
ENHANCING PROLOG TO SUPPORT

PROLOG PROGRAMMING E N V I R O N M E N T S

A.Martetli and G.F.Rossi

Dipartimento di Informatica - Universit~ di Torino
C.so Svizzera 185 - 10149 Torino (ITALY)

uucp: ...t.mcvax!i2unixlleonardo!mrt

A b s t r a c t

This paper describes the basic ideas we followed in the development of PROSE, a Prolog
programming support environment we are implementing at our Department. We claim that
standard Prolog must be adequately enhanced to be well suited to support the construction of an
efficient programming environment. For this purpose, some new facilities are supplied by our
Prolog (called Env_Prolog) which are mainly intended to allow the language:
- to handle programs as data and to partition the program database into disjoint sets of
clauses;
- to support "editing" of clauses in the program database and the controlled execution of Prolog
programs. Env_Protog has been implemented by developing a new interpreter written in the C
language. The paper will concentrate mainly on the interpreter and the support it offers to
other tools of the environment.

1. I n t r o d u c t i o n

Programming environment tools for traditional programming languages are very often written in the
same language which they are intended to support. This usually requires user programs to be
converted into an internal representatien which can be handled as a data structure of the language
itself by all the tools of the environment.
The generation of the internal representation of a program is usually done by a syntax-based editor
and has the form of a tree which reproduces the syntactic structure of a program as far as its abstract
syntax is concerned.

On the contrary, using a programming language like LISP it is possible to directly view programs as
data of the language itself. In this way tools written in LISP can handle user programs directly,
without having to resort to any intermediate representation. Advantages of this approach are greater
interactivity and expansibility of the environment and simplification of its development process.
Existing LiSP environments are usually highly appreciated and demonstrate the effectiveness of this
approach.

Prolog shares with USP many valuable features for the construction of programming environments,
such as symbolic manipulation capabilities, dynamic bindings, etc. However standard Prolog does not
entirely satisfy the requirement of being able to handle programs as data. Indeed there are several
built-in predicates to handle clauses and terms (e.g. clauses, functor,...) but clauses or programs (=
finite set of clauses) cannot be handled as data.

318

Moreover, standard Prolog f4] does not supply the user with any facility to split a complex program
into separate subcomponents ("modules"). Nevertheless this is an important requirement for a
programming environment where many distinct programs (i.e. tools and user programs) must cohabit
and cooperate. 8ome Prolog dialects let the language to have such capabilities by extending Protog with
various syntactic structures.

Unlike LISP, only few experiences have been done with the construction of Prolog programming
support environments so far. One of the first effort to built such an environment is reported in [5].
Here an internal representation of Prolog is used to face the above problems. It serves also as a way to
enrich the program with those informations which are necessary to the environment tools (in
particular to the editor and debugger). Unfortunately in this way some of the potential advantages of
Prolog with respect to traditional programming languages are missed,

The approach we have taken in the development of PROSE (= ~ l o g Support Environment) [10,13] is
quite different from this one. Our goal has been to allow the whole environment to be written in Protog
without using any internal intermediate representation of programs; at the same time, neither the
interpreter should be burdened too much nor Prolog should be extended too much.
The solution we have adopted consists in:

giving the language the capability to handle programs as data and to partition the program d.b. into
disjoint sets of clauses (in the basic form of theories as suggested in [2]);
inserting into the interpreter all the facilities which are required for the development of the
environment basic tools and which are very hard or highly inefficient to directly implement in
Prolog. This requires the definition of a number of new built_in predicates which allow the user
to exploit these new facilities.

Selecting which facilities must be supplied by the interpreter and which on the contrary must be
implemented within the tools is a critical point. Our criteria has been to reduce as much as possible
the number of new facilities that the interpreter must directly support so that its additional burden
can be limited and good flexibility is assured in the development of tools.

At present, PROSE consists of three main components:
- I_Prose: interpreter for an extended Prolog (called Env_Prolog);
-E_Prose: Env_Prolog oriented editor;
- D_Prose: debugger.

The interpreter is written in C language, while other tools are all written in Env_Prolog. Our purpose
is absolutely not that of building a complete and competitive programming environment. Our primary
motivations to develop PROSE are rather the following ones:

experimenting with usual interpreter implementation techniques in the special case of Prolog
implementations;
finding out possible extensions to standard Prolog which allows the language to better support the
construction of programming environments (mainly in the direction of enhancing
metaprogramming capabilities of Prolog);
testing whether and how much techniques usually employed in the development of advanced tools for
traditional programming languages are welt suited to the special case of Prolog and, on the other
hand, how Prolog special features influence and can be adequately exploited in the development of
these tools.

2. An overv iew of I_Prose

t_Prose is the interpreter of the PROSE environment and its main component upon which all the other
tools are based. The language implemented in IProse, named Env Prolog, extends Prolog with new
features which are mainly devoted to the support of the programming environment. More precisely,
Env_Prolog extends the de-facto standard C_Prolog [15] with the following features:

319

infinite terms [3];
clauses and programs as data, and, as a consequence, the capability to have different programs in
the program database at the same time;
a number of built-in (meta-)predicates to handle terms and clauses;
some mechanisms and built-in's for the control of program execution.

All these features will be discussed in more details in the next sections.

As regard to the implementation of I_Prose, we can mention the following features as the most
distinguishing ones:

a particular unification algorithm ;
uniform internal representation of all terms and clauses of a program;
derivation of the interpreter implementation by stepwise refinements of abstract formal
specifications of an operational semantics of Prolog [t l] .

The unification algorithm used in l_Prose is an implementation of the algorithm proposed in [9] which
in turn is a variation of the well-known algorithm by Martelli and Montanari [8], adapted to deal with
infinite rational terms. This algorithm is based on the notion of multiequation, as a means to group
together terms and variables which must be unified without having to perform any explicit
substitution, and on some basic transformations on sets of multiequations which transform sets into
equivalent ones [8,9].

Introduction of infinite terms is motivated firstly by interpreter's performance considerations (it is
possible to suppress the occur-check operation still maintaining correctness) and, secondly, by the
increased expressiveness of the language (cyclic data structures, e.g. graphs, circular lists, can be
represented in a natural way). As an example, the program

eq(X,X).
?- eq(X,f(X)),eq (Y,f(Y)),eq(X,Y).

in Env_Prolog, has the solution!
iX,Y} = f(X)

whereas an implementation of Prolog with a standard unification algorithm loops forever trying to
unify the infinite terms which are obtained from the first two subgoals in the given query (the result
in the above example is a multiequation which expresses the fact that X and Y are equivalent and they
are both bound to f(X)).

In the actual implementation of the unification algorithm, sets of multiequations are represented as
graph data structures, which can be easily implemented in conventional imperative languages like C,
by means of dynamic structures with pointers. Each multiequation corresponds to a different node in
the graph (intermediate variables are introduced to have all terms with depth 1) and equivalent
variables are linked together, with only the last one possibly bound to a non-variable term. (At this
level our algorithm is very similar to the one proposed by Fages in [17]). For more details on the
implementation of the unification algorithm see [16].

The use of this unification algorithm, in addition to the way tProse has been derived, that is by
stressing similarities between interpreters for conventional programming languages and Prolog
interpreters [11], has led to the choice of "copying" rather then "structure sharing" [t2] to
represent terms which are being unified.

On the other hand, the internal representation of source terms (i.e. not copied terms) has been
designed in such a way to allow a uniform view of all internal data structures, without giving up the
requirement of good execution efficiency and memory usage.

320

3. P r o g r a m s a s d a t a

As we have already noted, the capability of a language to handle programs as data is a very valuable
property in the construction of a programming environment. Standard Protog implementations do not
completely satisfy this requirement.

On the contrary, everything is considered as a term in Env Prolog and can therefore be dealt with as
data. In particular, a clause is a term with (infix) principal functor ":-", so that it is possible to
write, for example:

a :- b,c,d.
?- X :- Y,Z.

and have the answer:
{ x } = a
{Y} = b
{ z } = c ,d

where the given clause is considered as a fact rather than a condit ional rule to be executed. In
C_Prolog, on the contrary, the special built-in predicate clause(H,B) is required to deal with clauses
as data and some limitations are imposed on the way its arguments can be instantiated (namely, H
cannot be a uninstantiated variable) due to the ad-hoc internal representation of clauses.

Moreover, in l_Prose, also a whole program (that is a finite set of clauses) is considered as a term,
with (infix) principal functor "1". For example, the program:

p.

p :-q. corresponds to the term:
q : - r . 1
r. / \

p:-true I
/ \

P:-q I
/ \

q:-r 1
/ \

r:-true {}

A special syntactic notation has been defined to represent a program in a more concise form (like with
lists in standard Prolog)

{ c l .c2 cn }

where c l , c2, .. are clauses and {} denotes the empty program.
The internal data structures that represent programs as terms are exactly the same as those used for
other terms. Therefore it is possible to work uniformly on programs as well as on other terms,
without loosing any efficiency in accessing inner subterms. The interpreter is able to distinguish
between programs and other terms and to build suitable data structures (e.g. indexes) which
facilitate an efficient execution of the program itself.

All predicate names in a program are local to that program and the interpreter keeps different indexes
for different programs. The set of clauses in the program database can be partit ioned into smaller
separate subsets. To al low a program to refer to a different one, meta-predicates of standard Prolog
(namely, call, clause, assert and retract) have been modified in such a way they can explicitly specify
the program they work on, as an additional argument. For example we can have

?- ecall(p(X),{p(X):-q(X), q(a)}).
{ x } = a

2. try(X) :- Y = {p. p:-q. q:-r. r}, eclause(q,X,Y).

321

?- try(X).
{ x } = r.

The built-in predicate ecall allows a goat to be solved into any program which is visible from it.
Notice that the standard built-in call is still used whenever the goat has to be proved in the current
program. Predicates eclause, eassert and eretract are defined in a way similar to the corresponding
C_Protog built-in predicates. In particular, eassert and eretract operate by side-effects on the
program they receive as argument.

Several programs can be simultaneously present in the program database and it is easy to associate a
different symbolic name to each of them, For example, the following definitions

alfa mod {p. p:-q. q:-r. r}.
beta mod {r(X):-s(X),p. p. s(a)}.

where rood is a user-defined infix operator, can be interpreted as the definition of two programs
named alfa and beta respectively (we'll refer to them also as "module" definitions). Thus it is
possible to solve a goal like:

?- aifa mod X.
getting as its result that X is bound to the program named alfa.

Names can be used in combination with metapredicates which operate on programs, as in the fo{Iowing
example:

modcall(G,N) :- N mod P, ecaEl(G,P).

?- modcall(p(X),alfa).
{ x } = a.

The mod operator is user-defined and can be changed as one wishes. The only built-in which is aware
of this operator is the modified version of predicate consu l t , It has the form

consult(prog_file,prog_name)
and the Prolog program in prog_file is loaded into the main memory with the assertion:

prog_name rood {"program in prog file"}.
The program can be now referred using progname in the way seen above. If prog_name is omitted
the name user is used as a default.

Modules has been widely used in the construction of PROSE. E_Prose, D_Prose and user programs are
distinct modules. Programs to handle graphical output on the screen or to manage files within the
environment are defined as inner modules.
Modules can be nested at any depth, since they are terms. A program can use any predicate belonging to
any module defined within it, but it can not use predicates belonging to modules defined at the same or
outer level. To al low a module alfa to be visible to another module beta, an outer program must
exp{icitly pass alfa to beta, like for example in the following program

alfa mod { ... }.
beta rood { ... }.
export :- alfa mod X,

beta mod Y,
eassert((alfa rood X), Y).

After export has been called, program beta is modified in such a way it contains a definition of the
module affa and it can now refer to any predicate in alfa through one of the above metapredicates.

Programs can be used also as a way to collect clauses defining some data structure so that it can be
managed as any other term (e.g. passed to a procedure as a parameter) maintaining all the advantages
of the clausal representat ion (e.g. access by pattern-matching). For example, the following two

322

clauses define a general program to find out a path between two nodes X and Y in a graph G:

p(X,Y,G) ;- ecall(a(X,Y),G).
p(X,Y,G) :- ecall(a(X,Z),G), p(Z,Y,G).

where G is represented as a set of assertions (i.e. a program) like for instance in the goal:

?- p(a,d,{a(a,b).a(a,c).a(b,c).a(b,d).a(c,d)}.

Like with modules, it is also possible to associate a name to a graph. For example
gl graph {a(a,b).a(a,c). a(b,c), a(b,d).a(c,d)}.

and thus the above goal could be rewritten as
?. gl graph G, p(a,d,G).

No'~ice that the notion of module in Env Prolog is similar to Bowen and Kowalski's notion of theory
[2]., with ecall corresponding to the demo predicate. On the contrary, our approach is quite different
from those proposals, like for instance M Prolog [1], where modules are special syntactic entities
which allow the programmer to specify visibility rules of names within them.

The copying based technique used in l_Prose would require that when solving a goat like ?-alfa
mod X a new copy of the whole program bound to X is made if the program contains any variable. To
avoid this heavy operation, we assume that a program is always considered as a "ground" term.
I_Prose can recognize a ground term and avoid to make any copy of it when the term has to be unified.
More complex operations on programs as data (like for instance appending two programs) are still
being investigated at present.

4. Interpreter and programming environment

As we have pointed out in the first section, implementation of the environment tools requires that the
implementation language supplies a number of facilities which are usually not available in standard
Prolog implementations.

In the project described in [5] these Prolog deficiences have been overcome by using an internal
representation of programs in the form of Prolog assertions which are accessible to all the tools of the
environment.
We also have followed this approach in the development of a first prototypical implementation of an
Editor and a Debugger for the PROSE environment, both written in C Prolog. The internal
representation of programs we have used is illustrated by the following example:

p(X) :- q(X,Y),r(a).

I¢lause(Cr,Pr, Nr, p(1),[q(_1, 2),r(a)],[v(1,'X'),v(_2,'Y')]).

where the first three arguments are used by the Editor to move from one clause to another (Cr, Pr, Nr
= current, previous, next clause reference, respectively). The last argument allows the interpreter to
maintain the association between the internal name and the corresponding external one for each
variable in a clause (since C_Prolog does not provide this facility).
A program is'transformed into its internal representation by the Editor,

An advantage of using this intermediate representation is the separation between predicate names of
user programs (represented as iclauses) and predicate names of tools (anyway separation among tools
is still a problem).
The major drawback of this solution is the necessity to introduce a translation step which of course
limits environment interactivity.

323

Another drawback of this solution is the difficulty and/or inefficiency to implement some operations of
the environment in standard Prolog, especially if compared to the relative simplicity they could be
directly implemented within the interpreter. For example the Editor in PROSE should perform lexical
and syntactic analysis being a language oriented editor. Implementation of these operations in Prolog is
quite cumbersome and inefficient. On the other hand the interpreter already executes such operations
internaly and it seems reasonable them to be exploited.
in the same way, such operations as storing the symbolic name of variables or traversing clauses could
be done directly by the interpreter with only a negligible overhead.
As regard to the Debugger, it can be written in Prolog as a metainterpreter which is able to execute the
ictause internal representation of a program. However to have a really significant tool, such a
metainterpreter must simulate most of the execution process of the interpreter, resulting in a
complex tool, which causes a program under debugging to be executed very slowly.
Again if the user could access to some of the information the interpreter uses internally to control the
execution of a program, implementation of the Debugger would be strongly simplified.

The approach we have followed in PROSE assumes that the interpreter (l_Prose) maintains
informations which are useful for the construction of the basic tools of the environment, letting these
informations be accessible to the user through some new bui l t in predicates. We'll briefly describe
these new facilities in the next two sections.

5. Editor support

In this section we briefly describe the most important new built-in predicates which Env_Prolog
supplies and which are mainly used in the development of the editing facilities of the PROSE
environment. Usually they define operations which are difficult or highly inefficient to implement
directly in Prolog.

Syntactic analysis and term construction

mkterm(L,T,N).
L is a list containing the ASCII representation of the term T. If the representation in L is not
syntactically correct, N is an integer indicating the position in L where the first error has been
found.
identifiers with capital initials are considered as constants in T.

mkvars(T1 ,T2).
T1 and T2 are the same term except for identifiers with capital initials which are considered as
constants in T1 and as variables in T2.

Example:
?- mkterm([102,40,97,44,103,40,97,41,41],T1,_),

mkvars(T1 ,T2).

{T1} = f('X',g(a))
{T2} = f(X,g(a)).

These two new predicates allow the Editor input phase to be strongly simplified. Syntactic analysis is
performed by the mkterm predicate and can be applied to single predicates or to a clause as a whole. A
clause can be built incrementally, adding new predicates or modifying existing ones. Predicate mkvars
allows equal variable identifiers to denote the same variables within a clause when the clause is stored

324

in the program database even if it is constructed incrementally.
Having these predicates as built-in does not limit the operations the Editor can still perform. For
example, automatic balancing of parenthesis, removing superfluous blanks in the input stream, error
diagnostic messages and many other editing operations are all charged to the editor,

Clauses handling

Some new built-in predicates are defined in Env_Prolog to exploit the physical ordering of clauses.
Clauses are identified by an internal unique identifier (Clause Reference) whose value has no
meaning for the user, The interpreter keeps clauses ordered using the same data structures it uses for
the internal representation of a program (that is a tree of "J" operators) without having to add any
new structure.

a s s e r t p (C I , C I R e f) .
Clause Cl is stored in the program database just before the clause identified by CIRef. Insertion is
made in such a way to guarantee that clauses belonging to the same procedure are all necessarily
contiguous.

adj(CtRefl ,CIRef2).
CIRefl and CIRef2 are references to two adjacent consecutive clauses. If CIRef2 (CIRefl) is the
reference to a clause and CIRefl (CLRef2) is bound to a variable, then adj can be used to obtain
the previous (next) clause of the given one. The program d.b. begins and ends with two fictitious
clauses with CIRef=0 and CIRef=-l, respectively. Thus adj can be also used to find the first and
the last clause in a program.
The following is an example which shows a typical use of adj.

Example: go to the n-th clause.

goto(N,Ref) :- first(FCI),go(N,t,FCI,Ref}.
go(X,X,R,R).
go(N,I,R,NewR) :- adj(R,Next),

I is I+1,
go(N,I,Next,NewR).

first(CIRef) :- adj(0,CIRef).

Symbolic variable n a m e s

For each variable in a term IProse preserves the user defined name in the internal representation of
the term itself. The built-in predicates wri te(X) prints a term (including clauses and programs)
with non-instantiated variables represented by their original symbolic names, contrary to what is
done by usual C_Prolog implementations. It is evident the utility of this facility both to the Editor and
the Debugger.

A problem arises with renaming of variables which is done by the interpreter whenever a predicate is
unified with the head of some clause. I_Prose faces this problem by appending a univocal index to the
name of renamed variables. For example, given the program

p(f(X),Y) :- q(Y).
q(f(X)).
?-p(X,Y).

we get the result:
{X} = f(X_l)
{Y} = f(X_2).

325

5. Debugger support

In C_Prolog and in many other Prolog implementations the Debugger is completely embedded within
the interpreter. This solution assures good efficiency but no flexibility at all as regard to debugging
policies. At the opposite extreme is the solution based on metainterpretation, we have already cited in
Section 4.

The approach we followed to develop the PROSE Debugger (D_Prose) can be considered as intermediate
between these two extremes. Indeed, DProse is written in Env_Prolog but execution of the program
under debugging is completely carried on at the object level. What the user can do in Env_Prolog is to
force the interpreter to call a user-defined procedure whenever a goal has to be solved, and to control
its execution through a number of special built-in predicates.

More precisely. When user requests the activation of debugging mode (through the execution of the
built-in predicate dbgon) the interpreter transforms the execution of each goal G into the execution
of the user defined procedure dbgenter(G). This procedure completely defines the Debugger. Within
this procedure the debugger designer can use two new built-in predicates to control the execution of
the given goal G:

select(G,CIRef)
exec(G,CIRef).

Predicate select gets the reference of the first clause in the (current) program whose head unifies
with the given goat G. If no such clause is found, select fails. Upon backtracking, select gets the
reference of the next clause, if it exists. Predicate exec solves goal G using the clause specified by
CIRef.
ff G is a built-in predicate, select does nothing more than to bind CIRef to the constant builtin and
exec performs a call(G) .
Notice that procedure dbgenter can be composed of different alternative clauses like any other Prolog
procedure and backtracking applies as usual to them.

Selection of these two primitives is the result of a careful tradeoff between efficiency and flexibility.
Their implementation is done in such a way to avoid execution overhead as much as possible. In
particular, substitutions computed during the execution of select are stored into an ad-hoc internal
data structure so that they have not to be recomputed when the corresponding exec is called
successively (this structure is automatically removed on exiting from the dbgenter predicate).

Of course select and exec must be used with the due care. In particular, the argument CtRef of exec
must be the reference of a clause previously selected by a select predicate on the same goal G (actualIy
G has been inserted in exec just to report the new variable substitutions that are possibly created by
the execution of clause CIRef).

The current substitutions (created by select and exec) can be obtained if necessary at any time,
through the special built-in curt substs(G,CIRef,S1,S2), where $1 and $2 are two lists of pairs
of the form:

[s(xl, t l) s(xn,tn)]
which represent current variable substitutions for G and CtRef respectively (G is always instantiated
by curr-substs to its initial value, the one specified in the select call).

Another interesting new mechanism supplied by IProse which has been used in DProse is the one
provided by the d o - u n d o built-in predicates. It is mainly intended to support the implementation of
an undo facility of the debugger but it can aiso be seen as a generalized cut, whose effect is not limited

326

to the procedure in which it appears. More precisely, the execution of the built-in predicate undo,
causes the present computation to fail, and backtracking to be activated. All possible alternatives
between undo and the immediately preceding do are rejected. Backtracking stops at the first possible
alternative (if it exists) preceeding the do predicate.
For example, given

p:-q,r,do,s.
q.
q:- qbody.
r.
s :-t ,.~L~..0_.
S.

t:-
?-p.

after executing undo, control is passed to the second clause of the procedure q.
Predicate qbody can be defined for example as:

qbody :- undolng,q.
where undoing is another new built-in which is true iff an undo has been executed but a subsequent do
has not yet (it allows normal backtracking to be distinguished from backtracking due to an undo). In
this case the final result is re-executing the piece of program between do and undo in the very same
way.
Predicate qbody could contain also another undo. Nesting of undo allows a whole computation to be
redone backward.

The do-undo mechanism has been used in D_Prose to implement an undo facility which allows the user
to undo any previous request to the debugger, redoing the computation again if needed.

With these facilities and with few other primitive mechanisms it is possible to build powerful
debugging tools directly in Env_Prolog, in the way one likes more, without having to relay upon
decisions already made and frozen within the interpreter. At present, D_Prose provides only facilities
for tracing program execution like those provided by the C_Prolog debugger, but more sophisticated
facilities and user interfaces are planned for the future and should be easily implemented in
Env_Prolog.

7, F u t u r e w o r k

The implementation of I_Prose has been completed at present and it needs to be extensively tested, ft
runs on VAX 780 and SUN under Unix 4.2 and its performance is almost the same as that of
(interpreted) C_Prolog. For the near future we have planned to build also a compiler for Env_Prolog
based on the WAM. The main purpose of this should not be to obtain better performance than with the
interpreter, rather to experiment with the implementation of the new facilities Env_Prclog supplies
in the framework of the now standard WAM.

The implementation of EProse and D_Prose using Env_Prolog has to be completed in few weeks (at
present only simplified prototypical implementations are available), Some other tools to be integrated
in the PROSE environment are under development at present. Namely, a partial evaluator, a type
checker and a user interface.

PROSE will be used also to host the tools for the construction of knowledge based systems we are
developing in a parallel project [14].

Another interesting problem we have planned to face in PROSE is the support of the notion of program
library. It requires to tackle problems like those of visibility and protection of predicates, efficient

327

loading and restoring of library procedures, etc. (see for example [6] and [7] p. 161). The notion of
"module" of Env Prolog should be used advantageously to face these problems.

Acknowledgments

We wish to thank all people who have contributed to the development of PROSE and in particular
L.Arcostanzo, W.Manassero and G.Schmitz. for their effective contribution to the implementation of
1_Prose.
This work has been partially supported by MPI 40% project ASSI.

References

[1] J.Bendl, P.Koves, P.Szeredi: The MProlog System; in Proc. of the Loaic Programming Worksh~j2,
(S-A.Tarlund ed.) Hungary, July 1980.

[2] K.A. Bowen and R.A. Kowalski: Amalgamating language and meta- language in logic
programming; in L0Cli(;: Pr0clrammin~., (K.L.Clark and S-A.Tarlund, Eds), Academic Press,
1982, 153-172.

[3] A.Colmerauer: Prolog and Infinite Trees; in Loaic Proerammina, (K.L.Clark and S-A.Tarlund,
Eds), Academic Press, 1982.

[4] W.F.Clocksin and C.S.Mellish: Proarammina in Proloa. Springer Verlag, Berlin 1981.
[5] N.Francez et al.: An Environment for Logic Programming; in Proc. of the ACM Sigplan Svm0. on

Lanauaaes Issues in Proarammina Envir0nm~n~8; Seattle, June 1985, 179-190.
[6] A.Feuer: Building Libraries in Prolog; AAAI-68, August 1983, pp. 550-552.
[7] Kluzniak, Swpakozicw: Proloa for programmers; Academic Press, I985.
[8] A.Martelli and U.Montanari: An Efficient Unification Algorithm; ACM TOPLAS, 4,2, April 1982.
[9] A.Martelli and G.F.Rossi: Efficient Unification with Infinite Terms in Logic Programming; in

Proc. of FGCS84: International Conf. on Fifth Generation Computer Svstems, Japan, 1984.
[10] A.Martelli and G.F.Rossi: Toward a Prolog Programming Support Environment (in italian);

Proc. of the First National Conference on Loa ¢ Proaramm no, Genova, March 1986.
[1 1] A.Martelli and G.F.Rossi: On the Semantics of Logic Programming Languages; in Proc of the 3 rd

Conf. on Logicproaramming, London, July 1981.
[1 2] C.S.Mellish: An Alternative to Structure Sharing in the Implementation of a Prolog Interpreter;

in Loaic Pro0rammin d. (K.L.Clark and S-A.Tarlund, Eds), Academic Press, 1982, 99-106.
[1 3] A.Martelti and G.F.Rossi: PROSE: a Prolog Support Environment (in italian); Proc. of the Second

Nationa! Conferenc~ on Loqic Proqramminq, Turin, May 1987.
[14] L.Console and G.F.Rossi: FROG: a Prolog-based system for Prolog-based knowledge

representation; in Artificial Inteliiaence and lnf0rmation-C0ntroi Systems of Robots-87,
(I.Plander, ed.), North-Holland, 1987,179-183.

[1 5] C-Prolog User's Manual - Version 1.5; edited by F.Pereira, Technical Rept. 82/11, Edinburgh
Computer Aided Architectural Design, Univ. of Edinburgh, February 1984.

[1 6] A.Martelli and G.F.Rossi: An implementation of unification with infinite terms and its application
to logic programming languages; Technical Rept., Dipartimento di Informatica, Univ. di Torino,
1987.

[1 7] F.Fages: Formes canoniques darts les algebres booleennes et applcations a ia demonstration
automatique; These de 3eme Cycle, Universite Paris VI, June 1983.

