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Abstract 

We present an overview of SMG, a generic state machine generator, which interfaces to various 
temporal logic model checkers and provides a practical generic temporal verification system. SMG 
transforms programs written in user-definable languages to suitable finite state models, thus enabling 
fast verification of temporal properties of the input program. It can be applied, in particular, to the 
verification of temporal properties of concurrent and reactive systems. 

1 Introduction 

Over the past decade, it has been widely acknowledged that temporal logics can form a suitable basis 
for formal techniques for the analysis, specification and development of systems. In particular, tempo- 
ral logics lend themselves well to the specification of both safety and liveness properties of concurrent 
computing systems. We refer the reader to [Pnu77,OL82,Lam83b,MP82] for extensive examples. More 
recently, compositional specification techniques based on temporal logics have been developed, for exam- 
ple [Lam83a,BKP84,Lam84,Bar87]; these techniques enable hierarchic (top-down) system development 
in the temporal framework. 

To encourage the widespread use of such formally based development approaches, it is most important 
that support tools are available (cf. the requirement of interpreters, compilers, debuggers, source-code 
control systems, etc. for programming languages). Such tools range from the more mundane lexical 
and syntactic tools, e.g. syntax analysers, pretty printers and even proof checkers, through general book- 
keeping tools (at various levels), to semantic analysis tools, e.g. type checkers, interpreters, transformers 
and theorem provers. Not surprisingly, there are strong beliefs that formal development will only be 
widely adopted when practicable proof assistants and theorem provers exist to support the dischargement 
of proof obligations (because formal proof by hand is too tedious, time consuming and error prone for the 
average non-logician). It seems, therefore, crucial that mechanised verification support is investigated and 
developed for the logics underlying any potential/putative formal approach to system development. To 
this end, the TEMPLE project has been investigating the mechanisation of temporal logics. Indeed, in the 
report [BG87], we present a survey of different techniques for "mechanising" various forms of temporal 
logic; these range through decision procedures, model checkers, resolution-based theorem proving, direct 
execution and program synthesis. 

In this article, we outline a generic system for the verification of temporal properties of finite state 
programming languages that we have developed at Manchester. The system couples the verification 
paradigm based on model checking [CES86] of finite state programs, with language presentation via 
formal semantic description such as Structural Operational Semantics [Plo81]. We have structured our 
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Figure 1: Mutual Exclusion Algorithm 
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presentation as follows. Section 2 reviews two approaches to temporal verification of programs; it high- 
lights the impracticability of using decision procedures and the apparent viability of model checking. 
Section 3 provides a overview of the architecture of our verification system, in particular, it is concerned 
with the genetic aspects of the model (or state machine) generator, SMG. Finally in section 4 we dis- 
cuss the application domain for our prototype verification system, its current limitations and the future 
directions in which the work is proceeding. 

2 Mechanised temporal verification 

Given a program 79 in a finite state language/:  (see section 3.1.1) with given operational semantics, 
one approach to the problem of verifying its temporal behaviour, i.e. deciding whether its execution 
behaviour satisfies a given temporal formula ¢, is to work entirely within the temporal framework. This 
means giving a temporal semantics for £, equivalent to the operational semantics; the meaning of 7 ~ is 
then a temporal formula ¢ and the verification problem is then reduced to proving the validity of the 
formula ¢ =~ ¢. The proof of this, usually lengthy, formula can either be tackled by hand or, if the logic 
used is a propositional linear time logic, can be proved mechanically by use of a decision procedure 
such as those of [Gou84]. Typically, a temporal logic decision procedure will validate a formula by 
attempting to create a model for the negation of the given formula; if a model does not exist then the 
formula is valid. Because of the complexities involved, this approach is not always viable. 

An alternative approach of much lower complexity is to use the operational semantics to build a finite 
state model of the program and then use a model checker to test the truth of ¢ on the model. This approach 
has been used with some success in a branching time logic framework [BCDM84,CES86,BC86,Bro86]. 

2.1 Verification Example 

We exemplify the two approaches outlined above, and justify our choice of direction, with the verification 
of the exclusion property of a simple mutual exclusion algorithm [Pet81,Pnu84]. Figure 1 below presents 
the algorithm as two concurrent finite state machines. The states labelled Io and rao are the initial states 
and the states ls and ms are the critical regions. Each process pl has a variable yi used to signal its desire 
to enter its critical section. The processes "share" a variable t used to arbitrate in situations of conflict. 
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2.1.1 Using a Decision procedure 

The semantics is given in terms of a propositional, discrete linear time, temporal logic. The logic consists 
of a set of propositions, the standard propositional connectives and the temporal operators [ ] ,  {> and 
O.  The intuitive interpretation of these operators is that, if ~b is a formula, then 

• [:]~b is true if ~b is true always in the future (including the current moment). 

• ~ b  is true if ~b is true sometime in the future (or at the current moment). 

• O ~b is true if ~ is true at the next moment in the future. 

The semantics of the parallel composition of the concurrent state machines Pl and P2 of Figure i is 
encoded as follows. 

* The form of the formula describing the semantics is 

(Initial conditions)A 
I"l((w =~ (Disjunction of Pl transitions))^ 

('~w =~ (Disjunction of p~ tmnsitions))A 

The auxiliary proposition w is used to determine which process makes a step, so that when w is 
true Pl makes a step and when -~w, p2. The final clause, <>w A ~-~w, ensures that each process 
takes a step infinitely often, i.e. we have a weakly fair parallel composition. 

• Each transition is described by a formula of the form 

Old location A O (New location) A State change 

The locations lo, I1,/2 and/3 are encoded using auxiliary propositions cl and c2 as below. 

[0 ~ ~C1 A " a t  2 I 1 @ C 1 A ~ C  2 

t2 ~ "~ca A c2 /3 ¢¢ cl A c2 

The locations of the second process, i.e. too, m~, m2 and rn3, are similarly encoded using propo- 
sitions dl and d2. 
Thus, for example, the Pl transition from ll to 12 is described by the formula 

((~ A --,~) A O ( - ~  A c~) ^ O-~t A (yl ,~ OY~)) 

We now express the desired properties of the algorithm, in this case the mutual exclusion property, as a 
formula in the same logic. Thus, we wish to encode "Always not (in/3 and in m3)", which in terms of 
the auxiliary control propositions is 

E ] , ( ~  A ~ A a~ A d2) 

Hence the formula for validation is that presented in Figure 2. Establishing the validity of this formula 
(which has 159 subformulae) with our decision procedure executing on a Sun 3/50 took about 2 minutes. 
Our original temporal logic encoding for this example was a slightly less obvious one, in an attempt to 
reduce the size of the formula to be proved; this "clever" encoding did in fact result in a slightly smaller 
formula (145 subformulae), but unfortunately took over 20 minutes to prove! 

The above example shows quite clearly the intractability of this use of decision procedures in full-scale 
program verification. 
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(t A "~Yl A "~Y2 A "7ci A "~c2 A "~@1 A "~dr)A 

121((~ =~ ((d~ ~ Od,) ^ (dr <* Oar) ^ (y~ ~, Oyr)A 
(((-~ A - ~ )  A O(- '~  ^ "~r) A (~ ¢~ OY~) ^ (t ~ O4))V 
((-,~ A -~ )  A O(~  A -~r) A OY~ A (t ~ Ot))V 
((C 1 A "~C2) A O ( - c 1  A C2) A O'mt A (Yl ¢~" OYl))  v 
(("me 1 A c2) A O("ICl A c2) A (if2 A -"it) A (Yl ~ Offl)  A (t ~," Ottt))V 
(("el A c2) A O(cl  A c~) A ("Y2 V 4) A (Yl ¢~ OYl) A (t ¢~ Ot))V 
((Cl Acr) A O(-,cl  A -02) A O-~yl A (t ~. Ot)))))  

A 
(-w =~ ((ca ¢~ Oc , )  A (c~ ~ Oct)  A (yl ~ OYl)A 

(((- ,~ A -~a~) A O(-d~ A -~d~) A (Yr ¢~ OY~) A (t ¢~ Ot))V 
((--d~ A -dr)  A O(d~ A -~dr) A OY~ A (t ¢~ Ot))V 
((dl A ~d2) A O(-~dl A d2) A O t  A (Y2 ¢~ Oy2))V 
(("~dl A d2) A O(-Idl  A d2) A (Yl A t) A (Y2 ~ OY2) A (t ~ Ot ) )V 
(("at  A dr) A O(dl  A d2) A (-~y~ V ~ttt) A (Y2 ¢~ OY2) A (t ~ O~:))V 
((dl A d2) A O(-~dt A -~dr) A O-~y~ A (4 ¢:Y O4))))) 

A 
~ w  A ~'~w)) 

::k F"I-(Cl A C2 A dl A dr) 

Figure 2: Mutual Exclusion Verification Obligation 

p rocedu re  PlO 
[true--~ yl := true;./: := false;p110 [7 true-*p1()] .  

p rocedure  PxlO 
["Y2 V ~ --.4 P120 [7 Y2 A -n~ --4 P110]. 

p r o c e d u r e  19120 
cr i t l  := t r u e ; c r i t i  := false;y1 := false;P10. 

p rocedure  P20 
[ t r u e ~  y2 := true;./: := true;prlO ~ true ~ p 2 ( ) ] .  

procedure  p210 

p rocedure  p220 
eri t2 := t rue;  cr i t r  := false;y2 := false;p~ O. 

p rogram 
Yl := false; Y2 := false;./: := true; 
6Ti t  I : =  faise;crit2 := false; 

p~0 tl p~(). 

Figure 3: SMG program for Peterson Algorithm 
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Figure 4: Architecture of Model Checking approach. 

2.1.2 Using a Model checker 

The alternative approach is to describe the algorithm in a high level language (see section 3.2) as shown 
in Figure 3. In this program, the variables critl and crit2 are used to flag the entry and exit from the 
critical sections; the variables yl, y2 and t are as above. This program is then compiled into a state 
machine with 32 states and we can verify that the program has the required mutual exclusion property 
using a temporal logic model checker. One such is racb [Bro86], a model checker for computation 
tree logic (CTL), a branching time temporal logic. In CTL the mutual exclusion property is given by 
the formula AG(~(critl  ^ crit2)). The CTL operator AG is analogous to the linear time operator [~, 
and the formula AG~ is true if and only if for every path, at every node on that path ~b is true. The 
compilation time, again on a Sun 3/50, was less than 5 seconds and the mutual exclusion property for 
the resulting state machine was established in considerably less than 1 second. We have also checked 
the linear time form of the mutual exclusion property, i.e. D-~(criil A crit2), using a model checker 
for linear time temporal logic; again the time taken for the verification was less than 1 second. Of 
course, once the state machine is generated we are able to use the model checker to test other temporal 
properties without recompilation, whereas the decision procedure approach would entail proving each 
property entirely separately, a substantial task in each case. 

3 Verification System Architecture 

We agree with the conclusions of [BC86,BCDM84,CES86] that the use of model checkers provides an 
attractive and tractable approach to automatic verification of temporal properties. This then leads to the 
basic architecture of figure 4. Indeed, this is the basic architecture underlying the verification system 
of Clarke et al. and the system CESAR (and later XESAR) of Sifakis et al. [QS82]. In both cases, a 
specific high-level programming language, SML [BC86] and CESAR respectively, have been devised 
for describing finite state systems. The compiler for SML ( l t d )  produces a state machine as output; this 
then serves as input not only to rncb but also to various VLSI design tools. It is possible, of course, to 
interface model checkers for different temporal logics to the compiler. Properties of CESAR programs 
are also verified by use of a model checker for a branching time temporal logic. 

The formal semantics for SML is presented in terms of conditional rewrite rules in the style of 
S.O.S. [Plo81]. In our system, rather than produce specific compilers for various languages, we use such 
a semantics directly to drive a generic state machine generator. This means that the system can operate 
on programs written in a language for which the user can supply both the parser and semantics. 
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Figure 5: SMG architecture 

3.1 State Machine Generator: SMG 

Figure 5 outlines the basic structure of the state machine generator (compiler). 
SMG takes as input a parser and operational rewrite rule semantics for the user's language £, together 

with a program in 12 and an initial state assignment for the program variables. It then constructs a 
transition table for the program 7 9 by instantiating, for the parse tree of 79 the transition rules given in 
the semantics. Using the given initial states of 7 9 , together with evaluation and state update functions 
obtained from the rewrite rule semantics, a state transition graph is then generated for 79. An illustration 
of this process is given in section 3.2.3. 

The semantics is given, in S.O.S. style, as a set of labelled transition rules of the form 

$ t  . . . . . . . . . . .  , S~ 

and inference rules of the form 
R1.. . /~ 

R 

where $1,$2 are program phrases, ec is a boolean expression defining the enabling condition for the 
transition, sra is the state modification effected by the transition, em the environment modification and 
R, R1 . . .  R ,  are transition rules. 

The parser input in the current system is given via a y a c c  grammar [Joh79]. 
The output format of the state transition graph can be chosen as appropriate for the model checker to 

be used, in particular for rach or a linear time temporal logic model checker. 

3.1.1 Input  Language  Restrict ion 

Clearly, we can only build state transition graphs for finite state programs, i.e. programs that will only 
use, during their finite or infinite execution, a finite state space. Typically we refer to those languages, 
whose programs are always finite state, as finite state languages (e.g. as we did in section 2). In this first 
prototype of SMG we make no checks on finiteness of input language and assume that all variables are 
global, and all procedures use a call by name mechanism for parameter substitution. 
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3.2 A n  example language for S M G  

The Peterson algorithm given in Fig. 3 was written in a language generated for small demonstrations 
of the SMG system. It consists of Boolean variables and expressions, assignment, guarded commands, 
sequential composition, parallel composition and tail-recursive procedures; its syntax and semantics are 
given below. 

3.2.1 Language Syntax 

We describe the syntax (omitting the syntax of expressions) using a BNF-like notation. Assuming the 
syntactic classes Var, Expression and Name for the obvious entities, we have 

Prog ::= DeeI-list Body 
Decl-list ::= Decl I Decl DecI-list 
Decl ::= p r o c e d u r e  Name (Vat-list) Statement. 
Vat-list : := I NVar-Iist 
NVar-list ::= Vat ] Var, NVar-list 
Body ::= p r o g r a m  Statement. 
Statement ::= Vat := Expression; Statement 

[Choieel [ Ca[l[ Parallel 
Choice ::= Expression --~ Statement i 

Expression --* Statement t3 Choice 
Call ::= Name(Var-tist) 
Parallel ::= CalIl[ Call 

Note that this is not the current form of parser input, as mentioned above, SMG currently requires 
the user to define or modify a Yacc based parser. However it is intended to interface a parser-generator 
to SMG that will accept such BNF-like input. 

3.2.2 Language Semantics 

The dynamic semantics intended for the language's use in Fig. 3, is given below in the SOS style 
described in section 3.1. We assume 

S, Si E Statement, x E Var,~ E Vat-list 
e, el E Expression and p E Name 

For clarity of exposition, we omit the environment component. 

true, [1 
p r o g r a m  S. > S 

true, [:~/~] 
x := e;S ~ S 

~,, [1 
[ D e ~ s ~ ]  - - ~  s~ 

true, [] 
p(~) , E(p)(~) 
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(where £(p) is the body of p in the current environment) and the inference rules 

e c  1 sm 

Sl . . . . . . . . .  , S[ 
ec  I s r n  

& I1 & , s~ ti & 
ec~ 8m 

$1, ~ S I 
eCj ~m 

s~ II s, , & II sl 

These rules are fairly self explanatory, however, we briefly explain the assignment and guarded choice 
rules. 

• If a program remaining to be executed is of the form x := e; S then, since the enabling condition 
of the matching rule is true, it can unconditionally rewrite to the program S, using the state 
modification [x/e] to update the global state by overwriting the current value of x by that of e. 

• A guarded choice may nondeterministieally rewrite to any of its choices whose guarding condition 
is open, i.e. true. Thus, in the graph construction, the node corresponding to the guarded choice 
construct in this state may have several outgoing edges, each corresponding to an open choice, ff 
none of the guarding conditions evaluate to true, then the statement rewrites to itself; a blocked 
process thus appears to be idling. Alternative semantics for guarded choice are given in section 3.2.4 
below. 

The current version of SMG has a built in evaluation mechanism for handling Boolean expressions.This 
may appear to be a limitation on the user's ability to alter the input language semantics. However, al- 
though it is possible to present the semantics of Boolean expression evaluation within the SOS framework, 
the state explosion that would occur seems an unnecessary price to pay for such a common semantic 
entity. This strategy of mixed compilation and interpretation will be extended for handling other com- 
mon semantic entities, however the user will be given some ability to modify or override the built in 
mechanisms. 

3.2.3 State machine generation 

To illustrate the operation of SMG, consider the program fragment 

t := false;P110 

of the example program of Fig. 3. Matching this fragment with the semantic rewrite rules given above 

results in the transition rules 

true. It/false] 
1) t := fa l se ;pn0  ...... ) 

true, [1 
2) P~10 ' 

~ v t ,  [ ] 

4) [-,y~ v t - .  p~,()  0 ~ ^ - ,t  --. p ~ ( ) ]  

4, s )  [-,y~ v t --, px~O 13 y~ ^ -,~ --, p ~ ( ) l  

pI ,0  

p,~0 

The procedure calls P110 occurring in rules 1 and 4 are replaced by the procedure body as given by rule 2, 
similarly for the cal!to p12(). The final rule is of course never actually used, since its transition condition 
is always false; such redundant rules can be detected by use of a propositional calculus decision procedure 
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and eliminated. This gives the following roles which are installed in the transition table mentioned in 
section 3. 

true, It/false] 
1) t := false;Pn0 , [-~Y2 V t ~ Pxa0 D Y, A-~t + Pn0]  

~ v t ,  [ l 
2) [mY2 V t -'4" P120 B Y2 A mt ~ P l l 0  ] ' Body of P120 

3) [-'~Y2 V t -'+ P120 g Y2 A -m]~ ---r P l l 0 ]  ' [my 2 V t --4 P120 D Y2 A -'It + P l l 0 ]  

The transition table is used together witth the evaluation and state update functions to generate the 
final state graph. 

Consider the graph generation from the above fragment, given the a state in which 

y~ = true ,  y2 = t rue ,  t = t rue ,  critx = false ,  crit2 = false 

which we abbreviate to 
So = t t t f f ,  t := false;pn0 

Applying the first transition role gives the new state 

S1 = t t f f f ,  ['~Y2 V t  ~ P120 ~ y2 A -~t ~ Pn0]  

Rules 2 and 3 now match, but rule 2 cannot be used since its enabling condition is false. Applying rule 
3 then yields a state, say $2, 

$2 = t t f f f ,  ["Y2 V * .---+ P120 B Y2 A ~t --*/9110] 

which is of course the same as state &. Thus the graph construction for this initial fragment terminates. 

3.2.4 A l t e r n a t i v e  s e m a n t i c s  

Given the flexibility or tallorability of SMG, it is easy for a user developing his own application language 
to experiment with different semantics and its effects on verification. For example, if we impose a 
restriction that procedures may only modify variables that they own, i.e. a distributed variables language 
[BKP86], then the semantics of the parallel construct can be altered to that of lock-step parallelism by 
replacing the two derived rules by the single rule 

eel ,  81~t ee2~ l i r a  2 

& - , ,  , s I , &  ,,, ,s~ 

& 11 & . . . . .  , s~ II s& 
where 

e c  = e c l A e c 2  
8 m  ~- 8 m l  U 8 m  2 

and sm~ U am2 is union of maps. 
With the semantics given above, a set of guarded commands all of whose guards are false will idle 

until one of them becomes true. An alternative approach is given by introducing a new statement skip,  
with the semantics 

true, [ ] 
skip ; S ......... , S 

and replacing the existing rules for guarded commands with 

~,, [1 
[FI ~ ; ~ & ]  • S, 

[ I'] ei ~ &] , skip 
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3.3 Fa i rness  

With the interleaving model of parallelism implied by the first SMG semantics shown, the generated 
state transition graph will contain all possible interleavings, even though the desired language semantics 
might include some notion of fairness. For example the program in figure 3 could always take a Pl 
step and completely ignore P2. In this example the presence or absence of fairness does not affect 
mutual exclusion, a safety property, but would affect liveness properties such as ensuring entry to each 
critical section. To ensure that only fair execution paths are considered by the model checker we need 
some mechanism for describing such paths. One approach is to describe such paths by use of additional 
variables. The model checker mcb includes a mechanism for expressing fairness constraints as a set of 
CTL formulae that are infinitely often true on each "fair" path, and such constraints can be expressed 
directly within the logic if a linear time model checker is being used. In the present implementation of 
SMG it is necessary to explicitly include these extra variables within the program. In the above example 
we could replace the definition of pl by 

p rocedure  Pl0  
fl := true;  fl := false; 
Vl := true;  t := false; p11(). 

procedure  P20 
A := true;  A := false; 
V2 := true ; t := true ; p21(). 

Fair paths are then those on which the formulae fl,-~fl,f2 and -~f2 are true infinitely often. Thus 
using racb we impose the fairness constraints f~,-'fl,f2 and -'f2, and using a linear time model checker 
to check a property ~b we need to check the formula 

D(<>A A (>~:1 ^ <>A ̂  <>~A) ~ * 

The obligation on the programmer to include extra information that is actually a consequence of the 
language semantics is obviously unsatisfactory. Two approaches to overcome this limitation are currently 
under investigation. The first is to use the above approach but to generate automatically the necessary 
extra variables and fairness conditions for transmission to the model checker. This has the disadvantage 
of increasing the size of each state in the finite state machine and increasing the number of states. The 
second approach is to attach some form of process labelling to the edges of the state machine and to 
modify the model checker to use this labelling to restrict that search space to fair paths. 

4 Discussion 

SMG coupled with a temporal logic model checker provides a powerful tool for the verification of 
temporal properties of (concurrent) programs. Of course the combination is not intended to replace 
existing validation tools, but to supplement the tools that the systems engineer has at his disposal. The 
restriction, mentioned earlier, on finiteness may seem severe; however, we feel that most system structures 
that require temporal verification fall into this category. Applications to which we believe the tool most 
appropriate range from communications protocol verification (at software, e.g. LOTOS, and hardware, 
e.g. ELLA, levels), through process control verification to verification of temporal aspects of hardware 
systems. Existing experience gained with SML has certainly demonstrated the practicality of model 
checking and our approach of using a generic front end to model checker quickens and simplifies state 
model generator or "compiler" construction in much the same way as compiler generators aid compiler 
construction. SMG is also a most useful tool for teaching environments where it is desirable to give 
students the ability to design their own languages for particular verification applications. 
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SMG is, at present, a prototype and was constructed to investigate the feasibility and usefulness of 
a semantics driven approach to state transition graph generation. As such, there are several unnecessary 
limitations, which will not be present in future implementations. For example, all variables must be 
Boolean, the parameter mechanism for procedures is by name, the input language parser is given as 
YACC grammar and fairness is handled crudely. 

There is, however, a limitation that is rather more serious, but for which we believe there there may 
be some hope in particular cases. The major problem with the model checking approach to program 
verification is state explosion. Consider a system consisting of 12 parallel asynchronous processes, each 
process represented by a 10 state automaton. The combined automaton would have an upper bound of 
a 101~ states, well beyond our current capabilities. The work of [CGB86] on concurrent system that 
are composed of many identical processes suggests that special techniques can be applied in certain 
commonly occurring circumstances. At present, we are investigating the use of compositional and 
inductive techniques as a possible means to control the explosion. 

In summary, though, we have been sufficiently encouraged by our early experience with SMG for 
us to continue its development. In particular, we are interfacing the system to propositional linear-time 
temporal logic model checkers (enabling greater flexibility with respect to fairness), extending its language 
capabilities and improving the parser input mechanism. 
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