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A b s t r a c t - - S e t  abstraction, originally introduced in functional languages by Turner, is an 

appealing construct because it leads to concise definitions of many interesting operations. How- 

ever, existing approaches treat  sets as lists for the sake of efficiency~ and thereby sacrifice a simple 

declarative semantics. In this paper,  we present a novel language based on sets and equations, 

where sets are t reated as sets, consistent with their semantics. The language is called SEL, for 

Set-Equation Language. Equations are assumed to define a confluent rewriting system when ori- 

ented left to right. Sets are defined in terms of their subsets; these rules define a nonconfiuent 

rewriting system when oriented left to right. We show examples of programs in this language, 

and provide an operational Semantics for such programs. Programs are executed by innermost 

reduction, which may be nondeterministic or deterministic. Nondeterministic reduction is used 

when one of the elements of a set is desired. Deterministic reduction is used to simplify a term via 

an equation or to obtain all the elements of a set. The correctness of the operational semantics 

is also established. 

1. I n t r o d u c t i o n  

Functional programming languages ideally have clean mathematical semantics, so that  programs 

are easy to understand and verify. However, in practice it is sometimes found ~necessary" to 

sacrifice clean semantics for sake of emciency. One problem area is set abstraction, a construct 

originally introduced in the functional language KRC by David Turner [TS1]. Although Turner's 

set expressions lead to concise and elegant formulations of a number of interesting operations, set 

expressions actually construct lists (not sets), and therefore cannot be formalized within a simple 

functional framework. 

In this paper we propose a novel approach to handling sets in a functional language, without 

compromising their semantics. Our approach is based on ideas from associatlve-commutative term 

rewriting systems [BKN85, P86]. We present a language called SEL (for Set-Equation Language) 

as a vehicle for illustrating our approach. A SEL program is a collection of assertions, where each 

assertion is one of two kinds: an equation assertion or a subset assertion. We present a number of 

examples illustrating the language, and show that  associatlve-commutatlve matching can aid in 
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avoiding recursive definitions for many interesting operations, such as set difference, intersection, 

cross product,  etc. 

The use of recursive equations for functional programming has been argued by a number of 

people [T81, K82, HO82]. Our equational sublanguage bears a close relation with these various 

proposals; it is, in fact, an equational term rewriting system, as described, for example in [HO80, 

B83], except that  our matching is a restricted form of associative-commutative matching. 

The formal semantics of our language uses classical notions of equality and set membership. 

We require that  equational assertions define a confluent rewriting system when oriented left to 

right for rewriting, but the subset assertions need not. In both cases, however, we require termi- 

nation. In order to ensure that  all argument sets have distinct elements, we propose innermost 

reduction as the basis of our operational semantics. We define the operational semantics of our 

language in terms of two rewriting relations, =~d and =~n, for deterministic and nondeterministic 

rewriting respectively. The operational semantics of a SEL term is its =~a normal form. We 

show the correctness of our operational semantics by proving that  any computed term is a logical 

consequence of a suitable axiom system obtained from the program rules. 

I t  turns out that  our formulation of sets can also serve as a clean way to obtain "all solutions" 

to a predicate in a logic programming language such as Prolog. As with Turner's set abstraction, 

the all-solutions predicate is not a first class operation in a logic programming language, and 

suffers from not having a clean semantics; for a detailed discussion of this problem, see [N85]. 

The rest of this paper consists of the following sections: section 2 presents the language 

features of SEL and several examples to illustrate its methodology; section 3 formalizes the 

operational semantics by defining the ::~d and =~n relations, and shows its correctness; section 4 

mentions ways of proving the confluence and termination of SEL programs; and section 5 presents 

conclusions and directions for further work. 

2. L a n g u a g e  F e a t u r e s  

2.1 S y n t a x  

The grammar defining the syntax of SEL programs is given below. Note that  the symbols ~ ,  I, 

and ~ are meta symbols, and do not belong to SEL. The symbols ?, ( , ) ,  {, }, =, _ ,  u,  and , are 

language-defined tokens. The symbols opname, atom, and variable are user-defined tokens. 

program - -~  rules goal 

rules ~ e I rule rules 

goal ----* ?term 

rule ~ equation t subset 

equation - - ~  opname( terms) =_.term 



196 

subset ---+ opname( terrns ) ~_ term 

~.erms ---+ term I t e r m ,  terms 

term ---+ atom i variable I ( } I { t e rm)  i term U term ! opname(terms)  

As in other equational languages [HO80], we do not make any distinction between construc- 

tors and function symbols. Thus, a term in SEL corresponds to an expression in functional 

languages, i ground term is a term without any variables. The operator U, which stands for set 

union, is an associative, commutative operator with the properties, x U x = x and x tO { } --- x, 

where { } stands for the empty set. In the examples in this paper, it would be helpful to construe 

the operators U, ( }, as well as cons and scon8 (explained below) as constructors. Thus, SEL 

programs would not have these operations as the outermost name on the left-side of any rule. 

Note that  opname does not include these operators. 

We use the operator cone for constructing binary trees. As in LISP, lists are a special form of 

binary trees, and we write them using the [...] notation, e.g. [1, 2, 3]. [ ] stands for the empty list, 

and is regarded as an atom. Thus the list [1,2,3] is represented as cons(1 ,cons(2 ,cons(3 ,  [ ]))). 

We use the notation [h I t ] ,  similar to Prolog [CM81], to refer to a non-empty list, with head h 

and tail t .  Thus, [hi t] ~ cons(h,t). 

The operation scons (x ,y ) t ,  for set-cons, builds a set, and is merely an abbreviation for 

{x} u y. We write a set using the {. . .}  notation, e.g. {1,2,3}. Analogous to the list notation, 

the set {1~ 2, 3} may be represented as scone( l ,  scons(2,  scons(3,  { }))). Other permutations, 

such as scons(2,  scons(1,  sconsC3 , { }))), sconsC2 , 8cons(3, scone( l ,  { }))), etc., represent the 

same set. We use the notation {h ] t}  to refer a non-empty set, one of whose elements is h and 

the remainder of the set is t .  Thus, {h I t}  -= scons (h , t )  -- {h} U t .  

2.2 I n f o r m a l  S e m a n t i c s  

Operationally, equations are treated as rewrite rules oriented left to right, and a term is rewritten, 

by innermost reduction, by matching it with the left-side of some rewrite rule using one-way 

matching. SEL programs with equations alone, i.e., without subset rules, are intended to define 

canoaical term-rewriting systems, i.e., confluent and terminating programs. Like other equational 

languages [HO82], every variable on the right-side of an equation must be present on its left-side. 

Operationally, subset rules are also oriented from left to right for rewriting, and a term is 

reduced by innermost reduction by first matching it with the left-side of the rule. The matching 

here is associative-commutative (or a-c) matching, where U is the a-c operator.  For example, 

when matching a term f({1, 2, 3}) with the left-side of a rule 

~C(hlt}) _~ . . .  

"~ This operator may be contrasted with Friedman and Wise's frons [FW80], which defines a multi-set that 

turns into a list as elements are accessed. 
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all three matches for h and t must be considered, namely, {h *-- 1, t e- {2, 3}}, {h e- 2, t *-- {1, 3}}, 

and {h ~-- 3, t ~-- {1,2}}--recall that {1,2, 3} is represented as scons(1, scons(2, scons(S, { }))), 

or equivalently as {1} U {2} U {3}. The right-side of the rule for f is then reduced for each of 

these matches, and the union of the result for each match is defined as the value for f({1,2,3}).  

Note that in taking this union duplicate elements would be eliminated (we mention in section 

3.4.1 when this test for duplication can be avoided). As with equations, we require for subset 

assertions that every variable on the right-side also appear on the left-side. However, the rewrite 

rules derived from subset assertions need not be confluent. 

Note that we use a-c matching even with the rewriting rules derived from equations. Because 

we assume confluence, the result of rewriting is assumed to be independent of whicl~ match is 

considered when using equations. Hence, only one successful match is considered, and the others 

are ignored. Note also that our a-c matching does not use the idempotent property of u. Hence, 

the matching of {1,2,3} with {h I t}  cannot yield, for example, {h ~- l , t  *- {1,2,3}}. However, 

{1} can match {h ] t},  yielding {h +- 1, t  *- { }}. Finally, note that there are 2 n a-c matches 

of an n-element set s with a term x U y (corresponding to the different possible subsets of s), 

whereas there are only n matches of s with scons (x ,y) ,  or equivalently with {x I Y}. Both scens 

and U have their uses, albeit with substantially different costs: the former is usually used for 

iterating over all elerne,ts of a set, whereas the latter is usually used for iterating over all subsets 

of a set. Although the complexity of a-c matching in general is NP-complete [BKN85], mast SEL 

patterns in practice have very simple structure, with non-repeating variables, and hence can be 

matched reasonably fast. 

2.3 Examples  

We now present examples to show the capabilities of the foregoing constructs for functional 

programming. 

A p p e n d :  

Below is the SEL definition for the familiar LISP function append, and illustrates use of 

equations. 

append([ ],y) = y 

append([h I t], Y) = [h I append(t , Y)] 

?append([l, 21, [3, 4]) 

The result of evaluating the goal is the list [1 ,2 .3 .4 ] .  

L is t - to-Set  Convers ion :  

The operation l i s t - t o - s e t  stands for list-to-set conversion. 

nst-to-s,t([ ])= { } 
lis~'to-set([h I t]) = {h I list-to-set(t)} 
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Note tha t  a similar operat ion set-to-list for set-to-list conversion, defined below, is not  a valid 

SEL program because the definition is not  confluent. 

set-to-llst({ })= [] 
set-to-list({h I t}) = [h I set-to-list(t)I 

One might suspect tha t  all equational  rules tha t  use sets as arguments  on their left-sides are not 

confluent. This is, however, not  the case, as il lustrated by the next example. 

Or :  

The following function o r  returns ~;rue if there is a t r u e  element in the set; it returns f a l s e  

if bo th  elements of the set are f a l s e .  

or({ }) = false 

orC{true i t}) = tru. 

or({false I t}) = or(t) 

Notice tha t  the second rule above does not  use the variable t on its right-side. Such variables 

may be replaced by a special ~anonymons" variable (.), which can match  any term, similar to 

Prolog [CM81]. Using this anonymous variable, the above rule becomes 

orC{t~ue ) _ }) = true 

A more useful funct ion o r  is one tha t  returns f a l s e  as long as there are no t r u e  elements,  e.g., 

o r ( { l ,  2, 3}) = f a l s e °  Defining such an  operat ion requires a primitive condit ional  operat ion 

cond(p,t ,e) 

which returns the result of reducing t if p reduces to true~ otherwise (if p reduces to some 

term that is other than true) it returns the result of reducing e. Note that such a conditional 

cannot he expressed in term-rewrlting systems, because they cannot in general express inequality. 

Henceforth, we assume tha t  SEL has cond, which we also write using a more familiar syntax: 

if p then t else eo 

We can defne the revised or function in terms of the following membership function mere: 

~em(h,  {h  I - })  = t r ~ e .  

Note that  terms such as mere(l, { }) and mere(l, {2, 3, 4}) are irreducible. The desired o r  function 

is: 

or(s) = if mem(trus, s) then true else false. 

The primitive conditional is also useful in defining other set operations, as illustrated in the next 

exa~mple. 

Se t  D i f f e r e n c e :  

dill({ },,)= { } 
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di~f(s,{ }) = s 

diff({h I _ }, t)_ if mem(h,t) then { } else {h} 

This example illustrates use of the subset rule. The different a-c matches of the actual parameter 

set with the term {h I - } will effectively cause h to be bound to different elements of the set. 

Set intersection can be defined similarly. However, set intersection can be defined without primi- 

tive conditional as illustrated below. 

Set In t e r sec t i on :  

intersect({  } , , ) =  { } 
intersect(s,{ })= { } 

intersect({h I _ },{h I _ }) ___ {h} 

?intersect({l, 3, 5}, {3, 4}) 

The result of evaluating the goal is the set {3}. 

Cross  P r o d u c t :  

prod({ },,)= { } 
prod(s,{ })= { } 

prod({x I- } , {u  I -  }) _D {[x lu]} 

?prod({1,2}, {3,4}) 

The result of evaluating the goal is the set {[1 1 31, [1 I 4], [2 1 31, [2 l 4]}. 

Re l a t i ve  Set  A b s t r a c t i o n :  

We can define Turner's relative set abstraction construct, {f(x) Ix 6 S A p(x)}, as follows: 

all-fp({ })= { } 
all-fp({x [_ }) ___ if p(x) then {f(x)} else { } 

The function all-fp produces the set of all f (x) where x is drawn from some given set S, such 

that  p(x)  is true. 

Jo in :  

As can be seen from the foregoing definitions, SEL can be used to define the operators in the 

relational algebra. The following rule shows how a simple form of relational join can be expressed. 

jo in({ [x ,y]  I _ },{ [y,z] I_ }) _D {[x,z]} 

A more general join can also be expressed similarly. 

All Solu t ions :  

The all-solutions predicate c o l l e c t  of some Prolog systems (see [N85] for details) may be 

expressed with unusual brevity in SEL, as follows: 

col lect ( , )  = {e}. 
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The result produced by c o ! l e e r  is a singleton set whose element is the set of all solutions. For 

example, the result of the term 

?conec t  (prod(( 1, 2}, (3, 4})) 

is the set ({[1 t 3], [1 1 4], [2 l 3], [2 t 4]}}. 

P e r m u t a t i o n s :  

pe=s( {  })= {[ ]} 
per~s((~ t t ) )  ~_ a!str(x,  pe=s( t ) )  

distr(x,{ })= { } 

distr(x, (Y i- }) -~ (Ix I Yl} 
?perms((1, 2,3,4}) 

The function d i s t r  expects a set of lists as its second argument. Its result is a set whose elements 

are constructed by "consing" its first argument to each list in its second-argument set. The result 

of evaluating the goal is the set of permutations {[1,2, 3, 4], [1, 2, 4, 3] , . . . ,  [4, 3, 2,1]}. 

Four  Queens  P r o b l e m :  

queens(col, safeset) = if eq(col,5) then safeset 

else placequeen(col, {I, 2, 3, 4}, safeset) 

placequeen(col, {row i - }, safeset) D 

if safe([col I row], safesst) 
then queens(col + 1, {[col I row]i safeset}) 

else { } 

safe(It! i rl],(}) = t~e 

,afe([cl I rl], {[c2 I r2] I e}) = (rl # r2) aria (abs(c, - o.) # abeCrl - r~-)) 
~a ,afe([cl I rl],s) 

?queens(I,  { }) 

The above example illustrates how a search may be specified. The algorithm places a queen on 

each successiye column, beginning from column 1, as long as each new queen placed is safe with 

respect to all queens in the preceding columns. A solution is found if a queen can be thus be 

placed on all columns. The second argument to placequeen, viz., the set {1,2, 3, 4}, enumerates 

the row positions in each column. If a particular row-column position is not safe, placequeen 

returns the empty set { }, thereby pruning this line of search. The function sa fe  specifies the 

safety condition--note that SEL has the usual complement of arithmetic primitives. 

The reader may have noted that several useful set operations, such as difference, intersection, 

membership, e t c ,  are defined ~,itho,~ recursion. This is one of the strengths of a-c rewriting. We 

assume that a SEL program defines a closed ,,orld [C78]. That is, a set is completely defined by 

its subsets; there are no other elements in the set than the ones specified. 
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3. O p e r a t i o n a l  S e m a n t i c s  

We now formalize the operational semantics of SEL programs that we informally sketched in 

section 2.2. This is expressed using two rewriting relations =~d and =~,~, the subscripts d and n 

stand for 'deterministic' and 'nondeterministic' respectively. These two relations are defined over 

the set of terms, and are mutually dependent. 

3.1 The  =~d a n d  =~n re la t ions  

Suppose ~ is a set of SEL program rules. In the following definition, program rules are enclosed 

within ~ ]. The substitution 0 binds variables to terms. The relation x =ac Y means that z and 

y are equal using associative-commutative equations; for example, a U (b U e) =ac (e U b) u a. 

Below, rules 1-4 pertain to the =~d relation and rules 5-7 pertain to the =~n relation. The 

relationship between these two relations is expressed by rules 8 and 9. Note that, in the following 

rules, the symbol D stands for "logically implies," and should not be confused with the SEL 

operation _ .  

1. ~ s = t ] E ~  ~ s ~ d t  

2. 8 =~d t A U =ac 8 D U =~d t 

3. a ~ d  t D sO =~d tO 

4. S =C, d t D y ( . . . , s  . . . .  ) =~d f ( . . . , t  . . . .  ) 

6. S =~n t A S =ac  U ~ U =~n t 

7. s =~n t D sO ::~n tO 

8. s =~d t A u E t D s =~n {u}  

9. s = ~  t D s =~d U{w : s = ~  w }  

In addition, we have the following two rules for the u operator: 

10. x U z =~d z 

11. z U { }  =~d z. 

Def in i t ion  3.1: We say z is ]~-reducible, or simply reducible (if ~ is understood), if there exists 

a y such that z =~d Y or x = ~  y; otherwise we say z is irreducible. 

Def in i t ion  3.2: We say that 

s =~d! t 

if term t is irreducible and related to s in the transitive closure of =~d, and obtained by using 

innermos t  reduction and giving priori ty  to the ::~d reductions involving the U operator. 

Note that the termination requirement guarantees such a t for any s. Also, prioritizing reductions 

involving the U operator ensures that all argument sets will be free of duplicate elements. 
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D e f i n i t i o n  3.3: If 2 =>a! t, then t is referred to as the ~ d  normal form of 2. 

We in tend tha t  the ~ a  relation is confluent, i.e., if 2 =>a! t, then t is in tended to be unique (for 

a given s). Similar to = ~  normal form, we also have the ==~n normal form of a term. The  =~n 

relation, however, need not  be confluent, hence there can be several =~n normal  forms of a term. 

The primit ive condit ional  cond can now be defined as follows: 

12. p = ~ !  t r u e  A t =~d t ~ D ¢ond(p, t, e) ~ t ' .  

13. p =~,'d! t r u e  A t =~n t I D cond(p,t,e) :=~a t ~. 

14. p =~d! P' A pr ~ t r u e  A e =~d el D cond(p, t, e) =>d e'. 

15. p ~d!  p' A p' ~ t rae  A e =~n e' D cond(p,t,e) =~n e'. 

D e f i n i t i o n  3.4: The operational  semantics of a SEL term s is its ~ d  normal form. 

Thus the value computed for a goal 

? s  

is its = ~  normal form. Sometimes one in interested in obta ining any one element of the set. This 

can be stated in SEL using a special syntax at the top-level, such as 

any? s 

which computes a t such tha t  {t} is a =~n normal form of s. 

D e f i n i t i o n  3.5:  We say tha t  an  operat ion f distributes over nondeterminism in the i-th argument 

iff there is a program rule 

f( . . . .  x U  y , . . . )  = f ( . . . , X , . o . )  U f( .  . . , y , .  ..) 

where the i- th a rgument  of f is the one shown above. 

When an operat ion distr ibutes over nondeterminism in a part icular  argument ,  it is pern,issible 

to compute with the individual elements of the set corresponding to this argument ,  rather  than  

the entire set. 

3.2 C o r r e c t n e s s  

The correctness of the operational  semantics defined in the previous subsection is established by 

showing tha t  the normal  forms computed using the ~ d  and  =~,~ are correct with respect to the 

classical equality and  subse t  relations. Note tha t  these two relations define only one step of the 

reduction process. Suppose R is a set of SEL program rules. We assume tha t  the axiom system 

r reflects our  closed world assumption about  the rules of ~ ,  as follows: 

(i) s =~a t implies r ~ • = t, and  

(ii) s =~n t implies r ~ s D t. 

The expression F ~ s = t means that  the universally quantified formula s = t is a logical 

consequence of r .  Similarly, r ~ s D t means that  the universally quantified formula a _ t is a 

logical consequence of r .  
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T h e o r e m  3.1: Suppose R is a set of SEL program rules, and the =~a and =~, relations axe as 

defined in the previous subsection, and I' is an axiom system as defined above. Then 

(i) s =~d! t implies F ~ s = t, and 

(ii) s = ~ !  t implies F ~ t _D 8. 

The proof is straightforward, and follows from the transit ivity of = and D_. The above is a 

soundness theorem as it says that  every computed solution is a correct solution according to 

the logical semantics. Completeness follows from the fact that  programs terminate and the =~d 

normal form is unique. 

Before we proceed with examples, the following theorems may be noted: 

T h e o r e m  3.2: =~d is terminating if and only if =~, is terminating. 

T h e o r e m  3.3: =~d is terminating if there is well-founded ordering >- such that  s =>d t implies 

s > - t .  

T h e o r e m  3 . 4 : 8  =~!  U {t : s =~,,! t}. 

In section 4.2, we discuss how the well-founded ordering >- referred to in theorem 3.3 can be 

obtained. 

3.3 E x a m p l e s  

We present two examples illustrating the operational semantics. We assume that  the reader is 

familiar with computation using equations; we therefore concentrate on the novel aspects of the 

language, namely, sets and a-c matching. 

E x a m p l e  1: 

Consider the cross product example from section 2.3, which we reproduce here for conve- 

nience. 

prod({ } , s ) =  { } 
prod(s,{ })----{ } 

prod({x l Y},{u Iv}) ___ {Ix l u]} 
?prod({t, 2}, {3, 4}) 

Suppose the top-level goal were 

any? prod({1,2}, {3, 4}) 

where we are interested in any one member of the cross product set. The above goal might be 

represented as 

prod(scons(l, ,cons(2, { })), scons(3, scons(4, { }))). 

There are two possible matches of s cons ( l , s cons (2 , {  })) with the pat tern {x l Y}, namely 

{x ~ 1,y ~-- scons(2 ,{  })}, and {x *- 2 ,y  *-- scons(1,{  })}. Similarly there are two possible 
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matches of scons(3, scons(4,{ })) with the pattern {u Iv}. Because we specify a =~,~ reduction 

in the top-level goal, any one match for the variables x .  y .  u and v is acceptable. Thus the next 

step in the reduction, following rules 5 and 7 of the operational semantics, might be 

~ .  {[113]}, 

which is not further reducible. Other ~ . . o r m ~ / o r m s  are {[1 ] 4]), {[21 3]), and {[2 ]4]). 
Hence, the response to the top-level goal 

?prod({1,2}, {3, 4}) 

would be the entire set {[I 1 3], [1 1 4], [2 ] 3], [2 I 4]}, which corresponds to the =~d reduction of 

the above goal, following rule 9 of the operational semantics. 

E x a m p l e  2: 

Consider the permutations example from section 2.3: 

p.r=.({ } ) =  {[ ]} 

p . = . ( { x  i t ) )  _~ distr(x, per=.(t)) 

d i . tr (~ , {  ) ) =  { } 

di .tr(~,  {Y t- )) --~ {[~ I Y]} 
?p .= . ( { I ,  2, 3, 4)) 

Suppose once again we are interested in any one answer, and specify this through a top-level goal 

any? perms({1,2, 3}). 

The following is one possible sequence of =~. reductions, where one a-c match is considered at 

each recursive call of perms: 

perms(scons(1,  scons(2, scone(3, { })))) 

~ .  d i s t r (1 ,pe rms(scons (2 ,  scons(3, { })))) 

=~. distr(1, distr(2, perms (scons(3, { })))) 

~ .  d i s t r ( 1 , d i s t r ( 2 , d i s t r ( 3 , p e r m s ( {  })))) 

~n distr(1, disfr(2, d i s t r ( 3 ,  {[ ]}))) 

=~. d i s t r ( 1 ,  d i s t r ( 2 ,  {[3]})) 

~r~ d is t r ( t ,  {[2, 3]}) 

o .  {[1,2,3]} 

3.4 Discuss ion  

3.4.1 N o n d e t e r m i n i s m  

Note that~ in the second step of the above derivation, we did not compute the entire set for 

perms(scons(2, scons(3, { }))). The reason that  it is valid to compute one element from this set 
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is because the d i s t r  definition distributes over nondeterminism. Although we did not explicitly 

include an equation stating that d i s t r  distributes over nondeterminism, we assume that this is 

the case for all definitions unless otherwise specified. There are, however, cases where we do not 

wish an operation to distribute over nondeterminism. The functions perms, safe ,  or, and mere 

are examples. The following function s i ze  which determines the number of elements in a set is 

another example. 

}) = 0 

si eC{h I t}) = i + ,izeCt) 

Functions that compute some aggregate property of a set usually do not distribute over nonde- 

terminism. Functions, such as prod, i n t e r s e c t ,  etc., that are defined in terms of the elements 

of the set, do distribute over nondeterminism. 

We assume that SEL is extended with suitable syntax so that a programmer can specify 

which operations do not distribute over nondeterminism. This information could.then be used 

by the SEL interpreter to decide when it is permissible to compute with the individual elements 

of an argument set rather than with the entire set. Because of the termination requirement, we 

can compute all elements of a set by depth-first search and backtracking. When an operation 

distributes over nondeterminism in a particular argument, it is not necessary to check for duplicate 

elements in the set computed for this argument. Instead, the operation can be applied to each 

element of the multi-set, and the resulting multi-set can be propagated upward. In many practical 

cases, duplications do not occur, hence the absence of a check can lead to faster execution. 

3.4.2 O u t e r m o s t  R e d u c t i o n  

When computing with sets in SEL, although innermost reduction is a sound reduction strategy, 

outermost reduction can lead to early termination in some cases. Suppose that, in evaluating 

some term f(r ) ,  we have found r , ,  r 2 , . . . ,  r ,  such that r ::~,! ri .  Suppose further that there are 

more such possibilities, due to more a-c matches or more rules that have not been looked at. We 

can then represent the current state of the value of r by 

{r , , r2  . . . . .  r . }  U z ,  

where z is a variable. Now, if there is a rule, f ( . . . )  . . . .  , that permits 

U =) 

to be reduced to some term in which = does not appear, it is then not necessary to continue to 

look for more : ~ ,  reductions for r. This gives a way to stop a nondeterministic search, and is 

analogous to Prolog's ~cut" [CMSl], but with clean semantics. An example of this kind of early 

termination arises when evaluating the or function (of section 2.3), when one of the elements of 

its input set is t rue .  A more direct example is the function ge-k, shown below, which checks if 

a set has at least k elements: 

ge-k({rl,r2 ..... rk}Ux)=true. 
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Outermost reduction, however, is not always a sound strategy when computing with sets. For 

example, in the case of the function size, which does not distribute over nondeterminism, out- 

ermost reduction is sound only if the set corresponding to this argument has distinct elements. 

This requirement of distinct elements is a sufficient but not necessary condition for the soundness 

of outermost reduction. Note that the above equation is valid even if x had duplicates. It may 

be convenient to use such equations in a general context, and not just for early termination of a 

nondeterministic search. 

4. Confluence and Termination 

We make some comments about how confluence and termination can be proven for programs in 

SEL. The methods are similar to those for standard term rewriting systems. However, since SEL 

programs are not conventional term rewriting systems, some modifications are necessary. The 

differences may be illustrated by an example. Consider the following program: 

pairs({x g {y L z}}) 2 {!x I Y]}. 

The query ?pairs ({a, b, c, d}) reduces to 

{[a 1 b], [a I c], [a I d], [b I a], [b I c], [b I d], ...}. 

That is, the rule 

pairs({x L {Y I z}}) O_ {Ix I Y]} 

is applied many different times in different ways in a single rewriting step--this is not possible in 

an ordinary term rewriting system. Another problem is the conditional operator, which cannot 

be expressed in mR ordinary term rewriting system because it uses a kind of negation by failure 

[C78]. 

4.1 Confluence 

There may be methods of showing confluence of SEL programs based on critical pairs, as in the 

Knuth-Bendix method [KBT0], but we are not aware of any as yet. We propose a method based 

on the semantic confluence ideas of Plaisted [P85]. The idea is as follows: Suppose we define a 

sorting program in SEL or some other rewriting language, and we can show that the program is 

correct, i.e., that the output is always equal to a sorted form of the input. (This can often be done 

using program verification methods.) Suppose also that we can show by syntactic means that the 

output is a list of elements. Since there is only one list of elements that is equal to a sorted form 

of the input, the output must be unique. Therefore the program is confluent. Thus, the general 

idea is largely based on semantics (correctness) rather than syntax. In addition, the method is 

largely insensitive to the particular method of rewriting being used, and so seems applicable to 

SEL programs as well as to ordinary term rewriting systems. 
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4.2 T e r m i n a t i o n  

We express SEL terms using the singleton set and binary set union operators, so that {a, b, c} 

would be expressed as {a} U ({b} U {¢})--note that any SEL term can be put in this form. Now, 

since U is an associative-commutative operator, it is convenient to express terms in a ~flattened" 

form; that is, {a} u ({b} U {c}) is expressed as U({a}, {b}, {c}). In this way we introduce a union 

operator of a variable number of arguments. Methods of proving termination of term rewriting 

systems involving one or more associative-commutative (a-c) operator were given in Bachmair and 

Plalsted [BP85], and also in Bachmair and Dershowitz [BD86]. These methods can be adapted 

to SEL progr~m.q. The idea is to show that if s :~d t then s >- t in some well founded ordering 

>-. For this ordering we choose the associative path ordering of Bachmair and Plaisted [BP85]. 

To order two terms s and t, we flatten them to obtain s '  and t'. Then we compare and s' and t '  

in the recursive path ordering of Dershowitz [D82]. If we use a precedence ordering on function 

symbols such that U is minimal in this ordering, then this gives a termination ordering according 

to results in Bachmair and Plaisted [BP85]. Now, to show that if s =~d t then s >- t in this 

ordering, it suffices to show that if s = ~ .  d t h e n  s >- t in this ordering, because of properties of 

the recursive path ordering. Without going into details, we have the following result: 

T h e o r e m  4.1. Suppose we are using a precedence ordering on function symbols in which the 

a-c operator U is minimal. Let us define ordering >- so that s >- t if s '  >-rpo t t where s' and t l 

are the flattened forms of s and t and >-rpo is the recursive path ordering using this precedence 

ordering on function symbols. Then a SEL program ~ (without conditionals) is terminating if 

the following conditions are true: 

1. I f s = t i s i n  ~ t h e n s > - t .  

2. If s D_ t is in )~ then s >- t. 

To deal with conditionals, we need to use another method, because conditionals are not termi- 

nating in the usual sense of the term. Consider the following program: 

fact(x) = if (x = O) then I else x * fact(x - I). 

The i f  then  e l s e  connective presupposes that the i f  part is evaluated first. However, in usual 

term rewriting, any subterm may be reduced. Thus, if we always choose to evaluate the e l s e  

part first, this definition of f a c t  will not terminate. To avoid this problem, we reformulate the 

above program as follows: 

fact(x) = g(x = O, x) 

g ( t r u e , x )  = 1 

g ( f a l s e . x )  -- x * f a c t ( x  - 1)  

Now, no matter what evaluation strategy is chosen, this program is terminating. This same 

method of reformulating conditionals can be used in SEL, and then it is at least theoretically 

possible to prove termination of SEL programs involving conditionals, using conventional methods. 
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5. Conc lus ions  

We have proposed a language based on equations and sets for functional programming. We have 

shown several ex~nples of operations in this language, and hope that  the reader is convinced 

of its usefulness. The need for a set construct has been recognized by a number of researchers 

in the fields of functional and logic programming [T81, R84, N85, DFP86, JS86, P86]. Existing 

approaches fall short of an ideal solution in that  sets are not treated as first class objects in 

the language. Our approach does not compromise the basic properties of sets, yet is amenable 

to a reasonably efficient execution. The heart  of our approach lies in associative-commutative 

rewriting, which allows many useful definitions to be stated in a non-recursive manner. We now 

review some of our major assumptions, potential limitations, ~and possible extensions. 

One major requirement we have made in our semantics is termination. Although this is 

a fairly common assumption in term-rewrlting systems--O'DonneU's equational language is an 

exception [HO82]--it is less usual in a programming language. Nevertheless, the class of termi- 

nating programs is interesting because it includes many useful applications. In this paper,  we 

have sketched an approach to proving the termination of SEL programs--for  a thorough survey 

of methods, see [D85]. Another requirement we have placed on the language is that  equational 

rules must be confluent. Syntactic checks for confluence have been considered fairly extensively in 

the l i terature [H80, HO80, HO82]. Our approach is based on semantic confluence [P85], extended 

suitably for handling the associative-commutative U operator. We have not presented the details 

of this approach in this paper. 

We can relax the termination requirement without causing any change in our programming 

paradigm. Thus, we can write definitions such as 

intsCn) "--- consCn, intaCn + I)) 

to define the infinite sequence of integers. However, the semantics of our language would become 

more complicated~ we might have to give up a simple logical semantics in favor of a complex deno- 

rational semantics. Also, in a sequential implementation, the search for solutions by a depth-first 

search would not guarantee completeness because some reduction sequence might not terminate; 

a more space-consuming breadth-flrst search would be necessary. 

As we wished to concentrate on semantic issues in this paper, we have not discussed the 

implementation of our proposed language. The reader might easily see that, in a sequential 

implementation, simplification using equations and backtracking to compute elements of a set 

can be implemented straightforwardly. The use of a-c matching in accessing elements of a set in 

SEL can also be made e~cient  because most definitions use the 8con8 operator, rather than the 

more general U. 

Perhaps the major source of ine~ciency lies in ensuring that  sets have distinct elements; but 

here too, hashing can be used to minimize the search for duplicate elements. It should be noted 

that  multi-sets are a correct implementation for functions that  distribute over nondetermJnism, 
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and therefore the need to test for duplicate elements is avoided in many cases. 

It is easy to extract parallelism in the language SEL because it is a pure declarative language 

[CK81]. Both and and or parallelism is possible; the former corresponds to evaluating multiple 

arguments to operators (except in the case of cona~, and the latter corresponds to different =~n 

reductions. Extracting and parallelism in SEL does not incur the problems of a logic program- 

ming language because the different and processes have fully instantiated arguments. Similarly, 

inheriting the parent environment while extracting or parallelism is also easier; the parent envi- 

ronment cannot be altered by a child or process through the binding of logical variables (there are 

no logical variables in SEL). With parallel execution, it becomes feasible to maintain completeness 

even when some reduction sequence does not terminate. 

We have limited our language to being first-order, and also limited the sets to be defined 

by enumeration of elements according a recursive rule, i.e., we do not allow a set to be defined 

as the collection of solutions of a set of equations, as, for example, in [DFP86, R84, JS86]. In 

other words, we have not allowed narrowing [DP85, R85] in this language; we are nevertheless 

able to obtain much of the benefits of narrowing through our restricted form of nondeterministic 

evaluation. We are at present investigating ways of including these additional capabilities in our 

language. We are also planning an implementation of these ideas. 
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