
A semantics driven temporal verification system

G. D. Gough and H. Barringer*

Department o f Computer Science

Universi ty of Manchester

Oxford Road

Manchester, M13 9PL

Abstract

We present an overview of SMG, a generic state machine generator, which interfaces to various
temporal logic model checkers and provides a practical generic temporal verification system. SMG
transforms programs written in user-definable languages to suitable finite state models, thus enabling
fast verification of temporal properties of the input program. It can be applied, in particular, to the
verification of temporal properties of concurrent and reactive systems.

1 Introduction

Over the past decade, it has been widely acknowledged that temporal logics can form a suitable basis
for formal techniques for the analysis, specification and development of systems. In particular, tempo-
ral logics lend themselves well to the specification of both safety and liveness properties of concurrent
computing systems. We refer the reader to [Pnu77,OL82,Lam83b,MP82] for extensive examples. More
recently, compositional specification techniques based on temporal logics have been developed, for exam-
ple [Lam83a,BKP84,Lam84,Bar87]; these techniques enable hierarchic (top-down) system development
in the temporal framework.

To encourage the widespread use of such formally based development approaches, it is most important
that support tools are available (cf. the requirement of interpreters, compilers, debuggers, source-code
control systems, etc. for programming languages). Such tools range from the more mundane lexical
and syntactic tools, e.g. syntax analysers, pretty printers and even proof checkers, through general book-
keeping tools (at various levels), to semantic analysis tools, e.g. type checkers, interpreters, transformers
and theorem provers. Not surprisingly, there are strong beliefs that formal development will only be
widely adopted when practicable proof assistants and theorem provers exist to support the dischargement
of proof obligations (because formal proof by hand is too tedious, time consuming and error prone for the
average non-logician). It seems, therefore, crucial that mechanised verification support is investigated and
developed for the logics underlying any potential/putative formal approach to system development. To
this end, the TEMPLE project has been investigating the mechanisation of temporal logics. Indeed, in the
report [BG87], we present a survey of different techniques for "mechanising" various forms of temporal
logic; these range through decision procedures, model checkers, resolution-based theorem proving, direct
execution and program synthesis.

In this article, we outline a generic system for the verification of temporal properties of finite state
programming languages that we have developed at Manchester. The system couples the verification
paradigm based on model checking [CES86] of finite state programs, with language presentation via
formal semantic description such as Structural Operational Semantics [Plo81]. We have structured our

*Research supported under Alvey/SERC grant GR/D/57492

22

y~ := f a l s e

(

t := f a l s e

Y2 A -~t?

y2 := f a l s e

Figure 1: Mutual Exclusion Algorithm

Yl A t?

presentation as follows. Section 2 reviews two approaches to temporal verification of programs; it high-
lights the impracticability of using decision procedures and the apparent viability of model checking.
Section 3 provides a overview of the architecture of our verification system, in particular, it is concerned
with the genetic aspects of the model (or state machine) generator, SMG. Finally in section 4 we dis-
cuss the application domain for our prototype verification system, its current limitations and the future
directions in which the work is proceeding.

2 Mechanised temporal verification

Given a program 79 in a finite state language/: (see section 3.1.1) with given operational semantics,
one approach to the problem of verifying its temporal behaviour, i.e. deciding whether its execution
behaviour satisfies a given temporal formula ¢, is to work entirely within the temporal framework. This
means giving a temporal semantics for £, equivalent to the operational semantics; the meaning of 7 ~ is
then a temporal formula ¢ and the verification problem is then reduced to proving the validity of the
formula ¢ =~ ¢. The proof of this, usually lengthy, formula can either be tackled by hand or, if the logic
used is a propositional linear time logic, can be proved mechanically by use of a decision procedure
such as those of [Gou84]. Typically, a temporal logic decision procedure will validate a formula by
attempting to create a model for the negation of the given formula; if a model does not exist then the
formula is valid. Because of the complexities involved, this approach is not always viable.

An alternative approach of much lower complexity is to use the operational semantics to build a finite
state model of the program and then use a model checker to test the truth of ¢ on the model. This approach
has been used with some success in a branching time logic framework [BCDM84,CES86,BC86,Bro86].

2.1 Verification Example

We exemplify the two approaches outlined above, and justify our choice of direction, with the verification
of the exclusion property of a simple mutual exclusion algorithm [Pet81,Pnu84]. Figure 1 below presents
the algorithm as two concurrent finite state machines. The states labelled Io and rao are the initial states
and the states ls and ms are the critical regions. Each process pl has a variable yi used to signal its desire
to enter its critical section. The processes "share" a variable t used to arbitrate in situations of conflict.

23

2.1.1 Using a Decision procedure

The semantics is given in terms of a propositional, discrete linear time, temporal logic. The logic consists
of a set of propositions, the standard propositional connectives and the temporal operators [] , {> and
O. The intuitive interpretation of these operators is that, if ~b is a formula, then

• [:]~b is true if ~b is true always in the future (including the current moment).

• ~ b is true if ~b is true sometime in the future (or at the current moment).

• O ~b is true if ~ is true at the next moment in the future.

The semantics of the parallel composition of the concurrent state machines Pl and P2 of Figure i is
encoded as follows.

* The form of the formula describing the semantics is

(Initial conditions)A
I"l((w =~ (Disjunction of Pl transitions))^

('~w =~ (Disjunction of p~ tmnsitions))A

The auxiliary proposition w is used to determine which process makes a step, so that when w is
true Pl makes a step and when -~w, p2. The final clause, <>w A ~-~w, ensures that each process
takes a step infinitely often, i.e. we have a weakly fair parallel composition.

• Each transition is described by a formula of the form

Old location A O (New location) A State change

The locations lo, I1,/2 and/3 are encoded using auxiliary propositions cl and c2 as below.

[0 ~ ~C1 A " a t 2 I 1 @ C 1 A ~ C 2

t2 ~ "~ca A c2 /3 ¢¢ cl A c2

The locations of the second process, i.e. too, m~, m2 and rn3, are similarly encoded using propo-
sitions dl and d2.
Thus, for example, the Pl transition from ll to 12 is described by the formula

((~ A --,~) A O (- ~ A c~) ^ O-~t A (yl ,~ OY~))

We now express the desired properties of the algorithm, in this case the mutual exclusion property, as a
formula in the same logic. Thus, we wish to encode "Always not (in/3 and in m3)", which in terms of
the auxiliary control propositions is

E] , (~ A ~ A a~ A d2)

Hence the formula for validation is that presented in Figure 2. Establishing the validity of this formula
(which has 159 subformulae) with our decision procedure executing on a Sun 3/50 took about 2 minutes.
Our original temporal logic encoding for this example was a slightly less obvious one, in an attempt to
reduce the size of the formula to be proved; this "clever" encoding did in fact result in a slightly smaller
formula (145 subformulae), but unfortunately took over 20 minutes to prove!

The above example shows quite clearly the intractability of this use of decision procedures in full-scale
program verification.

24

(t A "~Yl A "~Y2 A "7ci A "~c2 A "~@1 A "~dr)A

121((~ =~ ((d~ ~ Od,) ^ (dr <* Oar) ^ (y~ ~, Oyr)A
(((-~ A - ~) A O(- '~ ^ "~r) A (~ ¢~ OY~) ^ (t ~ O4))V
((-,~ A -~) A O(~ A -~r) A OY~ A (t ~ Ot))V
((C 1 A "~C2) A O (- c 1 A C2) A O'mt A (Yl ¢~" OYl)) v
(("me 1 A c2) A O("ICl A c2) A (if2 A -"it) A (Yl ~ Offl) A (t ~," Ottt))V
(("el A c2) A O(cl A c~) A ("Y2 V 4) A (Yl ¢~ OYl) A (t ¢~ Ot))V
((Cl Acr) A O(-,cl A -02) A O-~yl A (t ~. Ot)))))

A
(-w =~ ((ca ¢~ Oc ,) A (c~ ~ Oct) A (yl ~ OYl)A

(((- ,~ A -~a~) A O(-d~ A -~d~) A (Yr ¢~ OY~) A (t ¢~ Ot))V
((--d~ A -dr) A O(d~ A -~dr) A OY~ A (t ¢~ Ot))V
((dl A ~d2) A O(-~dl A d2) A O t A (Y2 ¢~ Oy2))V
(("~dl A d2) A O(-Idl A d2) A (Yl A t) A (Y2 ~ OY2) A (t ~ Ot))V
(("at A dr) A O(dl A d2) A (-~y~ V ~ttt) A (Y2 ¢~ OY2) A (t ~ O~:))V
((dl A d2) A O(-~dt A -~dr) A O-~y~ A (4 ¢:Y O4)))))

A
~ w A ~'~w))

::k F"I-(Cl A C2 A dl A dr)

Figure 2: Mutual Exclusion Verification Obligation

p rocedu re PlO
[true--~ yl := true;./: := false;p110 [7 true-*p1()] .

p rocedure PxlO
["Y2 V ~ --.4 P120 [7 Y2 A -n~ --4 P110].

p r o c e d u r e 19120
cr i t l := t r u e ; c r i t i := false;y1 := false;P10.

p rocedure P20
[t r u e ~ y2 := true;./: := true;prlO ~ true ~ p 2 ()] .

procedure p210

p rocedure p220
eri t2 := t rue; cr i t r := false;y2 := false;p~ O.

p rogram
Yl := false; Y2 := false;./: := true;
6Ti t I : = faise;crit2 := false;

p~0 tl p~().

Figure 3: SMG program for Peterson Algorithm

25

Program in

£
Compiler

for £
State ,I

Machine

Model
Checker

Temporal
Properties

Figure 4: Architecture of Model Checking approach.

2.1.2 Using a Model checker

The alternative approach is to describe the algorithm in a high level language (see section 3.2) as shown
in Figure 3. In this program, the variables critl and crit2 are used to flag the entry and exit from the
critical sections; the variables yl, y2 and t are as above. This program is then compiled into a state
machine with 32 states and we can verify that the program has the required mutual exclusion property
using a temporal logic model checker. One such is racb [Bro86], a model checker for computation
tree logic (CTL), a branching time temporal logic. In CTL the mutual exclusion property is given by
the formula AG(~(critl ^ crit2)). The CTL operator AG is analogous to the linear time operator [~,
and the formula AG~ is true if and only if for every path, at every node on that path ~b is true. The
compilation time, again on a Sun 3/50, was less than 5 seconds and the mutual exclusion property for
the resulting state machine was established in considerably less than 1 second. We have also checked
the linear time form of the mutual exclusion property, i.e. D-~(criil A crit2), using a model checker
for linear time temporal logic; again the time taken for the verification was less than 1 second. Of
course, once the state machine is generated we are able to use the model checker to test other temporal
properties without recompilation, whereas the decision procedure approach would entail proving each
property entirely separately, a substantial task in each case.

3 Verification System Architecture

We agree with the conclusions of [BC86,BCDM84,CES86] that the use of model checkers provides an
attractive and tractable approach to automatic verification of temporal properties. This then leads to the
basic architecture of figure 4. Indeed, this is the basic architecture underlying the verification system
of Clarke et al. and the system CESAR (and later XESAR) of Sifakis et al. [QS82]. In both cases, a
specific high-level programming language, SML [BC86] and CESAR respectively, have been devised
for describing finite state systems. The compiler for SML (l t d) produces a state machine as output; this
then serves as input not only to rncb but also to various VLSI design tools. It is possible, of course, to
interface model checkers for different temporal logics to the compiler. Properties of CESAR programs
are also verified by use of a model checker for a branching time temporal logic.

The formal semantics for SML is presented in terms of conditional rewrite rules in the style of
S.O.S. [Plo81]. In our system, rather than produce specific compilers for various languages, we use such
a semantics directly to drive a generic state machine generator. This means that the system can operate
on programs written in a language for which the user can supply both the parser and semantics.

26

t I I I

Parser ~ ~ Semantics
I I I I

..... "X r

. State t Program [_ Generator
Transition

Table

Evaluation
function

Update ?
function

Initial State ~
1 t

l
Generator Machine

Figure 5: SMG architecture

3.1 State Machine Generator: SMG

Figure 5 outlines the basic structure of the state machine generator (compiler).
SMG takes as input a parser and operational rewrite rule semantics for the user's language £, together

with a program in 12 and an initial state assignment for the program variables. It then constructs a
transition table for the program 7 9 by instantiating, for the parse tree of 79 the transition rules given in
the semantics. Using the given initial states of 7 9 , together with evaluation and state update functions
obtained from the rewrite rule semantics, a state transition graph is then generated for 79. An illustration
of this process is given in section 3.2.3.

The semantics is given, in S.O.S. style, as a set of labelled transition rules of the form

$ t , S~

and inference rules of the form
R1.. . /~

R

where $1,$2 are program phrases, ec is a boolean expression defining the enabling condition for the
transition, sra is the state modification effected by the transition, em the environment modification and
R, R1 . . . R , are transition rules.

The parser input in the current system is given via a y a c c grammar [Joh79].
The output format of the state transition graph can be chosen as appropriate for the model checker to

be used, in particular for rach or a linear time temporal logic model checker.

3.1.1 Input Language Restrict ion

Clearly, we can only build state transition graphs for finite state programs, i.e. programs that will only
use, during their finite or infinite execution, a finite state space. Typically we refer to those languages,
whose programs are always finite state, as finite state languages (e.g. as we did in section 2). In this first
prototype of SMG we make no checks on finiteness of input language and assume that all variables are
global, and all procedures use a call by name mechanism for parameter substitution.

27

3.2 A n example language for S M G

The Peterson algorithm given in Fig. 3 was written in a language generated for small demonstrations
of the SMG system. It consists of Boolean variables and expressions, assignment, guarded commands,
sequential composition, parallel composition and tail-recursive procedures; its syntax and semantics are
given below.

3.2.1 Language Syntax

We describe the syntax (omitting the syntax of expressions) using a BNF-like notation. Assuming the
syntactic classes Var, Expression and Name for the obvious entities, we have

Prog ::= DeeI-list Body
Decl-list ::= Decl I Decl DecI-list
Decl ::= p r o c e d u r e Name (Vat-list) Statement.
Vat-list : := I NVar-Iist
NVar-list ::= Vat] Var, NVar-list
Body ::= p r o g r a m Statement.
Statement ::= Vat := Expression; Statement

[Choieel [Ca[l[Parallel
Choice ::= Expression --~ Statement i

Expression --* Statement t3 Choice
Call ::= Name(Var-tist)
Parallel ::= CalIl[Call

Note that this is not the current form of parser input, as mentioned above, SMG currently requires
the user to define or modify a Yacc based parser. However it is intended to interface a parser-generator
to SMG that will accept such BNF-like input.

3.2.2 Language Semantics

The dynamic semantics intended for the language's use in Fig. 3, is given below in the SOS style
described in section 3.1. We assume

S, Si E Statement, x E Var,~ E Vat-list
e, el E Expression and p E Name

For clarity of exposition, we omit the environment component.

true, [1
p r o g r a m S. > S

true, [:~/~]
x := e;S ~ S

~,, [1
[D e ~ s ~] - - ~ s~

true, []
p(~) , E(p)(~)

28

(where £(p) is the body of p in the current environment) and the inference rules

e c 1 sm

Sl , S[
ec I s r n

& I1 & , s~ ti &
ec~ 8m

$1, ~ S I
eCj ~m

s~ II s, , & II sl

These rules are fairly self explanatory, however, we briefly explain the assignment and guarded choice
rules.

• If a program remaining to be executed is of the form x := e; S then, since the enabling condition
of the matching rule is true, it can unconditionally rewrite to the program S, using the state
modification [x/e] to update the global state by overwriting the current value of x by that of e.

• A guarded choice may nondeterministieally rewrite to any of its choices whose guarding condition
is open, i.e. true. Thus, in the graph construction, the node corresponding to the guarded choice
construct in this state may have several outgoing edges, each corresponding to an open choice, ff
none of the guarding conditions evaluate to true, then the statement rewrites to itself; a blocked
process thus appears to be idling. Alternative semantics for guarded choice are given in section 3.2.4
below.

The current version of SMG has a built in evaluation mechanism for handling Boolean expressions.This
may appear to be a limitation on the user's ability to alter the input language semantics. However, al-
though it is possible to present the semantics of Boolean expression evaluation within the SOS framework,
the state explosion that would occur seems an unnecessary price to pay for such a common semantic
entity. This strategy of mixed compilation and interpretation will be extended for handling other com-
mon semantic entities, however the user will be given some ability to modify or override the built in
mechanisms.

3.2.3 State machine generation

To illustrate the operation of SMG, consider the program fragment

t := false;P110

of the example program of Fig. 3. Matching this fragment with the semantic rewrite rules given above

results in the transition rules

true. It/false]
1) t := fa l se ;pn0 )

true, [1
2) P~10 '

~ v t , []

4) [-,y~ v t - . p~,() 0 ~ ^ - ,t --. p ~ ()]

4, s) [-,y~ v t --, px~O 13 y~ ^ -,~ --, p ~ () l

pI ,0

p,~0

The procedure calls P110 occurring in rules 1 and 4 are replaced by the procedure body as given by rule 2,
similarly for the cal!to p12(). The final rule is of course never actually used, since its transition condition
is always false; such redundant rules can be detected by use of a propositional calculus decision procedure

29

and eliminated. This gives the following roles which are installed in the transition table mentioned in
section 3.

true, It/false]
1) t := false;Pn0 , [-~Y2 V t ~ Pxa0 D Y, A-~t + Pn0]

~ v t , [l
2) [mY2 V t -'4" P120 B Y2 A mt ~ P l l 0] ' Body of P120

3) [-'~Y2 V t -'+ P120 g Y2 A -m]~ ---r P l l 0] ' [my 2 V t --4 P120 D Y2 A -'It + P l l 0]

The transition table is used together witth the evaluation and state update functions to generate the
final state graph.

Consider the graph generation from the above fragment, given the a state in which

y~ = true , y2 = t rue , t = t rue , critx = false , crit2 = false

which we abbreviate to
So = t t t f f , t := false;pn0

Applying the first transition role gives the new state

S1 = t t f f f , ['~Y2 V t ~ P120 ~ y2 A -~t ~ Pn0]

Rules 2 and 3 now match, but rule 2 cannot be used since its enabling condition is false. Applying rule
3 then yields a state, say $2,

$2 = t t f f f , ["Y2 V * .---+ P120 B Y2 A ~t --*/9110]

which is of course the same as state &. Thus the graph construction for this initial fragment terminates.

3.2.4 A l t e r n a t i v e s e m a n t i c s

Given the flexibility or tallorability of SMG, it is easy for a user developing his own application language
to experiment with different semantics and its effects on verification. For example, if we impose a
restriction that procedures may only modify variables that they own, i.e. a distributed variables language
[BKP86], then the semantics of the parallel construct can be altered to that of lock-step parallelism by
replacing the two derived rules by the single rule

eel , 81~t ee2~ l i r a 2

& - , , , s I , & ,,, ,s~

& 11 & , s~ II s&
where

e c = e c l A e c 2
8 m ~- 8 m l U 8 m 2

and sm~ U am2 is union of maps.
With the semantics given above, a set of guarded commands all of whose guards are false will idle

until one of them becomes true. An alternative approach is given by introducing a new statement skip,
with the semantics

true, []
skip ; S , S

and replacing the existing rules for guarded commands with

~,, [1
[FI ~ ; ~ &] • S,

[I'] ei ~ &] , skip

3o

3.3 Fa i rness

With the interleaving model of parallelism implied by the first SMG semantics shown, the generated
state transition graph will contain all possible interleavings, even though the desired language semantics
might include some notion of fairness. For example the program in figure 3 could always take a Pl
step and completely ignore P2. In this example the presence or absence of fairness does not affect
mutual exclusion, a safety property, but would affect liveness properties such as ensuring entry to each
critical section. To ensure that only fair execution paths are considered by the model checker we need
some mechanism for describing such paths. One approach is to describe such paths by use of additional
variables. The model checker mcb includes a mechanism for expressing fairness constraints as a set of
CTL formulae that are infinitely often true on each "fair" path, and such constraints can be expressed
directly within the logic if a linear time model checker is being used. In the present implementation of
SMG it is necessary to explicitly include these extra variables within the program. In the above example
we could replace the definition of pl by

p rocedure Pl0
fl := true; fl := false;
Vl := true; t := false; p11().

procedure P20
A := true; A := false;
V2 := true ; t := true ; p21().

Fair paths are then those on which the formulae fl,-~fl,f2 and -~f2 are true infinitely often. Thus
using racb we impose the fairness constraints f~,-'fl,f2 and -'f2, and using a linear time model checker
to check a property ~b we need to check the formula

D(<>A A (>~:1 ^ <>A ̂ <>~A) ~ *

The obligation on the programmer to include extra information that is actually a consequence of the
language semantics is obviously unsatisfactory. Two approaches to overcome this limitation are currently
under investigation. The first is to use the above approach but to generate automatically the necessary
extra variables and fairness conditions for transmission to the model checker. This has the disadvantage
of increasing the size of each state in the finite state machine and increasing the number of states. The
second approach is to attach some form of process labelling to the edges of the state machine and to
modify the model checker to use this labelling to restrict that search space to fair paths.

4 Discussion

SMG coupled with a temporal logic model checker provides a powerful tool for the verification of
temporal properties of (concurrent) programs. Of course the combination is not intended to replace
existing validation tools, but to supplement the tools that the systems engineer has at his disposal. The
restriction, mentioned earlier, on finiteness may seem severe; however, we feel that most system structures
that require temporal verification fall into this category. Applications to which we believe the tool most
appropriate range from communications protocol verification (at software, e.g. LOTOS, and hardware,
e.g. ELLA, levels), through process control verification to verification of temporal aspects of hardware
systems. Existing experience gained with SML has certainly demonstrated the practicality of model
checking and our approach of using a generic front end to model checker quickens and simplifies state
model generator or "compiler" construction in much the same way as compiler generators aid compiler
construction. SMG is also a most useful tool for teaching environments where it is desirable to give
students the ability to design their own languages for particular verification applications.

31

SMG is, at present, a prototype and was constructed to investigate the feasibility and usefulness of
a semantics driven approach to state transition graph generation. As such, there are several unnecessary
limitations, which will not be present in future implementations. For example, all variables must be
Boolean, the parameter mechanism for procedures is by name, the input language parser is given as
YACC grammar and fairness is handled crudely.

There is, however, a limitation that is rather more serious, but for which we believe there there may
be some hope in particular cases. The major problem with the model checking approach to program
verification is state explosion. Consider a system consisting of 12 parallel asynchronous processes, each
process represented by a 10 state automaton. The combined automaton would have an upper bound of
a 101~ states, well beyond our current capabilities. The work of [CGB86] on concurrent system that
are composed of many identical processes suggests that special techniques can be applied in certain
commonly occurring circumstances. At present, we are investigating the use of compositional and
inductive techniques as a possible means to control the explosion.

In summary, though, we have been sufficiently encouraged by our early experience with SMG for
us to continue its development. In particular, we are interfacing the system to propositional linear-time
temporal logic model checkers (enabling greater flexibility with respect to fairness), extending its language
capabilities and improving the parser input mechanism.

32

References

[Bar87]

[BC86]

[BCDM84]

[BG87]

[BKP84]

[BKP86]

[Bro86]

[CES86]

[CGB86]

[Gou84]

[Joh79]

[Lam83a]

[Lam83b]

H. B arringer.
Using Temporal Logic in the Compositional Specification of Concurrent Systems.
In A. P. Galton, editor, Temporal Logics and their Applications, chapter 2, pages 53-90,

Academic Press Inc. Limited, London, December 1987.

M.C. Browne and E.M. Clarke.
SML - a high level language for the design and verification of finite state machines.
In From H~D J_,. descriptions to guaranteed correct circuit designs, IFIP, September 1986.

NLC. Browne, E.M. Clarke, D. Dill, and B. Mishra.
Automatic Verification of Sequential Circuits using Temporal Logic.
Technical Report CS-85-100, Department of Computer Science, Carnegie-Mellon

University, 1984.

H. Barringer and G.D. Gough.
Mechanisation of Temporal Logics. Part 1: Techniques.
Temple internal report, Depamnent of Computer Science, University of Manchester, 1987.

H. Barringer, R. Kuiper, and A. Pnueli.
Now You May Compose Temporal Logic Specifications.
In Proceedings of the Sixteenth ACM Symposium on the Theory of Computing, 1984.

H. Barringer, R. Kuiper, and A. Pnueli.
A Really Abstract Concurrent Model and its Temporal Logic.
In Proceedings of the Thirteenth ACM Symposium on the Principles of Programming

Languages, St. Petersberg Beach, Florida, January 1986.

M.C. Browne.
An improved algorithm for the automatic verification of finite state systems using temporal

logic.
Technical Report, Department of Computer Science, Carnegie-Mellon University,

December 1986.

E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent systems using temporal logic specifications.
ACM Transactions on Programming Languages and Systems, 8(2):244-263, 1986.

E. M. Clarke, O. Griimberg, and M. C. Browne.
Reasoning about networks with many identical finite-state processes.
In Proceedings of the Fifth Annual ACM Symposium on Principles of Distributed

Computing, ACM, August 1986.

G. D. Gough.
Decision Procedures for Temporal Logic.
Master's thesis, Department of Computer Science, University of Manchester, October 1984.

Stephen C. Johnson.
Yacc: Yet another compiler-compiler.
Unix Programmer's Manual Vol 2b, 1979.

L. Lamport.
Specifying concurrent program modules.
ACM Transactions on Programming Languages and Systems, 5(2):190-222, July 1983.

L. Lamport.
What good is temporal logic.

33

[Lam84]

IMP82]

[o~2]

[Pet81]

[Pto 81]

[Pnu77]

[Pnu84]

[QS82]

In R. E. A. Mason, editor, Information Processing 83, pages 657--668, IFIP, Elsevier
Science Publishers B.V. (North-Holland), 1983.

L. Lamport.
An Axiomatic Semantics of Concurrent Programming Languages.
In Krysztof Apt, editor, Logics and Models of Concurrent Systems, pages 77-122, NATO,

Spfinger-Verlag, La Colle-sur-Loup, France, October 1984.

Z. Manna and A. Pnueli.
Verification of Concurrent Programs: The Temporal Framework.
In Robert S. Boyer and J. Strother Moore, editors, The Correctness Problem in Computer

Science, Academic Press, London, 1982.

S. Owicki and L. Lamport.
Proving Liveness Properties of Concurrent Programs.
ACM Transactions on Programming Languages and Systems, 4(3):455-495, July 1982.

G. L. Peterson.
Myths about the mutual exclusion problem.
Information Processing Letters, 12(3): 115-116, 1981.

G. D. Plotldn.
A structural approach to operational semantics.
Technical Report DAIMI FN-19, Department of Computer Science,Aarhus University,

September 1981.

A. Pnueli.
The Temporal Logic of Programs.
In Proceedings of the Eighteenth Symposium on the Foundations of Computer Science,

Providence, November 1977.

A. Pnueli.
In transition from global to modular temporal reasoning about programs.
In Krysztof Apt, editor, Logics and Models of Concurrent Systems, pages 123-144, NATO,

Springer-Verlag, La Colle-sur-Loup, France, October 1984.

J. P. Queille and J. Sifakis.
Specification and verification of concurrent systems in CESAR.
Lecture Notes in Computer Science, 137, April 1982.

