
F u n c t i o n a l p r o g r a m m i n g w l t h Sets~

Bharat Jayaraman

David A. Plalsted

Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, NC ~7514

A b s t r a c t - - S e t abstraction, originally introduced in functional languages by Turner, is an

appealing construct because it leads to concise definitions of many interesting operations. How-

ever, existing approaches treat sets as lists for the sake of efficiency~ and thereby sacrifice a simple

declarative semantics. In this paper, we present a novel language based on sets and equations,

where sets are t reated as sets, consistent with their semantics. The language is called SEL, for

Set-Equation Language. Equations are assumed to define a confluent rewriting system when ori-

ented left to right. Sets are defined in terms of their subsets; these rules define a nonconfiuent

rewriting system when oriented left to right. We show examples of programs in this language,

and provide an operational Semantics for such programs. Programs are executed by innermost

reduction, which may be nondeterministic or deterministic. Nondeterministic reduction is used

when one of the elements of a set is desired. Deterministic reduction is used to simplify a term via

an equation or to obtain all the elements of a set. The correctness of the operational semantics

is also established.

1. I n t r o d u c t i o n

Functional programming languages ideally have clean mathematical semantics, so that programs

are easy to understand and verify. However, in practice it is sometimes found ~necessary" to

sacrifice clean semantics for sake of emciency. One problem area is set abstraction, a construct

originally introduced in the functional language KRC by David Turner [TS1]. Although Turner's

set expressions lead to concise and elegant formulations of a number of interesting operations, set

expressions actually construct lists (not sets), and therefore cannot be formalized within a simple

functional framework.

In this paper we propose a novel approach to handling sets in a functional language, without

compromising their semantics. Our approach is based on ideas from associatlve-commutative term

rewriting systems [BKN85, P86]. We present a language called SEL (for Set-Equation Language)

as a vehicle for illustrating our approach. A SEL program is a collection of assertions, where each

assertion is one of two kinds: an equation assertion or a subset assertion. We present a number of

examples illustrating the language, and show that associatlve-commutatlve matching can aid in

This research is supported by grants DCR-8516243 and DCR-860360g from the National Science Foundation.

195

avoiding recursive definitions for many interesting operations, such as set difference, intersection,

cross product, etc.

The use of recursive equations for functional programming has been argued by a number of

people [T81, K82, HO82]. Our equational sublanguage bears a close relation with these various

proposals; it is, in fact, an equational term rewriting system, as described, for example in [HO80,

B83], except that our matching is a restricted form of associative-commutative matching.

The formal semantics of our language uses classical notions of equality and set membership.

We require that equational assertions define a confluent rewriting system when oriented left to

right for rewriting, but the subset assertions need not. In both cases, however, we require termi-

nation. In order to ensure that all argument sets have distinct elements, we propose innermost

reduction as the basis of our operational semantics. We define the operational semantics of our

language in terms of two rewriting relations, =~d and =~n, for deterministic and nondeterministic

rewriting respectively. The operational semantics of a SEL term is its =~a normal form. We

show the correctness of our operational semantics by proving that any computed term is a logical

consequence of a suitable axiom system obtained from the program rules.

I t turns out that our formulation of sets can also serve as a clean way to obtain "all solutions"

to a predicate in a logic programming language such as Prolog. As with Turner's set abstraction,

the all-solutions predicate is not a first class operation in a logic programming language, and

suffers from not having a clean semantics; for a detailed discussion of this problem, see [N85].

The rest of this paper consists of the following sections: section 2 presents the language

features of SEL and several examples to illustrate its methodology; section 3 formalizes the

operational semantics by defining the ::~d and =~n relations, and shows its correctness; section 4

mentions ways of proving the confluence and termination of SEL programs; and section 5 presents

conclusions and directions for further work.

2. L a n g u a g e F e a t u r e s

2.1 S y n t a x

The grammar defining the syntax of SEL programs is given below. Note that the symbols ~ , I,

and ~ are meta symbols, and do not belong to SEL. The symbols ?, (,) , {, }, =, _ , u, and , are

language-defined tokens. The symbols opname, atom, and variable are user-defined tokens.

program - -~ rules goal

rules ~ e I rule rules

goal ----* ?term

rule ~ equation t subset

equation - - ~ opname(terms) =_.term

196

subset ---+ opname(terrns) ~_ term

~.erms ---+ term I t e r m , terms

term ---+ atom i variable I (} I { t e rm) i term U term ! opname(terms)

As in other equational languages [HO80], we do not make any distinction between construc-

tors and function symbols. Thus, a term in SEL corresponds to an expression in functional

languages, i ground term is a term without any variables. The operator U, which stands for set

union, is an associative, commutative operator with the properties, x U x = x and x tO { } --- x,

where { } stands for the empty set. In the examples in this paper, it would be helpful to construe

the operators U, (}, as well as cons and scon8 (explained below) as constructors. Thus, SEL

programs would not have these operations as the outermost name on the left-side of any rule.

Note that opname does not include these operators.

We use the operator cone for constructing binary trees. As in LISP, lists are a special form of

binary trees, and we write them using the [...] notation, e.g. [1, 2, 3]. [] stands for the empty list,

and is regarded as an atom. Thus the list [1,2,3] is represented as cons(1 ,cons(2 ,cons(3 , []))).

We use the notation [h I t] , similar to Prolog [CM81], to refer to a non-empty list, with head h

and tail t . Thus, [hi t] ~ cons(h,t).

The operation scons (x ,y) t , for set-cons, builds a set, and is merely an abbreviation for

{x} u y. We write a set using the {. . .} notation, e.g. {1,2,3}. Analogous to the list notation,

the set {1~ 2, 3} may be represented as scone(l , scons(2, scons(3, { }))). Other permutations,

such as scons(2, scons(1, sconsC3 , { }))), sconsC2 , 8cons(3, scone(l , { }))), etc., represent the

same set. We use the notation {h] t} to refer a non-empty set, one of whose elements is h and

the remainder of the set is t . Thus, {h I t} -= scons (h , t) -- {h} U t .

2.2 I n f o r m a l S e m a n t i c s

Operationally, equations are treated as rewrite rules oriented left to right, and a term is rewritten,

by innermost reduction, by matching it with the left-side of some rewrite rule using one-way

matching. SEL programs with equations alone, i.e., without subset rules, are intended to define

canoaical term-rewriting systems, i.e., confluent and terminating programs. Like other equational

languages [HO82], every variable on the right-side of an equation must be present on its left-side.

Operationally, subset rules are also oriented from left to right for rewriting, and a term is

reduced by innermost reduction by first matching it with the left-side of the rule. The matching

here is associative-commutative (or a-c) matching, where U is the a-c operator. For example,

when matching a term f({1, 2, 3}) with the left-side of a rule

~C(hlt}) _~ . . .

"~ This operator may be contrasted with Friedman and Wise's frons [FW80], which defines a multi-set that

turns into a list as elements are accessed.

197

all three matches for h and t must be considered, namely, {h *-- 1, t e- {2, 3}}, {h e- 2, t *-- {1, 3}},

and {h ~-- 3, t ~-- {1,2}}--recall that {1,2, 3} is represented as scons(1, scons(2, scons(S, { }))),

or equivalently as {1} U {2} U {3}. The right-side of the rule for f is then reduced for each of

these matches, and the union of the result for each match is defined as the value for f({1,2,3}).

Note that in taking this union duplicate elements would be eliminated (we mention in section

3.4.1 when this test for duplication can be avoided). As with equations, we require for subset

assertions that every variable on the right-side also appear on the left-side. However, the rewrite

rules derived from subset assertions need not be confluent.

Note that we use a-c matching even with the rewriting rules derived from equations. Because

we assume confluence, the result of rewriting is assumed to be independent of whicl~ match is

considered when using equations. Hence, only one successful match is considered, and the others

are ignored. Note also that our a-c matching does not use the idempotent property of u. Hence,

the matching of {1,2,3} with {h I t} cannot yield, for example, {h ~- l , t *- {1,2,3}}. However,

{1} can match {h] t}, yielding {h +- 1, t *- { }}. Finally, note that there are 2 n a-c matches

of an n-element set s with a term x U y (corresponding to the different possible subsets of s),

whereas there are only n matches of s with scons (x ,y) , or equivalently with {x I Y}. Both scens

and U have their uses, albeit with substantially different costs: the former is usually used for

iterating over all elerne,ts of a set, whereas the latter is usually used for iterating over all subsets

of a set. Although the complexity of a-c matching in general is NP-complete [BKN85], mast SEL

patterns in practice have very simple structure, with non-repeating variables, and hence can be

matched reasonably fast.

2.3 Examples

We now present examples to show the capabilities of the foregoing constructs for functional

programming.

A p p e n d :

Below is the SEL definition for the familiar LISP function append, and illustrates use of

equations.

append([],y) = y

append([h I t], Y) = [h I append(t , Y)]

?append([l, 21, [3, 4])

The result of evaluating the goal is the list [1 ,2 .3 .4] .

L is t - to-Set Convers ion :

The operation l i s t - t o - s e t stands for list-to-set conversion.

nst-to-s,t([])= { }
lis~'to-set([h I t]) = {h I list-to-set(t)}

198

Note tha t a similar operat ion set-to-list for set-to-list conversion, defined below, is not a valid

SEL program because the definition is not confluent.

set-to-llst({ })= []
set-to-list({h I t}) = [h I set-to-list(t)I

One might suspect tha t all equational rules tha t use sets as arguments on their left-sides are not

confluent. This is, however, not the case, as il lustrated by the next example.

Or :

The following function o r returns ~;rue if there is a t r u e element in the set; it returns f a l s e

if bo th elements of the set are f a l s e .

or({ }) = false

orC{true i t}) = tru.

or({false I t}) = or(t)

Notice tha t the second rule above does not use the variable t on its right-side. Such variables

may be replaced by a special ~anonymons" variable (.), which can match any term, similar to

Prolog [CM81]. Using this anonymous variable, the above rule becomes

orC{t~ue) _ }) = true

A more useful funct ion o r is one tha t returns f a l s e as long as there are no t r u e elements, e.g.,

o r ({ l , 2, 3}) = f a l s e ° Defining such an operat ion requires a primitive condit ional operat ion

cond(p,t ,e)

which returns the result of reducing t if p reduces to true~ otherwise (if p reduces to some

term that is other than true) it returns the result of reducing e. Note that such a conditional

cannot he expressed in term-rewrlting systems, because they cannot in general express inequality.

Henceforth, we assume tha t SEL has cond, which we also write using a more familiar syntax:

if p then t else eo

We can defne the revised or function in terms of the following membership function mere:

~em(h, {h I - }) = t r ~ e .

Note that terms such as mere(l, { }) and mere(l, {2, 3, 4}) are irreducible. The desired o r function

is:

or(s) = if mem(trus, s) then true else false.

The primitive conditional is also useful in defining other set operations, as illustrated in the next

exa~mple.

Se t D i f f e r e n c e :

dill({ },,)= { }

199

di~f(s,{ }) = s

diff({h I _ }, t)_ if mem(h,t) then { } else {h}

This example illustrates use of the subset rule. The different a-c matches of the actual parameter

set with the term {h I - } will effectively cause h to be bound to different elements of the set.

Set intersection can be defined similarly. However, set intersection can be defined without primi-

tive conditional as illustrated below.

Set In t e r sec t i on :

intersect({ } , ,) = { }
intersect(s,{ })= { }

intersect({h I _ },{h I _ }) ___ {h}

?intersect({l, 3, 5}, {3, 4})

The result of evaluating the goal is the set {3}.

Cross P r o d u c t :

prod({ },,)= { }
prod(s,{ })= { }

prod({x I- } , {u I - }) _D {[x lu]}

?prod({1,2}, {3,4})

The result of evaluating the goal is the set {[1 1 31, [1 I 4], [2 1 31, [2 l 4]}.

Re l a t i ve Set A b s t r a c t i o n :

We can define Turner's relative set abstraction construct, {f(x) Ix 6 S A p(x)}, as follows:

all-fp({ })= { }
all-fp({x [_ }) ___ if p(x) then {f(x)} else { }

The function all-fp produces the set of all f (x) where x is drawn from some given set S, such

that p(x) is true.

Jo in :

As can be seen from the foregoing definitions, SEL can be used to define the operators in the

relational algebra. The following rule shows how a simple form of relational join can be expressed.

jo in({ [x ,y] I _ },{ [y,z] I_ }) _D {[x,z]}

A more general join can also be expressed similarly.

All Solu t ions :

The all-solutions predicate c o l l e c t of some Prolog systems (see [N85] for details) may be

expressed with unusual brevity in SEL, as follows:

col lect (,) = {e}.

2o0

The result produced by c o ! l e e r is a singleton set whose element is the set of all solutions. For

example, the result of the term

?conec t (prod((1, 2}, (3, 4}))

is the set ({[1 t 3], [1 1 4], [2 l 3], [2 t 4]}}.

P e r m u t a t i o n s :

pe=s({ })= {[]}
per~s((~ t t)) ~_ a!str(x, pe=s(t))

distr(x,{ })= { }

distr(x, (Y i- }) -~ (Ix I Yl}
?perms((1, 2,3,4})

The function d i s t r expects a set of lists as its second argument. Its result is a set whose elements

are constructed by "consing" its first argument to each list in its second-argument set. The result

of evaluating the goal is the set of permutations {[1,2, 3, 4], [1, 2, 4, 3] , . . . , [4, 3, 2,1]}.

Four Queens P r o b l e m :

queens(col, safeset) = if eq(col,5) then safeset

else placequeen(col, {I, 2, 3, 4}, safeset)

placequeen(col, {row i - }, safeset) D

if safe([col I row], safesst)
then queens(col + 1, {[col I row]i safeset})

else { }

safe(It! i rl],(}) = t~e

,afe([cl I rl], {[c2 I r2] I e}) = (rl # r2) aria (abs(c, - o.) # abeCrl - r~-))
~a ,afe([cl I rl],s)

?queens(I, { })

The above example illustrates how a search may be specified. The algorithm places a queen on

each successiye column, beginning from column 1, as long as each new queen placed is safe with

respect to all queens in the preceding columns. A solution is found if a queen can be thus be

placed on all columns. The second argument to placequeen, viz., the set {1,2, 3, 4}, enumerates

the row positions in each column. If a particular row-column position is not safe, placequeen

returns the empty set { }, thereby pruning this line of search. The function sa fe specifies the

safety condition--note that SEL has the usual complement of arithmetic primitives.

The reader may have noted that several useful set operations, such as difference, intersection,

membership, e t c , are defined ~,itho,~ recursion. This is one of the strengths of a-c rewriting. We

assume that a SEL program defines a closed ,,orld [C78]. That is, a set is completely defined by

its subsets; there are no other elements in the set than the ones specified.

201

3. O p e r a t i o n a l S e m a n t i c s

We now formalize the operational semantics of SEL programs that we informally sketched in

section 2.2. This is expressed using two rewriting relations =~d and =~,~, the subscripts d and n

stand for 'deterministic' and 'nondeterministic' respectively. These two relations are defined over

the set of terms, and are mutually dependent.

3.1 The =~d a n d =~n re la t ions

Suppose ~ is a set of SEL program rules. In the following definition, program rules are enclosed

within ~]. The substitution 0 binds variables to terms. The relation x =ac Y means that z and

y are equal using associative-commutative equations; for example, a U (b U e) =ac (e U b) u a.

Below, rules 1-4 pertain to the =~d relation and rules 5-7 pertain to the =~n relation. The

relationship between these two relations is expressed by rules 8 and 9. Note that, in the following

rules, the symbol D stands for "logically implies," and should not be confused with the SEL

operation _ .

1. ~ s = t] E ~ ~ s ~ d t

2. 8 =~d t A U =ac 8 D U =~d t

3. a ~ d t D sO =~d tO

4. S =C, d t D y (. . . , s ) =~d f (. . . , t )

6. S =~n t A S =ac U ~ U =~n t

7. s =~n t D sO ::~n tO

8. s =~d t A u E t D s =~n {u}

9. s = ~ t D s =~d U{w : s = ~ w }

In addition, we have the following two rules for the u operator:

10. x U z =~d z

11. z U { } =~d z.

Def in i t ion 3.1: We say z is]~-reducible, or simply reducible (if ~ is understood), if there exists

a y such that z =~d Y or x = ~ y; otherwise we say z is irreducible.

Def in i t ion 3.2: We say that

s =~d! t

if term t is irreducible and related to s in the transitive closure of =~d, and obtained by using

innermos t reduction and giving priori ty to the ::~d reductions involving the U operator.

Note that the termination requirement guarantees such a t for any s. Also, prioritizing reductions

involving the U operator ensures that all argument sets will be free of duplicate elements.

202

D e f i n i t i o n 3.3: If 2 =>a! t, then t is referred to as the ~ d normal form of 2.

We in tend tha t the ~ a relation is confluent, i.e., if 2 =>a! t, then t is in tended to be unique (for

a given s). Similar to = ~ normal form, we also have the ==~n normal form of a term. The =~n

relation, however, need not be confluent, hence there can be several =~n normal forms of a term.

The primit ive condit ional cond can now be defined as follows:

12. p = ~ ! t r u e A t =~d t ~ D ¢ond(p, t, e) ~ t ' .

13. p =~,'d! t r u e A t =~n t I D cond(p,t,e) :=~a t ~.

14. p =~d! P' A pr ~ t r u e A e =~d el D cond(p, t, e) =>d e'.

15. p ~d! p' A p' ~ t rae A e =~n e' D cond(p,t,e) =~n e'.

D e f i n i t i o n 3.4: The operational semantics of a SEL term s is its ~ d normal form.

Thus the value computed for a goal

? s

is its = ~ normal form. Sometimes one in interested in obta ining any one element of the set. This

can be stated in SEL using a special syntax at the top-level, such as

any? s

which computes a t such tha t {t} is a =~n normal form of s.

D e f i n i t i o n 3.5: We say tha t an operat ion f distributes over nondeterminism in the i-th argument

iff there is a program rule

f(. . . . x U y , . . .) = f (. . . , X , . o .) U f(. . . , y , . ..)

where the i- th a rgument of f is the one shown above.

When an operat ion distr ibutes over nondeterminism in a part icular argument , it is pern,issible

to compute with the individual elements of the set corresponding to this argument , rather than

the entire set.

3.2 C o r r e c t n e s s

The correctness of the operational semantics defined in the previous subsection is established by

showing tha t the normal forms computed using the ~ d and =~,~ are correct with respect to the

classical equality and subse t relations. Note tha t these two relations define only one step of the

reduction process. Suppose R is a set of SEL program rules. We assume tha t the axiom system

r reflects our closed world assumption about the rules of ~ , as follows:

(i) s =~a t implies r ~ • = t, and

(ii) s =~n t implies r ~ s D t.

The expression F ~ s = t means that the universally quantified formula s = t is a logical

consequence of r . Similarly, r ~ s D t means that the universally quantified formula a _ t is a

logical consequence of r .

203

T h e o r e m 3.1: Suppose R is a set of SEL program rules, and the =~a and =~, relations axe as

defined in the previous subsection, and I' is an axiom system as defined above. Then

(i) s =~d! t implies F ~ s = t, and

(ii) s = ~ ! t implies F ~ t _D 8.

The proof is straightforward, and follows from the transit ivity of = and D_. The above is a

soundness theorem as it says that every computed solution is a correct solution according to

the logical semantics. Completeness follows from the fact that programs terminate and the =~d

normal form is unique.

Before we proceed with examples, the following theorems may be noted:

T h e o r e m 3.2: =~d is terminating if and only if =~, is terminating.

T h e o r e m 3.3: =~d is terminating if there is well-founded ordering >- such that s =>d t implies

s > - t .

T h e o r e m 3 . 4 : 8 =~! U {t : s =~,,! t}.

In section 4.2, we discuss how the well-founded ordering >- referred to in theorem 3.3 can be

obtained.

3.3 E x a m p l e s

We present two examples illustrating the operational semantics. We assume that the reader is

familiar with computation using equations; we therefore concentrate on the novel aspects of the

language, namely, sets and a-c matching.

E x a m p l e 1:

Consider the cross product example from section 2.3, which we reproduce here for conve-

nience.

prod({ } , s) = { }
prod(s,{ })----{ }

prod({x l Y},{u Iv}) ___ {Ix l u]}
?prod({t, 2}, {3, 4})

Suppose the top-level goal were

any? prod({1,2}, {3, 4})

where we are interested in any one member of the cross product set. The above goal might be

represented as

prod(scons(l, ,cons(2, { })), scons(3, scons(4, { }))).

There are two possible matches of s cons (l , s cons (2 , { })) with the pat tern {x l Y}, namely

{x ~ 1,y ~-- scons(2 ,{ })}, and {x *- 2 ,y *-- scons(1,{ })}. Similarly there are two possible

204

matches of scons(3, scons(4,{ })) with the pattern {u Iv}. Because we specify a =~,~ reduction

in the top-level goal, any one match for the variables x . y . u and v is acceptable. Thus the next

step in the reduction, following rules 5 and 7 of the operational semantics, might be

~ . {[113]},

which is not further reducible. Other ~ . . o r m ~ / o r m s are {[1] 4]), {[21 3]), and {[2]4]).
Hence, the response to the top-level goal

?prod({1,2}, {3, 4})

would be the entire set {[I 1 3], [1 1 4], [2] 3], [2 I 4]}, which corresponds to the =~d reduction of

the above goal, following rule 9 of the operational semantics.

E x a m p l e 2:

Consider the permutations example from section 2.3:

p.r=.({ }) = {[]}

p . = . ({ x i t)) _~ distr(x, per=.(t))

d i . tr (~ , {)) = { }

di .tr(~, {Y t-)) --~ {[~ I Y]}
?p .= . ({ I , 2, 3, 4))

Suppose once again we are interested in any one answer, and specify this through a top-level goal

any? perms({1,2, 3}).

The following is one possible sequence of =~. reductions, where one a-c match is considered at

each recursive call of perms:

perms(scons(1, scons(2, scone(3, { }))))

~ . d i s t r (1 ,pe rms(scons (2 , scons(3, { }))))

=~. distr(1, distr(2, perms (scons(3, { }))))

~ . d i s t r (1 , d i s t r (2 , d i s t r (3 , p e r m s ({ }))))

~n distr(1, disfr(2, d i s t r (3 , {[]})))

=~. d i s t r (1 , d i s t r (2 , {[3]}))

~r~ d is t r (t , {[2, 3]})

o . {[1,2,3]}

3.4 Discuss ion

3.4.1 N o n d e t e r m i n i s m

Note that~ in the second step of the above derivation, we did not compute the entire set for

perms(scons(2, scons(3, { }))). The reason that it is valid to compute one element from this set

205

is because the d i s t r definition distributes over nondeterminism. Although we did not explicitly

include an equation stating that d i s t r distributes over nondeterminism, we assume that this is

the case for all definitions unless otherwise specified. There are, however, cases where we do not

wish an operation to distribute over nondeterminism. The functions perms, safe , or, and mere

are examples. The following function s i ze which determines the number of elements in a set is

another example.

}) = 0

si eC{h I t}) = i + ,izeCt)

Functions that compute some aggregate property of a set usually do not distribute over nonde-

terminism. Functions, such as prod, i n t e r s e c t , etc., that are defined in terms of the elements

of the set, do distribute over nondeterminism.

We assume that SEL is extended with suitable syntax so that a programmer can specify

which operations do not distribute over nondeterminism. This information could.then be used

by the SEL interpreter to decide when it is permissible to compute with the individual elements

of an argument set rather than with the entire set. Because of the termination requirement, we

can compute all elements of a set by depth-first search and backtracking. When an operation

distributes over nondeterminism in a particular argument, it is not necessary to check for duplicate

elements in the set computed for this argument. Instead, the operation can be applied to each

element of the multi-set, and the resulting multi-set can be propagated upward. In many practical

cases, duplications do not occur, hence the absence of a check can lead to faster execution.

3.4.2 O u t e r m o s t R e d u c t i o n

When computing with sets in SEL, although innermost reduction is a sound reduction strategy,

outermost reduction can lead to early termination in some cases. Suppose that, in evaluating

some term f(r) , we have found r , , r 2 , . . . , r , such that r ::~,! ri . Suppose further that there are

more such possibilities, due to more a-c matches or more rules that have not been looked at. We

can then represent the current state of the value of r by

{r , , r2 r . } U z ,

where z is a variable. Now, if there is a rule, f (. . .) , that permits

U =)

to be reduced to some term in which = does not appear, it is then not necessary to continue to

look for more : ~ , reductions for r. This gives a way to stop a nondeterministic search, and is

analogous to Prolog's ~cut" [CMSl], but with clean semantics. An example of this kind of early

termination arises when evaluating the or function (of section 2.3), when one of the elements of

its input set is t rue . A more direct example is the function ge-k, shown below, which checks if

a set has at least k elements:

ge-k({rl,r2 rk}Ux)=true.

206

Outermost reduction, however, is not always a sound strategy when computing with sets. For

example, in the case of the function size, which does not distribute over nondeterminism, out-

ermost reduction is sound only if the set corresponding to this argument has distinct elements.

This requirement of distinct elements is a sufficient but not necessary condition for the soundness

of outermost reduction. Note that the above equation is valid even if x had duplicates. It may

be convenient to use such equations in a general context, and not just for early termination of a

nondeterministic search.

4. Confluence and Termination

We make some comments about how confluence and termination can be proven for programs in

SEL. The methods are similar to those for standard term rewriting systems. However, since SEL

programs are not conventional term rewriting systems, some modifications are necessary. The

differences may be illustrated by an example. Consider the following program:

pairs({x g {y L z}}) 2 {!x I Y]}.

The query ?pairs ({a, b, c, d}) reduces to

{[a 1 b], [a I c], [a I d], [b I a], [b I c], [b I d], ...}.

That is, the rule

pairs({x L {Y I z}}) O_ {Ix I Y]}

is applied many different times in different ways in a single rewriting step--this is not possible in

an ordinary term rewriting system. Another problem is the conditional operator, which cannot

be expressed in mR ordinary term rewriting system because it uses a kind of negation by failure

[C78].

4.1 Confluence

There may be methods of showing confluence of SEL programs based on critical pairs, as in the

Knuth-Bendix method [KBT0], but we are not aware of any as yet. We propose a method based

on the semantic confluence ideas of Plaisted [P85]. The idea is as follows: Suppose we define a

sorting program in SEL or some other rewriting language, and we can show that the program is

correct, i.e., that the output is always equal to a sorted form of the input. (This can often be done

using program verification methods.) Suppose also that we can show by syntactic means that the

output is a list of elements. Since there is only one list of elements that is equal to a sorted form

of the input, the output must be unique. Therefore the program is confluent. Thus, the general

idea is largely based on semantics (correctness) rather than syntax. In addition, the method is

largely insensitive to the particular method of rewriting being used, and so seems applicable to

SEL programs as well as to ordinary term rewriting systems.

207

4.2 T e r m i n a t i o n

We express SEL terms using the singleton set and binary set union operators, so that {a, b, c}

would be expressed as {a} U ({b} U {¢})--note that any SEL term can be put in this form. Now,

since U is an associative-commutative operator, it is convenient to express terms in a ~flattened"

form; that is, {a} u ({b} U {c}) is expressed as U({a}, {b}, {c}). In this way we introduce a union

operator of a variable number of arguments. Methods of proving termination of term rewriting

systems involving one or more associative-commutative (a-c) operator were given in Bachmair and

Plalsted [BP85], and also in Bachmair and Dershowitz [BD86]. These methods can be adapted

to SEL progr~m.q. The idea is to show that if s :~d t then s >- t in some well founded ordering

>-. For this ordering we choose the associative path ordering of Bachmair and Plaisted [BP85].

To order two terms s and t, we flatten them to obtain s ' and t'. Then we compare and s' and t '

in the recursive path ordering of Dershowitz [D82]. If we use a precedence ordering on function

symbols such that U is minimal in this ordering, then this gives a termination ordering according

to results in Bachmair and Plaisted [BP85]. Now, to show that if s =~d t then s >- t in this

ordering, it suffices to show that if s = ~ . d t h e n s >- t in this ordering, because of properties of

the recursive path ordering. Without going into details, we have the following result:

T h e o r e m 4.1. Suppose we are using a precedence ordering on function symbols in which the

a-c operator U is minimal. Let us define ordering >- so that s >- t if s ' >-rpo t t where s' and t l

are the flattened forms of s and t and >-rpo is the recursive path ordering using this precedence

ordering on function symbols. Then a SEL program ~ (without conditionals) is terminating if

the following conditions are true:

1. I f s = t i s i n ~ t h e n s > - t .

2. If s D_ t is in)~ then s >- t.

To deal with conditionals, we need to use another method, because conditionals are not termi-

nating in the usual sense of the term. Consider the following program:

fact(x) = if (x = O) then I else x * fact(x - I).

The i f then e l s e connective presupposes that the i f part is evaluated first. However, in usual

term rewriting, any subterm may be reduced. Thus, if we always choose to evaluate the e l s e

part first, this definition of f a c t will not terminate. To avoid this problem, we reformulate the

above program as follows:

fact(x) = g(x = O, x)

g (t r u e , x) = 1

g (f a l s e . x) -- x * f a c t (x - 1)

Now, no matter what evaluation strategy is chosen, this program is terminating. This same

method of reformulating conditionals can be used in SEL, and then it is at least theoretically

possible to prove termination of SEL programs involving conditionals, using conventional methods.

208

5. Conc lus ions

We have proposed a language based on equations and sets for functional programming. We have

shown several ex~nples of operations in this language, and hope that the reader is convinced

of its usefulness. The need for a set construct has been recognized by a number of researchers

in the fields of functional and logic programming [T81, R84, N85, DFP86, JS86, P86]. Existing

approaches fall short of an ideal solution in that sets are not treated as first class objects in

the language. Our approach does not compromise the basic properties of sets, yet is amenable

to a reasonably efficient execution. The heart of our approach lies in associative-commutative

rewriting, which allows many useful definitions to be stated in a non-recursive manner. We now

review some of our major assumptions, potential limitations, ~and possible extensions.

One major requirement we have made in our semantics is termination. Although this is

a fairly common assumption in term-rewrlting systems--O'DonneU's equational language is an

exception [HO82]--it is less usual in a programming language. Nevertheless, the class of termi-

nating programs is interesting because it includes many useful applications. In this paper, we

have sketched an approach to proving the termination of SEL programs--for a thorough survey

of methods, see [D85]. Another requirement we have placed on the language is that equational

rules must be confluent. Syntactic checks for confluence have been considered fairly extensively in

the l i terature [H80, HO80, HO82]. Our approach is based on semantic confluence [P85], extended

suitably for handling the associative-commutative U operator. We have not presented the details

of this approach in this paper.

We can relax the termination requirement without causing any change in our programming

paradigm. Thus, we can write definitions such as

intsCn) "--- consCn, intaCn + I))

to define the infinite sequence of integers. However, the semantics of our language would become

more complicated~ we might have to give up a simple logical semantics in favor of a complex deno-

rational semantics. Also, in a sequential implementation, the search for solutions by a depth-first

search would not guarantee completeness because some reduction sequence might not terminate;

a more space-consuming breadth-flrst search would be necessary.

As we wished to concentrate on semantic issues in this paper, we have not discussed the

implementation of our proposed language. The reader might easily see that, in a sequential

implementation, simplification using equations and backtracking to compute elements of a set

can be implemented straightforwardly. The use of a-c matching in accessing elements of a set in

SEL can also be made e~cient because most definitions use the 8con8 operator, rather than the

more general U.

Perhaps the major source of ine~ciency lies in ensuring that sets have distinct elements; but

here too, hashing can be used to minimize the search for duplicate elements. It should be noted

that multi-sets are a correct implementation for functions that distribute over nondetermJnism,

209

and therefore the need to test for duplicate elements is avoided in many cases.

It is easy to extract parallelism in the language SEL because it is a pure declarative language

[CK81]. Both and and or parallelism is possible; the former corresponds to evaluating multiple

arguments to operators (except in the case of cona~, and the latter corresponds to different =~n

reductions. Extracting and parallelism in SEL does not incur the problems of a logic program-

ming language because the different and processes have fully instantiated arguments. Similarly,

inheriting the parent environment while extracting or parallelism is also easier; the parent envi-

ronment cannot be altered by a child or process through the binding of logical variables (there are

no logical variables in SEL). With parallel execution, it becomes feasible to maintain completeness

even when some reduction sequence does not terminate.

We have limited our language to being first-order, and also limited the sets to be defined

by enumeration of elements according a recursive rule, i.e., we do not allow a set to be defined

as the collection of solutions of a set of equations, as, for example, in [DFP86, R84, JS86]. In

other words, we have not allowed narrowing [DP85, R85] in this language; we are nevertheless

able to obtain much of the benefits of narrowing through our restricted form of nondeterministic

evaluation. We are at present investigating ways of including these additional capabilities in our

language. We are also planning an implementation of these ideas.

A c k n o w l e d g m e n t s

We thank the anonymous referees for their comments and suggestions.

References

[B83]

[BD85]

[BKN85]

[BP851

[c78]

[CK81]

A. Bundy, "The Computer Modelling of Mathematical Reasoning," Academic Press,

New York, 1983.

L. Bachmair and N. Dershowitz, "Commutation, transformation, and temination,"

In Proe. of 8th Int'l CADE, Oxford, Springer Lecture Notes in Computer Science,

230, pp. 5-20.

D. Benanav, D. Kaput, and P. Narendran, "On the complexity of matching prob-

lems," In Rewriting Techniques and Applications, pp. 41%429, Dijon, France, May

1985~

L. Baehmair and D.A. Plaisted, "Associative Path Ordering," J. of Symbolic Com-

putation, 1, pp. 329-349.

K. L. Clark, "Negation as Failure," In Logic and Data Bases, Ed. H. Gallalre and

J. Minker, Plenum Press, New York, 1978, pp. 293-322.

J. S. Conery and D. F. Kibler, "Parallel Interpretation of Logic Programs," In Conf.

Functional Prog. Lang. and Comp. Arch., ACM, 1981, pp. 163-170.

210

[CM81]

[D82]

[D85]

[DP85]

[DFP86]

[FW80]

[n8o]

[iO80]

[Ho82]

[JS86]

[KB70]

[K82]

[N85]

[085]
[P85]

[P86]

W. F. Clocksin and C. S. Mellish, Programming in Prolog. Springer-Verlag, New

York, 1981.

N. Dershowitz, "Orderings for term-rewriting systems," Theoretical Computer Sci-

ertce, 17, pp. 279-301.

N. Dershowitz, "Termination of Rewriting," Technical report UIUCDCS-R-85-1220,

University of Illinois at Urbana-Champaign, August 1985.

N. Dershowitz and D. A. Plaisted, "Applicative Programming cure Logic Program-

ruing," In 1985 Syrup. on Logic Programming, Boston, pp. 54-66.

3. Daxlington, A.J. Field, and H. Pull, ~Unification of Functional and Logic Lan-

guages," In DeGroot and Lindstrom (eds.), Logic Programming, Relations, Functions

and Equations, pp. 37-70, Prentice-Hall, 1986.

D.P. Friedman and D.S. Wise, "An Indeterminate Constructor for Applicative Pro-

gramming," In 7th ACM POPL, pp. 245-250, Las Vegas, January 1980.

G. Huet, "Confluent Reductions: abstract properties and applications to term rewrit-

ing systems," J. ACM, 27, 1980, pp. 797-821.

G. Huet and D. Oppen, "Equations and Rewrite Rules: a Survey," In Formal Lan-

guages: Perspectives and Open Problems, R. Book (ed.), Academic Press, New York

1980.

C. Mo Hoffman and M. J. O'Donnell, "Programming with Equations," ACM

TOPLAS 4, No. 1 (January 1982) pp. 83-112.

B. Jayaraman and F.S.K. Silbermann, "Equations, Sets, and Reduction Semantics

for Functional and Logic Programming," In 1986 ACM Symposium on LISP and

Functional Programming, pp. 320-331, Boston, 1986.

D. E. Knuth and P. Bendix, "Simple Word Problems in Universal Algebras," In

Computational Problems in Abstract Algebra, J. Leech (ed.), Pergamon Press, New

York, pp. 263-297, 1970.

R. M. Keller, "FEL (Function Equation Language) Programmer's Guide," AMPS

Technical Memo 7, Department of Computer Science, University of Utah, April 1982.

L. Naish, ~All Solutions Predicates in Prolog," In Syrup. on Logic Programming,

Boston, 1985, pp. 73-77.

M. J. O'Donnell, "Equational logic as a programming language," M.I.T. Press, 1985.

D.A. Plaisted, ~Semantic Confluence Tests and Completion Methods," Information

and Control, 65, pp. 182-215, 1985.

D.A. Plaisted, "Nondeterminism by Assoclative-Commutative Rewriting," Internal

Report, Department of Computer Science, University of North Carolina, Chapel Hill,

March 1986, 30 pages.

211

[R84]

[RSS]

[T81]

J. A. Robinson, "New Generation Knowledge Processing: Syracuse University Par-

allel Expression Reduction," First Annual Progress Report, December 1984.

U. S. Reddy, "Narrowing as the Operational Semantics of Functional Languages,"

In ~985 Syrup. on Logic Programming, Boston, 1985, pp. 138-151.

D. A. Turner, "The semantic elegance of applicative languages," In ACM Syrup. on

Func. Prog. and Comp. Arch., New Hampshire, October, 1981, pp. 85-92.

