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Abstract It is shown how to derive, following the principles of the SMoLCS methodology, a family of 

calculi, suitable for the specification of concurrent systems and languages. A calculus consists basically of 

a language for expressing behaviours and their parallel composition together with the rewriting rules 

defining their semantics; formally it is a calculus associated to an algebraic parameterized specification: for 

every choice of the parameters we fix one calculus in the family. The distinguishing feature of our calculi 

is that the combinators for behaviours include functional abstraction and application, so that behaviours 

can be passed as arguments and obtained as results of functions; in general behaviours can be seen just as 

a data type and in this sense our calculi can be higher order calculi with behaviours as fast class objects. 

0 INTRODUCTION 

0.1 Generalities on the SMoLCS approach 

SMoLCS is an integrated methodology for the specification of concurrent systems and languages 

developed mainly by the authors (JAR1, AR3]), in cooperation with M.Wirsing ([AMRW, ARWl]). 

The typical fields of application of SMoLCS are large systems, multilevel architectures built from systems 

with different granularity, complex concurrent languages with modules and interference between 

sequential and concurrent features. 

For the specification of concurrent systems, SMoLCS has been applied to specify the internode 

communication architecture of the project Cnet (a local net of workstations) (see [AMRZ1, AMRZ2]). 

As a method for the specification of languages, it is the methodology chosen for the formal definition of 

the dynamic semantics of Ada ® in the CEC-MAP project ([AGMRZ, CRAI-DDC]). 

The roots of SMoLCS, both for inspiration and technical ideas, are in the work of Milner on CCS and 

SCCS [M1, M2], of Plotldn [P] on SOS, of Broy and Wirsing on partial data types [BW1, BW2] and of 

Wirsing and Sannella on algebraic specification languages [W, SW]. On these roots SMoLCS has grown 

into a precise coherent framework, whose distinguishing features we briefly summarize. 

The specification of a system is obtained as an instantiation of a parameterized data type, following a 

schema based on an operational intuition of a process as a labelled transition system and of a concurrent 

system as resulting from the composition of the component subsystems. The abstraction from the 
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operational intuition is obtained by a schema ensuring the existence of an observational semantics, 

represented by an algebra. 

By concurrent system we mean a labelled transition system built from some subcomponents: these 

subcomponents are of two kinds: active, called process~, and passive, called global objects. Each active 

subcomponent is in turn modelled as a labelled transition system. A transition represents an action and the 

difference between the two kinds of subcomponents is that the passive ones cannot perform any transition 

by themselves; they change their states only as a consequence of a process transition. 

A state of a concurrent system is modelled as a set of states corresponding to its subcomponents; the 

transitions are inferred from the transitions of the active subcomponents in three steDs: synchronizatig~, 

narallelism, monitoring. This SMoLCS schema can be expressed in an algebraic parameterized way so 

that every instantiation on the appropriate parameters, defining the information for synchronization, 

parallelism and monitoring, is an abstract data type (see [AMRW, ARW3]). 

The definition of a SMoLCS specification of a system is modular and hierarchical. More precisely every 

composition step is a parameterized abstract data type specification: for example the synchronization step 

STS takes as parameters the specification of a transition system PROC-SYST (representing the processes) 

and an algebraic specification GOBJ (representing the global objects) and gives a labelled transition 

system STS(PROC-SYST, GOBJ) whose transitions represent the synchronous interactions between 

processes. 

Together with an initial algebra semantics, corresponding to an operational semantics, the SMoLCS 

approach supports, with explicit linguistic constructs, the definition of an observational semantics again 

via a parameterized abstract data type specification, where the parameters correspond to a formalization of 

the observations. Every instantiation of such schema admits a terminal model, called concurrent algebra, 

in which two states of the concurrent system are equivalent if and only if they satisfy the same 

observations; moreover every subcomponent of the state gets an observational semantics by closure with 

respect to state contexts (see [ARWl] for foundations). Note that this is just an existential definition, to 

guarantee consistency; for any instantiation such observational semantics has to be characterized more 

explicitly, by suitable equivalences on the derivation trees associated to states and subeomponents. The 

above schema permits to formalize observationally various semantics as inpuVoutput, streams semantics, 

strong equivalence, classes of bisimulation equivalences and test semantics. 

The SMoLCS semantic d..efinition of a langu.a.g~ is compositional (i.e. is a homomorphism from a syntax 

algebra into a semantic algebra). It is done in two steps (see [AR1]): in the first a set of clauses, called 

denotational clauses, one for each syntactic clause, defines a translation into an intermediate language, 

with appropriate combinators for handling concurrency; in the second, a SMoLCS specification is given 

of the abstract concurrent system corresponding to program executions, with its semantics defined by an 

appropriate concurrent algebra. The denotational clauses can be given both in the Oxford continuation 

style ([AR1]) and in the VDM-like direct semantic style ([AR2]) also for a comparison; but note that they 

can be seen just as algebraic axioms, that the general semantic definition is just the specification of an 

abstract data type. 
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0.2 Concurrent calculi 

The main aim of SMoLCS is to provide a precise formal framework which can be adapted to the level of 

the system to be specified. Then, since the overall approach is that of partial abstract data types [BW2], in 

order to derive the properties of the specified objects we can use an adaptation of the usual machinery of 

partial abstract data type specifications. This machinery consists mainly of the proof techniques associated 

to a specification seen as a logical rewriting system and of the associated tools. 

In particular for the specifications we use in SMoLCS, an initial model always exists where equality and 

definedness coincide with provable equality and definedness. Hence a calculus is naturally associated to 

each of our specifications; because of the form of the axioms, it can be seen that this calculus corresponds 

to an operational semantics for the specified concurrent system. 

As for the tools a specific rapid prototyping tool has been developed for SMoLCS ([Mo]) which is a 

variation of the RAP system [H], specially tailored to the structure of SMoLCS. It consists of a 

concurrent symbolic intepreter, which can derive transitions for a specified concurrent system, and of a 

translator which, taken the denotational clauses specifying the semantics of a language, can convert a 

source program into a program written in the intermediate concurrent language. 

In the above sense a SMoLCS calculus is the one associated to a SMoLCS specification. In the ~ t ~  

of the paper we illustrate this point of view by means of an example, which also introduces the use of 

processes as data types and of functional combinators. 

Correspondingly to the parameterization principle of SMoLCS, within a schema for defining 

synchronization, parallelism and monitoring, one can define for each specification appropriate 

combinators on processes. This possibility enhances flexibility and allows to write high level 

specifications, without the need of, so to speak, translating into a fixed language. However all this 

freedom has its own disadvantages, especially for deriving properties of the specified system. Indeed, to 

this end it is much easier to have a fixed set of combinators, with a well established set of properties. We 

propose in this paper a balance between these two attitudes, consisting in a family of calculi, where we 

have a fixed set of combinators for describing a kind of basic processes, called behaviours; but where 

there is room for fixing some parameters related to various data structures and to decisions about the 

interactions between processes. The result is a parameterized calculus, which is introduced in the 

12~ of the paper. The two essential features of this calculus are the use of functional combinators and the 

possibility of having processes as data types. One of these calculi has been used as the intermediate 

language in the two steps SMoLCS definition of Ada [CRAI-DDC], a project where we have learnt, for 

example, that the use of functional combinators is essential for giving denotations to procedures as 

functions from values into processes, and for keeping high-level and modular the definition 

Then in the third Dart we begin to study the properties of our combinators w.r.t, a basic observational 

equivalence, corresponding to the strong bisimulation equivalence of Milner and Park. Under some 

restrictions, various properties of combinators are shown, nicely corresponding to our intuition. But all 

the given properties hold without restrictions for the full calculi and a generalized notion of strong 

equivalence; the complete theory will appear in a more technical paper. 
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1 SMoLCS S P E C I F I C A T I O N S  AND CALCUL I  

T e c h n i c a l  prel iminaries .  In the following we refer to [BW2] for a precise definition of the concepts 

related to abstract data type techniques; but let us give some informal expIanations. By an abstract data 

type specification we mean a signature and a set of axioms. Since we use a partial data type approach, i.e. 

the value of an operation can be undefined for some arguments, also definedness predicate symbols are 

used, one for each sort, to say that an object is defined; all are indicated by D (the sorts can be deduced 

from the context). Axioms are always first order formulas in positive conditional form, i.e. of the form 

A e i ~ e, where e can have form either D(t) or t 1 = t 2 and e i can have form either D(t i) or 
i 

(D(ti) A t i = ti' ). It is assumed that every axiom is implicitly universally quantified over all variables, but 

variables can only range over defined values in the interpretation. Terms and axioms are interpreted in 

partial algebras, which are structures consisting of a set of carriers, one for each sort in the signature, and 

a set of (.partial) functions corresponding to the interpretations of the operation symbols (including the 

definedness predicates, which are assumed to be total, i.e. either true or false on every element). There 

are two other important points about interpretation: first, t 1 = t 2 is true iff either both t 1 and t 2 are 

defined and equal or both are undefined; second, the functions are strict, i.e. if Op(tl,...,tn) is defined, 

then all t I ..... t n are defined. 

In the following we will use some notations which we now explain. 

Let S, O, F be respectively a set of sorts, of operations and of positive conditional axioms and 

A = (ZA,FA), B = (ZB,FB) be two specifications: then 

- sorts Sopns  O axioms F denotes the specification having for signature (S,O) and axioms F; 

- A+B denotes the specification having for signature (Sorts(ZA) u Sorts(ZB),Opns(ZA) u Opns(ZB)) 

and for axioms FAU FB; 

- enrich A by sorts S opns O axioms F denotes the specification 

A + ( sorts S u Sorts(ZA) opns O u Opns(Z A) axioms F ); 

- A[srtTsrt] denotes the specification A where the sort srt is renamed srt'. 

A r u n n i n g  example.  By means of a concrete example we first illustrate the main features of a 

SMoLCS specification, i.e. of a specification of a concurrent system obtained by instantiating the 

SMoLCS parameterized schema. 

The example is also meant to show how processes can be considered as data and later will be extended to 

handle parameterized process types, by introducing an algebraic version of function spaces. 

Finally we will discuss how a concurrent calculus is associated to the given specification. 

As an example we consider the formal description of a class of simple concurrent architectures, indicated 

by PD. Each architecture consists of (a varying number of) processes and (a fixed number) of buffers 

shared among processes. Each process has a local (private) memory and an instruction part defining its 

activity. Processes can communicate between them by exchanging messages in a synchronized way 

through channels (handshaking communication) and by writing and reading the buffers. The exchanged 

messages and the buffer contents are just values; values are natural numbers and also the processes 
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themselves. Processes execute their instructions in a completely free parallel way, except when they try to 

communicate between them or to get access to the buffers (several contemporaneous accesses to the same 

buffer are not allowed). 

First we define processes and then show how to compose them into concurrent systems representing PD 

architectures. 

1.1 Processes 

A set of processes is described by an algebraic (labelled) transition system. An algebraic transition system 

is an algebraic specification with two sorts, state (the states of the system) and flag (the labels), and a 

boolean operation [] ..... [] > 0 :  state x flag x state -~ bool defining the system transitions. In the 

following the transitions will be defined by sets of axiom schemata of the form 

" c o n d D s  f >s '=  true " 

to be interpreted: if the condition cond (a conjunction of equations) is true, then the transition s ,,f -> s' 

belongs to the system. Notation: s---f--f> s' = true is usually written s ( >  s'. 

It is important to note that a transition has the following intuitive meaning: a process in a state s has the 

capability of moving to a state s' by an action whose interaction with the external environment is 

represented by the flag f; hence f is conveying both information on the conditions of the environment 

which allow the capability to become effective and on the transformation of the environment produced by 

the execution of that action. This meaning of Iabelled transitions has now become classical after its use in 

CCS [Mt,  M2] and in SOS [P]; we will now illustrate it by few examples. A capability of reading the 

content of a shared buffer by a process pr can be written as 
pr READBI~(b,v)  .>pf 

where b is a buffer identifier and v a value. 

Note that, as it will be defined later in the synchronization step, this capability will become effective only 

in an external environment where the content of the buffer b is exactly the value v. 

A capability of writing on a shared buffer by a process pr can be written as 
pr ,,,, WRITEBUF(b,v-)-->pr' 

where b is a buffer identifier and v a value. 

Analogously we can express the well known capabilities of handshake communication 

pr -,,-SEND(c'v) >pr' (sending) and pr ~REC(c'v) >pr' (receiving) 

where c is a channel identifier and v a value. 

An example of conditional rule is 

pr 1 - f > pr 1' D pr I ; pr 2----f--f > Pr l ' ;  pr 2 

which defines, inductively, the capabilities of a process executing the concatenation of two statements. 

Example.  As an example of algebraic transition system we give PD-PROC, which describes the PD 

processes, mentioned before. 

The s~tes of PD-PROC are defined by the following algebraic specification, which is an example of 

recursive specification. The use of recursive aigebralc specifications is quite natural, when trying to give 

specifications in a modular way. For example in the following specification we first say that processes are 
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couples of  instructions and local memories; after that we define local memories as finite maps from 

locations into values and then we say that values consists of  processes as data and of  natural numbers. 

Since we use a recursive definition, we expect that the resulting specification (signature and axioms) is in 

some sense, a well determinated fixpoint of  the transformation associated to the definition. It is not 

difficult to see that, under some natural conditions, such fixpoint exists. For a more technical discussion 

we refer to the Appendix 1, where also a non recursive version ( i.e. the explicit fixpoint) of the following 

specification is given. 

As it should be clear from the intuitive explanations, given two specifications ELEMI,  ELEM2 with main 

sorts elem 1 and etem2, PROD(ELEM1,ELEM2) indicates the parametric specification of  the cartesian 

products with main sort prod(eleml,elem2) and operations < 71, Fq> (pair constructor) and Sel l ,  Sel 2 

(component selectors); MAP(ELEM 1,ELEM2) indicates the parametric specificatiqn of finite maps with 

main sort map(eleml,elem2) and operations [][ E]/[]] (substitution) and 71(D) (application). LOC 

(locations), BUFID and CHID (buffer and channel identifiers) are specifications which are not further 

defined here. The main sort of  a specification is just a sort of the specification, used in defining parametric 

specifications. The use of the D's indicates that some operations have an infix syntax; "all total" stands 

for the set of  axioms having form D(Opn(x I ..... Xn) ) requiring the totality of all operations appearing in 

the opns part. 
PROC = enrich PROD(INSTR,LMEM)[proc/prod(instr,lmem)] by 

o p n s  Nil: --> proc 
a x i o m s  • ( N i l )  

LMEM = MAPfLOC,VALUE)[lmem/map(loc,value)] 

VALUE = enrich PROC + NAT by 
sor t s  value 
o p n s  Pval: proc --~ value 

Nval: nat --> value 
{Op: value x ... × value ---> value I Op: nat x ... x nat --> nat ~ Sig(NAT) } 

a x i o m s  D(Pval(pr)) D(Nval(n)) 
{Op(Nval(nl),...,Nval(nk))-- Nval(Op(nl,...,nk) ) lop: nat × ... x nat --) nat ~ Sig(NAT) } 

INSTR ~ enrich LOC + VALUE + BUFID + CHID by 
sorts  instr 
o p n s  1 Writebuf, Readbuf: loc × build ~ instr 

2 Send, Rec: loc × chid ---> instr 
3 Skip: --) instr 

4 Start: proc ---) inset 
5 [] ; D, [] + E]: instr x instr --) instr 
6 While D ~ 0 DoI'q: loc x instr --> instr 
7 Seq-Instrl: ... ---> instr 

7+n Seq-Instrn: ... ---> instr 
ax ioms  "all total" 

i l ; ( i 2 ;  i3) - - ( i l ;  i 2 ) ; i  3 Skip; i =  i 

i I + i 2 m i 2 + i l  i l+(i2 + i3) " (i 1+i2) +i 3. 
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Comments. 

1. Writing the content of a cell of  the local memory in a buffer and reading the content of a buffer 

together with storing it in a cell of the local memory (buffers contain values). 

2. Sending and receiving messages (just values) through channels. 

3. Skip is the usual nuU instruction. 

4. Creation of a new process. 

5. Sequential composition and nondeterministic choice. 

6. While the content of the location is different from 0 execute the given instrucion. 

7,.,7~-n. Sequential instruction, i.e. instructions whose executions do not require either interactions with 

other processes or with the buffers. 

Note that the processes can store into the buffers or into the local memory and exchange between them 

other processes because a value can be a process. En¢t of ¢~mments. 

Now we give the specification of the transition system of PD processes, indicated by PD-PROC. The 

flags of PD-PROC (specification PFLAG) are in correspondence with the executions of the concurrent 

instructions, exception made for TAU (Milner's internal action) which corresponds to the execution of 

sequential instructions. For simplicity we do not report the full specification PFLAG; it can be easily 

understood by looking at the axioms of PD-PROC. 

PD-PROC = 
enrich PROC + PFLAG by 

opns I:] [] ~ D: proc x pflag x proc --> bool 
axioms 
1 <Writebuf(1,b),Im> WRITEBUF(1/~lkb)><Skip,lm> 
2 <Readbuf(1,b),lm> ~a.F.,ADJ~v~L.I~L> <Skip,Italy/t]> 
3 <Send(t,e),lm> SEND(lmftkc'~ > <Skip,Ira> 
4 <Rec(1,c),lm> REC(v,c) > <Skip,lm[v/1]> 
5 <Start(l~r~,]m~> S_TART(pr) -> <Skip, lm> 
6 Nil ~ >  pr 
7 <il,lm> Pf > <il',lm'> D <i 1 ; i,lrn> Pf > <i 1' ; i,lm'> 

8 <il,lm> Pf > <il',lm'> D <il+ i,lm> Pf > <il',lm'> 

9 Iszero(lm(1)) -" true ~ <While 1 ~0 Do i,lm> TAU > <Skip,lm> 
!0 Iszero(Im(1)) = false ~ <Wh~e t ~ Do i, lm> TAU > <i; While I # 0 Do i,lm> 

{ <Seq-Instrj(...),lm> TAU ><ij',lmj'> I 1 _<j _< n }. 

Commcnt~, A process in a state <i,lm>, where i is an input instruction (Readbuf, Rec), can perform 

nondeterministically an action out of an infinite set, one for every possible value which can be received 

(axioms 2,4), 

Axiom 5 defines the capability of a process of creating a new process. Axiom 6 defines the capability of 

being created, which is represented by a transition of the process Nil into the initial state of the created 

process and is denoted by the flag CREATED(...). 

Axioms 7 and 8 completely define the sequential composition and the nondeterminisfic choice, because of 

Skip is the identity of ; and + is commutative (look at the axioms of INSTR). 

Axioms 9 and 10 def'me the While instruction. En~t 9f ~omments. 
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1.2 Concurrent systems 

Now that we have defined processes, we show how to compose them into concurrent systems, of which 

processes are subcomponents. In a concurrent system a state consists of the states of the processes plus 

the state of the global object; we choose to represent it as a pair <{Prl,Pr2,...,Prn},go> where go is the 

global object and {pr 1,pr2,...,prn} is a multiset of states of processes. 

Now, assuming that a transition system PROC-SYST, representing the subcomponent processes and an 

algebraic specification GOB J, representing the global object, are given, how do we specify the resulting 

composed system? 

Our idea is to split the composition in some steps. First the actions of the processes are composed 

producing new actions; this step is conveniently subdivided into two other steps: one (synchronization) 

defines the actions resulting from some synchronized cooperation between processes; another (parallel 

compo~i~ion) defines which are the synchronous actions that can happen in parallel. Then a third step 

(monitoring) defines which actions resulting after the second step are allowed to happen as actions of the 

whole system. 

S 

M 
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L 
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S 

PROC~SYST GO~BJ 

i I 
STS 

I I 
PTS 

MONITORING [ 

FINAL TRANSITION SYSTEM 

Example. As an example of concurrent system we report the definition of PD. Following the above 

schema the definition is split in four parts which are reported and commented in sections: 1.1 (the 

algebraic transition system given before and corresponding to the process subcomponents), 1.2.1 

(synchronization), 1.2.2 (parallelism), 1.2.3 (monitoring). 

1.2.1 Synchronization 
We define the synchronous actions by giving a new transition system STS, where the transition relation 

~ >  corresponds to synchronous actions, starting from a transition system PROC-SYST (representing the 
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component processes with transition relation->) and an algebraic specification GOBJ (representing the 

global object). The states of STS are pairs <prms,go> where ms is a multiset of proces states and go a 

state of the global object. 

The synchronous actions are given by the a set of axioms having form 

( A prj .Afj_> prj') A cond(sf,{f 1 ..... fn},go) = <{pr 1 ..... Prn},go> - s f ->  <{Prl',...,Prn'},go'> 
l<j_<n 

where cond(sf,{f 1,...,fn},go) is a conjunction of equations and represents the condition under which the 

process actions pr 1 f l - >  Prl',...,pr n -fnf ->  pr n' can synchronize. 

Note that the transformation of the global object associated to a synchronous action can be 

nondeterministic, i.e. it is possible to have also another axiom similar to the above one except that go' is 

replaced by a different go". 

We briefly illustrate the idea referring to the example capabilities of subsection 1.1. 

The effect of reading a shared buffer can be defined by: 

pr 1 _ READBUF(b.v~ > pr 1, A go(b) = v ~ <{Prl},go> -READBUF(b,v)-> <{Prl'},go> 

where in the global object are recorded the states of the shared buffers; note that the flag of the resulting 

action is still READBUF(b,v) (thus recording the kind of the action) since the effective happening of the 

action will still depend on the actions of the other processes because two contemporaneous readings of the 

same buffer are mutually exclusive; we will handle that in the parallet composition step. 

The effect of writing on a shared buffer is defined by: 

pr 1 WRITEBUF(b.v) > pr 1, ~ <{Prl},go> -WRITEBUF(b,v)-> <{Prl'},go[v/b]>, 

go[v/b] represents the state of the global object where the content of the buffer b has been changed in v. 

The effect of a handshaking communication is defined by 

pr I SEND(c.v~ > pr t, A pr 2 REC(e.v) > pr 2, ~ <{Prl,Pr2},go> - T A U t >  <{Prl',Pr2'},go> 

where the synchronous flag TAU reminds IVlilner's symbol for an internal action, i.e. an action with no 

interaction with the external environment. Moreover no other synchronous actions involving SEND(c,v) 

or REC(c,v) are defined, thus a SEND(c,v) action of a behaviour can be executed only together with a 

REC(c,v) action of another behaviour. 

Note that also the process internal actions will become synchronous actions, as defined below 

pr 1 TA--T-A-U-->pr 1' ~ <{Prl},go> --TAU--> <{Prl'},go>. 

Creation and termination of component processes are handled by defining a particular process state Nil 

with the property <{Nil,pr I ..... Prn},go> = <{Prl,-.,Prn},go>, and synchronous actions such as 

Nfl ~REATED(pr~ > pr A pr 1 ~ >  pr 1' ~ <{Nil,Pri},go> -TAU-> <{pr,Prl'},go>. 

Example. The synchronous interactions between the processes of PD are described by the following 

algebraic transition system PD-STS. 

The states of PD-STS are defined by the specification PD-STATE and its transitions are labelled by 

elements of sort pflag of the specification PFLAG (introduced in subsection 1.1). 

PD-STATE = enrich PROD(MSET(PROC),BUFFERS)[state/prod(mset(proc),buffers)] by 
axioms <{Nil}ubhms,bfs> = <bhms,bfs>. 
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The global object records the contents of the shared buffers. 

MSET(ARG) indicates the parametric specification of multisets with operations { f-l} (singleton multiset 

constructor) and [] u [] (union). Notation {al} u ... u {an} is simply written {a 1 . . . . .  an}. 

BUFFERS = MAP(BUFID,VALUE)[buffers/map(bufid,value)] 

PD-STS = enrich PD-STATE + PD-PROC by 
opns [:)=[~> Q: state x pflag x state --> bool 
a x i o m s  

pr TAU > pr' D <{pr},bfs> ~TAU=> <{pr'},bfs> 
pr READBUF(v.b) > pr' A bfs(b) - v D <{pr},bfs> -_READBUF(v,b)=> <{pr'},bfs> 
pr WRITEBUF(v.b) > pr' ~ <{pr},bfs> ~WRITEBUF(v,b)~> <{pr'},bfs[v/b]> 
pr 1 SE~(~.c) > pr 1, A pr 2 REC(v,c) > pr 2, D <{prl,pr2},bfs> =TAU=><{Prl',Pr2'},bfs> 

pr I ~ >  pr 1' A Nil ...~REATED(pr) > pr D <{Prl,Nil},bfs> =TAU=> <[Prt',Pr},bfs>. 

1.2.2 P a r a l l e l i s m  

Intuitively by means of this composition operation we define whether two actions can be executed in 

parallel (without synchronization). The actions to be considered for composition are, inductively, the 

actions of the synchronized system STS and the new actions already obtained by parallel composition. 

As before for synchronization we can describe the operation of parallel composition as producing a new 

system PTS from the system STS. PTS is simply given by augmenting the transitions of STS (indicated 

by ~>)  with the new elements, which are given by a set of axioms having the following form 

<prms 1,g°> - s f l - >  <prms l ' ,go 1'> A <prms2,go> --sf2--><prms2',go2'> 

<prms lkJprms2,go> --sf l / /sf2 ->  <prms l ' u p r m s 2 ' , g o ' >  

provided we have given the partial (binary, commutative and associative) operat ion//on the flags of the 

synchronous actions. 

In our previous examples a writing action on a shared buffer and a handshaking communication can be 

executed together giving a new composed action, which in turn can be executed together with an 

handshaking communication of some other processes. On the converse a reading or updating action of a 

shared buffer does exclude whatever other access of the same buffer. 

Example.  The allowed contemporaneous executions of the synchronized interactions between the 

processes of PD are described by the algebraic transition system PD-FTS. 

The states of PD-PTS are the same of PD-STS; the transition relation and the flags of PD-PTS are an 

enrichment of those of PD-STS. 

The transformation of the buffers associated to a parallel action in the system PD-PTS corresponds to 

execute the transformations associated to the component synchronous actions in some order; note that the 

result does not depend on the chosen order. 

In the specification PD-TS Eq indicates an explicit total equality operation of the specification BUFtD 

with functionality build x build --> bool. 
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PD-PTS = enrich PD-STS by 
opns []//[3: pflag x pflag ~ pflag 

Isacc: pflag x build -¢ bool 
axioms 

fl/tf2 = f2//fl (fl I/f2)/If3 = fl//(f2//f3) 
Isacc(TAU,b) ~- false 
Isacc(READBUF(v,bl),b2)= Eq(bl,b 2) 

Isacc(WRITEBUF(v,bl),b2)= Eq(bl,b 2) 

Isacc(fl/lf2,b)- Isacc(fl ,b)v Isacc(f2,b) 

<mprl,bfs> =TAU=> <mprl',bfs> A <mpr2,bfs> ,=pf=> <mpr2',bfs'> D 

<mprlumpr2,bfs> --pf//TAU=> <mprl'umpr2',bfs'> 

<mprl,bfs> -_READBUF(v,b~_> <mprl',bfs> A 

<mpr2,bfs> =pf= > <mPr2',bfs'> A Isacc(b,pf) - false D 

<mprlu mPr2,bfs> =READBUF(v,b)//pf=><mpr I' u mpr2',bfs'> 

<mprl,bfs> ~WRITEBUF(v,b)=> <mprl',bfs[v/b]> A 

<mpr2,bfs> =pf=> <mpr2',bfs'> A Isacc(b,pf) - false 

<mprlu mpr2,bfs> =WRITEBUF(v,b)//pf=> <mprl'u mpr2',bfs'[v/b]>. 

1.2.3 Monitoring 
Here we take into consideration any form of global control, by which only some of the actions which are 

locally possible in a system (i.e. those obtained by (synchronization and) parallel composition) are 

allowed to become actions of the overall system. It is at this step that we can, for example, define an 

interleaving mode, admitting only one synchronized action at time, or a mode in which all actions that can 

be executed together do so. Here we can also define that the buffer reading actions take precedence over 

the buffer writing actions (i.e. when in a state it is possible a reading action on a buffer, a writing action 

on the same buffer will never be allowed). 

As before we can define the monitoring operation by giving a new transition system MTS (with transition 

relation ===>) starting from a parallel system PTS (with transition relation -->). The states of MTS are 

the same of PTS. The transitions of the new system are defined by giving some axioms following this 

schema: 

<prms 1,go>-,.sf-> <prmsl' ,go'> h cond(sf,<prmsluprms2,go>,extf ) 

<prmslt..)prms2,go> ==exff==> <prmsl ' toprms2,go'>. 

Note that this axiom schema specifies, as it was anticipated informally, that an action of the system is 

determined by an action of a part of the component processes; here the partial action is 

<prms 1,go>--sf-><prmsl' ,go'> and prms 2 is the multiset of  the states that do not cooperate to that 

action. 

Moreover the monitoring decision must depend only on the action capabilities of the processes present in 

a system state and not on their states. 

Example.  We specify a parallel mode for the execution of the processes of the PD architectures (i.e. 

every parallel action is allowed to become an action of the system) defining the concurrent transition 

system PD. 
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The states of PD are still defined by the specification PD-STATE and its transitions are labelled by 

elements of the following specification EXTFLAG. 

EXTFLAG = sorts extflag opns TAU: --~ extflag axioms D(TAU) 

PD = enrich PD-PTS + EXTFLAG by 
op ns [] == [3==> D: state × extflag × state ~ bool 
axioms <prmsl,bfs> ~----pf--> <prmsl,bfs'> ~ <prrns 1 u prms2,bfs> ==TAU==> <prmsl~) prms2,bfs'>. 

1.3 Semantics and calculi 

To the specification of PD we can first associate a semantics, given by its initial model; this model indeed 

exists and corresponds roughly to an operational semantics modulo the initial congruence on the states of 

the system. 

Prooositionl. (see [ARW1]) There exists an initial model IpD of the specification PD such that IpD is 

term generated and for any t, t 1, t 2 ~ WSig(PD) 

IpD l= D(t) iff PD I- D(t) and 

PD I- D(t 1) A D(t2) implies ( IpD 1= t 1 = t 2 iff PD [- t 1 = t2). 

In particular for any st, st' ~ WSig(PD)lstate, pr, pr' ~ WSig(PD)lpro c and pf e WSig(PD)[pflag 

PD [- st =TAU=> st' iff IpD I= st =TAU=> st' and 

P D I -  pr Pf >pr '  iff IpDl= pr Pf >pr ' . [ ]  

The proposition shows that the specification PD defines an associated calculus, which we indicate by PD, 

corresponding to an operational semantics, and formally consisting of the equality = and of the 

transitions, both of processes and architectures, provable in PD. In general for any specification SYST of 

a system, we will call SYST the corresponding calculus. (These are the calculi to which the rapid 

prototyping tool ([Mo]) developed for SMoLCS specifications applies). 

Assume now that we want to consider two architectures to be equivalent iff they have the same 

input/output relation, where the inputs and the outputs are respectively the initial numeric contents of the 

buffers and the lists of the intermediate numeric contents of the buffers. Then we have to define an 

observational semantics of PD. 

The paradigm under which an observational semantics is defined in SMoLCS for a concurrent system 

(here applied to PD) consists essentially of: 

- a specification, defining the observations on the system (here PD-PLUS), by means of boolean relations 

(here Res) stating that some observation values (here lists of numeric buffer contents) are true of some 

observed objects (here the states of PD) (see [ARWl]); 

OBS = enrich MAP(BUFID,NAT)lobs/map(bufid,nat)] by 
opns D^E]: obs x obs --~ obs 
axioms D(oblnob2) 
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PD-PLUS = enrich PD +OBS by 
opns Res: state x obs ~ bool 

Val: buffers ~ obs 
axioms Val(Empty_Map) = Empty_,Map 

Val(bfs[Pval(pr)/b]) = Val(bfSlb) 
Val(bfs[Nval(n)/b]) -- Val(bfs)[Nval(n)/b] 
Res(<prms,bfs>,Val(bfs)) = true 
<prms,bfs>==TAU==> st A Res(st,ob) = lrue D Res(<prms,bfs>,Val(bfs)^ob) = true. 

(bfsI b represents the map bfs where every association to b is dropped); 

- a definition of a class of observationally equivalent algebras, each one containing the objects to be 

observed together with the relations and moreover preserving, as a subtype, a fixed model of the 

observed values; 

- the definition of the observational semantics as the minimally defined and term generated algebra (here 

CALG) terminal in that class; a basic general theorem (in [ARWl]) shows that this algebra has indeed the 

properties required of an observational semantics. 

Then we obtain the following result qualifying CALG as the observational semantics of PD w.r.t, the 

observations, expressed by the operation Res (here we have chosen the initial model of OBS). 

Proposition 2,([ARWl]) There exists an algebra CALG with the following properties: 

for any srt ~ Sorts(PD-STATE-Sorts(OBS), ground terms t, t' e WSig(PD_STATE)Isrt 

01 CALG t= D(t) iff PD I- D(t) 

02 CALG 1= t = t' iff for any ob e WSig(OBS)iobs, 

any st e WSig(PD_STATE){X}lstat e with x of sort srt 

[PD-PLUS I-Res(st[t/x],ob) = true iff PD-PLUS l-Res(st[t'/x],ob) = true]. [] 

If Z is a signature and srt a sort of Z, then WXlsr t represents the set of all terms of sort srt built on X. 

Proper~ 01 says that all the interesting objects of PD-STATE are defined in CALG; by property 02 two 

terms of sort srt are equivalent if and only if in every context of  sort state they satisfy the same 

observations. It is most important to note that in this way every nonobserved subcomponent of a state 

gets an observational semantics: in PD, for example, this is true of processes. 

Hence CALG l= st I = st 2 iff st I and st 2 produce the same outputs. 

Correspondingly to the above observational semantics we could prove some useful identities between PD 

processes and architectures. However this may be in general rather unpractical, since it has to be done 

explicitly ad hoc for the specification PD. That is why in the second part of the paper we will develop a 

parameterized caIculus starting from a fixed set of  combinators, in order to be able to give standard 

identities w.r.t, a basic observational semantics which is a generalization of Milner and Park's strong 

equivalence. 

1 . 4  Multilevel concurrent systems 

In the previous sections we have defined a three steps procedure that, given a transition system, 

specifying some component processes, and a synchronization, a parallel and a monitoring specification, 

produces a new transition system, specifying a concurrent system. Clearly the procedure can be iterated; 
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if some subcomponent processes (said .concurrent subcomponents) are themselves concurrent systems, 

then they can be specified by the same procedure. Consider for example a net of (workstations) nodes, 

such that in a node many processes can cooperate, possibly using a shared memory, while the nodes can 

exchange messages in a broadcasting or/and point to point mode. Then we can specify the net applying 

twice the SMoLCS procedure; in one application the subcomponents are the processes cooperating in a 

node and the resulting concurrent system specifies a node; in the other one the nodes, specified in the first 

level, become the new subcomponents and the resulting concurrent system specifies the net (as eg in 

[AMRZl, AMRZ2]). 

It can also be shown that the procedure can be applied inductively; hence it is possible to specify systems 

where a subcomponent process (said inductive cencurrcnt subcomponent) has the same nature of the 

composed processes, as in CCS, i.e. where states and transitions of the final system are embedded into 

the states and the transitions of the system describing the processes. 

1.5 A specification with parametric process types 

We describe now an extension of PD, called PPD, obtained by enriching the values handled by PD 

processes, which already include the processes themselves, with parametric process types. Thus the PPD 

processes can exchange between them and store in the buffers and in their local memories values 

corresponding to parametric process types. The purpose of PPD is to introduce, on the top of the already 

given PD example, the use of functional combinators which will play a relevant role in the rest of the 

paper. 

The algebraic specification of functions. A parametric process type is just a function from some 

parameters into processes. In our algebraic setting it is convenient and feasible to give an algebraic 

specification of functions from elements of some sorts into the elements of some other sort; in [ARW2] 

(but see also [BW3]) we study the problem and present several solutions; here we briefly introduce some 

basic concepts and notations. 

Let ARG and RES be two algebraic specifications with main sorts arg and res respectively; by 

FUNCT(ARG,RES) we indicate the algebraic specification of functions from elements of sort arg into 

elements of sort res. The specification is nothing but an algebraic formalization of the usual rewriting 

rules of functional calculus with abstraction and application. The only tricky point is the following: in a 

term like )~ x .  x+5, the first occurrence of x is the first argument of 9~ and is only a symbol, while in x+5 

x stands for a value of sort nat; thus we say that the first occurrence of it is an object of sort nat -var and 

we provide a merge operation Nat_Vat for considering a variable symbol as an object of type nat. 

FUNCT(ARG,RES) has sorts - 

and operations 

;Llq, Vq: arg-var x res 

funct(arg,res) 

arg-var 

arg-res-fid 

bool 

--~ funct(arg,res) 

(the functions) 

(the "variables of type arg") 

(identifiers for functions from arg into res) 

(the boolean values) 

(~abs~acfion) 
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Arg-Var: arg-var -4  arg 

(this operation embeds the "variables of type arg" into the elements of sort arg) 

[3(D) : funct(arg,res) x arg -4 res (application) 

if [] then  []else []: bool x res x res -4 res (conditional) 

Arg-Res-Fid: arg-res-fid -4 funct(arg,res) 

(this operation embeds the identifiers into the elements of sort funct(arg,res)) 

tee [ ] ,  I-l: arg-res-fid x funct(arg,res) -4 funct(arg,res) (recursive function constructor). 

Notation: the terms having form Arg-Var(x), Arg-Res-Fid(y), where x is a term of sort arg-var and y a 

term of sort arg-var-fid, are simply written x, y. 

The above framework allows to write the elements of sort funct(arg,res) following the usual ~.-notation; 

moreover the elements of sort funct(arg,res) have the basic usual properties of a functional calculus, eg 

cx-rule and 13-rule. For example 

% x , x + 3  = ~ . y ,  y + 3  ( ~ x , x + 3 ) ( 2 )  = 5 .  

Note that all the operations in a partial specifications are strict, i.e. D(Op(t 1 ..... tn)) D D(tl)  A...A D(tn) 

and hence also the if [] then []else [3 operation is strict, but that does not pose problems in defining 

functions, because this operation is defined by 

cond(a) = true D ( ~. x , if cond(x) then r(x) else r'(x))(a) = r(a) 

cond(a) = false D ( )~ x .  if cond(x) then r(x) else r'(x))(a) = r'(a). 

For example, consider f = ~, x .  if x>10 then  x-10 else x, which is a term of sort funct(nat,nat) 

defined in FUNCT(NAT,NAT); then with the usual meaning o f - ,  the value of 5-10 is undefined; 

however f(5) is a defined term of sort nat. 

Functions with several parameters can also be defined using FUNCT and the parameterized specification 

PROD. For example, FUNCT(PROD(ARG1,ARG2),RES) is the specification of the functions with two 

arguments of sort argl and arg2 respectively into res. 

The example PPD. PPD is defined in the same way of PD, exception made for the specification of 

values; we assume that the process type parameters are just channel and buffer identifiers and, for 

simplicity, that each type has only one parameter. 

VALuEPPD= enrich FUNCT(CHID,PROC) + FUNCT(BUTID,PROC) + NAT by 
sorts value 
opns  Pval: proc 

Nval: nat 

axioms 

-~ value 
---) value 

{Op: value × ... x value ~ value i Op: nat x ... × nat ~ nat ~ Sig(NAT) } 
Ptvalt: funct(chid,proc) --~ value 

Ptval2: fimct(bufid,proc) --> value 
"all total' 
{Op(Nval(nl),..., Nval(nk)) = Nval(Op(nl,...,nk)) I Op: nat x ...x nat --~ nat e Sig(NAT)}. 

Let us just to show two examples of the use of these process types. 

The PPD calculus can be used to describe architectures where several processes perform the same 

computation on different values (eg an array processor architecture). 
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Let pt = ~ b . <Readbuf(1,b) ; instr 1 ; . . .  ; instr k ; Writebuf(1,b),Empty_Map>, be a process type 

parameterized on a buffer identifier, where instr 1 ; ... ; instr k corresponds to a complex computation on 

the content of the local memory location 1. Then the PPD term 

<{pt(buf 1) ..... pt(bufn)},[bUfl--~Vl ..... bufn-->v n] > 

describes a system where the above computation is performed in parallel on all the contents of the buffers 

buf  1 ..... bur  n. 

Consider now the process type pt 1 = ~c .  <Rec(1,c) ; instr 1 ; ... ; instr  k ; Send(1,e),Empty_Map> 

parameterized on a channel identifier; then the PPD term <{Po},[ b u f f 0 ]  >, where 

Po = <Start(Ptl(el)) ;Send(l l ,Cl)  ;"" ;Start(Ptl(Cn)) ; Send(ln'en) ; 

ReC(Cl,ll) ;1:=1+11 ; ... ;Rec(cn, l l )  ;1:=1+11 ;Writebuf(1,buO, [1-->0,11---> Vn,...,ln--+ Vn]> 

describes a concurrent system where the above complex computation is performed in parallel on the 

values v 1 ..... v n and the sum of the results is put into the buffer buf. 

2 P A R A M E T E R I Z E D  C O N C U R R E N T  C A L C U L I  

In this section we restrict the SMoLCS specifications to those where processes are built on a fixed set of 

combinators; the new processes are called behaviours and are still parameterized on various data 

structures, but we can give once for aI1 various properties related to the given combinators. 

2.1 Behaviours and varieties of calculi 

The calculi we introduce in this section are based on the notion of behaviours (a name suggested by 

Milner's behaviours in CCS and in SCCS). The peculiarity of behaviours compared to the models of 

processes used in the examples of section 1 is that they correspond to processes without local state; they 

are completely determined by the atomic actions they can perform, i.e. they correspond abstractly to trees 

only labelled by actions. Then in our approach the processes with a local state are modelled as functions 

from local states into behaviours; the advantage is that we combine the level of abstraction and the 

expressive power of behaviours and functions together. This technique is fundamental for giving high 

level semantic descriptions of languages as we have shown in [AR1, AR2, CRAI-DDC]. For exampIe, if 

we want to give a denotational value for a procedure, which usually involves some concurrent interaction 

among processes, (as it is in Ada for example), then we can model it as a function which, taken some 

values of the parameters, produces a behaviour. The role played by behaviours in practical applications 

will be illustrated by some later examples. 

Instead of presenting a single calculus, we will introduce a family of calculi, which may differ 

fundamentally in two respects: the family is parameterized on some data structures and moreover various 

families of subealculi are derivable, depending on the combinators used and on the assumptions about the 

parameters. For every complete choice we have a calculus corresponding to an operational semantics of a 

(multilevel) concurrent system, where the active subcomponents are behaviours with the corresponding 

peculiar properties. 

We can group the parameters as follows. 
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• An algebraic specification DATA will represent the structure of (hence the data recorded in) the global 

object, the data exchanged between the behaviours, the data elaborated internally by the behaviours, 

the behaviour atomic actions and the interactions of the concurrent system with the external world. 

Formally DATA will be an algebraic specification based on BOOL (a specification of boolean values) 

and such that its sorts include: - gobj, for the states of the global object 

- act, for the atomic actions of behaviours 

- extflag, for representing the interactions with the external world. 

We assume moreover that DATA is parameterized on an algebraic specification X, which will be in 

every instantiation the specification of behaviours. 

• Another parameter defines how the behaviour subcomponents of the system concurrently interact 

between them; that is described following the SMoLCS methodology as introduced in section 1. 

Formally this parameter, indicated by SMoLCS-SYST(PROC-SYST), is just a parametric algebraic 

concurrent transition system (with transition relation [[1== []==> [[]:state x extflag x state--)bool), 

where the parameter PROC-SYST corresponds to the algebraic transition system (with transition 

relation [] [] > []: behaviour x act x behaviour ~bool)  defining its active subcomponents (see 

subsection 1.2). It will be instantiated with the transition system defining the behaviours. 

• In general the concurrent system described by the calculus is a multilevel system (see subsection 1.4); 

thus we need some parameter for describing the noninductive concurrent subcomponents, which are 

just other concurrent systems. For simplietly we consider only the cases where all the noninductive 

subcomponents are represented by a unique algebraic transition system (with transition relation 

[]~~ []~~> [2]: sstate x act x sstate---)bool), indicated by SUB-SYST. Obviously SUB-SYST may 

be also an one-level concurrent system. 

2.2 Introducing combinators 

Here we introduce the combinators for a calculus in our family, indicated by SYST, together with their 

informal meaning. In the following subsection, the calculus will be formally defined by an algebraic 

specification named SYST. 

The syntax of  SYST is given as the signature of a specification STATE (the states of the algebraic 

transition system SYST) whose sorts include state (the terms of the calculus), behaviour and gobj (active 

and passive subcomponents); the combinators are just the operations of this signature and in what follows 

we use for them the same notations used for the operations. We use = to indicate the provable equality in 

a specification. 

First we give the combinators for expressing global objects and behaviours and then the combinator for 

composing them into a state of the concurrent system. 

fzI,D2ukl.,£2NgA/T 

• All the operations of the specification DATA with functionality 

srt 1 x ... x srt n ---) gobj (n _> 0) 

are the calculus combinators for expressing the global object. 
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The meaning of these combinators are given by the axioms of DATA. 

In what follows SORTS indicates Sorts(DATA) u {null}. 

BEHAVIOURS 

Drefixin~ of an action_ 

• [] A I-1: act x behaviour ~ behaviour 

a A bh represents the behaviour which performs the action a and then behaves as specified by bh. 

Behaviour atomic actions are represented by terms of sort act built on the signature of STATE. 

We recall that there is a special combinator for representing the action of creation of  a new behaviour 

CREATED: behaviour --4 act. 

The A combinator is the basic tool for expressing the activity of  a behaviour as a sequence of atomic 

actions; it corresponds to CCS dot. 

functional combhaators 

for every srt e SORTS 

• )d--1. [-1: srt-var x behaviour ~ funct(srt,behaviour) (X- abstraction) 

The elements of  sort funct(srt,behaviour) represent the (partial) functions from elements of sort srt into 

behaviours; while the elements of sort srt-var represent in some way the "variables of type srt". There is 

also an operator which embeds these "variables" into the elements of srt 

• Srt Vat: srt-var -4 srt 

and various combinators for expressing the elements of srt-var. 

Notation: for every term of sort srt-var x Srt Vat(x) is simply written x; every string of lower case 

letters corresponds to a term of sort srt-var. 

• if [] t h e n  [] else []: bool x srt x srt ~ srt (conditional) 

• Fl([]i:  funct(srt,behaviour) x srt --* behaviour (application) 

• ree V1. []: srt-behaviour-fid x funct(srt,behaviour) ~ funct(srt,behaviour) 

(recursive functions constructor) 

The elements of  sort srt-behaviour-fid represent in some way identifiers of  functions of  type 

funct(srt,behaviour); also in this case there is an embedding operation 

• Srt Behaviour Fid: srt-behaviour-fid --4 funct(srt,behaviour) 

and various combinators for expressing the elements of  sort srt-behaviour-fick 

Notation: for every term of sort srt-behaviour-fid x Srt BehaviourFid(x)  is simply written x; every 

string of lower case letters represents a term of sort srt-behaviour-fid. 

ree f i .  funct(fi) represents a function corresponding to a fixpoint of  the functional ~.fi. funct(fi); that 

fixpoint is defined by the usual rewriting rule ree f i ,  funct(fi) = ( Xfi .  funct(fi))( ree f i .  funct(fi)). 

All these combinators are operators of the specification FUNCT(DATA<sr t> ,BEHAVIOUR) as 

introduced in section 1.1. and formally defined in [ARW2]. (If A is a specification and srt a sort of A, 

then A<srt> indicates that srt is now the main sort of A.) 
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fix•oint combinator~ 

for every natural number n > 1 

* ~Xn: funct(prod(behaviour,...,behaviour), prod(behaviour,...,behaviour)) -~ 

n tittles n i-lYric s prod(behaviour,...,behaviour) 

n t i ~  
where the elements of sort prod(behaviour,...,behaviour) are n-tuples of behaviours; moreover on these 

n UYnes 

n-tuptes the component selection operations and a constructor operation are defined: 

1 < i <_- n Sel i : prod(behaviour,...,behaviour) ~ behaviour 

< [] ..... 13> behaviour × ._ × behaviour --rprod(behaviour ..... behaviour). 

Considering for simplicity the case n=l ,  fixlbhfunct represents a behaviour whose activity is the same 

activity of bhfunct(fixlbhfunct ). These combinators permit to represent behaviours with nonterminating 

activities and sets of mutually recursive behaviours. For example, fix 1 ~ x.  a zX x represents the 

behaviour which goes on forever performing the action a. It is important to note that the fix combinators 

are total and that the above operational characterization allows to define completely the behaviours 

represented by them; moreover they are truly fixpoints, since we have that 

fixnbhfunct = bhfunct(fixnbhfunct). For example fix 1 ~. x .  x is defined and represents the behaviour 

unable to perform any activity, which will be indicated also by stop. 

nondeterministic choice 

for every srt e SORTS 

• choosesr t 13: funct(srt, behaviour) --r behaviour 

choosesr t bhfunct represents the behaviours which can nondeterministically behave as specified by 

bhfunct(to) for every term of sort srt t o, 

The importance and relevance of these combinators for representing behaviour subcomponents of 

concurrent systems should be clear (see, eg [M1, M2]). Following Milner's notations (see, eg [M2]) we 

would write these combinators as + bh(t) , where SRT is a set and bh(t) is a behaviour expression 
t ~ SRT 

parameterized on t (i.e. an expression of type behaviour with a free variable t of type SRT). Here we are 

working in a fully algebraic setting, where the elements of SRT are defined by means of an abstract data 

type with a sort srt and hence + must be an algebraic operation. The solution we have adopted is to 
SRT 

consider a combinator ehoosesr t applied to functions from elements of sort srt into behaviours; thus the 

parameterized dependence of bh(t) on t is formally expressed by means of a term of sort 

funct(srt,behaviour), whose elements correspond to functions from elements of sort srt into behaviours. 

Hence + bh(t) will be written choosesr t ~.t. bh(t). 
t e SRT 

Notation: ehoosesr t ~. t .  bh(t) is also written choose t : srt in bh(t).  
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Our nondeterministic choice is neither local nor global; it could be local or global depending on the 

various alternatives: 

if for every term t o of sort sit the first-step actions of bh(to) correspond to interactions with the 

other behaviours or the global object, then we have global nondeterminism 

(eg for bh = choose n: nat in RECnFROMpid A stop, where we use an infix notation for the 

receive action REC VIFROM [], if the behaviour named pid can send the natural number 1, then bh 

will choose the alternative REC1 FROMpid A stop); 

if for every term t o of sort srt the fLrst-step actions of bh(to) axe all intemal actions, then we have 

local nondeterminism (eg if bh = choose n: nat in TAU A SEND(n) A stop, then bh can choose 

one of the altematives independently from the external context). 

sequential composition of behaviour~ 

for every srt e SORTS 

• defsr t [] in •: behaviour × funct(srt,behaviour) --~ behaviour 

• re turnsr  t [3: srt ~ behaviour 

The activity of defsr t bh in bhfunct consists of the activity of bh until it terminates, followed by the 

activity of bhfunct(t o) ff bh terminates retuming a value t o of sort srt and bhfunct(to) is defined; 

returnsr t t o represents the final state of a behaviour which has terminated its activity returning t o. 

The construct defsr t bh in bhfunct is a very general and powerful form of sequential composition 

because it allows also the preceding behaviour to pass some information to the following one; moreover 

there is also the possibility of (conditionally) escaping the following behaviour; if bh terminates mtttming 

a value t I of sort srt 1 ~srt, then the following behaviour represented by bhfunct will not be executed. 

In subsection 2.4 we show the use of these combinators for defining a variety of derived combinators. 

Notation: defsr t bh in ~. t .  bh'(t) is also written defsr t t = bh in bh'(t); re turnnul l  Null is also written 

skip (skip represents a null behaviour unable to perform any activity). 

multilevel structurin~ combinators 

• i-enclose: state --) behaviour (for enclose concurrent inductive subcomponent) 

• n-enclose:  sstate --* behaviour (for enclose concurrent noninductive subcomponent) 

The elements of sort state represent the states of the system SYST; while the elements of sort sstate 

represent the states of the concurrent systems SUB-SYST taken as parameter. These two combinators are 

used for representing multilevel (structured) concurrent systems; the first for the case in which the internal 

concurrent structure of the behaviours is the same of the whole system (see eg CCS, SCCS), the second 

when the internal structure is given by means of the parameter SUB-SYST. 

The term i-enclose(st) represents a behaviour which is internally structured as the concurrent system 

represented by st and its activity is determinated by the activity of st. Precisely if st can perform some 

transition labelled by a becoming st', then also i-enclose(st) can perform a transition labelled by a 

becoming i-enclose(st') and these are all the transitions of i-enclose(st). Thus if the enclosed system st 

is unable to perform any activity also i-enclose(st) is unable to perform any activity; moreover if st 

represents a correct final state (all the behaviour subcomponents are equal to skip), then 

i-encLose(st) = sk ip .  Note that this last property allows to compose sequentially concurrent 
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subcomponents with behaviours. Analogously for n - e n c l o s e .  

If  the calculus include the combinator i-enclose, since now some transitions (with external flags) of  the 

system may become also transitions, via i-enclose, at the behaviour level, then the external flags of 

SYST must coincide with the behaviour atomic actions (extflag = act); clearly also the external flags of 

SUB-SYST must coincide with the behaviour atomic actions. 

PAtLM.LEL COMBINATQR 

The calculus has a combinator which taken some behaviours (a multiset of) and a global object returns a 

term representing the concurrent system of the class, whose subcomponents are those behaviours and that 

global object: 

° par: mset(behaviour) x gobj --estate 

Notation: a term having form par({bh 1 ..... bhn},go ) is usually written bhll...[bhnlgO to suggest the fact 

that the various subcomponents are in parallel. 

2 .3  Formal definition of a calculus 

First we give the specification of  the transition system BH-SYST defining the behaviours and then of the 

transition system of the whole calculus (SYST). 

B E H A ~ O U R S  

Remember that the paramenter SUB-SYST is an algebraic transition system (with transition relation 

f-l~~ El~~> E]: sstate x act x sstate ---> bool) and that [3== [3==> [3: state × act x state ---> boo1 wiIl be 

the transition relation of SYST (here we consider a calculus including the i . e n c l o s e  combinator, thus 

act=exfflag). 
BEHAVIOUR = 
enrich + FUNCT~ATA(BEHAVIOU~R)<srt>, BEHAVIOUR) + 

srt ~ SORTS 

+ FUNCT(PROD(BEHAVIOUR,..,BEHAVIOUR), PROD(BEHAVIOUR,..,BEHAVIOUR)) + 
n_>l 

n times n times 
SUB-SYST + NULL + STATE by 

sorts  behaviour 
opns 

DA D: act x behaviour 
{ 

--> behaviour 
fiXn: funct(prod(behaviour,...,behaviour),prod(behaviour,_.,behaviour)) --, prod(behaviour ..... behaviour)) ]n>l } 

- - % ,  - -  - - , ¢  ~¢- 

n times n times n times 
{ choosesr t R: funet(srt, behaviour) --> behaviour, 

defsr t [] in 13: behaviour x funct(srt,behaviour) --* behaviour, 

returnsr t VI: srt ~ behaviour I srt E SORTS } 

i-enclose: state ---> behaviour 
n-enclose: sstate --> behaviour 

seed: --> behaviour 
axioms "all total" 
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where  

NULL = sorts null opns Null : --* null axioms D(Null) 

STATE = enrich MSET(BEHAVIOUR) + DATA(BEHAVIOUR) by 
sorts state 
opns par: mset(behaviour) × gobj ---> state 
axioms seed[bhmslgo = bhmslgo. 

Note  that B E H A V I O U R  and STATE are two algebraic specifications defined in a mutually recursive way 

(see Append ix  i ) ;  note also how D A T A ( X )  is recursively instantiated on B E H A V I O U R ,  so that the 

behaviours become parts o f  the data type. 

The behaviours will be represented by terms o f  sort behaviour o f  the above specificat ion B E H A V I O U R  

and their combinators  will  be  operations o f  the same specification. Notation: we  recall the abbreviations 

used: s top  stands for fix 1 k x .  x and sk ip  stands for re tu rnnul lNul l .  

BH-SYST = 
enrich BEHAVIOUR + SYST by 

opns [:3----~-D > D: behaviour × act x behaviour ---> bool 

CREATED: behaviour --> act 
axioms 

D(CREATED(bh)) 
a Abh ..a_> bh 

{ fix n bhprodfunct = bhprodfunct(fix n bhprodfunct) ] n > 1} 

{ bhfunct(t) __L> bh' D choosesr t bhfunct --~> bh' 

defsr t (returnsr t t) in bhfunct = bhfunct(t) 

bh -&-> bh' D defsr t bh in bhfunct ---~-> bh' 

{ defsr t (returnsrtl tl) in bhfunct "" returnsrtl t 1 

Isfreesrt(t,bhfunct ) - false D 

defsrtl (choosesr t ~.t, bh(t)) in bhfunct= choosesr t Xt .(defsrtl bh(t) in bhfunct) Isrtl e SORTS, srtlcsrt) 

[srt e SORTS} 
{ i-enclose(skipl.. .Iskiplgo) = skip, n-enclose(skipl . . . lskipibgo) = skip [ n > 0 } 

- - V  V" 
n times n times 

st ==a==>st' D i-enclose(st) ..a_> i-enclose(st') 

sst ~~a~->sst ' D n-enclose(sst) _0._> n-enclose(sst') 
seed CREATED(bh~ > bh. 

Comments .  seed  is an auxiliary combinator  used for allowing dynamic creations o f  new behaviours. 

T h e  f u n c t i o n a l  c o m b i n a t o r s  a r e  d e f i n e d  b y  t h e  v a r i o u s  s p e c i f i c a t i o n s  

FUNCT(DATABEHAVIOUR<sr t> ,BEHAVIOUR) .  

The axioms of  BH-SYST give the operational semantics o f  the various combinators  as it was suggested in 

subsect ion 2.2. Isfreesrt:Srt-var × funct(srt ,behaviour) ~ bool is an operation o f  

F U N C T ( D A T A < s r t > , B EHAVIOUR ) ;  Isfreesrt(x,bhfunct ) - true i f f  the "variable o f  type srt" x occurs 

freely in bhfunct.  The  condi t ion Isfreesrt(t ,bhfunct)  - false in the axiom about d e f  and choose  is not  

restrictive at all, because on the functions algebraically def ined the a - ru le  holds and there exist  infinite 
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different elements of sort srt-vart. End 0f~___nunents. 

THE CALCULUS 

In order to have a fuU calculus we need to define the synchronization, parallelism and monitoring steps. 

We recall that this is done by means of a parameterized specification SMoLCS-SYST(PROC-SYST), 

given as a calculus parameter, where PROC-SYST stands for the algebraic transition system of the 

component processes. Hence the full calculus will be here the one associated to the algebraic transition 

system SYST defined as follows: 

SYST = SMoLCS-SYST(BH-SYST). 

2.4 Examples 
THE FORMAL DEFINI'ITQN OF ADA 

Here we show how one of our calculi, denoted by AC, could be used for describing the underlying 

concurrent model of Ada programs, used in [CRAI-DDC] for giving a formal semantics to Ada. 

In this case the parameters are defined as follows: 

• The parameter DATA becomes now ADATA(X) = GLOBAL-INF(X) + ACT(X) + LOCAL-INnE(X), 

where GLOBAL-INF(X), ACT(X) (with the operations CREATE, CREATED: behaviour --r act) and 

LOCAL-INF(X) are large and complex specifications representing respectively the global object, the 

behaviour actions and the data handled locally by behaviours; in this case the sort extflag coincides with 

act. Recall moreover that X will be instantiated as the specification of behaviours, which corresponds 

roughly here to Ada tasks. 

• In AC the behaviours can interact between them only by reading and updating the global object; 

contemporaneous behaviour accesses to the global object are allowed if and only if they can also be 

performed sequentially in some order; moreover there is no form of global control on the behaviour 

actions. These assumptions are formalized by the following parametric system 

A-SMoLCS-SYST(PROC-SYST) defined following the SMoLCS three steps schema; where the 

parameter PROC-SYST will be instantiated with the algebraic transition system giving the operational 

semantics of behaviours. 

• AC is a one-level concurrent system, i.e. there are no behaviours which are in turn concurrent systems 

themselves; thus in this case we do not need other parameters. 

Here we givew the definition of A-SMoLCS-SYST(PROC-SYST). 

synchronization 
A-SSYST(PROC-SYST)= 

enrich PROC-SYST by 
opns []==[3==>[:]: state x act x state --~ bool 
axioms Cond(a, go) = true A bh-L> bh' ~ bhlgo ~a-.~-> bh'lTransf(a, go) 

bh CREATE(bhl~L.> bh'Aseed CREATED(bh!L> bh 1 A 

Cond( CREATE(bht),go ) = true D 
bh[ seedigo---CREATE(bhl)==> bh'lbhl[Transf(CREATE(bhl),go ). 

Cond: act × gobj -~ bool and Transf: act x gobj --> gobj are two operations of the specification ACT. 
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t~arallelism 
A-PSYST(PROC-SYST) = 

enrich A-SSYST(PROC-SYST) by 
opns  DIID : actx act ~ac t  

axioms a 1//a 2 = a 2//a 1 a 1//(a2//a 3) " (a 1//a 2)//a 3 

<bhmsllgo>~ai--> <bhmSl'tgOl>A<bhms2Igo>~a~> <bhms2'lgo2>A 

<bhms21gol> ~ a 2 ~  <bhms2'lgo'> ~ <bhmsllbhms2lgo>,....,al//a2~> <bhmSl'lbhms2'lgo'>. 

The condition part of the above axiom requires that the parallel action labelled by a 2 can be executed after 

the one labeUed by a 1. 
monitoring 
A-SMoLCS-SYST(PROC-SYST) = 

enrich A-PSYST(PROC-SYST) by 
opns [3== []==> [] : state x act x state --~ bool 

Ext: act -9 act 
axioms st ~---a_~_> st' ~ st ==Ext(a)==> st' 

Ext(a I//a2) = Ext(aI) /t Ext(a2) 
Ext-Ax, 

where Ext-Ax is a set of axioms defining the operation Ext having form cond D Ext(a) = a or 

cond D Ext(a) = TAU. 

The functional combinators of  AC have been proved very useful in the Ada Formal Definition for 

expressing, for example, subprograms (Aria procedures and functions), task types and several other 

kinds of  denotations. 

Moreover, in order to improve readability, other combinators have been introduced and we show how 

they can be derived from those of AC. 

~equentiaI composition without value passing 

• [ ]  ; [ ] :  behaviour x behaviour --* behaviour 

• nil: ~ behaviour 

The activity of bh I ; bh 2 consists of  the activity of bh 1 until it terminates followed by the activity of bh 2 

if  the final state of bh 1 is nil. Formally 

bh 1 a > b h l ,  D b h l i b h 2  a > b h l , ; b h 2  nil ; bh = b h .  

These combinators can be derived in AC as follows (we indicate with = equality by definition): 

bh 1 ;bh  2 --- defnull n = bh 1 in bh 2 nil = skip = re turnnul l  Null 

and they have the properties listed above; indeed 

bh t g > bh 1' D bh t ;bh  2 - defnull n = bh 1 in bh 2 ~ >  defnu u n = bh 1' in bh 2 - bh 1' ;bh  2, 

nil ; bh - defnull n = (returnnull  Null) in bh = (~ n . bh )(Null) = bh. 

rec . ree  t ran .exi t  

• t rap [] in V]: map(label,behaviour) x behaviour ~ behaviour 

• exit  []: label ~ behaviour 

where label and map(label,behaviour) are sorts of  ADATA. 

The activity of the behaviour trap lmap in bh consists of  the activity of bh; moreover if  bh terminates 

performing an exit  to the label 1 and 1 belongs to the domain of  lmap, then the activity goes on as 

specified by Imap(1); otherwise the exit is propagated to some outer trap construct. These combinators are 

suggested by VDM combinators introduced for giving the so called direct semantics (see [BJ,AR2]). 
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Formally i) i e dom(tmap) = true D trap lmap in exit 1 = lmap(1) 

ii) i e dom(lmap) = false D trap lmap in exit 1 = exit(l) 

iii) bh a > bh' D t rap  lmap in bh --g--> t rap  lmap in bh ' .  

These combinators can be derived in AC as follows: 

t rap 1map in bh --- deflabe 11 = bh in (if I E dom(lmap) then lmap(1) else returniabe 11) 

exit 1 -- re turnlabe  11. 

• rec t rap [] in [2]: map(label,behaviour) x behaviour ~ behaviour 

ree trap is similar to the trap, except that axiom i) is replaced by 

i') 1 s dom(lmap) = true D ree trap 1map in exit 1 = ree trap lmap in lmap(l). 

It can be derived in AC as follows 

rec t rap  [11 --> bh 1 ..... 1 n -~ bhn] in bh -= t rap  [11 -~ bhl ' ,  .... 1 n --~ bhn'] in bh 

where for every 1_< i~ n bh i' = Seli(bh') and 

bh' = fix n )~x, <trap [11 --~ Sell(X ) ..... 1 n -4 Seln(x ) ] in bhl ,  

t rap [11 -~ Sell(X) ..... 1 n ~ Seln(x ) ] in bhn>. 

It is easy to see that the derived combinators have the properties i), ii), iii) and i'), ii), iii) respectively. 

SEOUENTIAL CONSqNUCTS 

Here we show how it is possible to enrich our calculi with the usual sequential constructs, deriving them 

by the calculi combinators. 

We assume that each process has a local store whose states are represented by elements of sort 

store = map(loc,value); these processes will be represented by elements of sort 

proc = funct(store,behaviour) and a system whose subcomponents are the processes proc 1,'",Procn will 

be represented by procl(Empty_Map)I...iprocn(Empty_Map)[go (Empty_Map represents the initial empty 

state of the local store). 

The derived combinators are: 

• []:= [3: loc x expression -÷proc 

(1 := exp = ~ st. TAU A returnstor e st[Evai(exp,st)/1]), 

where Eval: expression x store ---r value is an operation of DATA. 

• If [] Then [] Else VI: expression x proc x proc --*proc 

(If exp Then pr 1 Else pr 2 = )~ st.  TAU A if Eval(exp,st) then Prl(st ) else Pr2(st)). 

Note that for simplicity we consider expressions without side effects. 

• [ ] ; [ ] : p r o c x p r o c - ~ p r o c  ( P r l ; P r  2 : ~ s t .  defstorePrl(st) inpr2).  

• While [] > 0 Do [3: expression x proc ---~proc 

(While exp Do pr -= ree w h ,  k st, TAU A if Eval(exp,st) > 0 then defstor e pr(st) in wh 

else re turnstor  e st). 

• [ ]  : act ~p roc  (a ~ 7~ st. a A returnstor e st). 

• Choosesr t []: funct(srt,proc) --~proc (Choosesr t )~ v.  pr(v) - ~. st. ehoosesr t )~ v .  (pr(v))(st)). 
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3 PROPERTIES OF COMBINATORS 

Here we study the properties of the combinators introduced in the preceding section. Some of these 

properties are just equalities provable from the given specification; for other deeper properties we have to 

consider equivalences with respect to some observations. The most basic form of observation consists in 

observing the actions of a behaviour, which leads to the well known notion of strong (bisimulation) 

equivalence of Milner and Park. For our calculi we need to generalize that notion, since our flags may 

include hehaviours as subterms; moreover we would like to equate functional terms by extensionality. 

Since at the present stage of our investigation the theory related to such generalization looks a bit 

complicate we defer the presentation of the full theory to a more technical paper; hence we prefer to 

present the properties of combinators for subcalculi, in which the flags cannot have behaviours as 

subterms. But the properties we show do hold in the general unrestricted case and hence they give a rather 

good understanding of the properties of the calculi. 

3.1 Strong equivalence properties of behaviour combinators 
Let BH-SYST indicate the transition system (with transition relation 

[] [] > Vl:behaviour x act x behaviour --~bool) defining the behaviours of one of our calculi. 

In the following we consider only calculi of behaviours in which the flags do not have behaviour 

subterms, formally calculi such that the parameter DATA (see section...) is not a specification 

parameterized on behaviours, and such that BH-SYST is image finite. (A transition system with 

transition relation - - >  is said image finite iff for all states s and flags f the set {s' I s f >s'} is 

finite.) By strong eouivalence we mean strong bisimulation equivalence, as introduced in [M2]. 

From the beginning we have to face an interesting problem: in our calculi of behaviours returnsr t v and 

stop are two normal states, i.e. behaviours without action capabilities, and hence they would be equated 

in the strong equivalence associated to the behaviour transition system. But inserted in the context 

defsr t Ix] in bhfunct they wuold produce two behaviours which are not strongly equivalent and hence the 

strong equivalence wuold not be a congruence. Since clearly we are interested in a strong equivalence 

which is also a congruence, we simply distinguish the two behaviours by considering the strong 

equivalence associated to a modified behaviour transition system, obtained by BH-SYST by adding a set 

of (dummy) transitions defined by returnsr t t ~ N s r t  t-(LL- >stop. 

Thus we indicate by ~ the strong equivalence w.r.t, the new transition system of behaviours obtained by 

adding the above transitions. 

We give only some hints to the proofs, that will appear in a full version elsewhere. 

We can now give a basic result for behaviours without i-enclose and n-enclose combinators; in the 

next subsection we will extend it to the general ease. 

As Milner in [M2] extends ~ from agents to expressions, we extend ~ from behaviours to functions 

returning behaviours; given two terms fl  and f2 of sort funct(srt,behaviour) 

fl  ~ f2 fff for all terms tl ,  t 2 of sort srt t 1 = t 2 implies f l( t l)  ~ f2(t2). 
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Theorem 3. ~ is a congruence on behaviours (without the i-enclose and n-enclose combinators). 

Pr99f. - bh 1' ~ bh 2' and a I = a 2 implies a 1 A bh 1' ~ a 2 A bh2'. Obvious. 

- For all srt ~ SORTS, bhfunct 1 ~ bhfunct 2 implies choosesr t bhfunct 1 ~ chooses~ bhfunct 2. 

Obvious. 

- bhfunet 1 ~ bhfunct 2 implies fix 1 bhfunct 1 ~ fix 1 bhfunct 2. Analogously to the proof of Proposition 

4.6 of [M21. 

- For all sat ~ SORTS, b h l ' ~  bh 2' and bhfunct 1 ~ bhfunct 2 implies 

defsr t bh 1' in bhfunct 1 ~ de f s r  t bh 2' in bhfunct 2. 

We show that 

R = (< defsr t bh' in bhfunct', defsr t bh" in bhfunct"> I bh' ~ bh" and bhfun~t' ~ bhfunct"} u Id, 

where Id indicates the identity relation, is a bisimulation up to ~ (i.e. ~R ~ is a bisimulation). 

I fR is a bisimulation up to ~, thenR c ~R ~ c ~. 

Let <bhl,bh2> be an element of R, we prove, by cases, that 

if b h l ~ >  bhl '  , then bh 2 a > bh 2' and bh 1' R ~ bh2'. 

° bh' a > bhl,, ' bh 1, = defsrt bhl,, in bhfunct' and a ~: RETURNsrt(..). 

By the hypothesis bh" ~ > bh2" and bhl" ~ bh2", thus bh2---~--a > bh2', 

bh2'= defsr t bh2" in bhfunct" and b h l ' R  ~ bh2'. 

° bh' = re tu rns r  t t t and bhfunct ' ( t l ) - - -~-> bh 1'. 

By the hypothesis bh" = r e t u r n s r  t t 2 and t 1 = t2; bhfunct'(tl) ~ bhfuncf'(t2) implies 

bhfunct,,(t2) a > bh 2, and bh 1' ~ bh2'; thus bh 2 ~t > bh 2, and bh 1' R ~ bh2'. 

° bh' = re turnsr t l t  1 with srtl~srt. Thus bh I = re turnsr t l t  I RETURNsrtl(tl)-> stop. 

By hypothesis bh" = re turnsr t l t  2 with t 1 = t2, thus bh 2 = re turnsr t l t  2 RETURNsrtl~2L> stop. 

Proposition 4, (clef/return properties). For every srt ~ SORTS 

1) defsr t ( r e t u r n s r  t t) in bhfunct ~ bhfunct(t). 

2) For every srtl e SORTS such that srtl ~ srt defsr  t ( re turnsr t l  t l )  in bhfunct ~ returnsr t l  t 1. 

3) For every srtl  e SORTS 

Isfree(tl,bhfunct ) = false D 

defsr t (choose t l :  srtl  in bh(tl)  ) in bhfunct ~ choose t l :  srtl in ( defsr t bh(tl) in bhfunct ). 

4) defsr t (a A bh) in bhfunet ~ a A (defsr t bh in bhfunct).  

Proof, 1), 2) and 3) Obvious, because - implies ~. 4) obvious. [] 

Proposition ~ (choose properties) 

1) For every n,m.~>l, srt 1 ..... srtn,srtl',...,Srtm'~ SORTS 

[for all terms t 1 ..... t n of sort srt 1 ..... srt n respectively 

there exist tl ',...,t m' terms of sort srtl',...,srt m' respectively such that bhl( t  1 ..... tn)~ bh2(ti',...,tm')] 

and 

[for all terms tl ' , . . . ,t m' of sort srtl',...,srt m' respectively 

there exist t 1 ..... t n terms of  sort srt 1 ..... srt n respectively such that bh2(tl',...,tm' ) ~ bhl( t  I ..... tn) ] 
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implies 

choose t l :  srt 1 in ... choose tn: s r tn in  bh l ( t  1 ..... tn) ~ 

choose t l ' :  srt 1' in  ... choose tm': srt m'  in bh2(ti ' , . . . , tm') .  

2)(Idempotence) For every srt e SORTS 

[ for all terms t of sort srt bhfunct(t) ~ bh] implies choosesr t bhfunct ~ bh. 

Proof. Obvious from the definition of ~ .  [] 

For simplicity we consider only the combinator fix 1, i.e. the unary fixpoint combinator. 

For expressing the properties of the fix 1 combinator we need the following definitions and lemmas. 

der bh indicates the derivation tree of bh, i.e. the labelled tree associated to bh in the transition system; 

given a derivation tree tr, ltrtn indicates the truncation of tr at depth n. Given a term f of sort 

funct(srtl,srt2), fn(t) indicates f applied n times to t. 

Similarly as in [M1] for CCS, we define that a variable x of type behaviour is guardf~[ in bh (i.e. x is 

preceded in bh by a A..., for some action a); we omit the trivial definition by induction on the structure of 

behaviours. 

Lemma 1. (basic fix lemma) If the variable x is guarded in bh(x), then given A = fix 1 )L x .  bh(x) and 

for m > 1 Am= ()~ x .  hh(x))m(stop), we have that 

for all n > 1 Ider AIn = tder Anl n = Ider An+ql n (for all q >_ I), 

Proof. By arithmetic induction on n. [] 

Lemma 2. (fix-context lemma) For all terms bh(y) of sort behaviour with a hole of sort behaviour, 

if bhfunct = )~ x .  bhl(X) with x guarded in bhl(X ), A = bh(fix 1 bhfunct) and for all p > 1 

Ap = bh(bhfunctP(stop)), then we have that for all n > 1 Ider AIn = Ider A n In. 

Proof, By structural induction on bh(y). [] 

Proposition 6, (fix 1 properties) 

1) For all terms bhl(Y), bh2(Y) of sort behaviour with a hole of sort behaviour, 

for all bhfunct = ;Lx. bh(x) with x guarded in bh(x) 

[for all n > 1 tder (bhl(bhfunctn(stop)))ln = Ider (bh2(bhfunctn(stop)))tn ] implies 

bhl(fix 1 bhfunct) ~ bh2(fix I bhfunct). 

2) If x is guarded in bh(x), then 

Isfree(x,bhfunct) - false implies 

defsr t ( fix 1%x.  bh(x)) in bhfunct ~ fix 1 Xx.  (defsr t bh(x) in bhfunct). 

Proof. Obvious, by Lemma 2. [] 

3.2 Strong equivalence properties of parallel combinator 
Here we use ~ ( ~ bold) to indicate the strong extensional equivalence of the algebraic transition system 

SYST (with transition relation D== [3==> [:]:state x extflag x state -¢bool) defining one of our calculi 
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and P-SYST and S-SYST indicate respectively the systems defined by the parallel and synchronous steps 

(recall that SYST has been defined following the three steps SMoLCS methodology ). 

Also in this case we need to distinguish the normal states of SYST and as in the previous section to do 

this we add some transitions to SYST; precisely 
skipl...Iskiplgc CORRECT_> stop[go; 

which allow to distinguish the correct terminal states from the incorrect ones.. 

Provosition 7. ( [ properties) 

1) For every bh 111""[ bhlnlg ° '  bh21] ''-1 bh2n]g ° e WSig(SYST)lstate 
such that bh l l  ~ bh21 ..... bhln ~ bh2nwe have that bhl-1]...I bh~lnlgO ~ bh21[...I bh2nlgO; 

2) for every bhms[go ~ WSig(SYST)lstat e seedlbhmslgo ~ bhmslgo ; 

3) for every bhms[go ~ WSig(SYST)Jstat e, for every bh ~ WSig(SYST)Ibehaviou r such that bh ~ skip 
bhlbhmslgo ~ bhms[go. 

Proof. 1) By Lemma 3. 2) and 3) Obvious. [] 

~mm~3_~(Monitofing step) 

For every bh111...I bhlnlgO , bh211...I bh2nlgO ~ WSig(SYST)lstat e, 

for every extf~ WSig(SYST)[extfl, ag such that bh l l  ~ bh 21,...,bhln ~ bh2n we 

i) for every bhll'l...I bhln'[go a WSig(SYST)lstat e 
SYST I - b h l l  I...I bhlnlgo ==extf==> bhll'[...I bhln'lgo ' implies 

have that 

there exist bh 2 '1 [b h2 '[go' a W  • I such that 1 ... n Slg(SYST) state 
SYST 1- bh211...] bh2nlgo ==extf==> bh21'j...I bh2n'[go ' and bh l l  ' ~ bh21',...,bhln'~ bh2n'; 

ii) converse of i). 

Proof, By Lemma 4, recalling that in a SNIoLCS system the monitoring decision depends only on the 

possible actions of the behaviours and not on their states. [] 

Lemma 4, (Parallelism step) 

For every bh 111-.I bhlnlg o' bh21[-..I bh2n[gO ~ WSig(SYST)lstate' 

for every a~ WSiglSYST)[ac t such that bh11 ~ bh21 ..... bhln ~ bh2n we have that 

i) for every bh 1 l'l..-I bhln'lg o' e WSig(SYST)lstate 
P-SYST [ - b h l l  I...I bhln[gO ~ a ~ >  bh11'l...I bhl n'[go' implies 
there exist bh 2 '1 I b h2 'lgo' ~ W • ] such that 1 '" n Slg(SYST) state 
P-SYST I- bh211...I bh2nlgO ~------a~> bh21'l...I bh2n'lgo ' and 
bh l l '  ~ bh21',...,bhln'~ bh2n'; 

ii) converse of i). 

Proof. By Lemma 5. [] 

Lemma 5. Under the same hypotheses of Lemma 3, we have that 

i) for every bhll'l...I bhln'lgo ' ~ WSig(SYST)lstate 
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S-SYST l - b h l l  I..-I b h l n l g o ~ a ~ >  bhll 'l. . .I bhln'tgo ' implies 

there exist bh21't...I bh2n'lgo' ~ WSig(SYST)Istate such that 

S-SYST t- bh21I.-.I bh2n lgo===a~>  bh21 I...I bh2nlgO and 

b h l l '  ~ bh21',. . . ,bhln'~ bh2n'; 

ii) converse of i). 

Proof, By cases on the form of a. [] 

Proposition 8, (i-enclose, n-enclose properties) 
1) For every n >--1 i -enclose(skipl . . . l sk iplgo)  ~skip n-enclose(skipl . . . lskiplbgo) - sk ip .  

"v 
n tir~es n times 

2) For srt e SORTS for every n > 0 

A Isfree(t,bhi) = false A Isfree(t,go) = false D 

l < i < n  

i-enclose((choose t: srt in bh) [bhll...IbhnlgO ) ~ choose t: srt in(i-enclose(bh ]bhll...lbhnlgo)) 

n-enclose((choose t: srt in bh) [bhll...lbhnlbgo ) ~ choose t: srt in(n-enclose(bh Ibhl[...lbhnlbgo)) 

3) st ~ st' D i-enclose(st)  ~ i-enclose(st ' ) ,  sst ~ sst' D n-enclose(sst)  ~ n-enclose(ss t ' )  

where Z indicates the strong equivalence on the transition system SUB-SYST (parameter of the 

calculus) representing the noninductive concurrent components. 

Proof, Obvious. []  

Now we can extend Theorem 3 to all behaviours. 

Theorem 3,BIS, ~ is a congruence on behaviours. 

Proof. By Theorem 3, Proposition 7 and Proposition 8. []  

Conclusion 

We have presented a proposal for a family of calculi, which are a partial instantiation of the SMoLCS 

parameterized schema. The novelties of these calculi lie in their high level of parameterization, in the 

possibility of defining functional modules and of considering processes just as data types. In this sense 

we personally see our calculi as a development for high-level specifications of the work started with CCS 

and SCCS, which we consider basic calculi, much as lambda-calculi are w.r.t, higher level languages. 

We are well aware that our presentation here is far from being satisfactory in many respects. We plan to 

come out with a more explanatory paper with full proofs. We are currently pursuing two directions of 

interesting research: first we are looking at a nice proof techniques for a generalization of strong 

equivalence handling labels with behaviours as subterms and including extensionality; second, we have 

already explored in part the possibility of calculi where the behaviour labels include, so to speak, the code 

for the interactions at synchronization, parallelism and monitoring level, while still keeping the fult 

expressive power of SMoLCS specifications; but it is not clear whether this calculus can be elegant and 

simple enough to be really useful. 

Finally we want to emphasize that the family of calculi AC we have used in the Ada Formal Definition 
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project  can be seen as an upgrading of  the V D M  metalanguage Meta  IV to handle  concurrency and abstract 

data types. 

A p p e n d i x  1: Recursive specifications 
Let SPEC = u {~,, Ax)  I Ax  is a set  of  posi t ive condi t ional  axioms on  Z}, where  SIG is the set of  all 

Z ~ SIG 

(classes o f  i somorphic)  signatures.  A recursive definit ion of  a specification has form 

(*) ID = S (D) ,  

where  S is a funct ion f rom SPEC into  SPEC. 

Af ter  hav ing  def ined an  order ing ~ on  SPEC we can see (*) as def in ing  ]J3 as the least  f ixpoint  of  S (if 

there exists). 

G iven  S I = ( Z 1 , A x l )  and  S2=(Z2,Ax2) ,  S 1 , S 2 iff  Z 1 is a subs ignature  o f E  2 and Ax 1 ~ Ax2; 

g iven  E 1 = ( S o r t s l , O p n s l )  and E 2 = (Sorts2,Opns2) ,  E 1 is a subs ignature  of  E 2 iff  Sorts 1 £2 Sorts 2 

and Opns  1 £ 2 0 p n s  2. 

I f S  is cont inuous ,  then (*) defines the specification ID in the fol lowing way: ID = 1.u.b. s n ( I D ± ) ,  
n ~ 0  

where  tD_L is equal  to the specification with only one sort named  id and nei ther  operat ions nor  axioms. 

W h e n e v e r  S is g iven  by  compos ing  cons tant  specif icat ions,  the parametr ic  specif icat ions,  P R O D ,  N~a.p, 

M S E T  and  the "+" and  " e n r i c h  ... by.. ." operators ,  then it is cont inuous.  

Clearly also sets o f  mutual ly recursive specifications can be  def ined in the same way. 

W h e n e v e r  the  1.u.b.of the  cha in  { s n ( I D _ L ) } n > 0  is ob ta ined  as the  k- th  step for  some  k, then the 

specification can be given in a non  recursive way. 

Here  as an example  we report  a nonrecurs ive definit ion of  the specification PROC,  def ined recursively in 

subsec t ion  t .1.  

PROC = enrich NAT+ LOC + BUFID + CHID by 
sorts  value, proc, instr 
opns  < D, D>: instr × lmem ~ proc 

Emptymap: ~ lmem 
[] [D/D]:  lmem x loc x value ~ lmem 
[ ( D ) :  lmem x loc --~ value 

Nit: -~ proc 
Pval: proc ~ value 

Nval: nat ~ value 

{Op: value x ... × value -~ value I Op: nat x ... × nat --~ nat ~ Sig(NAT) } 
Writebuf, Readbuf: loc × build --~ instr 

Send, Rec: loc × chid ~ instr 

Skip: ~ instr 
Start: proc ~ instr 

; V1, [] + [ :  instr x instr --~ instr 
While [] ~ 0 Do ~:  loc x instr ~ instr 
Seq-Instrl: ... --~ instr 

Seq-Instrn: ... ~ instr 
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axioms "all total" 
{Op(Nval(n 1),...,Nval(nk) ) = Nval(Op(nl,...,nk) ) 

I Op: nat x .. x nat --~ nat ~ Sig(NAT) } 
Eq(ll,12) = Irue ~ (Im[v/ll])(12) - v 

Eq(ll,12) = false ~ (Im[v/ll])(12) = lm(12) 

i 1;(i 2; i3) - ( i  1; i2); i 3 Skip; i -  i 

il+i 2 = i2+ i 1 i1+(i2+i3)- (il+i2)+i 3. 
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