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The need to integrate several versions of a base program into a common one arises frequently, but it is a 
tedious and time consuming task to integrate programs by hand. To date, the only available tools for 
assisting with program integration are variants of text.based differential file comparators; these are of 
limited utility because one has no guarantees about how the program that is the product of an integration 
behaves compared to the programs that were integrated. 

Our recent work addresses the problem of building a semantics-based tool for program integration; 
this paper describes the techniques we have developed, which provide the foundation for creating such a 
tool. Semantics-based integration is based on the assumption that a difference in the behavior of one of 
the variant programs from that of the base program, rather than a difference in the text, is significant and 
must be preserved in the merged program. Although it is undecidable to determine whether a program 
modification actually leads to such a difference, it is possible to determine a safe approximation by com- 
paring each of the variants with the base program. To determine this information, the integration algo- 
rithm employs a program representation that is similar (although not identical) to the program depen- 
dence graphs that have been used previously in vectorizing compilers. The algorithm also makes use of 
the notion of a program slice to find just those statements of a program that determine the values of 
potentially affected variables. 

1. I N T R O D U C T I O N  

Our concern is the development of a semantics-based tool for integrating program variants. 

The goal is to create a system that will either automatically combine several different but related 

variants of  a base program, or else determine that the variants incorporate interfering changes. 

The need to integrate several versions of a program into a common one arises frequently, but it 

is a tedious and time consuming task to integrate programs by hand. Anyone who has had to 

reconcile divergent lines of  development will identify with the need for automatic assistance. 

Unfortunately, at present, the only available tools for integration are variants of  differential file 

comparators, such as the Unix utility diff. 
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The problem with current tools is that they implement an operation for merging files as strings 

of text. This approach has the advantage that such tools are as applicable to merging docu- 

ments, data files, and other text objects as they are to merging programs. However, these tools 

are necessarily of limited utility for integrating programs because the manner in which two pro- 
grams are merged is not safe. One has no guarantees about the way the program that results 

from a purely textual merge behaves in relation to the behaviors of the three programs that are 

the arguments to the merge. The merged program must, therefore, be checked carefully for 

conflicts that might have been introduced by the merge. 

Recently, in collaboration with J. Prins, we developed a radically different approach to 

integrating programs [10]. Our method is based on the assumption that any change in the 

behavior of one of the variant programs from that of the base program, rather than a difference 

in the text, is significant and must be preserved in the merged program. Although it is undecid- 

able to determine whether a program modification actually leads to such a difference, it is possi- 

ble to determine a safe approximation by comparing each of the variants with the base program. 

To determine this information, the integration algorithm employs a program representation that 

is similar, although not identical, to the program dependence graphs that have been used previ- 

ously in vectorizing compilers. The algorithm also make use of the notion of a program slice to 

find just those statements of a program that determine the values of potentially affected vari- 

ables. 

Our integration algorithm takes as input three programs A, B, and Base, where A and B are 

two variants of Base; whenever the changes made to Base to create A and B do not "interfere" 

in a certain well-defined sense, the algorithm produces a program M that integrates A and B. A 

number of uses for this operation in a system to support programming in the large are described 

in Section 2. The integration algorithm itself is described and illustrated in Section 3 (it is 

described in full detail in [10]). 

In order to study the integration problem in a simplified setting, we have initially restricted our 

attention to a programming language with only the most basic data types and control constructs; 

in particular, we assume that expressions contain only scalar variables and constants, and that 
the only statements used in programs are assignment statements, conditional statements, and 

while-loops. Current work, described in Section 4, concerns how to extend the set of language 

constructs to which the program-integration algorithm is applicable, as well as the construction 

of a prototype integration facility. 

2. APPLICATIONS TO PROGRAMMING IN THE LARGE 

An environment for programming in the large addresses problems of organizing and relating 

designs, documentation, individual software modules, software releases, and the activities of 
programmers. The manipulation of related versions of programs is at the heart of these issues. 

In many respects, the operation of integrating program variants is the key operation in an 

environment to support programming in the large. 



One situation in which the integration operation would be employed is when a base version of 

a system is enhanced along different lines, either by users or maintainers, thereby creating a 

number of related versions with slightly different features. To create a new version that incor- 

porates several of the enhancements simultaneously, the integration operation is applied to the 

base version and its variants. If no conflicts are found, the versions are merged to create an 

integrated version that combines their separate features. 

Pictorially, we can represent this situation by the following diagram, where O represents the 

original program, A and B represent the enhanced versions, and M represents the integrated 
program: 

0 

/ \  
A B 

M 

Besides the basic program integration scenario described above, there are a number of other 

applications for program integration; three such applications are discussed below. 

2.1. Propagating Changes Through Related Versions 

The program-integration problem arises when a family of related versions of a program has been 

created (for example, to support different machines or different operating systems), and the goal 

is to make the same change (e.g. an enhancement or a bug-fix) to all of them. One would like to 

be able to change the base version of the system and to have the change propagated automati- 

cally to all other versions. Of course, the change cannot be blindly applied to all versions since 

the differences among the versions might alter the effects of the change; one has to check for 

conflicts in the implementations of the different versions. Our progrm-n-integration algorithm 

provides a way for changes made to the base version to be automatically installed in the other 

versions. 

For example, consider the diagram shown in Figure 1, where Figure l(a)represents the origi- 

nal development tree for some module (branches are numbered as in RCS [20]). In Figure l(b), 

the variant numbered "t .  1.2.1" represents the enhanced version of the base program "1.1 ." Vari- 

ant "1.1.2.2," which is obtained by integrating "1.1," "1.1.2.1," and "1.2," represents the result 

of propagating the enhancement to "1.27' Figure l(c) represents the new development history 

after all integrations have been performed and the enhancement has been propagated to all ver- 
sions. 
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Figure 1. Propagating changes through a development-history tree. 

2.2. Separating Consecutive Program Modifications 

Another application of program integration permits separating consecutive edits on the same 

program into individual edits on the original base program. For example, consider the case of 

two consecutive edits to a base program O ; let O +A be the result of the first modification to O 

and let O +A +B be the result of the modification to O +A. Now suppose we want to create a 

program O+B that includes the second modification but not the first. This is represented by 

situation (a) in the following diagram: 

0 O+A 

O+A ~)+B o+a 0 
¢z  x 

1~ " ".X f "  
O+A+B O+B 

(a) (b) 

By re-rooting the development-history tree so that O +A is the root, the diagram is turned on its 

side and becomes a program-integration problem (situation (b)). The base program is now 

O +A, and the two variants of O +A are O and O +A +B. Instead of  treating the differences 

between O and O +A as changes that were made to O to create O +A, they are now treated as 

changes made to O+A to create O.  For example, when O is the base program, a statement s 

that occurs in O +A but not in O is a "new" statement arising from an insertion; when O +A is 



the base program, we treat the missing s in O as if a user had deleted s from O +A to create O. 

Version O +A+B is still treated as being a program version derived from O +A. 

2.3. Optimistic Concurrency Control 

An environment for programming in the large must provide concurrency control, i.e. it must 

resolve simultaneous requests for access to a program. Traditional database approaches to con- 

currency control assume that transactions are very short-lived, and so avoid conflict using lock- 

ing mechanisms. This solution is not acceptable in programming environments where transac- 

tions may require hours, days, or weeks. 

An alternative to locking is the use of an optimistic concurrency control strategy: grant all 

access requests and resolve conflicts when the transactions complete. The success of an 

optimistic concurrency control strategy clearly depends on the existence of an automatic pro- 

gram integration algorithm to provide acceptable conflict resolution. 

3. DESCRIPTION OF THE INTEGRATION METHOD 

The information used by our program integration method is encapsulated by a program 

representation called a program dependence graph (PDG). Different definitions of program 

dependence representations have been given, depending on the intended application; neverthe- 

less, they are all variations on a theme introduced in [15], and share the common feature of hav- 

ing explicit representations of both control dependencies and data dependencies. The definition 

presented here has been adapted to the particular needs of the program-integration problem; it is 

similar, but not identical, to the program dependence representations used by others, such as the 

"program dependence graphs" defined in [7] and the "dependence graphs" defined in [16]. 

For program integration, there are two reasons to represent programs using program depen- 

dence graphs: (1) PDG's capture only relevant ordefings of statements within control structures; 

(2) PDG's are a convenient representation on which to perform program slicing, which is used 

in the integration algorithm to determine the changes in behavior of each variant with respect to 

the base program. 

3.1. The Program Dependence Graph 

The definition of program dependence graph presented below is for a language with scalar vari- 

ables, assignment statements, conditional statements, while loops, and a restricted kind of "out- 

put statement" called an end statement. An end statement, which can only appear at the end of a 

program, names one or more of the variables used in the program; when execution terminates, 

only those variables will have values in the final state. Intuitively, the variables named by the 

end statement are those whose final values are of interest to the programmer. 

The program dependence graph for a program P,  denoted by G e , is a directed graph whose 



vertices are connected by several kinds of edges. 1 The vertices of  G e represent the assignment 

statements and control predicates that occur in program P .  In addition, G e includes three other 

categories of  vertices: 

a) There is a distinguished vertex called the entry vertex. 

b) For each variable x for which there is a path in the standard control-flow graph for P [I] on 

which x is used before being defined, there is a vertex called the initial definition ofx. This 

vertex represents an assignment to x from the initial state. The vertex is labeled 

"x := lnitialState (x )." 

c) For each variable x named in P ' s  end statement, there is a vertex called thefinal use ofx. 

This vertex represents an access to the final value of  x computed by P ,  and is labeled 

"FinalUse (x )". 

The edges of G t, represent dependencies between program components. An edge represents 

either a control dependency or a data dependency. Control dependency edges are labeled either 

true or false, and the source of  a control dependency edge is always the entry vertex or a predi- 

cate vertex. A control dependency edge from vertex v I to vertex v 2, denoted by v 1 -")c v2, 

means that during execution, whenever the predicate represented by v 1 is evaluated and its value 

matches the label on the edge to v 2, then the program component represented by v 2 will be exe- 

cuted (although perhaps not immediately). A method for determining control dependency edges 

for arbitrary programs is given in [7]; however, because we are assuming that programs include 

only assignment, conditional, and while statements, the control dependency edges of  G e can be 

determined in a much simpler fashion. For the language under consideration here, the control 

dependency edges reflect a program's nesting structure; a program dependence graph contains a 

control dependency edge from vertex v t to vertex v 2 of G e iff one of the following holds: 

i) v I is the entry vertex, and v 2 represents a component of P that is not subordinate to any 

control predicate; these edges are labeled true. 

ii) v 1 represents a control predicate, and v2 represents a component of P immediately subordi- 

nate to the control construct whose predicate is represented by v 1. If  v I is the predicate of a 

while-loop, the edge v 1 --~c v2 is labeled true; if v I is the predicate of a conditional state- 

ment, the edge Vl---~ c v 2 is labeled t rue or false according to whether v 2 occurs in the 

then branch or the else branch, respectively. 2 

IA directed graph G consists of a set of vertices V(G) and a set of edges E(G), where 
E(G)~V(G)xV(G) .  Each edge (b,c)~ E(G) is directed from b to c; we say that b is the source 
and c the target of the edge. 

2In other definitions that have been given for control dependency edges, there is an additional edge for 
each predicate of a while statement - each predicate has an edge to itself labeled true. By including the 
additional edge, the predicate's outgoing true edges consist of every program element that is guaranteed 
to be executed (eventually) when the predicate evaluates to true. This kind of edge is left out of our 



A data dependency edge from vertex v 1 to vertex v2 means that the program's computation 

might be changed if the relative order of the components represented by v 1 and v 2 were 

reversed, tn this paper, program dependence graphs contain two kinds of  data-dependency 

edges, representing f low dependencies and def-order dependencies. 

A program dependence graph contains a flow dependency edge from vertex v 1 to vertex v 2 iff 

all of the following hold: 

i) v 1 is a 'vertex that defines variable x.  

ii) v z is a 'vertex that uses x .  

iii) Control can reach v z after v I via an execution path along which there is no intervening 

definition of x.  That is, there is a path in the standard control-flow graph for the program 

[1 ] by which the definition of x at v 1 reaches the use of x at v 2. (Initial definitions of vari- 

ables are considered to occur at the beginning of  the control-flow graph, and final uses of 

variables are considered to occur at its end.) 

A flow dependency that exists from vertex v I to vertex v 2 will be denoted by v 1 - '~f  v2, 

Flow dependencies are further classified as loop independent or loop carried. A flow depen- 

dency v 1 -">f v 2 is carried by loop L ,  denoted by v 1 " ~  tc (L) v 2, if in addition to i), ii), and iii) 

above, the fi~llowing also hold: 

iv) There is an execution path that both satisfies the conditions of iii) above and includes a 

backedge to the predicate of loop L;  and 

v) Both v a and v2 are enclosed in loop L .  

A flow dependency v 1 --->f v 2 is loop independent, denoted by v 1 "">u v2, if in addition to i), ii), 

and iii) above, there is an execution path that satisfies iii) above and includes no backedge to the 

predicate of a loop that encloses both v 1 and v 2. It is possible to have both v I ~ tc(L)V2 and 

V l - -~  li V 2. 

A program dependence graph contains a def-order dependency edge from vertex v 1 to vertex 

v 2 iff all of  t~ae following hold: 

i) v I and v 2 both define the same variable. 

ii) v 1 and v 2 are in the same branch of  any conditional statement that encloses both of  them. 

iii) There exists a program component v 3 such that v 1 - ' ) f  v3 and v 2 - - ) f  v 3. 

iv) v 1 occurs to the left of  v 2 in the program's abstract syntax tree. 

A def-order dependency from v 1 to v 2 is denoted by v 1 - - )  do(v~l v2. 

definition because it is not necessary for our purposes. 



program Main 
sum := 0; 
x :=1; 
while x < 11 do 

SUm := S u m  + X ;  

x : = x + l  
od 

end(x, sum) 

Figure 2. An example program, which sums the integers from 1 to 10 and leaves the result in the vari- 
able sum, and its program dependence graph. The boldface arrows represent control dependency edges, 
dashed arrows represent def-order dependency edges, solid arrows represent loop-independent flow 
dependency edges, and solid arrows with a hash mark represent loop-carried flow dependency edges. 

Note that a program dependence graph is a multi-graph (i.e. it may have more than one edge 

of a given kind between two vertices). When there is more than one loop-carried flow depen- 

dency edge between two vertices, each is labeled by a different loop that carries the dependency. 

When there is more than one def-order edge between two vertices, each is labeled by a vertex 

that is flow-dependent on both the definition that occurs at the edge's source and the definition 

that occurs at the edge's target. 



Example. Figure 2 shows an example program and its program dependence graph. The bold- 

face arrows represent control dependency edges; dashed arrows represent def-order dependency 

edges; solid arrows represent loop-independent flow dependency edges; solid arrows with a hash 

mark represent loop-carried flow dependency edges. 

The data-dependency edges of a program dependence graph (PDG) are computed using data- 

flow analysis. For the restricted language considered in this paper, the necessary computations 

can be defined in a syntax-directed manner (see [8]). 

We shall assume that elements of PDG's are also labeled with some additional pieces of infor- 

mation. We assume that the editor used to modify programs provides a unique-naming capabil- 

ity so that statements and predicates are identified consistently in different versions. Each com- 

ponent that occurs in a program is an object whose identity is recorded by a unique identifier 

that is guaranteed to persist across different editing sessions and machines. It is these identifiers 

that are used to determine "identical" vertices when we perform operations on components from 

different PDG's (e.g. V ( G ") c~ V ( G ) ). 

3.2. Program Slices 

For a vertex s of a PDG G,  the slice of G with respect to s,  written as G / s,  is a graph contain- 

ing all vertices on which s has a transitive flow or control dependence (i.e. all vertices that can 

reach s via flow or control edges): V(G I s )=  {w I w ~ V(G) ^ w "-'>*c,f s }. We extend 

the definition to a set of vertices S = u. s i as follows: V ( G / S )  = V ( G / ( U  si)) = U. V(G/si ) .  
I l 1 

It is useful to define V(G / v) = ~ for any v 6 G. 

The edges in the graph G / S  are essentially those in the subgraph of G induced by V(G/S) ,  
with the exception that a def-order edge v --->do(u)w is included only if G / S  contains the ver- 

tex u that is directly flow dependent on the definitions at v and w. In terms of the three types of 

edges in a PDG we define 

E ( G / S ) =  {(v-->f  w ) l  (v---~f w ) ~ E ( G ) A  v , w ¢ V ( G / S ) }  
U{(V --'>c W) [ (V "")c w ) E E ( G ) A  V,W E V(G /S)  } 
u { (v ---)do(u)W) I (v -->do(u)w)~ E ( G ) ^  u , v , w  ~ V ( G / S )  } 

3.3. Program Dependence Graphs and Program Semantics 

The relationship between a program's PDG and the program's execution behavior has been 

addressed in [I 1 ] and [19]. The results from these papers are summarized below. 

In [11] it is shown that if the program dependence graphs of two programs are isomorphic 

then the programs have the same behavior. The concept of "programs with the same behavior" 

is formalized as the concept of strong equivalence, defined as follows: 

Definition. Two programs P and Q are strongly equivalent iff for any state ~r, either P and Q 

both diverge when initiated on c or they both halt with the same final values for all variables. If 

P and Q are not strongly equivalent, we say they are inequivalent. 
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The main result of [11] is the following theorem: (we use the symbol = to denote isomor- 

phism between program dependence graphs.) 

THEOREM. (EQUIVALENCE THEOREM). I f  P and Q are programs for which Gp ~ G O , then 

P and Q are strongly equivalent. 

Restated in the contrapositive the theorem reads: Inequivalent programs have non-isomorphic 

program dependence graphs. 

We say that G is a feasible program dependence graph iff G is the program dependence graph 

of some program P.  For any S c_ V(G ), if G is a feasible PDG, the slice G / S  is also a feasible 

PDG; it corresponds to the program P '  obtained by restricting the syntax tree of P to just the 

statements and predicates in V(G ! S) [19]. 

THEOREM. (FEASlBmrrY OF PROGRAM SLICES). For any program P,  if G s is a slice of G e 

(with respect to some set of  vertices), then G s is a feasible PDG . 

The significance of a slice is that it captures a portion of a program's behavior. The programs 

P '  and P ,  corresponding to the slice G /S and the graph G,  respectively, compute the same 

final values for all variables x for which FinalUse (x) is a vertex in S [ 19]. 

THEOREM. (SLICING THEOREM). Let Q be a slice of program P with respect to a set of ver- 

tices. I f  cr is a state on which P halts, then for any state o ~ that agrees with ~ on all variables 

for which there are initial-definition vertices in G Q : (1) Q halts on o ~, (2) P and Q compute the 

same sequence of  values at each program point of Q,  and (3) the final states agree on all vari- 

ables for which there are final-use vertices in GQ . 

3.4. An Algorithm for Program Integration 

An algorithm for integrating several related, but different variants of a base program (or deter- 

mining that the variants incorporate interfering changes) has been presented in [10]. The algo- 

rithm presented there, called Integrate, takes as input three programs A, B, and Base, where A 

and B are two variants of Base. Whenever the changes made to Base to create A and B do not 

"interfere" (in a certain well-defined sense), Integrate produces a program M that exhibits the 
changed behavior of A and B with respect to Base as well as the behavior preserved in all three 

versions. 

We now describe the steps of the integration algorithm. The first step determines slices that 

represent the changed behaviors of A and B and the behavior of Base preserved in both A and 

B ; the second step combines these slices to form the merged graph G M; the third step tests G M 

for interference. The integration algorithm is illuslrated with an example on which the algo- 

rithm succeeds (i.e. the variants do not interfere). 

Step 1: Determining changed and preserved behavior 

If the slice of variant G A at vertex v differs from the slice of Gt~as e at v, then G A and GBase 
may compute different values at v. In other words, vertex v is a site that potentially exhibits 



changed behavior in the two programs. Thus, we define the affected points of G A with respect 

to GBase, denoted by D a,Base, to be the subset of vertices of G A whose slices in GBase and G A 

differ D a ;Base = { V I v ~ V ( G A) ^ ( GBase Iv ~ G A / v ) } .  We define DB ,Base similarly. It fol- 

lows that the slices G A / D  A,Base and G B/D B ,Base capture the respective behaviors of A and B 

that differ from Base. 

Example. Figure 2 shows a program that sums the integers from 1 to 10 and its corresponding 

program dependence graph. We now consider two variants of this program: In variant A two 

statements have been added to the original program to compute the product of the integer 

sequence from 1 to 10; In variant B one statement has been added to compute the mean of the 

sequence. These two programs represent non-interfering extensions of the original summation 

program. 

Variant A Variant B 
program Main program Main 

prod := 1; sum := 0; 
sum := 0; x := 1; 
x := 1; whilex < 11 do 
whilex < 11 do sum :=sum+x; 

prod := prod * x; x := x + 1 
sum :=sum+x; od; 
x :=x + 1 mean :=sum/10 

od end(x, sum, mean) 
end(x, sum, prod) 

The program dependence graphs for these two programs are shown in Figure 3. 

The set DA,Base contains three vertices: the assignment vertices labeled "prod := 1" and 

"prod :=prod * x"  as well as the final-use vertex for prod. Similarly, DB,Base contains two 

vertices: the assignment vertex labeled "mean := sum / 10" and the final-use vertex for mean. 

Figure 4 shows the slices G A/Da,Base and G B/DB,Base , which represent the changed 

behaviors of A and B, respectively. 

The preserved behavior of Base _in A corresponds to the slice GBase/D A ,Base, where D A ,Base 

is the complement of DA,Base: DA,Base = V(GA)-DA,Base. We define DB,Base similarly. 

Thus, the unchanged behavior common to both A and B is captured by the following slice: 

GBase / (DA ,Base nDB ,Base )" 
m 

Example. In our example, the slice GBase/(DA,Base r3DB,Base ) consists of GBase in its 

entirety. That is, the graph that represents the behavior of the original program that is preserved 

in both variant A and variant B is identical to the graph shown in Figure 2. 

Step 2: Forming the merged graph 

The merged program dependence graph, GM, is formed by unioning the three slices that 

represent the changed and preserved behaviors of the two variants: 
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(a) The program dependence graph for variant A 

T 

inalUse (mea~ 

(b) The program dependence graph for variant B 

Figure 3. The program dependence graphs for variants A and B. 
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(a) The slice Gs / PA,Baae. 

(b) The slice G B I DB.B~ . . 

Figure 4. The slices that represent the changed behaviors of A and B. 

m 

G M = (G A I DA,Base)u(GB / OB,Base)U(GBase / (DA,Base nDB,Base)). 

Example. The union of the slices from Figures 2 and 4 gives the program dependence graph 

G M shown in Figure 5. 



I4 

Figure 5. G M is created by taking the union of the slices shown in Figures 2 and 4. 

Step 3: Testing for interference 

There are two possible ways by which the graph G g may fail to represent a satisfactory 

integrated program; both types of failure are referred to as "interference." The first interference 

criterion is based on a comparison of slices of G A , G B , and G M. The slices GA IDA,Base and 

GB IDB,Base represent the changed behaviors of programs A and B with respect to Base. A 

and B interfere if GM does not preserve these slices; that is, there is no interference of this kind 

if GM IDA,Base = G A/OA,Base and G M/DB,Base =G B ]DB,Bas e . 

Example. An inspection of the merged graph shown in Figure 5 reveals that there is no 

interference; the slices G M/DA,Base and G M / D  B,Base are identical to the graphs that appear in 

Figures 4(a) and 4(b), respectively. 
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The final step of the integration method involves reconstituting a program from the merged 

program dependence graph. However, it is possible that there is no such program; that is, the 

merged graph may be an infeasible program dependence graph. This is the second kind of 

interference that may occur. 

Because we are assuming a restricted set of control consmacts, each vertex of G m is immedi- 

ately subordinate to at most one predicate vertex, i.e. the control dependencies of G m define a 

tree T rooted at the entry vertex. The crux of the program-re.constitution problem is to deter- 

mine, for each predicate vertex v (and for the entry vertex as well), an ordering on v 's  children 

in T. Once all vertices are ordered, T corresponds closely to an abstract-syntax tree. 

Unfortunately, as we show in [8], the problem of determining whether it is possible to order a 

vertex's children is NP-complete. We have explored two approaches to dealing with this 

difficulty: 

a) For graphs created by merging PDG's of actual programs, it is likely that problematic cases 

rarely arise. We have explored ways of reducing the search space, in the belief that a back- 

tracking method for solving the remaining step can be made to behave satisfactorily. 

b) • It is possible to side-step completely the need to solve an NP-complete problem by per- 

forming a limited amount of variable renaming. This technique can be used to avoid an), 

difficult ordering step that remains after applying the techniques outlined in approach a). 

The reader is referred to [8] and [10] for more details about feasibility testing, as well as a 

description of a method to reconstruct a program from the merged program dependence graph. 

If neither kind of interference occurs, one of the programs that corresponds to the graph G M 

will be returned as the result of the integration operation. 

Example. The program dependence graph shown in Figure 5 corresponds to the program: 

program Main 
prod := 1; 
sum := 0; 
x := 1; 
while x < 11 do 

prod := prod * x; 
s u m  := s u m  + X ; 

x : = x + l  
od; 
mean := sum / 10 

end(x, sum, prod, mean) 

Using the Slicing Theorem and the definition of the merged graph G M, we can show the fol- 

lowing theorem, which characterizes the execution behavior of the integrated program in terms 

of the behaviors of the base program and the two variants [19]: 

THEOREM. (INTEGRATION THEOREM). I f  A and B are two variants of Base for which 

integration succeeds (and produces program M ), then for any initial state ~ on which A,  B, and 
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Base all halt (1) M halts on 6, (2) if x is a variable on which the final states of A and Base 

agree, then the final state o.I'M agrees with the final state of B on x ,  and (3) if y is a variable on 

which the final states of B and Base agree, then the final state of M agrees with the final state 

of A on y.  

Restated less formally, M preserves the changed behaviors of both A and B (with respect to 

Base) as well as the unchanged behavior of all three. 

4. WILL LANGUAGE-BASED PROGRAM INTEGRATION SCALE UP.'? 

It remains to be seen how often integrations of real changes to programs of substantial size can 

be automatically accommodated by our integration technique. Due to fundamental limitations 
on determining information about programs via data-flow analysis and on testing equivalence of 

programs, both the procedure for determining the program elements that may exhibit changed 

behavior and the test for interference had to be made safe rather than exact. Consequently, the 

integration algorithm will report interference in some cases where no real conflict exists. The 

issue of whether fully automatic integration turns out to be a realistic proposition will only be 

resolved once we have built the components for creating program dependence graphs, slicing 

them, and testing the merged graph for interference. 

In any case, some integrations will report interference. For these situations it is not enough 

merely to detect interference; one needs a tool for semi-automatic, interactive integration so that 

the user can guide the integration process to a successful completion. Through such a tool, it 

will be possible for the user to examine sites of potential conflicts, which may or may not 

represent actual conflicts. The tool will make use of the merged program dependence graph that 
is built by the integration algorithm; this graph is a product of interfering as well as non- 

interfering integrations. 

In many respects the interactive integration tool will be similar to PTOOL, an interactive tool 

developed by Kennedy's group at Rice [3]. PTOOL makes use of a program dependence 
representation to provide programmers with diagnostic information about potential problems 

that arise in parallelization. 

In a similar fashion, the integration tool we are building will display information about indivi- 

dual program elements and program slices that indicate potential integration conflicts. By 

highlighting collections of program elements, it will indicate such information as: the affected 

points in the two variant programs, the slices with respect to the affected points, and slices of the 

two variants that become "intertwined" in the merged graph. The tool will also provide capabil- 

ities for the user to resolve conflicts and create a satisfactory merged program. 

A preliminary implementation of a program-integration tool has been embedded in a program 

editor created using the Synthesizer Generator [17, 18]. Data-flow analysis on programs is car- 
ried out according to the editor's defining attribute grammar and used to construct their program 

dependence graphs. A slice command added to the editor makes it possible to highlight the ele- 
ments of program slices. An integration command invokes the integration algorithm on the pro- 
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gram dependence graphs and reports whether the variant programs interfere. 

We plan to experiment with ways of incorporating other integration facilities in this system. 

In particular, it may be desirable for users to be able to supply pragmas to the program- 

integration system. For instance, a user-supplied assertion that a change to a certain module in 

one variant does not affect its functionality (only its efficiency, for example) could be used to 

limit the scope of slicing and interference testing. 

As to the practicality of our techniques, the basic techniques used in the integration algorithm 

(dependence analysis and slicing) are ones that have been applied successfully to programs of 

substantial size. Many of the techniques that are needed in order to adapt the integration algo- 

rithm to handle realistic languages (see below) have also been used in production-quality sys- 

tems; these techniques include analysis of array index expressions to provide sharper informa- 

tion about actual dependencies among array references [2, 4, 22] and interprocedural data-flow 

analysis to determine "may-summary" information [5, 6]. 

4.1. Applicability to Realistic Languages 

We have recently made progress towards extending the integration technique to handle 

languages with procedure calls and pointer-valued variables. The major stumbling block when 

making such extensions is devising a suitable extension of the program dependence representa- 
tion. Our recent work in this direction is summarized below. 

4.1.1. Interprocedural slicing using dependence graphs 

As a first step toward extending our integration algorithm to handle languages with procedures, 

we have devised a multi-procedure dependence representation and have developed a new algo- 

rithm for interprocedural slicing that uses this representation [9]. The algorithm generates a 

slice of an entire system, where the slice may cross the boundaries of procedure calls. It is both 

simpler and more precise than the one previous algorithm given for interprocedural slicing [21]. 

The method described in [21] does not generate a precise slice because it fails to account for 

the calling context of a called procedure. The imprecision of the method can be illustrated using 

the following example: 

program A 
x := O; 
w := O; 
call B (x); 
call C (w); 

end(w,x) 

procedure B (y) procedure C (z) 
y := y + 1 call B (z); 

return z := z + 1 
return 

Using the algorithm from [21] to slice this system with respect to variable x at the end of pro- 
gram A, we obtain the following: 
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program A procedure B (3,) procedure C (z) 
x := O; y := y + 1 call B (z); 
w := O; return return 
call B (x) 
call C (w); 

end(x) 

However, further inspection shows that the value of x at the end of program A is not affected by 

the initialization of w in A, nor by the call on C in A, nor by procedure C. The reason these 

components are included in the slice is (roughly) the following: The statement "call B (x)" in 

program A causes the slice to "descend" into procedure B. When the slice reaches the begin- 

ning of B it "ascends" to all sites that call B, both the site in A at which it "descended" and the 

(irrelevant) site in C. Similarly, the slice in C ascends to the call site in A. 

By contrast, our algorithm for interprocedural slicing correctly accounts for the calling context 

of a called procedure; on the example given above, procedure C is left out of the slice. A key 

element of this algorithm is an auxiliary structure that represents calling and parameter-linkage 

relationships. This structure, called the linkage grammar, takes the form of an attribute gram- 

mar. The context free part of the linkage grammar models the system's procedure-call slructure; 

it includes one nonterminal and one production for each procedure in the system. If procedure 

P contains no calls, the right-hand side of the production for P is c; otherwise, there is one 

right-hand side nonterminal for each call site in P .  The attributes in the linkage grammar 

represent the parameters, globals, and return values that are transferred across procedure boun- 

daries. Attribute dependencies, expressed via the attribute equations of the linkage-grammar's 

productions are used to model intraprocedural dependencies among these elements. 

Transitive dependencies between attributes due to procedure calls are then determined using a 

standard attribute-grammar construction: the computation of the nonterminals' subordinate 
characteristic graphs. These dependencies are the key to the slicing algorithm; they permit the 

algorithm to "come back up" from a procedure call (e.g. from procedure B in the above exam- 

ple) without first descending to slice the procedure (it is placed on a queue of procedures to be 
sliced later). This strategy prevents the algorithm from ever ascending to an irrelevant call site. 

4.1.2. Dependence analysis for pointer variables 

We have devised a method for determining data dependencies between program statements for 

programming languages that have pointer-valued variables (e.g. Lisp and Pascal). The method 

determines data dependencies that reflect the usage of heap-allocated storage in such languages, 
which permits us to build (and slice) program dependence graphs for programs written in such 
languages. The method accounts for destructive updates to fields of a structure and thus is not 
limited to simple cases where all structures are trees or acyclic graphs; the method is applicable 

to programs that build up structures that contain cycles. 
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For scalar variables, one way to compute flow dependencies is in the form of use-definition 
chains. To do this one first computes a more general piece of information: the set of reaching 
definitions for each program point [1, 14]. A definition of variable x at some program point p 

reaches point q if there is an execution path from p to q such that no other definition of x 

appears on the path. The set of reaching definitions for a program point q is the set of program 

points that generate definitions that reach q. Program point q is flow dependent on all members 

of the reaching-definition set that define variables used at q. 

To extend the concept of flow dependence for languages that manipulate heap-allocated 

storage, it is necessary to rephrase the definition in terms of memory locations rather than vari- 
ables. 

Program point q is flow dependent on point p i fp  writes to a memory location that may 
be read by q. 

Unlike the situation that exists for programs with (only) scalar variables, where there is a fixed 

"layout" of memory, for programs that manipulate heap-allocated storage not all accessible 

memory locations are named by program variables. In the latter situation new memory loca- 

tions are allocated dynamically in the form of cells taken from the heap. 

To compute data dependencies between constructs that manipulate and access heap-allocated 

storage, our starting point is the method described in [13], which, for each program point q, 

determines a set of structures that approximate the different "layouts" of memory that can possi- 

bly arise at q during execution. We extend the domain employed in the Jones-Muchnick 

abstract interpretation so that the (abstract) memory locations are labeled by the program points 

that set their contents. Flow dependencies are then determined from these memory layouts 

according to the component labels found along the access paths that must be traversed to evalu- 

ate the program's statements and predicates during execution. 
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