
Tim: A Simple, Lazy Abstract Machine to Execute
Supercombinators

Jon Fairbairn Stuart Wray

University of Cambridge Computer Laboratory,
Corn Exchange Street,
Cambridge CB2 3QG,
United Kingdom.
Telephone +44 223 334649
Mail address: jf@UK.AC.Cam.CL.

Olivetti Research,
4a Market Hill,
Cambridge CB2 3NJ,
United Kingdom.
Telephone +44 223 323686.
Mail address: scw@UK.CO.Cam.cam-orl

Abstract

This paper is a description of the three instruction machine Tim, an abstract
machine for the execution of supercombinators. Tim usually executes programmes
faster than the G-machine style of abstract machine while being at least as easy to
implement as an S-K combinator reducer. It has a lower overhead for passing
unevaluated arguments than the G-machine, resulting in good performance even
without strictness analysis, and is probably easier to implement in hardware.

The description begins with a presentation of the instruction set of the machine,
followed by the operational semantics of the normal order version and the algorithm
to convert combinators to instructions. It then develops the machine to allow lazy
evaluation and the use of sharing and strictness analysis. The final sections of the
paper give some performance figures and comment upon the suitability of the
machine for hardware implementation.

Introduction

The current release of the Ponder compiler [Fairbairn 83, Fairbairn 85, Tillotson 85] uses an abstract
machine [Fairbakrn & Wray 86] for graph reduction that is similar to the G-machine [Johnsson 83].
Although that implementation performs moderately well, the architecture of the abstract machine seems to
be an obstacle to further improvements in performance. Such machines spend most of their time in an
essentially interpretive mode, reducing the graphs of expressions passed as arguments to functions. This
interpretation is invariably slower than the direct execution of machine code.
The compile time techniques of stricmess and sharing analysis help to reduce the amount of interpretive
code, but neither of these can produce perfect code in all cases. The information derived by strictness
analysis definitely helps improve performance, but higher order strictness information gives little or no
improvement [Fairbairn & Wray 86]. ~xc%ile we expect that the combined use of higher order and non-flat
domain strictness analysis [Hughes 85b, Kieburtz & Napierala 85, Wadler 85] would detect many more
swict contexts, it is difficdt to take advantage of this extra information at run-time on the old architecture.
Similarly it is almost impossible to use sharing analysis to any advantage at run time.

35

The new machine arises out of an attempt to restructure things so that these techniques of analysis can be
used more effectively. The result shares properties with the SECD machine [Landin 64], the architecture
used at Yale [Hudak & Goldberg 85, Hudak & Kranz 84] and frame based reduction engines. Although
the new machine often runs programmes at twice the speed of the old, it is unfortunate that no effective
way has been found to exploit strictness information for other than functions over machine values. What
is perhaps more important is the improvement for pmgrammes where strictness is difficult to detect.

Basic idea
Efficient implementation of functional languages on conventional machines is difficult because one cannot
always know whether an expression passed as an argument to a function will be evaluated. In such cases
it the evaluation must be deferred until later, which necessitates the passing of some representation of the
unevaluated expression. One of the conventional solutions is to use a combinator graph to represent the
expression. This graph is either evaluated via graph reduction later, or never accessed again.
We observe that, when an expression is built as a graph, either it could have been evaluated directly, or
we could have saved the expense of even building the graph. The idea behind our new machine is to
replace graphs with pointers to code that will compute the desired result. Evidently the code needs to
access local variables, so a frame pointer is needed as well. This means that objects are now represented
by closures, but we require programmes to have been converted into supercombinators, and these only
access variables in the frame immediately addressed by the frame pointer. This makes things simpler than
in older frame based implementations where chains of environment pointers are needed.

T h e A r c h i t e c t u r e fo r N o r m a l O r d e r Evaluat ion

This section describes the simplest form of the machine, which makes no attempt to preserve the values of
shared computations and hence performs normal order evaluation rather than lazy evaluation (it should be
noted that without lazy evaluation the machine is hopelessly inefficient).
The machine comprises an argument stack, a frame heap and a code stream. Each object is represented as
a pair consisting of a frame pointer and a code pointer. The argument stack holds arguments to functions
as they are being built up, and the frame heap holds frames of arguments for combinators.

There are registers PC to point to the current code, CurrentFrame to address the current frame and ArgP to
hold the stack. You can think of the state of the machine as representing a function applied to some
arguments; the function is represented by the code addressed by PC in the environment of CurrentFrame
and the arguments are on the stack in order.

<PC,M.. CurrentFrar~ ~ b c ... vj
Y Y

/ /
Machine state Arguments on stack

There are just three instructions:

Take n

Takes n items off the argument stack and puts them in a new frame on the heap, adjusting CurrentFrame
to point to this new frame. Note that these frames are not explicitly deallocated and must therefore be
garbage collected away. Take represents the beginning of a combinator.

36

Push ~tem~

Pushes an <item> onto the argument stack. <item> can be arg n - - the nth argument in the current
frame, c o m b i n a t o r C - - the code sequence for the combinator C with an empty frame pointer, or
l a b e l L - - a label within the current combinator with the current frame pointer.

Enter ~tem>

Item is as in Push (except that it will never be a l a b e l) , and the effect is to load ChtrrentFrame and PC
with the item.
Formally the machine can be represented as a tuple <PC, CurrentFrame, ArgP, Frames>. Frames is an
indexed structure; we will write F for frame heaps, f for indexes of frames in heaps and F[[~ (al,
. . . . an)] for a heap extending F such thatf indexes (a I an). Each a i is of course of the form <c,
f>. Labels are represented by the code to which they point.
The operation of the machine is described by the following rewrite rules:

<[Take n; l] , fo, (at a n, A), t7>

<[Push a r g n;iq,f ,A,F[[~--~ (. . . . a n)]>

<[Push l a b e l l ; 1] , f , A , b >

<[Push combinator c;/],f, A, F>

< [E n t e r a r g n] , f , A , F [f ~ (. . . . <Cn, fn>)]>

<[Enter combinator c], f , A , F>

<I , f ,A , F [f ~ (a 1 an)]>,
wheref selects an unused frame

~ < I , f , (a n , A) , F l f ~ (. . . . a n)]>

=~ <[,f, ((l , f) , A), F>

<l, f , ((c, 0), A), F>

<cn, fn, A, F[f ~-* (. . . . <Cn,fn >)]>

<c, O, A, F>

Examples
The behaviour of the machine will be illustrated by tracing the reductions of two combinators. First

consider IC The t-expression for K is ka. lb. a. This compiles into the code

[Take 2; Enter arg i]

(see below for the compilation algorithm). An application of K to two arguments a 1 062 would be
represented by the machine state

<[Take 2; Enter arg i],0> ~I ~2 ...
For clarity the frame heap will be represented separately. Reduction proceeds as follows:

<[Enter arg i] ,f> ... f~ (0:1, ~2)

= <0~1> ... f ~ (o~1, a2)

leaving the machine executing a I as one would expect.

The code for Z =7t.x ty. y x is

[Take 2; Push arg i; Enter arg 2]

The reduction of Z a I K a 2 is represented by the following sequence:

37

<[Take 2 ; Push arg 1 ; Enter arg 2], 0> ~1 K a 2 ...

<[Push arg i; Enter arg 2],fl > (X 2 ...

<[Enter arg 2],fl > (tl 0~2 ...

<[Take 2 ; Enter arg 1], 0> ~1 ~2 -.-

and then proceeds as in the example for K.

h ~ (0~1, K)

h ~ (a l , K)

h ~ (a~ ,K)

Converting combinators to code

This section presents an algorithm to convert a series of combinator definitions into Tim code.
A programme is taken to be a sequence of combinator definitions of the form

c1 =def combinatorl;

Cn =def combinatorn;
main-expression

We assume that a combinator is of the form ~a I an. expression, and that an expression is either an
atom O.e. an ai or a combinator name c/) or an application of one expression to another.

G [p} p is the function used to generate code for the programme p. The environment p is just used
to remember the definitions of the combinators and would initially be empty or contain the definitions of
any built-in operations. Since the definitions of the combinators may be mutually recursive the whole
environment must be built before any code is generated. Although the algorithm as presented would
generate infinite code sequences for recursive combinators it is to be understood that in practice labels are
used to rather than passing copies of code around.The subsidiary function C generates code for
combinators, calling P to generate pushes and E to generate enters.

G ~C i =def expressioni;P] P ~ G ~p] (P [expressioni/ci])

G gexpression~ p ~ C gexpression~ p

C ~ a l . . . an. body] p ~ [Take n; C gbody~ p]

C ~e I e2D p ~ [P ge e ~ p ; C gel~ p]

C gatom~ p ~ E ~atom~ p

P [an] p ~ [P u s h a r g n]

P ~Ci~ p =:) [Push c o m b i n a t o r (C ~p (ci)~)]

P ~e~ p ~ [Push l a b e l (C ~e])]

E ~an] p ~ [Enter arg n]

E ~c/] p ~ [Enter combinator (C ~p (c/)])]

In the Tim implementation from which the data in this paper were gathered, the abstract instructions were
simply macro expanded into Acorn Risc Machine assembler.

38

Making it Lazy

Laziness consists of remembering the value of shared expressions the ftrst time they are reduced, so that
subsequent accesses do not recompute the value. In a conventional graph reducer this is achieved by
overwriting nodes in the graph. The new machine does not use a graph in this sense, so what can we
overwrite? Fortunately, one of the properties of supercombinators is that only combinator arguments are
ever shared. This means that, when the reduced value of an argument has been calculated the answer
should be written into the frame that it came from. Notice also that a reduced value must always be a
partially applied function (a combinator applied to too few arguments).
There is stilt a difficulty. As yet we have no way of holding up the reduc~on of an expression half way
through in order to preserve a partially applied function: as soon as a combinator is entered it takes all its
arguments off the stack and proceeds. The solution to this is to put a marker on the stack that indicates
that a shared computation is in progress. Recall that the machine can be considered as a function applied
to the arguments on the stack:

/ /
Machine state Arguments on stack

When an expression is shared, the picture is like this:

<[Take n; I],fo, (a 1 an, A), F>

<[Push arg n;/],f, A, F>

<[Push l a b e l l ; I] , f ,A ,F>

<[Push combinator C;/],f, A, F>
<[Enter arg n],f, A, f ~ (.... <Cnfn>)1>

:=¢. <cn, fn, (<.<.<~,n>,A), F [f ~

<[Enter combinator c],f,A,F> =* <c,O,A,F>

Shared application Marker

$ _ ~ . ~ a b ,_if, m-> c d e . . . ,

Machine state Arguments on stack

Here the marker Sf, m_> indicates that the shared application came from the ruth argument of the frame
f. Eventually the machine wilt enter a combinator C that takes more arguments than appear before the
marker. Before entering C the argument indicated by the marker should be updated with a representation
of C applied to the arguments above the marker.
Below is a modified description of the operation of the machine that reflects the changes needed to handle
laziness:

< [T a k e n ; I] , f o , (a 1 a i , < f , m > , A) , F [f ~ (. . . . a m)]>
fo r0 -< i<n

=* <P, f l , A, F [f~ ' (.... <P, f l >)l
[f~ ~ (a l ai)] >

where P = [Push a r g i;...; Push a r g 1; Take n;/]

=:, <I,f, A, F [ft... (a I an)] >

</,f, (< [En te r a r g n],j~, A), F>

</,f, (</,f>, A), F>

</,f, (<c, 0>, A), F>

(. . . . < c . / . > )]>

39

There are two changes in addition to the one already described. The Push a r g instruction can no longer
copy the argument onto the s t ack - - if it were to do so, the object on the stack would not be updated when
the argument was. Instead, an E n t e r a r g is pushed, ensuring that the argument is only accessed when
its value is needed. Finally, E n t e r a r g is responsible for putting the marker on the stack.
Although the formal description appears to create code 'on the fly,' in a practical implementation the
number of arguments and the address of the Take instruction can be remembered in the newly created
frame, so that the same code can always be used to push the arguments. A slight improvement to this
would be to take advantage of the fact that the largest number of arguments to any combinator is known at
compile-time, so that instead of using a loop one could index a table of entry points for code to perform n
pushes.

Representations

To be useful, one would expect the machine to need built in representations of objects such as integers,
characters and pairs. In fact in this machine it is unnecessary to have a special representation for pairs;
their functional representation has the right operational behaviour. The existence of terminals and other
peripherals which only understand a particular representation of characters makes it necessary to provide
characters with this representation. Machine integers tend to be faster than their functional versions, so
they should be provided as well. Fortunately this can be done without much disturbance to the structure
of the machine.

Pairs
Before describing the representation of machine values, we shall consider the behaviour of the functional
representation of pairs. The pair <a, b> will be represented initially as an application of the function

pair = ~a. lb. ku. u a b to the objects a and b. This has all the functional properties required of a
pair, but what about the operational aspect? What we must consider is how a pair is represented after it is
reduced. Pair is a combinator that takes three arguments, and pair a b supplies it with only two. If the
application pair a b is shared, what will happen? If we follow the machine description, we find that the
shared application will be entered with a marker on the stack, it will push a and b and then enter the
combinator forpair. The take instruction at the beginning ofpai r will then update the argument indicated
by the marker with code to push arguments and re-enter pair, with a frame that contains just a and b.
This is exactly what we want! Shared copies of pairs are represented as two adjacent locations in store
containing the left and right components of the pair.

Machine Values
We invent a pseudo-combinator Se i f that, when entered, simply pushes itself back onto the stack
together with CurrentFrame and enters its first argument. A machine value n can then be represented as
< S e l f , n>. Now we can have an <item> c o n s t a n t with the rute

<[Push constant ~ ~,f,, A, F> ~ </,f, (<Self, k>, A), F>

and Self performs the reduction

< S e l f , f , (<CJl>A), F> ~ <c, f l , (< S e l f , f > , A), F>

Now machine values are functions like everything else, but can be called as subroutines simply by
pushing a continuation on the stack. So the machine code for a strict built-in operators will begin by
pushing continuations and entering each strict argument in turn. For example a unary operator such as
negation will begin as follows:

40

L:

Take 1
Push l a b e l L;
E n t e r a r g 1;
negate the the framepartoftheobjecton ~estackandenterk.

The Fixed point combinator
In conventional graph reducers cyclic structures are introduced by a built-in version of the fixed point
combinator Y. Such a version seems indispensable [Kieburz 86] so what is the equivalent for Tim? What
we want to do is to make sure that the structure representing Y f is built at most once. A way of
achieving this is to make Y create a frame with two arguments in it. The first argument will be f, but the
second will hold Yf. Initially this will be a label that pushes its second argument (YJ) and enters its
first 09, but we want the second argument to be updated whenf(Yf) reduces. Hence we must push a
marker pointing at the second argument before we push it:

Y: Take 1 and extend it to two

Push label yf into arg 2

yf:put a mark on the stack pointing to arg 2

Push arg 2

Enter arg i

O p t i m i s a t i o n s

This section describes some ways of improving the performance of the machine, in particular how to take
advantage of strictness and sharing analyses. Use of sharing information is described first since it is the
simpler of the two.

Making use of Sharing Analysis
The alterations to the machine for laziness impose an overhead on the execution of the machine. The
overhead appears in three places: Testing to see if there are enough arguments on the stack for a Take
instruction (and behaving appropriately if there are not), pushing the marker on the stack in an
Enter arg and the indirection involved in Push arg. The test in Take is only a small overhead; the
main cost is creating the representation of the shared application if there are insufficient arguments. There
will be a noticable improvement in speed if we can avoid putting unnecessary markers on the stack.
If an argument is only ever evaluated once there is no need to record the value of the reduced version. If
we can detect this at compile time then we can avoid the overhead by changing the two instructions that
access arguments. This means adding an extra (optional) parameter to the instructions and the rules:

<[Push arg n, Unshared; l],f, A, F[f ~ (.... a n)]>

=~<I , f , (an , A) , F [f ~ (. . . . a n)]>
< [E n t e r a r g n, U n s h a r e d] , f , A , F [f ~ - ~ (. . . . <chin>)]>

=~ <Cn, fn, A , F [f ~ (. . . . <Cnf n >)]>
These are just the rules from the normal order version of the machine. An unsophisticated analysis of the
code that just counts the number of times that each argument appears in each obvious path through a
combinator speeds the machine up by about 10%.

Making use of Strictness Analysis
The ponder code generator for the old abstract machine uses strictness annotations to decide whether
expressions can be evaluated in applicative order, or must be built as graphs pending later evaluation. In
that machine the advantage of evaluating function objects immediately rather than passing them as graphs
is negligible, since the result of the evaluation would necessarily be a graph. In this machine functions

41

use up all their arguments as soon as they are entered, so to evaluate functions in advance involves
introducing new stack markers to halt the reduction. Our experiments have shown that this costs more
than the resulting gain. An akemative is to evaluate only machine values strictly. In order to ensure return
from the evaluation all that is necessary is to push a return label onto the stack before starting the strict
computation, as mentioned above for primitive operations.
An advantage of the new machine over the old is that when an argument is in a strict position we can
generate strict code, even if it is a subexpression of a lazy one. In the old machine strict arguments in lazy

expressions had to be built as graphs. For example, consider the expression f (- (3 x x)). I f f i s lazy

on its first argument, the entire expression (- (3 x x)) would have to be built as a graph in the old

machine despite the fact t h a t - is strict on its argument. For Tim, the code for (3 x x) can be strict even
though a closure must be passed tof.
An advantage of evaluating strict arguments in advance is that arguments that are known to be evaluated
may be treated as unshared, removing the overhead involved with updating arguments to their reduced
form.

Other Optimisations
The machine presented above is the simplest that perfoms lazy evaluation. It is not yet as efficient as it can
be when dealing with lazy expressions. The simplest case of this is that when a combinator is entered
with a marker at the top of the stack, so that the machine state is C -qf, m_>...; the machine will create an
empty frame, put no arguments in it and update the place addressed by the marker with C and this flame.
Although this has the right effect, in a real implementation it wastes time, and it can be avoided by treating
markers at the top of stack as a special case, and updating them with the combinator.
A similar, but more severe inefficiency occurs when several markers occur on the stack in succession.
The machine will pull the arguments that occur above the markers into a frame and update the first marker,
push the arguments back onto the stack and re-do the Take, and then go through the whole procedure
again for the remaining markers. The simple solution to this is to use the same flame for all the markers.
This also avoids building chains of indirections to the arguments in the first created frame. This
optimisation could be extended to share the flames created when a ~:ake instruction is interrupted more
than once, but initial experiments suggest that this may not be worthwhile.
A slight inefficiency occurs when the text of a programme contains C a I . . . a n when C is a
combinator that takes n arguments. The machine will push each of a n to a I onto the argument stack
and then enter C, which will immediately take them off the stack and build a flame. In such cases it is
obviously better to create the flame before pushing an , push them all directly into the frame and enter C
after the Take instruction.

Unused Frames
There is a class of combinators that compile into Tim code that contains no labels. If such a combinator
has no shared arguments, making a frame is redundant. A typical example is K, which takes two
arguments off the stack and enters the first. In such combinators the frame is not needed after leaving
their bodies and can be deleted immediately. Indeed, for combinators as simple as K the needed
arguments can probably be pulled off the stack into registers, avoiding the use of a flame entirely.

On the whole this sort of machine level optimisation only makes two or three percent improvement, but it
is worth doing at least a few of them: it was possible to speed up our initial implementation by about 20%
by improving the codings of the abstract machine instructions and primitive operations.

Garbage Collection
One disadvantage of this machine architecture is that the garbage collector must be able to handle variable
length objects. On top of th~Ls, there is a potential problem with space leaks. When a label is pushed, it is
pushed with a pointer to the current flame. /f the garbage collector were to treat frames as atomic, such

42

pushed labels would result in the retention of the whole frame, and everything attached to it. It will often
be the case that the code at the label refers to only a few of the arguments in the frame, so retaining
everything in it could result in unexpected consumption of space. The solution is to annotate each label
with a bit pattern indicating which arguments it needs. The garbage collector can then use this pattern to
decide which entries in the frame must be kept.
Simon Finn and Simon Pe~¢on Jones pointed this out to the authors independently.

O b s e r v a t i o n s

Relation to other architectures
An important aspect of the design of the Tim machine is that it is optimised for normal order evaluation.
The separate addition of a lazy evaluation mechanism means that there is no overhead when it is not
needed. This addition of laziness is facilitated by the fact that the design assumes prior compilation into
supercombinators (or at least lambda-lifted combinators), an assumption not made in the design of earlier
machines.
Related machines are the Functional Abstract Machine [Cardelli 84], which was designed primarily to
support applicative order evaluation, and the Categorical Abstract Machine [Cousineau et al 87], again
applicative order. The categorical machine differs more significantly in that it addresses a different level of
abslraction, details of machine representation and updating for laziness being left to lower levels.

A Hardware Implementation
The simplicity of this machine suggests that it would not be difficult to implement as a chip. Evidently a
few more instructions would be needed since the Take instruction is a little too complicated for a single
instruction, but there are three ways in which a specially designed machine would have advantage over a
standard processor.

i) All objects are represented as pairs of words with code and frame pointer. This takes
two memory cycles per object access, whereas one could make the bus wide enough to
transfer whole objects at a time.

ii) The stack marker for laziness could be put in a limit register, and the value of this
register tested in parallel with the execution of Take instructions. This would reduce
the overhead by making the updating part of Take an interrupt event.

iii) On a conventional machine the transfer of data from the argument stack to the frame
heap must go through the registers of the processor. If the stack and heap were held in
separate memory units, the Take instruction could transfer all the arguments from
stack to heap without getting them into registers.

Performance
Six programmes were used as benchmarks: 'Nfib' is the familiar nfib 20 benchmark and 'tak' is the
Takeushi LISP benchmark. 'Parser' is a lambda expression parser, 'logic' is a logic (hardware) simulator,
'quicksort' is quicksort of 100 random numbers and 'turing' is a Turing machine emulator. The first table
compares the best performance of the old machine with the best performance of Tim. All timings are for
an Acorn RISC Machine.

43

nfib
tak
parser
logic
quicksort
turing

Old machine Tim Old /Tim
(seconds) (seconds) (ratio)

1,17
2.29
3.58
i.93
1.77
4.67

1.21
4.22
1.31
0.75
0.64
2.23

0.97
0.54
2.73
2.57
2.77
2.09

The Tim version of nfib actually uses fewer instructions than the old machine, but the cost of data
transfers on the new machine is twice that of the old, since everything is represented by two word
closures. Nfib and tak are compiled unusually well for the old machine because of their good strictness
properties. Strictness analysis of the other, more realistic, programmes is much less effective and Tim is a
clear win for these.
The second table shows the performance of Tim with and without two optimisations. The first column
gives timings for Tim with neither optimisation. The second column shows the effect of using simple
sharing analysis as described in the section above. The last column shows the effect of also treating strict
built-in arithmetic functions specially.

nfib
tak
parser
logic
quicksort
turing

No optimisation Sharing analysis Semi-strict
(seconds) (seconds) (seconds)

1.96
5.30
1.56
0.90
0,86
2.74

1.95

5.30

1.32

0.75
0.69
2.38

1.21
4.22
1.31
0.75
0.64
2.23

Neither implementation takes any advantage of machine level optimisafions such as stack slaving, but one
would expect that the improvement would be about the same in both cases. It is worth remembering that
the old implementation was the result of several years of research, whereas work on the new one amounts
to a few months. We feel that as well as being a quick method of implementing lazy evaluation, Tim
promises interesting developments in the future.

A c k n o w l e d g e m e n t s

The research was begun while both authors were post-doctoral research fellows funded by the Science
and Engineering Research Council of Great Britain. The first author worked on this paper while at
Glasgow University. Special thanks to John Hughes and his research group there for helpful comments,
advice and lively atmosphere.
The Acorn Risc Machine was generously lent by Acorn Computer Limited, Cambridge UK.

44

References

[Cardelli 84]: Luca Cardelli,
The Functional Abstract Machine,
Bell Laboratories Computing Science Technical Report No. 107.

[Cousineau 87]: G. Cousineau, P-L. Curien, M. Mauny,
The Categorical Abstract Machine,
Science of Computer Programming Vol 8, pp 173-202, 1987.

[Fairbalrn 83]: Jon Fairbairn,
Ponder and its Type System,
University of Cambridge Computer Laboratory Technical Report No. 31, 1983.

[Fairbairn 85]: Jon Fairbaim,
Design and Implementation of a Simple Typed Language Based on the Lambda-Calculus,
University of Cambridge Computer Laboratory Technical Report No. 75, May 1985.

[Fairbairn & Wray 86]: Jon Fairbairn & Smart Wray,
Code generation techniques for functional languages,
1986 ACM Conference on Lisp and Functional Programming (proceedings) pp 95-104

[Hughes 85b]: John Hughes,
Strictness Detection in Non-Flat Domains,
in Proceedings of the Workshop on Programs as data objects, Copenhagen, eds H. Ganzinger and
N. Jones, Springer Verlag Lecture Notes in Computer Science Vol 217, 1985

[Hudak & Goldberg 85]: Paul Hudak & Benjamin Goldberg,
Serial Combinators: "Optimal" Grains of Parallelism,
Yale University Department of Computer Science 1985

[Hudak & Kranz 84]: Paul Hudak & David Kranz,
A combinator based compiler for a functional language,
1 lth ACM Symposium on Principles of Programming Languages ACM Jan 1984, pp 121-132

[Johnsson 83]: Thomas Johnsson,
The G-Machine: An Abstract Machine for Graph Reduction,
Proceedings of SERC Declarative Programming Workshop at UCL, April 1983

[Kieburtz & Napierala 85]: Richard B. Kieburtz & Maria Napierala,
A studied laziness-- strictness analysis with stuctured data types,
Oregon Graduate Centre, Extended Abstract, July 1985.

[Kieburtz 86]: Richard B. Kieburtz,
When chasing your tail saves time,
Information Processing Letters, December 1986.

[Landin 64]: P. J. Landin,
The Mechanical Evaluation of Expressions,
Computer Journal Volume 6 Number 4 pp 308-320, 1964.

45

[Tillotson 85]: Mark Tillotson,
Introduction to the Functional Programming Language "Ponder",
University of Cambridge Computer Laboratory Technical Report No. 65, May 1985.

[Wadler 85]: Phil Wadler,
Strictness Analysis on Non-Flat Domains,
Programming Research Group, Oxford University, November 1985.

