions of each of them here.

T h e c a l l b l o c k

For each activation the call block performs the following functions:

- - storage of tokens representing values needed for the activation of the remainder of the branch;

- - generation of a copy of those tokens for each solution of the called procedure;

- - d e l i v e r y of an accept signal to the called procedure for each received solution after the
generation of the copies of the stored values (i.e.: the activation of the remainder of the
branch);

- - counting the number of the generated solutions of the called procedure;

- - accepting the finish signal of the called procedure;

- - accepting a finish signal for each activation of the remainder of the branch;

- - sending a finish signal for this activation of the call block to the previous call block (or the
split block if there are no previous procedure calls), when the called procedure has finished and
the remainder of the branch has finished for each activation initiated by this activation of the
call block.

S p l i t b l o c k

All the split blocks perform the following functions:

- - duplication of all parameters to activate this branch (if not the last branch);

- - placing a new activation name on all parameters if necessary;

- - accepting an end-of-branch signal from this branch and a finish signal of the next branch; when
both are received, a finish slgnal is transmitted to the previous branch. (The n-th split block
doesn't wait of course for the finish signal generated by the next branch).

369

The first split block performs in addition the following functions:

- - coun t ing the generate signals received from the generate blocks of this procedure; and
returning a respond signal.

- - counting the accept signals of the corresponding call block in the calling procedure;

- - generation of a finish signal for this activation of the procedure ff 1) the first branch has
finished; and 2) a finish signal is received form the second split block (if any); and 3) the
number of generate signals equals the number of accept signals.

The g e n e r a t e b l o c k

The functions of the generate block are as follows:

- - for each solution of this branch, a generate signal is sent to the first split block of this
procedure;

- - upon receipt of the respond signal of the first split block, the solution of the procedure is sent
to the calling procedure and the finish signal is sent to the previous call block (or the split
block for this branch if there are no procedure calls in this branch).

The following points are noteworthy in this implementation scheme:

- - for each generated solution, the generate signal is guaranteed to arrive before the accept signal:
this is the function of the respond signal;

- - when a branch fails (because of failing unification), it generates also a finish signal;

3.11 Guards

Up to now, we have ignored the guards. Although a straightforward solution is not difficult to
implement (only one partial solution may proceed after the commit-tokens), we aim at aborting
all guard evaluations as soon as one partial solution is computed. For the moment, we have an
implementation scheme for this, but it has not yet been tested.

There are two kinds of abort signals in a don't-care procedure: internal and external ones. The
internal abort signal is generated at a commit-token in the procedure itself, and has to be
propagated to ali procedures ealled in the guards (in the form of an external abort signal). The
external abort signal is generated at a commit-token of an ancestor procedure and has reached this
procedure due to propagation. The processing of the two types of abort signals is the same, but
the followed path in the procedure is different. For don't care procedures, we have only external
abort signals.

To accomplish this abortion, we associate with each call block a stream of colours. This stream
indicates every activation of the procedure associated with the call block.

When a procedure receives an abort signal, it first checks if this is the first abort signal, and if it
has not already finished all activity for the activations with the colour of the abort signal (the
abort signal and the finish signal may cross each other). If this is the case, then we send
recursively one or more abort signals to every directly activated procedure, by using the stream of
colours associated with each call block. Further solutions of the procedure are also deleted.

4. D i scuss ion o f s o m e e x p e r i m e n t s

We have tested some small programs with the Manchester simulator [Sargeant 85]. We derived
the number of executed instructions, the length of the critical path and the average parallelism as
a function of the number of elements of the list. Tables with the results for quicksort
(deterministic) and delete (nondeterministic) are shown in figures 4.1.a and 4.1.b. A first
conclusion is that garbage collection introduces much overhead: the average parallelism remains
the same, but the number of instructions is multiplied roughly by 3 & 3.5. This is not astonishing,

delete

because, to guarantee a correct execution, we had to introduce a lot of (local) synchronization. It is
also an indication that this synchronization did not destroy the OR-parallelism of the program.

quicksort
without g.c. with g.c.

#elem. #instr. cr.p. par. #instr. cr.p. par.
10 7469 1932 3.9 22693 3846 5.9
20 19279 4812 4.0 58193 9669 6.0

Figure 4.1.a: Results for quicksort
number of instructions, length of critical path and average parallelism (with and without garbage
collection)

Parallelism

#eLm. w~hout g.c.
#instr. cr.p.

0 33 10
5 792 136

10 2402 276
15 4862 416

2 0 8172 556

with g.c~
par. #instr. cr.p.
3.3 84 30
5.8 2656 374
8.7 8041 794

11.7 16176 1214
14.7 27061 1634

par,
2.8
7.1

10.1
13.3
16.6

Figure 4.1.b: results for delete

The number of executed instructions compares rather unfavourable with an implementation on a
sequential machine with backtracking: we found a ratio of 1 instruction on a sequential
architecture for 7 instructions on a dataflow architecture for delete with garbage collection (9
elements). According to [Gurd et al. 85] a datattow MIPS has the potential to match the power of
a conventional sequential MIPS (for an integration program), so this result seems rather bad. A
major explanation is that we store a lot of tokens in the matching store, which have to be
destroyed when no longer needed. The structure store might provide a partial solution for this
problem. As the structure store appears colourless, some instructions manipulating the colours of
the stored tokens might be avoided. However, we will still need the finish signal to decide when
the stored tokens can be destroyed.

3 0 -

2 0 -

1 0 -

I t I 1
400 500 600 700

I I I
0 10030 200 300

370

machine cycles

Figure 4.2: parallelism during execution of delete (9 elements)

371

10

Active Branches 4

0 100 200 300 400 500 600 700
machine cycles

Figure 4.3: active branches during execution of delete (9 elements)

In fig. 4.2 we show the parallelism during the execution of delete with garbage collection for 9
elements. This parallelism is rather unevenly balanced, and may cause for other programs such as
'perm' too high peak values (with the related problems of matching store performance and token
queue occupancy).

In fig. 4.3 we show the number of active branches during execution (an active branch is a branch
that has received a trigger signal and not yet generated an end-of-branch signal). The procedure
delete is activated at cycle 42 (the main activity before is the building of the lists, which is
mainly sequential) and terminates at cycle 554. The query finishes at cycle 561, the remaining
activity is to remove the lists.

5. Related work

Parallelism in logic programming has grown into a vast research area and it is outside the scope of
this paper to attempt a survey. See for example the recent books [Conery 87] and [Wise 86].
Espocially the latter gives a dataflow perspective on the field. Another survey focussing on OR-
parallelism can be found in [Warren 87].

The only research effort we are aware of having some points in common with our approach is the
implementation of flat PARLOG on the parallel reduction architecture ALICE [Lam & Gregory
87]. Both source languages have mode declarations. Fiat PARLOG supports AND-parallelism, and
thus suspension when trying to access unavailable variables. Our approach doesn't support rut1
AND-parallelism, but there might be some overlapped execution of successive calks. Suspension is
provided automatically when no values are available (the hardware is data driven). Our guards
are not restricted to non-recursive procedures.

The ALICE architecture supports priority levels, which are used to perform garbage collection in
parallel with other activities, but at a higher priority. This might improve the processing of finish
and abort signals.

6. Discussion

We have spent a modest effort in exploring the possibilities of executing a logic programming
language on the Manchester Dataflow Computer. The results obtained so far are not very
encouraging. They indicate that the gains due to parallel execution of instructions are undone by

372

the increased number of instructions to be executed.

Of course, there are several areas for improvement. First, the procedure cailing scheme is too
complex for deterministic procedures that always succeed exactly once. In that case, we do not
have to store values in the call block, neither does such a procedure neo~ a finish signal. We also
expect that the handling of taft recursion can be improved. For the time being, we failed to find a
scheme equivalent to an implementation on a sequential machine. For example, the in-line
instruction after the taft recursive call of delete causes a major problem; ff not present, it might be
possible to skip all recursive levels between the first and the last recursive step for certain tokens.

On the other hand, the language was substantially simplified, the most significant restricion being
that we excluded ful l unification by assuming modes. It is expected that the handling of ful l
unification will increase the overhead.

Based on our effort, we are tempted to conclude that the reallsation of an efficient PROLOG system
on a dataflow machine is an undertaking at least as challenging as it has been for the conventional
Von Neumann architecture. Only the widespread availability of such machines can make it a
worthwile undertaking.

Acknowledgement

We are indebted to the dataflow research group at Manchester for providing us with the simulator
and documentation.

References

- - [Bowen 81] Bowen, D. L., Implementation of Data Structures on a Data Flow Computer, Ph.D.
thesis, University of Manchester, April 1981

- - [Bruynooghe et al. 87] Bruynooghe, M., G. Janssens, A. Callebaut and B. Demoen, Abstract
interpretation, towards the global optimisation of Prolog programs, Proc. Fourth IEF.F.
Symposium on Logic Programming, San Francisco, september 1987

- - [Catto 81] Catto, A. J,, Nondeterministic Programming in a Dataflow Environment, Ph. D.
thesis, University of Manchester, june 1981.

-- [Catto & Gurd 80] Catto, A. J. and J. R. Gurd, Nondeterministic Dataflow Graphs, IFIP 1980,
p. 251 - 256.

-- [Conery 87] Conery J. S., Parallel execution of logic programs, Kluwer Academic Publishers,
1987

- - [Drabent 87] Drabent, W., Do logic programs resemble programs in conventional languages?
Proc. Fourth IEEE Symposium on Logic Programming, San Francisco, september 1987

-- [Gurd et al. 85] Gurd, J. R., Kirkham C. C. and Watson I., The Manchester Prototype Dataflow
Computer, Communications of the ACM, January 1985 Volume 28 Number 1, 34 - 52

- - [Kirkharn 84] Kirkham, C. C., The Manchester Prototype Dataflow System, Basic Programming
Manual, November 1984

-- [Lam & Gregory 87] Lam, Meltssa and Steve Gregory, PARLOG and ALICE: a Marriage of
Convenience, Proc. Fourth InternatiOnal Conference on Logic Programming, Melbourne, p.294 -
310

- - [Sargeant 85] Sargeant, J., Simulator Users Guide, University of Manchester, january 1985

-- [Veen 86] Veen, A. H., Dataflow machine architecture, ACM Compating Surveys, Vol. 18, No 4
(december 1986), p. 365 - 396

--[Warren 87] Warren, D. H. D., Or-Parallel Execution Models of Prolog, TAPSOFT 87:
Proceedings of the international joint conference on theory and practice of software
development, Pisa, Italy, March 87, I_~cture Notes in Computer Science 250, p. 243 - 259.

- - [Wise 86] Wise, M. J., Prolog multiprocessors, Prentice-Hall, 1986

