
S M O L C S - D R I V E N C O N C U R R E N T C A L C U L I

Egidio Astesiano - Gianna Reggio
Department of Mathematics, University of Genova

Via L.B. Alberti 4, 16132 Genova, Italy

Abstract It is shown how to derive, following the principles of the SMoLCS methodology, a family of

calculi, suitable for the specification of concurrent systems and languages. A calculus consists basically of

a language for expressing behaviours and their parallel composition together with the rewriting rules

defining their semantics; formally it is a calculus associated to an algebraic parameterized specification: for

every choice of the parameters we fix one calculus in the family. The distinguishing feature of our calculi

is that the combinators for behaviours include functional abstraction and application, so that behaviours

can be passed as arguments and obtained as results of functions; in general behaviours can be seen just as

a data type and in this sense our calculi can be higher order calculi with behaviours as fast class objects.

0 INTRODUCTION

0.1 Generalities on the SMoLCS approach

SMoLCS is an integrated methodology for the specification of concurrent systems and languages

developed mainly by the authors (JAR1, AR3]), in cooperation with M.Wirsing ([AMRW, ARWl]).

The typical fields of application of SMoLCS are large systems, multilevel architectures built from systems

with different granularity, complex concurrent languages with modules and interference between

sequential and concurrent features.

For the specification of concurrent systems, SMoLCS has been applied to specify the internode

communication architecture of the project Cnet (a local net of workstations) (see [AMRZ1, AMRZ2]).

As a method for the specification of languages, it is the methodology chosen for the formal definition of

the dynamic semantics of Ada ® in the CEC-MAP project ([AGMRZ, CRAI-DDC]).

The roots of SMoLCS, both for inspiration and technical ideas, are in the work of Milner on CCS and

SCCS [M1, M2], of Plotldn [P] on SOS, of Broy and Wirsing on partial data types [BW1, BW2] and of

Wirsing and Sannella on algebraic specification languages [W, SW]. On these roots SMoLCS has grown

into a precise coherent framework, whose distinguishing features we briefly summarize.

The specification of a system is obtained as an instantiation of a parameterized data type, following a

schema based on an operational intuition of a process as a labelled transition system and of a concurrent

system as resulting from the composition of the component subsystems. The abstraction from the

Work partly funded by CNR Italy and MP140%.

® Ada is a registered trademark of the U.S. Government, Ada Joint Program Office.

170

operational intuition is obtained by a schema ensuring the existence of an observational semantics,

represented by an algebra.

By concurrent system we mean a labelled transition system built from some subcomponents: these

subcomponents are of two kinds: active, called process~, and passive, called global objects. Each active

subcomponent is in turn modelled as a labelled transition system. A transition represents an action and the

difference between the two kinds of subcomponents is that the passive ones cannot perform any transition

by themselves; they change their states only as a consequence of a process transition.

A state of a concurrent system is modelled as a set of states corresponding to its subcomponents; the

transitions are inferred from the transitions of the active subcomponents in three steDs: synchronizatig~,

narallelism, monitoring. This SMoLCS schema can be expressed in an algebraic parameterized way so

that every instantiation on the appropriate parameters, defining the information for synchronization,

parallelism and monitoring, is an abstract data type (see [AMRW, ARW3]).

The definition of a SMoLCS specification of a system is modular and hierarchical. More precisely every

composition step is a parameterized abstract data type specification: for example the synchronization step

STS takes as parameters the specification of a transition system PROC-SYST (representing the processes)

and an algebraic specification GOBJ (representing the global objects) and gives a labelled transition

system STS(PROC-SYST, GOBJ) whose transitions represent the synchronous interactions between

processes.

Together with an initial algebra semantics, corresponding to an operational semantics, the SMoLCS

approach supports, with explicit linguistic constructs, the definition of an observational semantics again

via a parameterized abstract data type specification, where the parameters correspond to a formalization of

the observations. Every instantiation of such schema admits a terminal model, called concurrent algebra,

in which two states of the concurrent system are equivalent if and only if they satisfy the same

observations; moreover every subcomponent of the state gets an observational semantics by closure with

respect to state contexts (see [ARWl] for foundations). Note that this is just an existential definition, to

guarantee consistency; for any instantiation such observational semantics has to be characterized more

explicitly, by suitable equivalences on the derivation trees associated to states and subeomponents. The

above schema permits to formalize observationally various semantics as inpuVoutput, streams semantics,

strong equivalence, classes of bisimulation equivalences and test semantics.

The SMoLCS semantic d..efinition of a langu.a.g~ is compositional (i.e. is a homomorphism from a syntax

algebra into a semantic algebra). It is done in two steps (see [AR1]): in the first a set of clauses, called

denotational clauses, one for each syntactic clause, defines a translation into an intermediate language,

with appropriate combinators for handling concurrency; in the second, a SMoLCS specification is given

of the abstract concurrent system corresponding to program executions, with its semantics defined by an

appropriate concurrent algebra. The denotational clauses can be given both in the Oxford continuation

style ([AR1]) and in the VDM-like direct semantic style ([AR2]) also for a comparison; but note that they

can be seen just as algebraic axioms, that the general semantic definition is just the specification of an

abstract data type.

171

0.2 Concurrent calculi

The main aim of SMoLCS is to provide a precise formal framework which can be adapted to the level of

the system to be specified. Then, since the overall approach is that of partial abstract data types [BW2], in

order to derive the properties of the specified objects we can use an adaptation of the usual machinery of

partial abstract data type specifications. This machinery consists mainly of the proof techniques associated

to a specification seen as a logical rewriting system and of the associated tools.

In particular for the specifications we use in SMoLCS, an initial model always exists where equality and

definedness coincide with provable equality and definedness. Hence a calculus is naturally associated to

each of our specifications; because of the form of the axioms, it can be seen that this calculus corresponds

to an operational semantics for the specified concurrent system.

As for the tools a specific rapid prototyping tool has been developed for SMoLCS ([Mo]) which is a

variation of the RAP system [H], specially tailored to the structure of SMoLCS. It consists of a

concurrent symbolic intepreter, which can derive transitions for a specified concurrent system, and of a

translator which, taken the denotational clauses specifying the semantics of a language, can convert a

source program into a program written in the intermediate concurrent language.

In the above sense a SMoLCS calculus is the one associated to a SMoLCS specification. In the ~ t ~

of the paper we illustrate this point of view by means of an example, which also introduces the use of

processes as data types and of functional combinators.

Correspondingly to the parameterization principle of SMoLCS, within a schema for defining

synchronization, parallelism and monitoring, one can define for each specification appropriate

combinators on processes. This possibility enhances flexibility and allows to write high level

specifications, without the need of, so to speak, translating into a fixed language. However all this

freedom has its own disadvantages, especially for deriving properties of the specified system. Indeed, to

this end it is much easier to have a fixed set of combinators, with a well established set of properties. We

propose in this paper a balance between these two attitudes, consisting in a family of calculi, where we

have a fixed set of combinators for describing a kind of basic processes, called behaviours; but where

there is room for fixing some parameters related to various data structures and to decisions about the

interactions between processes. The result is a parameterized calculus, which is introduced in the

12~ of the paper. The two essential features of this calculus are the use of functional combinators and the

possibility of having processes as data types. One of these calculi has been used as the intermediate

language in the two steps SMoLCS definition of Ada [CRAI-DDC], a project where we have learnt, for

example, that the use of functional combinators is essential for giving denotations to procedures as

functions from values into processes, and for keeping high-level and modular the definition

Then in the third Dart we begin to study the properties of our combinators w.r.t, a basic observational

equivalence, corresponding to the strong bisimulation equivalence of Milner and Park. Under some

restrictions, various properties of combinators are shown, nicely corresponding to our intuition. But all

the given properties hold without restrictions for the full calculi and a generalized notion of strong

equivalence; the complete theory will appear in a more technical paper.

172

1 SMoLCS S P E C I F I C A T I O N S AND CALCUL I

T e c h n i c a l prel iminaries . In the following we refer to [BW2] for a precise definition of the concepts

related to abstract data type techniques; but let us give some informal expIanations. By an abstract data

type specification we mean a signature and a set of axioms. Since we use a partial data type approach, i.e.

the value of an operation can be undefined for some arguments, also definedness predicate symbols are

used, one for each sort, to say that an object is defined; all are indicated by D (the sorts can be deduced

from the context). Axioms are always first order formulas in positive conditional form, i.e. of the form

A e i ~ e, where e can have form either D(t) or t 1 = t 2 and e i can have form either D(t i) or
i

(D(ti) A t i = ti'). It is assumed that every axiom is implicitly universally quantified over all variables, but

variables can only range over defined values in the interpretation. Terms and axioms are interpreted in

partial algebras, which are structures consisting of a set of carriers, one for each sort in the signature, and

a set of (.partial) functions corresponding to the interpretations of the operation symbols (including the

definedness predicates, which are assumed to be total, i.e. either true or false on every element). There

are two other important points about interpretation: first, t 1 = t 2 is true iff either both t 1 and t 2 are

defined and equal or both are undefined; second, the functions are strict, i.e. if Op(tl,...,tn) is defined,

then all t I t n are defined.

In the following we will use some notations which we now explain.

Let S, O, F be respectively a set of sorts, of operations and of positive conditional axioms and

A = (ZA,FA), B = (ZB,FB) be two specifications: then

- sorts Sopns O axioms F denotes the specification having for signature (S,O) and axioms F;

- A+B denotes the specification having for signature (Sorts(ZA) u Sorts(ZB),Opns(ZA) u Opns(ZB))

and for axioms FAU FB;

- enrich A by sorts S opns O axioms F denotes the specification

A + (sorts S u Sorts(ZA) opns O u Opns(Z A) axioms F);

- A[srtTsrt] denotes the specification A where the sort srt is renamed srt'.

A r u n n i n g example. By means of a concrete example we first illustrate the main features of a

SMoLCS specification, i.e. of a specification of a concurrent system obtained by instantiating the

SMoLCS parameterized schema.

The example is also meant to show how processes can be considered as data and later will be extended to

handle parameterized process types, by introducing an algebraic version of function spaces.

Finally we will discuss how a concurrent calculus is associated to the given specification.

As an example we consider the formal description of a class of simple concurrent architectures, indicated

by PD. Each architecture consists of (a varying number of) processes and (a fixed number) of buffers

shared among processes. Each process has a local (private) memory and an instruction part defining its

activity. Processes can communicate between them by exchanging messages in a synchronized way

through channels (handshaking communication) and by writing and reading the buffers. The exchanged

messages and the buffer contents are just values; values are natural numbers and also the processes

173

themselves. Processes execute their instructions in a completely free parallel way, except when they try to

communicate between them or to get access to the buffers (several contemporaneous accesses to the same

buffer are not allowed).

First we define processes and then show how to compose them into concurrent systems representing PD

architectures.

1.1 Processes

A set of processes is described by an algebraic (labelled) transition system. An algebraic transition system

is an algebraic specification with two sorts, state (the states of the system) and flag (the labels), and a

boolean operation [] [] > 0 : state x flag x state -~ bool defining the system transitions. In the

following the transitions will be defined by sets of axiom schemata of the form

" c o n d D s f >s '= true "

to be interpreted: if the condition cond (a conjunction of equations) is true, then the transition s ,,f -> s'

belongs to the system. Notation: s---f--f> s' = true is usually written s (> s'.

It is important to note that a transition has the following intuitive meaning: a process in a state s has the

capability of moving to a state s' by an action whose interaction with the external environment is

represented by the flag f; hence f is conveying both information on the conditions of the environment

which allow the capability to become effective and on the transformation of the environment produced by

the execution of that action. This meaning of Iabelled transitions has now become classical after its use in

CCS [Mt, M2] and in SOS [P]; we will now illustrate it by few examples. A capability of reading the

content of a shared buffer by a process pr can be written as
pr READBI~(b,v) .>pf

where b is a buffer identifier and v a value.

Note that, as it will be defined later in the synchronization step, this capability will become effective only

in an external environment where the content of the buffer b is exactly the value v.

A capability of writing on a shared buffer by a process pr can be written as
pr ,,,, WRITEBUF(b,v-)-->pr'

where b is a buffer identifier and v a value.

Analogously we can express the well known capabilities of handshake communication

pr -,,-SEND(c'v) >pr' (sending) and pr ~REC(c'v) >pr' (receiving)

where c is a channel identifier and v a value.

An example of conditional rule is

pr 1 - f > pr 1' D pr I ; pr 2----f--f > Pr l ' ; pr 2

which defines, inductively, the capabilities of a process executing the concatenation of two statements.

Example. As an example of algebraic transition system we give PD-PROC, which describes the PD

processes, mentioned before.

The s~tes of PD-PROC are defined by the following algebraic specification, which is an example of

recursive specification. The use of recursive aigebralc specifications is quite natural, when trying to give

specifications in a modular way. For example in the following specification we first say that processes are

t74

couples of instructions and local memories; after that we define local memories as finite maps from

locations into values and then we say that values consists of processes as data and of natural numbers.

Since we use a recursive definition, we expect that the resulting specification (signature and axioms) is in

some sense, a well determinated fixpoint of the transformation associated to the definition. It is not

difficult to see that, under some natural conditions, such fixpoint exists. For a more technical discussion

we refer to the Appendix 1, where also a non recursive version (i.e. the explicit fixpoint) of the following

specification is given.

As it should be clear from the intuitive explanations, given two specifications ELEMI, ELEM2 with main

sorts elem 1 and etem2, PROD(ELEM1,ELEM2) indicates the parametric specification of the cartesian

products with main sort prod(eleml,elem2) and operations < 71, Fq> (pair constructor) and Sel l , Sel 2

(component selectors); MAP(ELEM 1,ELEM2) indicates the parametric specificatiqn of finite maps with

main sort map(eleml,elem2) and operations [][E]/[]] (substitution) and 71(D) (application). LOC

(locations), BUFID and CHID (buffer and channel identifiers) are specifications which are not further

defined here. The main sort of a specification is just a sort of the specification, used in defining parametric

specifications. The use of the D's indicates that some operations have an infix syntax; "all total" stands

for the set of axioms having form D(Opn(x I Xn)) requiring the totality of all operations appearing in

the opns part.
PROC = enrich PROD(INSTR,LMEM)[proc/prod(instr,lmem)] by

o p n s Nil: --> proc
a x i o m s • (N i l)

LMEM = MAPfLOC,VALUE)[lmem/map(loc,value)]

VALUE = enrich PROC + NAT by
sor t s value
o p n s Pval: proc --~ value

Nval: nat --> value
{Op: value x ... × value ---> value I Op: nat x ... x nat --> nat ~ Sig(NAT) }

a x i o m s D(Pval(pr)) D(Nval(n))
{Op(Nval(nl),...,Nval(nk))-- Nval(Op(nl,...,nk)) lop: nat × ... x nat --) nat ~ Sig(NAT) }

INSTR ~ enrich LOC + VALUE + BUFID + CHID by
sorts instr
o p n s 1 Writebuf, Readbuf: loc × build ~ instr

2 Send, Rec: loc × chid ---> instr
3 Skip: --) instr

4 Start: proc ---) inset
5 [] ; D, [] + E]: instr x instr --) instr
6 While D ~ 0 DoI'q: loc x instr --> instr
7 Seq-Instrl: ... ---> instr

7+n Seq-Instrn: ... ---> instr
ax ioms "all total"

i l ; (i 2 ; i3) - - (i l ; i 2) ; i 3 Skip; i = i

i I + i 2 m i 2 + i l i l+(i2 + i3) " (i 1+i2) +i 3.

175

Comments.

1. Writing the content of a cell of the local memory in a buffer and reading the content of a buffer

together with storing it in a cell of the local memory (buffers contain values).

2. Sending and receiving messages (just values) through channels.

3. Skip is the usual nuU instruction.

4. Creation of a new process.

5. Sequential composition and nondeterministic choice.

6. While the content of the location is different from 0 execute the given instrucion.

7,.,7~-n. Sequential instruction, i.e. instructions whose executions do not require either interactions with

other processes or with the buffers.

Note that the processes can store into the buffers or into the local memory and exchange between them

other processes because a value can be a process. En¢t of ¢~mments.

Now we give the specification of the transition system of PD processes, indicated by PD-PROC. The

flags of PD-PROC (specification PFLAG) are in correspondence with the executions of the concurrent

instructions, exception made for TAU (Milner's internal action) which corresponds to the execution of

sequential instructions. For simplicity we do not report the full specification PFLAG; it can be easily

understood by looking at the axioms of PD-PROC.

PD-PROC =
enrich PROC + PFLAG by

opns I:] [] ~ D: proc x pflag x proc --> bool
axioms
1 <Writebuf(1,b),Im> WRITEBUF(1/~lkb)><Skip,lm>
2 <Readbuf(1,b),lm> ~a.F.,ADJ~v~L.I~L> <Skip,Italy/t]>
3 <Send(t,e),lm> SEND(lmftkc'~ > <Skip,Ira>
4 <Rec(1,c),lm> REC(v,c) > <Skip,lm[v/1]>
5 <Start(l~r~,]m~> S_TART(pr) -> <Skip, lm>
6 Nil ~ > pr
7 <il,lm> Pf > <il',lm'> D <i 1 ; i,lrn> Pf > <i 1' ; i,lm'>

8 <il,lm> Pf > <il',lm'> D <il+ i,lm> Pf > <il',lm'>

9 Iszero(lm(1)) -" true ~ <While 1 ~0 Do i,lm> TAU > <Skip,lm>
!0 Iszero(Im(1)) = false ~ <Wh~e t ~ Do i, lm> TAU > <i; While I # 0 Do i,lm>

{ <Seq-Instrj(...),lm> TAU ><ij',lmj'> I 1 _<j _< n }.

Commcnt~, A process in a state <i,lm>, where i is an input instruction (Readbuf, Rec), can perform

nondeterministically an action out of an infinite set, one for every possible value which can be received

(axioms 2,4),

Axiom 5 defines the capability of a process of creating a new process. Axiom 6 defines the capability of

being created, which is represented by a transition of the process Nil into the initial state of the created

process and is denoted by the flag CREATED(...).

Axioms 7 and 8 completely define the sequential composition and the nondeterminisfic choice, because of

Skip is the identity of ; and + is commutative (look at the axioms of INSTR).

Axioms 9 and 10 def'me the While instruction. En~t 9f ~omments.

176

1.2 Concurrent systems

Now that we have defined processes, we show how to compose them into concurrent systems, of which

processes are subcomponents. In a concurrent system a state consists of the states of the processes plus

the state of the global object; we choose to represent it as a pair <{Prl,Pr2,...,Prn},go> where go is the

global object and {pr 1,pr2,...,prn} is a multiset of states of processes.

Now, assuming that a transition system PROC-SYST, representing the subcomponent processes and an

algebraic specification GOB J, representing the global object, are given, how do we specify the resulting

composed system?

Our idea is to split the composition in some steps. First the actions of the processes are composed

producing new actions; this step is conveniently subdivided into two other steps: one (synchronization)

defines the actions resulting from some synchronized cooperation between processes; another (parallel

compo~i~ion) defines which are the synchronous actions that can happen in parallel. Then a third step

(monitoring) defines which actions resulting after the second step are allowed to happen as actions of the

whole system.

S

M

O

L

C

S

PROC~SYST GO~BJ

i I
STS

I I
PTS

MONITORING [

FINAL TRANSITION SYSTEM

Example. As an example of concurrent system we report the definition of PD. Following the above

schema the definition is split in four parts which are reported and commented in sections: 1.1 (the

algebraic transition system given before and corresponding to the process subcomponents), 1.2.1

(synchronization), 1.2.2 (parallelism), 1.2.3 (monitoring).

1.2.1 Synchronization
We define the synchronous actions by giving a new transition system STS, where the transition relation

~ > corresponds to synchronous actions, starting from a transition system PROC-SYST (representing the

177

component processes with transition relation->) and an algebraic specification GOBJ (representing the

global object). The states of STS are pairs <prms,go> where ms is a multiset of proces states and go a

state of the global object.

The synchronous actions are given by the a set of axioms having form

(A prj .Afj_> prj') A cond(sf,{f 1 fn},go) = <{pr 1 Prn},go> - s f -> <{Prl',...,Prn'},go'>
l<j_<n

where cond(sf,{f 1,...,fn},go) is a conjunction of equations and represents the condition under which the

process actions pr 1 f l - > Prl',...,pr n -fnf -> pr n' can synchronize.

Note that the transformation of the global object associated to a synchronous action can be

nondeterministic, i.e. it is possible to have also another axiom similar to the above one except that go' is

replaced by a different go".

We briefly illustrate the idea referring to the example capabilities of subsection 1.1.

The effect of reading a shared buffer can be defined by:

pr 1 _ READBUF(b.v~ > pr 1, A go(b) = v ~ <{Prl},go> -READBUF(b,v)-> <{Prl'},go>

where in the global object are recorded the states of the shared buffers; note that the flag of the resulting

action is still READBUF(b,v) (thus recording the kind of the action) since the effective happening of the

action will still depend on the actions of the other processes because two contemporaneous readings of the

same buffer are mutually exclusive; we will handle that in the parallet composition step.

The effect of writing on a shared buffer is defined by:

pr 1 WRITEBUF(b.v) > pr 1, ~ <{Prl},go> -WRITEBUF(b,v)-> <{Prl'},go[v/b]>,

go[v/b] represents the state of the global object where the content of the buffer b has been changed in v.

The effect of a handshaking communication is defined by

pr I SEND(c.v~ > pr t, A pr 2 REC(e.v) > pr 2, ~ <{Prl,Pr2},go> - T A U t > <{Prl',Pr2'},go>

where the synchronous flag TAU reminds IVlilner's symbol for an internal action, i.e. an action with no

interaction with the external environment. Moreover no other synchronous actions involving SEND(c,v)

or REC(c,v) are defined, thus a SEND(c,v) action of a behaviour can be executed only together with a

REC(c,v) action of another behaviour.

Note that also the process internal actions will become synchronous actions, as defined below

pr 1 TA--T-A-U-->pr 1' ~ <{Prl},go> --TAU--> <{Prl'},go>.

Creation and termination of component processes are handled by defining a particular process state Nil

with the property <{Nil,pr I Prn},go> = <{Prl,-.,Prn},go>, and synchronous actions such as

Nfl ~REATED(pr~ > pr A pr 1 ~ > pr 1' ~ <{Nil,Pri},go> -TAU-> <{pr,Prl'},go>.

Example. The synchronous interactions between the processes of PD are described by the following

algebraic transition system PD-STS.

The states of PD-STS are defined by the specification PD-STATE and its transitions are labelled by

elements of sort pflag of the specification PFLAG (introduced in subsection 1.1).

PD-STATE = enrich PROD(MSET(PROC),BUFFERS)[state/prod(mset(proc),buffers)] by
axioms <{Nil}ubhms,bfs> = <bhms,bfs>.

178

The global object records the contents of the shared buffers.

MSET(ARG) indicates the parametric specification of multisets with operations { f-l} (singleton multiset

constructor) and [] u [] (union). Notation {al} u ... u {an} is simply written {a 1 an}.

BUFFERS = MAP(BUFID,VALUE)[buffers/map(bufid,value)]

PD-STS = enrich PD-STATE + PD-PROC by
opns [:)=[~> Q: state x pflag x state --> bool
a x i o m s

pr TAU > pr' D <{pr},bfs> ~TAU=> <{pr'},bfs>
pr READBUF(v.b) > pr' A bfs(b) - v D <{pr},bfs> -_READBUF(v,b)=> <{pr'},bfs>
pr WRITEBUF(v.b) > pr' ~ <{pr},bfs> ~WRITEBUF(v,b)~> <{pr'},bfs[v/b]>
pr 1 SE~(~.c) > pr 1, A pr 2 REC(v,c) > pr 2, D <{prl,pr2},bfs> =TAU=><{Prl',Pr2'},bfs>

pr I ~ > pr 1' A Nil ...~REATED(pr) > pr D <{Prl,Nil},bfs> =TAU=> <[Prt',Pr},bfs>.

1.2.2 P a r a l l e l i s m

Intuitively by means of this composition operation we define whether two actions can be executed in

parallel (without synchronization). The actions to be considered for composition are, inductively, the

actions of the synchronized system STS and the new actions already obtained by parallel composition.

As before for synchronization we can describe the operation of parallel composition as producing a new

system PTS from the system STS. PTS is simply given by augmenting the transitions of STS (indicated

by ~>) with the new elements, which are given by a set of axioms having the following form

<prms 1,g°> - s f l - > <prms l ' ,go 1'> A <prms2,go> --sf2--><prms2',go2'>

<prms lkJprms2,go> --sf l / /sf2 -> <prms l ' u p r m s 2 ' , g o ' >

provided we have given the partial (binary, commutative and associative) operat ion//on the flags of the

synchronous actions.

In our previous examples a writing action on a shared buffer and a handshaking communication can be

executed together giving a new composed action, which in turn can be executed together with an

handshaking communication of some other processes. On the converse a reading or updating action of a

shared buffer does exclude whatever other access of the same buffer.

Example. The allowed contemporaneous executions of the synchronized interactions between the

processes of PD are described by the algebraic transition system PD-FTS.

The states of PD-PTS are the same of PD-STS; the transition relation and the flags of PD-PTS are an

enrichment of those of PD-STS.

The transformation of the buffers associated to a parallel action in the system PD-PTS corresponds to

execute the transformations associated to the component synchronous actions in some order; note that the

result does not depend on the chosen order.

In the specification PD-TS Eq indicates an explicit total equality operation of the specification BUFtD

with functionality build x build --> bool.

179

PD-PTS = enrich PD-STS by
opns []//[3: pflag x pflag ~ pflag

Isacc: pflag x build -¢ bool
axioms

fl/tf2 = f2//fl (fl I/f2)/If3 = fl//(f2//f3)
Isacc(TAU,b) ~- false
Isacc(READBUF(v,bl),b2)= Eq(bl,b 2)

Isacc(WRITEBUF(v,bl),b2)= Eq(bl,b 2)

Isacc(fl/lf2,b)- Isacc(fl ,b)v Isacc(f2,b)

<mprl,bfs> =TAU=> <mprl',bfs> A <mpr2,bfs> ,=pf=> <mpr2',bfs'> D

<mprlumpr2,bfs> --pf//TAU=> <mprl'umpr2',bfs'>

<mprl,bfs> -_READBUF(v,b~_> <mprl',bfs> A

<mpr2,bfs> =pf= > <mPr2',bfs'> A Isacc(b,pf) - false D

<mprlu mPr2,bfs> =READBUF(v,b)//pf=><mpr I' u mpr2',bfs'>

<mprl,bfs> ~WRITEBUF(v,b)=> <mprl',bfs[v/b]> A

<mpr2,bfs> =pf=> <mpr2',bfs'> A Isacc(b,pf) - false

<mprlu mpr2,bfs> =WRITEBUF(v,b)//pf=> <mprl'u mpr2',bfs'[v/b]>.

1.2.3 Monitoring
Here we take into consideration any form of global control, by which only some of the actions which are

locally possible in a system (i.e. those obtained by (synchronization and) parallel composition) are

allowed to become actions of the overall system. It is at this step that we can, for example, define an

interleaving mode, admitting only one synchronized action at time, or a mode in which all actions that can

be executed together do so. Here we can also define that the buffer reading actions take precedence over

the buffer writing actions (i.e. when in a state it is possible a reading action on a buffer, a writing action

on the same buffer will never be allowed).

As before we can define the monitoring operation by giving a new transition system MTS (with transition

relation ===>) starting from a parallel system PTS (with transition relation -->). The states of MTS are

the same of PTS. The transitions of the new system are defined by giving some axioms following this

schema:

<prms 1,go>-,.sf-> <prmsl' ,go'> h cond(sf,<prmsluprms2,go>,extf)

<prmslt..)prms2,go> ==exff==> <prmsl ' toprms2,go'>.

Note that this axiom schema specifies, as it was anticipated informally, that an action of the system is

determined by an action of a part of the component processes; here the partial action is

<prms 1,go>--sf-><prmsl' ,go'> and prms 2 is the multiset of the states that do not cooperate to that

action.

Moreover the monitoring decision must depend only on the action capabilities of the processes present in

a system state and not on their states.

Example. We specify a parallel mode for the execution of the processes of the PD architectures (i.e.

every parallel action is allowed to become an action of the system) defining the concurrent transition

system PD.

180

The states of PD are still defined by the specification PD-STATE and its transitions are labelled by

elements of the following specification EXTFLAG.

EXTFLAG = sorts extflag opns TAU: --~ extflag axioms D(TAU)

PD = enrich PD-PTS + EXTFLAG by
op ns [] == [3==> D: state × extflag × state ~ bool
axioms <prmsl,bfs> ~----pf--> <prmsl,bfs'> ~ <prrns 1 u prms2,bfs> ==TAU==> <prmsl~) prms2,bfs'>.

1.3 Semantics and calculi

To the specification of PD we can first associate a semantics, given by its initial model; this model indeed

exists and corresponds roughly to an operational semantics modulo the initial congruence on the states of

the system.

Prooositionl. (see [ARW1]) There exists an initial model IpD of the specification PD such that IpD is

term generated and for any t, t 1, t 2 ~ WSig(PD)

IpD l= D(t) iff PD I- D(t) and

PD I- D(t 1) A D(t2) implies (IpD 1= t 1 = t 2 iff PD [- t 1 = t2).

In particular for any st, st' ~ WSig(PD)lstate, pr, pr' ~ WSig(PD)lpro c and pf e WSig(PD)[pflag

PD [- st =TAU=> st' iff IpD I= st =TAU=> st' and

P D I - pr Pf >pr ' iff IpDl= pr Pf >pr ' . []

The proposition shows that the specification PD defines an associated calculus, which we indicate by PD,

corresponding to an operational semantics, and formally consisting of the equality = and of the

transitions, both of processes and architectures, provable in PD. In general for any specification SYST of

a system, we will call SYST the corresponding calculus. (These are the calculi to which the rapid

prototyping tool ([Mo]) developed for SMoLCS specifications applies).

Assume now that we want to consider two architectures to be equivalent iff they have the same

input/output relation, where the inputs and the outputs are respectively the initial numeric contents of the

buffers and the lists of the intermediate numeric contents of the buffers. Then we have to define an

observational semantics of PD.

The paradigm under which an observational semantics is defined in SMoLCS for a concurrent system

(here applied to PD) consists essentially of:

- a specification, defining the observations on the system (here PD-PLUS), by means of boolean relations

(here Res) stating that some observation values (here lists of numeric buffer contents) are true of some

observed objects (here the states of PD) (see [ARWl]);

OBS = enrich MAP(BUFID,NAT)lobs/map(bufid,nat)] by
opns D^E]: obs x obs --~ obs
axioms D(oblnob2)

181

PD-PLUS = enrich PD +OBS by
opns Res: state x obs ~ bool

Val: buffers ~ obs
axioms Val(Empty_Map) = Empty_,Map

Val(bfs[Pval(pr)/b]) = Val(bfSlb)
Val(bfs[Nval(n)/b]) -- Val(bfs)[Nval(n)/b]
Res(<prms,bfs>,Val(bfs)) = true
<prms,bfs>==TAU==> st A Res(st,ob) = lrue D Res(<prms,bfs>,Val(bfs)^ob) = true.

(bfsI b represents the map bfs where every association to b is dropped);

- a definition of a class of observationally equivalent algebras, each one containing the objects to be

observed together with the relations and moreover preserving, as a subtype, a fixed model of the

observed values;

- the definition of the observational semantics as the minimally defined and term generated algebra (here

CALG) terminal in that class; a basic general theorem (in [ARWl]) shows that this algebra has indeed the

properties required of an observational semantics.

Then we obtain the following result qualifying CALG as the observational semantics of PD w.r.t, the

observations, expressed by the operation Res (here we have chosen the initial model of OBS).

Proposition 2,([ARWl]) There exists an algebra CALG with the following properties:

for any srt ~ Sorts(PD-STATE-Sorts(OBS), ground terms t, t' e WSig(PD_STATE)Isrt

01 CALG t= D(t) iff PD I- D(t)

02 CALG 1= t = t' iff for any ob e WSig(OBS)iobs,

any st e WSig(PD_STATE){X}lstat e with x of sort srt

[PD-PLUS I-Res(st[t/x],ob) = true iff PD-PLUS l-Res(st[t'/x],ob) = true]. []

If Z is a signature and srt a sort of Z, then WXlsr t represents the set of all terms of sort srt built on X.

Proper~ 01 says that all the interesting objects of PD-STATE are defined in CALG; by property 02 two

terms of sort srt are equivalent if and only if in every context of sort state they satisfy the same

observations. It is most important to note that in this way every nonobserved subcomponent of a state

gets an observational semantics: in PD, for example, this is true of processes.

Hence CALG l= st I = st 2 iff st I and st 2 produce the same outputs.

Correspondingly to the above observational semantics we could prove some useful identities between PD

processes and architectures. However this may be in general rather unpractical, since it has to be done

explicitly ad hoc for the specification PD. That is why in the second part of the paper we will develop a

parameterized caIculus starting from a fixed set of combinators, in order to be able to give standard

identities w.r.t, a basic observational semantics which is a generalization of Milner and Park's strong

equivalence.

1 . 4 Multilevel concurrent systems

In the previous sections we have defined a three steps procedure that, given a transition system,

specifying some component processes, and a synchronization, a parallel and a monitoring specification,

produces a new transition system, specifying a concurrent system. Clearly the procedure can be iterated;

182

if some subcomponent processes (said .concurrent subcomponents) are themselves concurrent systems,

then they can be specified by the same procedure. Consider for example a net of (workstations) nodes,

such that in a node many processes can cooperate, possibly using a shared memory, while the nodes can

exchange messages in a broadcasting or/and point to point mode. Then we can specify the net applying

twice the SMoLCS procedure; in one application the subcomponents are the processes cooperating in a

node and the resulting concurrent system specifies a node; in the other one the nodes, specified in the first

level, become the new subcomponents and the resulting concurrent system specifies the net (as eg in

[AMRZl, AMRZ2]).

It can also be shown that the procedure can be applied inductively; hence it is possible to specify systems

where a subcomponent process (said inductive cencurrcnt subcomponent) has the same nature of the

composed processes, as in CCS, i.e. where states and transitions of the final system are embedded into

the states and the transitions of the system describing the processes.

1.5 A specification with parametric process types

We describe now an extension of PD, called PPD, obtained by enriching the values handled by PD

processes, which already include the processes themselves, with parametric process types. Thus the PPD

processes can exchange between them and store in the buffers and in their local memories values

corresponding to parametric process types. The purpose of PPD is to introduce, on the top of the already

given PD example, the use of functional combinators which will play a relevant role in the rest of the

paper.

The algebraic specification of functions. A parametric process type is just a function from some

parameters into processes. In our algebraic setting it is convenient and feasible to give an algebraic

specification of functions from elements of some sorts into the elements of some other sort; in [ARW2]

(but see also [BW3]) we study the problem and present several solutions; here we briefly introduce some

basic concepts and notations.

Let ARG and RES be two algebraic specifications with main sorts arg and res respectively; by

FUNCT(ARG,RES) we indicate the algebraic specification of functions from elements of sort arg into

elements of sort res. The specification is nothing but an algebraic formalization of the usual rewriting

rules of functional calculus with abstraction and application. The only tricky point is the following: in a

term like)~ x . x+5, the first occurrence of x is the first argument of 9~ and is only a symbol, while in x+5

x stands for a value of sort nat; thus we say that the first occurrence of it is an object of sort nat -var and

we provide a merge operation Nat_Vat for considering a variable symbol as an object of type nat.

FUNCT(ARG,RES) has sorts -

and operations

;Llq, Vq: arg-var x res

funct(arg,res)

arg-var

arg-res-fid

bool

--~ funct(arg,res)

(the functions)

(the "variables of type arg")

(identifiers for functions from arg into res)

(the boolean values)

(~abs~acfion)

183

Arg-Var: arg-var -4 arg

(this operation embeds the "variables of type arg" into the elements of sort arg)

[3(D) : funct(arg,res) x arg -4 res (application)

if [] then []else []: bool x res x res -4 res (conditional)

Arg-Res-Fid: arg-res-fid -4 funct(arg,res)

(this operation embeds the identifiers into the elements of sort funct(arg,res))

tee [] , I-l: arg-res-fid x funct(arg,res) -4 funct(arg,res) (recursive function constructor).

Notation: the terms having form Arg-Var(x), Arg-Res-Fid(y), where x is a term of sort arg-var and y a

term of sort arg-var-fid, are simply written x, y.

The above framework allows to write the elements of sort funct(arg,res) following the usual ~.-notation;

moreover the elements of sort funct(arg,res) have the basic usual properties of a functional calculus, eg

cx-rule and 13-rule. For example

% x , x + 3 = ~ . y , y + 3 (~ x , x + 3) (2) = 5 .

Note that all the operations in a partial specifications are strict, i.e. D(Op(t 1 tn)) D D(tl) A...A D(tn)

and hence also the if [] then []else [3 operation is strict, but that does not pose problems in defining

functions, because this operation is defined by

cond(a) = true D (~. x , if cond(x) then r(x) else r'(x))(a) = r(a)

cond(a) = false D ()~ x . if cond(x) then r(x) else r'(x))(a) = r'(a).

For example, consider f = ~, x . if x>10 then x-10 else x, which is a term of sort funct(nat,nat)

defined in FUNCT(NAT,NAT); then with the usual meaning o f - , the value of 5-10 is undefined;

however f(5) is a defined term of sort nat.

Functions with several parameters can also be defined using FUNCT and the parameterized specification

PROD. For example, FUNCT(PROD(ARG1,ARG2),RES) is the specification of the functions with two

arguments of sort argl and arg2 respectively into res.

The example PPD. PPD is defined in the same way of PD, exception made for the specification of

values; we assume that the process type parameters are just channel and buffer identifiers and, for

simplicity, that each type has only one parameter.

VALuEPPD= enrich FUNCT(CHID,PROC) + FUNCT(BUTID,PROC) + NAT by
sorts value
opns Pval: proc

Nval: nat

axioms

-~ value
---) value

{Op: value × ... x value ~ value i Op: nat x ... × nat ~ nat ~ Sig(NAT) }
Ptvalt: funct(chid,proc) --~ value

Ptval2: fimct(bufid,proc) --> value
"all total'
{Op(Nval(nl),..., Nval(nk)) = Nval(Op(nl,...,nk)) I Op: nat x ...x nat --~ nat e Sig(NAT)}.

Let us just to show two examples of the use of these process types.

The PPD calculus can be used to describe architectures where several processes perform the same

computation on different values (eg an array processor architecture).

184

Let pt = ~ b . <Readbuf(1,b) ; instr 1 ; . . . ; instr k ; Writebuf(1,b),Empty_Map>, be a process type

parameterized on a buffer identifier, where instr 1 ; ... ; instr k corresponds to a complex computation on

the content of the local memory location 1. Then the PPD term

<{pt(buf 1) pt(bufn)},[bUfl--~Vl bufn-->v n] >

describes a system where the above computation is performed in parallel on all the contents of the buffers

buf 1 bur n.

Consider now the process type pt 1 = ~c . <Rec(1,c) ; instr 1 ; ... ; instr k ; Send(1,e),Empty_Map>

parameterized on a channel identifier; then the PPD term <{Po},[b u f f 0] >, where

Po = <Start(Ptl(el)) ;Send(l l ,Cl) ;"" ;Start(Ptl(Cn)) ; Send(ln'en) ;

ReC(Cl,ll) ;1:=1+11 ; ... ;Rec(cn, l l) ;1:=1+11 ;Writebuf(1,buO, [1-->0,11---> Vn,...,ln--+ Vn]>

describes a concurrent system where the above complex computation is performed in parallel on the

values v 1 v n and the sum of the results is put into the buffer buf.

2 P A R A M E T E R I Z E D C O N C U R R E N T C A L C U L I

In this section we restrict the SMoLCS specifications to those where processes are built on a fixed set of

combinators; the new processes are called behaviours and are still parameterized on various data

structures, but we can give once for aI1 various properties related to the given combinators.

2.1 Behaviours and varieties of calculi

The calculi we introduce in this section are based on the notion of behaviours (a name suggested by

Milner's behaviours in CCS and in SCCS). The peculiarity of behaviours compared to the models of

processes used in the examples of section 1 is that they correspond to processes without local state; they

are completely determined by the atomic actions they can perform, i.e. they correspond abstractly to trees

only labelled by actions. Then in our approach the processes with a local state are modelled as functions

from local states into behaviours; the advantage is that we combine the level of abstraction and the

expressive power of behaviours and functions together. This technique is fundamental for giving high

level semantic descriptions of languages as we have shown in [AR1, AR2, CRAI-DDC]. For exampIe, if

we want to give a denotational value for a procedure, which usually involves some concurrent interaction

among processes, (as it is in Ada for example), then we can model it as a function which, taken some

values of the parameters, produces a behaviour. The role played by behaviours in practical applications

will be illustrated by some later examples.

Instead of presenting a single calculus, we will introduce a family of calculi, which may differ

fundamentally in two respects: the family is parameterized on some data structures and moreover various

families of subealculi are derivable, depending on the combinators used and on the assumptions about the

parameters. For every complete choice we have a calculus corresponding to an operational semantics of a

(multilevel) concurrent system, where the active subcomponents are behaviours with the corresponding

peculiar properties.

We can group the parameters as follows.

185

• An algebraic specification DATA will represent the structure of (hence the data recorded in) the global

object, the data exchanged between the behaviours, the data elaborated internally by the behaviours,

the behaviour atomic actions and the interactions of the concurrent system with the external world.

Formally DATA will be an algebraic specification based on BOOL (a specification of boolean values)

and such that its sorts include: - gobj, for the states of the global object

- act, for the atomic actions of behaviours

- extflag, for representing the interactions with the external world.

We assume moreover that DATA is parameterized on an algebraic specification X, which will be in

every instantiation the specification of behaviours.

• Another parameter defines how the behaviour subcomponents of the system concurrently interact

between them; that is described following the SMoLCS methodology as introduced in section 1.

Formally this parameter, indicated by SMoLCS-SYST(PROC-SYST), is just a parametric algebraic

concurrent transition system (with transition relation [[1== []==> [[]:state x extflag x state--)bool),

where the parameter PROC-SYST corresponds to the algebraic transition system (with transition

relation [] [] > []: behaviour x act x behaviour ~bool) defining its active subcomponents (see

subsection 1.2). It will be instantiated with the transition system defining the behaviours.

• In general the concurrent system described by the calculus is a multilevel system (see subsection 1.4);

thus we need some parameter for describing the noninductive concurrent subcomponents, which are

just other concurrent systems. For simplietly we consider only the cases where all the noninductive

subcomponents are represented by a unique algebraic transition system (with transition relation

[]~~ []~~> [2]: sstate x act x sstate---)bool), indicated by SUB-SYST. Obviously SUB-SYST may

be also an one-level concurrent system.

2.2 Introducing combinators

Here we introduce the combinators for a calculus in our family, indicated by SYST, together with their

informal meaning. In the following subsection, the calculus will be formally defined by an algebraic

specification named SYST.

The syntax of SYST is given as the signature of a specification STATE (the states of the algebraic

transition system SYST) whose sorts include state (the terms of the calculus), behaviour and gobj (active

and passive subcomponents); the combinators are just the operations of this signature and in what follows

we use for them the same notations used for the operations. We use = to indicate the provable equality in

a specification.

First we give the combinators for expressing global objects and behaviours and then the combinator for

composing them into a state of the concurrent system.

fzI,D2ukl.,£2NgA/T

• All the operations of the specification DATA with functionality

srt 1 x ... x srt n ---) gobj (n _> 0)

are the calculus combinators for expressing the global object.

186

The meaning of these combinators are given by the axioms of DATA.

In what follows SORTS indicates Sorts(DATA) u {null}.

BEHAVIOURS

Drefixin~ of an action_

• [] A I-1: act x behaviour ~ behaviour

a A bh represents the behaviour which performs the action a and then behaves as specified by bh.

Behaviour atomic actions are represented by terms of sort act built on the signature of STATE.

We recall that there is a special combinator for representing the action of creation of a new behaviour

CREATED: behaviour --4 act.

The A combinator is the basic tool for expressing the activity of a behaviour as a sequence of atomic

actions; it corresponds to CCS dot.

functional combhaators

for every srt e SORTS

•)d--1. [-1: srt-var x behaviour ~ funct(srt,behaviour) (X- abstraction)

The elements of sort funct(srt,behaviour) represent the (partial) functions from elements of sort srt into

behaviours; while the elements of sort srt-var represent in some way the "variables of type srt". There is

also an operator which embeds these "variables" into the elements of srt

• Srt Vat: srt-var -4 srt

and various combinators for expressing the elements of srt-var.

Notation: for every term of sort srt-var x Srt Vat(x) is simply written x; every string of lower case

letters corresponds to a term of sort srt-var.

• if [] t h e n [] else []: bool x srt x srt ~ srt (conditional)

• Fl([]i: funct(srt,behaviour) x srt --* behaviour (application)

• ree V1. []: srt-behaviour-fid x funct(srt,behaviour) ~ funct(srt,behaviour)

(recursive functions constructor)

The elements of sort srt-behaviour-fid represent in some way identifiers of functions of type

funct(srt,behaviour); also in this case there is an embedding operation

• Srt Behaviour Fid: srt-behaviour-fid --4 funct(srt,behaviour)

and various combinators for expressing the elements of sort srt-behaviour-fick

Notation: for every term of sort srt-behaviour-fid x Srt BehaviourFid(x) is simply written x; every

string of lower case letters represents a term of sort srt-behaviour-fid.

ree f i . funct(fi) represents a function corresponding to a fixpoint of the functional ~.fi. funct(fi); that

fixpoint is defined by the usual rewriting rule ree f i , funct(fi) = (Xfi . funct(fi))(ree f i . funct(fi)).

All these combinators are operators of the specification FUNCT(DATA<sr t> ,BEHAVIOUR) as

introduced in section 1.1. and formally defined in [ARW2]. (If A is a specification and srt a sort of A,

then A<srt> indicates that srt is now the main sort of A.)

187

fix•oint combinator~

for every natural number n > 1

* ~Xn: funct(prod(behaviour,...,behaviour), prod(behaviour,...,behaviour)) -~

n tittles n i-lYric s prod(behaviour,...,behaviour)

n t i ~
where the elements of sort prod(behaviour,...,behaviour) are n-tuples of behaviours; moreover on these

n UYnes

n-tuptes the component selection operations and a constructor operation are defined:

1 < i <_- n Sel i : prod(behaviour,...,behaviour) ~ behaviour

< [] 13> behaviour × ._ × behaviour --rprod(behaviour behaviour).

Considering for simplicity the case n=l , fixlbhfunct represents a behaviour whose activity is the same

activity of bhfunct(fixlbhfunct). These combinators permit to represent behaviours with nonterminating

activities and sets of mutually recursive behaviours. For example, fix 1 ~ x. a zX x represents the

behaviour which goes on forever performing the action a. It is important to note that the fix combinators

are total and that the above operational characterization allows to define completely the behaviours

represented by them; moreover they are truly fixpoints, since we have that

fixnbhfunct = bhfunct(fixnbhfunct). For example fix 1 ~. x . x is defined and represents the behaviour

unable to perform any activity, which will be indicated also by stop.

nondeterministic choice

for every srt e SORTS

• choosesr t 13: funct(srt, behaviour) --r behaviour

choosesr t bhfunct represents the behaviours which can nondeterministically behave as specified by

bhfunct(to) for every term of sort srt t o,

The importance and relevance of these combinators for representing behaviour subcomponents of

concurrent systems should be clear (see, eg [M1, M2]). Following Milner's notations (see, eg [M2]) we

would write these combinators as + bh(t) , where SRT is a set and bh(t) is a behaviour expression
t ~ SRT

parameterized on t (i.e. an expression of type behaviour with a free variable t of type SRT). Here we are

working in a fully algebraic setting, where the elements of SRT are defined by means of an abstract data

type with a sort srt and hence + must be an algebraic operation. The solution we have adopted is to
SRT

consider a combinator ehoosesr t applied to functions from elements of sort srt into behaviours; thus the

parameterized dependence of bh(t) on t is formally expressed by means of a term of sort

funct(srt,behaviour), whose elements correspond to functions from elements of sort srt into behaviours.

Hence + bh(t) will be written choosesr t ~.t. bh(t).
t e SRT

Notation: ehoosesr t ~. t . bh(t) is also written choose t : srt in bh(t).

188

Our nondeterministic choice is neither local nor global; it could be local or global depending on the

various alternatives:

if for every term t o of sort sit the first-step actions of bh(to) correspond to interactions with the

other behaviours or the global object, then we have global nondeterminism

(eg for bh = choose n: nat in RECnFROMpid A stop, where we use an infix notation for the

receive action REC VIFROM [], if the behaviour named pid can send the natural number 1, then bh

will choose the alternative REC1 FROMpid A stop);

if for every term t o of sort srt the fLrst-step actions of bh(to) axe all intemal actions, then we have

local nondeterminism (eg if bh = choose n: nat in TAU A SEND(n) A stop, then bh can choose

one of the altematives independently from the external context).

sequential composition of behaviour~

for every srt e SORTS

• defsr t [] in •: behaviour × funct(srt,behaviour) --~ behaviour

• re turnsr t [3: srt ~ behaviour

The activity of defsr t bh in bhfunct consists of the activity of bh until it terminates, followed by the

activity of bhfunct(t o) ff bh terminates retuming a value t o of sort srt and bhfunct(to) is defined;

returnsr t t o represents the final state of a behaviour which has terminated its activity returning t o.

The construct defsr t bh in bhfunct is a very general and powerful form of sequential composition

because it allows also the preceding behaviour to pass some information to the following one; moreover

there is also the possibility of (conditionally) escaping the following behaviour; if bh terminates mtttming

a value t I of sort srt 1 ~srt, then the following behaviour represented by bhfunct will not be executed.

In subsection 2.4 we show the use of these combinators for defining a variety of derived combinators.

Notation: defsr t bh in ~. t . bh'(t) is also written defsr t t = bh in bh'(t); re turnnul l Null is also written

skip (skip represents a null behaviour unable to perform any activity).

multilevel structurin~ combinators

• i-enclose: state --) behaviour (for enclose concurrent inductive subcomponent)

• n-enclose: sstate --* behaviour (for enclose concurrent noninductive subcomponent)

The elements of sort state represent the states of the system SYST; while the elements of sort sstate

represent the states of the concurrent systems SUB-SYST taken as parameter. These two combinators are

used for representing multilevel (structured) concurrent systems; the first for the case in which the internal

concurrent structure of the behaviours is the same of the whole system (see eg CCS, SCCS), the second

when the internal structure is given by means of the parameter SUB-SYST.

The term i-enclose(st) represents a behaviour which is internally structured as the concurrent system

represented by st and its activity is determinated by the activity of st. Precisely if st can perform some

transition labelled by a becoming st', then also i-enclose(st) can perform a transition labelled by a

becoming i-enclose(st') and these are all the transitions of i-enclose(st). Thus if the enclosed system st

is unable to perform any activity also i-enclose(st) is unable to perform any activity; moreover if st

represents a correct final state (all the behaviour subcomponents are equal to skip), then

i-encLose(st) = sk ip . Note that this last property allows to compose sequentially concurrent

189

subcomponents with behaviours. Analogously for n - e n c l o s e .

If the calculus include the combinator i-enclose, since now some transitions (with external flags) of the

system may become also transitions, via i-enclose, at the behaviour level, then the external flags of

SYST must coincide with the behaviour atomic actions (extflag = act); clearly also the external flags of

SUB-SYST must coincide with the behaviour atomic actions.

PAtLM.LEL COMBINATQR

The calculus has a combinator which taken some behaviours (a multiset of) and a global object returns a

term representing the concurrent system of the class, whose subcomponents are those behaviours and that

global object:

° par: mset(behaviour) x gobj --estate

Notation: a term having form par({bh 1 bhn},go) is usually written bhll...[bhnlgO to suggest the fact

that the various subcomponents are in parallel.

2 .3 Formal definition of a calculus

First we give the specification of the transition system BH-SYST defining the behaviours and then of the

transition system of the whole calculus (SYST).

B E H A ~ O U R S

Remember that the paramenter SUB-SYST is an algebraic transition system (with transition relation

f-l~~ El~~> E]: sstate x act x sstate ---> bool) and that [3== [3==> [3: state × act x state ---> boo1 wiIl be

the transition relation of SYST (here we consider a calculus including the i . e n c l o s e combinator, thus

act=exfflag).
BEHAVIOUR =
enrich + FUNCT~ATA(BEHAVIOU~R)<srt>, BEHAVIOUR) +

srt ~ SORTS

+ FUNCT(PROD(BEHAVIOUR,..,BEHAVIOUR), PROD(BEHAVIOUR,..,BEHAVIOUR)) +
n_>l

n times n times
SUB-SYST + NULL + STATE by

sorts behaviour
opns

DA D: act x behaviour
{

--> behaviour
fiXn: funct(prod(behaviour,...,behaviour),prod(behaviour,_.,behaviour)) --, prod(behaviour behaviour))]n>l }

- - % , - - - - , ¢ ~¢-

n times n times n times
{ choosesr t R: funet(srt, behaviour) --> behaviour,

defsr t [] in 13: behaviour x funct(srt,behaviour) --* behaviour,

returnsr t VI: srt ~ behaviour I srt E SORTS }

i-enclose: state ---> behaviour
n-enclose: sstate --> behaviour

seed: --> behaviour
axioms "all total"

190

where

NULL = sorts null opns Null : --* null axioms D(Null)

STATE = enrich MSET(BEHAVIOUR) + DATA(BEHAVIOUR) by
sorts state
opns par: mset(behaviour) × gobj ---> state
axioms seed[bhmslgo = bhmslgo.

Note that B E H A V I O U R and STATE are two algebraic specifications defined in a mutually recursive way

(see Append ix i) ; note also how D A T A (X) is recursively instantiated on B E H A V I O U R , so that the

behaviours become parts o f the data type.

The behaviours will be represented by terms o f sort behaviour o f the above specificat ion B E H A V I O U R

and their combinators will be operations o f the same specification. Notation: we recall the abbreviations

used: s top stands for fix 1 k x . x and sk ip stands for re tu rnnul lNul l .

BH-SYST =
enrich BEHAVIOUR + SYST by

opns [:3----~-D > D: behaviour × act x behaviour ---> bool

CREATED: behaviour --> act
axioms

D(CREATED(bh))
a Abh ..a_> bh

{ fix n bhprodfunct = bhprodfunct(fix n bhprodfunct)] n > 1}

{ bhfunct(t) __L> bh' D choosesr t bhfunct --~> bh'

defsr t (returnsr t t) in bhfunct = bhfunct(t)

bh -&-> bh' D defsr t bh in bhfunct ---~-> bh'

{ defsr t (returnsrtl tl) in bhfunct "" returnsrtl t 1

Isfreesrt(t,bhfunct) - false D

defsrtl (choosesr t ~.t, bh(t)) in bhfunct= choosesr t Xt .(defsrtl bh(t) in bhfunct) Isrtl e SORTS, srtlcsrt)

[srt e SORTS}
{ i-enclose(skipl.. .Iskiplgo) = skip, n-enclose(skipl . . . lskipibgo) = skip [n > 0 }

- - V V"
n times n times

st ==a==>st' D i-enclose(st) ..a_> i-enclose(st')

sst ~~a~->sst ' D n-enclose(sst) _0._> n-enclose(sst')
seed CREATED(bh~ > bh.

Comments . seed is an auxiliary combinator used for allowing dynamic creations o f new behaviours.

T h e f u n c t i o n a l c o m b i n a t o r s a r e d e f i n e d b y t h e v a r i o u s s p e c i f i c a t i o n s

FUNCT(DATABEHAVIOUR<sr t> ,BEHAVIOUR) .

The axioms of BH-SYST give the operational semantics o f the various combinators as it was suggested in

subsect ion 2.2. Isfreesrt:Srt-var × funct(srt ,behaviour) ~ bool is an operation o f

F U N C T (D A T A < s r t > , B EHAVIOUR) ; Isfreesrt(x,bhfunct) - true i f f the "variable o f type srt" x occurs

freely in bhfunct. The condi t ion Isfreesrt(t ,bhfunct) - false in the axiom about d e f and choose is not

restrictive at all, because on the functions algebraically def ined the a - ru le holds and there exist infinite

191

different elements of sort srt-vart. End 0f~___nunents.

THE CALCULUS

In order to have a fuU calculus we need to define the synchronization, parallelism and monitoring steps.

We recall that this is done by means of a parameterized specification SMoLCS-SYST(PROC-SYST),

given as a calculus parameter, where PROC-SYST stands for the algebraic transition system of the

component processes. Hence the full calculus will be here the one associated to the algebraic transition

system SYST defined as follows:

SYST = SMoLCS-SYST(BH-SYST).

2.4 Examples
THE FORMAL DEFINI'ITQN OF ADA

Here we show how one of our calculi, denoted by AC, could be used for describing the underlying

concurrent model of Ada programs, used in [CRAI-DDC] for giving a formal semantics to Ada.

In this case the parameters are defined as follows:

• The parameter DATA becomes now ADATA(X) = GLOBAL-INF(X) + ACT(X) + LOCAL-INnE(X),

where GLOBAL-INF(X), ACT(X) (with the operations CREATE, CREATED: behaviour --r act) and

LOCAL-INF(X) are large and complex specifications representing respectively the global object, the

behaviour actions and the data handled locally by behaviours; in this case the sort extflag coincides with

act. Recall moreover that X will be instantiated as the specification of behaviours, which corresponds

roughly here to Ada tasks.

• In AC the behaviours can interact between them only by reading and updating the global object;

contemporaneous behaviour accesses to the global object are allowed if and only if they can also be

performed sequentially in some order; moreover there is no form of global control on the behaviour

actions. These assumptions are formalized by the following parametric system

A-SMoLCS-SYST(PROC-SYST) defined following the SMoLCS three steps schema; where the

parameter PROC-SYST will be instantiated with the algebraic transition system giving the operational

semantics of behaviours.

• AC is a one-level concurrent system, i.e. there are no behaviours which are in turn concurrent systems

themselves; thus in this case we do not need other parameters.

Here we givew the definition of A-SMoLCS-SYST(PROC-SYST).

synchronization
A-SSYST(PROC-SYST)=

enrich PROC-SYST by
opns []==[3==>[:]: state x act x state --~ bool
axioms Cond(a, go) = true A bh-L> bh' ~ bhlgo ~a-.~-> bh'lTransf(a, go)

bh CREATE(bhl~L.> bh'Aseed CREATED(bh!L> bh 1 A

Cond(CREATE(bht),go) = true D
bh[seedigo---CREATE(bhl)==> bh'lbhl[Transf(CREATE(bhl),go).

Cond: act × gobj -~ bool and Transf: act x gobj --> gobj are two operations of the specification ACT.

192

t~arallelism
A-PSYST(PROC-SYST) =

enrich A-SSYST(PROC-SYST) by
opns DIID : actx act ~ac t

axioms a 1//a 2 = a 2//a 1 a 1//(a2//a 3) " (a 1//a 2)//a 3

<bhmsllgo>~ai--> <bhmSl'tgOl>A<bhms2Igo>~a~> <bhms2'lgo2>A

<bhms21gol> ~ a 2 ~ <bhms2'lgo'> ~ <bhmsllbhms2lgo>,....,al//a2~> <bhmSl'lbhms2'lgo'>.

The condition part of the above axiom requires that the parallel action labelled by a 2 can be executed after

the one labeUed by a 1.
monitoring
A-SMoLCS-SYST(PROC-SYST) =

enrich A-PSYST(PROC-SYST) by
opns [3== []==> [] : state x act x state --~ bool

Ext: act -9 act
axioms st ~---a_~_> st' ~ st ==Ext(a)==> st'

Ext(a I//a2) = Ext(aI) /t Ext(a2)
Ext-Ax,

where Ext-Ax is a set of axioms defining the operation Ext having form cond D Ext(a) = a or

cond D Ext(a) = TAU.

The functional combinators of AC have been proved very useful in the Ada Formal Definition for

expressing, for example, subprograms (Aria procedures and functions), task types and several other

kinds of denotations.

Moreover, in order to improve readability, other combinators have been introduced and we show how

they can be derived from those of AC.

~equentiaI composition without value passing

• [] ; [] : behaviour x behaviour --* behaviour

• nil: ~ behaviour

The activity of bh I ; bh 2 consists of the activity of bh 1 until it terminates followed by the activity of bh 2

if the final state of bh 1 is nil. Formally

bh 1 a > b h l , D b h l i b h 2 a > b h l , ; b h 2 nil ; bh = b h .

These combinators can be derived in AC as follows (we indicate with = equality by definition):

bh 1 ;bh 2 --- defnull n = bh 1 in bh 2 nil = skip = re turnnul l Null

and they have the properties listed above; indeed

bh t g > bh 1' D bh t ;bh 2 - defnull n = bh 1 in bh 2 ~ > defnu u n = bh 1' in bh 2 - bh 1' ;bh 2,

nil ; bh - defnull n = (returnnull Null) in bh = (~ n . bh)(Null) = bh.

rec . ree t ran .exi t

• t rap [] in V]: map(label,behaviour) x behaviour ~ behaviour

• exit []: label ~ behaviour

where label and map(label,behaviour) are sorts of ADATA.

The activity of the behaviour trap lmap in bh consists of the activity of bh; moreover if bh terminates

performing an exit to the label 1 and 1 belongs to the domain of lmap, then the activity goes on as

specified by Imap(1); otherwise the exit is propagated to some outer trap construct. These combinators are

suggested by VDM combinators introduced for giving the so called direct semantics (see [BJ,AR2]).

193

Formally i) i e dom(tmap) = true D trap lmap in exit 1 = lmap(1)

ii) i e dom(lmap) = false D trap lmap in exit 1 = exit(l)

iii) bh a > bh' D t rap lmap in bh --g--> t rap lmap in bh ' .

These combinators can be derived in AC as follows:

t rap 1map in bh --- deflabe 11 = bh in (if I E dom(lmap) then lmap(1) else returniabe 11)

exit 1 -- re turnlabe 11.

• rec t rap [] in [2]: map(label,behaviour) x behaviour ~ behaviour

ree trap is similar to the trap, except that axiom i) is replaced by

i') 1 s dom(lmap) = true D ree trap 1map in exit 1 = ree trap lmap in lmap(l).

It can be derived in AC as follows

rec t rap [11 --> bh 1 1 n -~ bhn] in bh -= t rap [11 -~ bhl ' , 1 n --~ bhn'] in bh

where for every 1_< i~ n bh i' = Seli(bh') and

bh' = fix n)~x, <trap [11 --~ Sell(X) 1 n -4 Seln(x)] in bhl ,

t rap [11 -~ Sell(X) 1 n ~ Seln(x)] in bhn>.

It is easy to see that the derived combinators have the properties i), ii), iii) and i'), ii), iii) respectively.

SEOUENTIAL CONSqNUCTS

Here we show how it is possible to enrich our calculi with the usual sequential constructs, deriving them

by the calculi combinators.

We assume that each process has a local store whose states are represented by elements of sort

store = map(loc,value); these processes will be represented by elements of sort

proc = funct(store,behaviour) and a system whose subcomponents are the processes proc 1,'",Procn will

be represented by procl(Empty_Map)I...iprocn(Empty_Map)[go (Empty_Map represents the initial empty

state of the local store).

The derived combinators are:

• []:= [3: loc x expression -÷proc

(1 := exp = ~ st. TAU A returnstor e st[Evai(exp,st)/1]),

where Eval: expression x store ---r value is an operation of DATA.

• If [] Then [] Else VI: expression x proc x proc --*proc

(If exp Then pr 1 Else pr 2 =)~ st. TAU A if Eval(exp,st) then Prl(st) else Pr2(st)).

Note that for simplicity we consider expressions without side effects.

• [] ; [] : p r o c x p r o c - ~ p r o c (P r l ; P r 2 : ~ s t . defstorePrl(st) inpr2).

• While [] > 0 Do [3: expression x proc ---~proc

(While exp Do pr -= ree w h , k st, TAU A if Eval(exp,st) > 0 then defstor e pr(st) in wh

else re turnstor e st).

• [] : act ~p roc (a ~ 7~ st. a A returnstor e st).

• Choosesr t []: funct(srt,proc) --~proc (Choosesr t)~ v. pr(v) - ~. st. ehoosesr t)~ v . (pr(v))(st)).

194

3 PROPERTIES OF COMBINATORS

Here we study the properties of the combinators introduced in the preceding section. Some of these

properties are just equalities provable from the given specification; for other deeper properties we have to

consider equivalences with respect to some observations. The most basic form of observation consists in

observing the actions of a behaviour, which leads to the well known notion of strong (bisimulation)

equivalence of Milner and Park. For our calculi we need to generalize that notion, since our flags may

include hehaviours as subterms; moreover we would like to equate functional terms by extensionality.

Since at the present stage of our investigation the theory related to such generalization looks a bit

complicate we defer the presentation of the full theory to a more technical paper; hence we prefer to

present the properties of combinators for subcalculi, in which the flags cannot have behaviours as

subterms. But the properties we show do hold in the general unrestricted case and hence they give a rather

good understanding of the properties of the calculi.

3.1 Strong equivalence properties of behaviour combinators
Let BH-SYST indicate the transition system (with transition relation

[] [] > Vl:behaviour x act x behaviour --~bool) defining the behaviours of one of our calculi.

In the following we consider only calculi of behaviours in which the flags do not have behaviour

subterms, formally calculi such that the parameter DATA (see section...) is not a specification

parameterized on behaviours, and such that BH-SYST is image finite. (A transition system with

transition relation - - > is said image finite iff for all states s and flags f the set {s' I s f >s'} is

finite.) By strong eouivalence we mean strong bisimulation equivalence, as introduced in [M2].

From the beginning we have to face an interesting problem: in our calculi of behaviours returnsr t v and

stop are two normal states, i.e. behaviours without action capabilities, and hence they would be equated

in the strong equivalence associated to the behaviour transition system. But inserted in the context

defsr t Ix] in bhfunct they wuold produce two behaviours which are not strongly equivalent and hence the

strong equivalence wuold not be a congruence. Since clearly we are interested in a strong equivalence

which is also a congruence, we simply distinguish the two behaviours by considering the strong

equivalence associated to a modified behaviour transition system, obtained by BH-SYST by adding a set

of (dummy) transitions defined by returnsr t t ~ N s r t t-(LL- >stop.

Thus we indicate by ~ the strong equivalence w.r.t, the new transition system of behaviours obtained by

adding the above transitions.

We give only some hints to the proofs, that will appear in a full version elsewhere.

We can now give a basic result for behaviours without i-enclose and n-enclose combinators; in the

next subsection we will extend it to the general ease.

As Milner in [M2] extends ~ from agents to expressions, we extend ~ from behaviours to functions

returning behaviours; given two terms fl and f2 of sort funct(srt,behaviour)

fl ~ f2 fff for all terms tl , t 2 of sort srt t 1 = t 2 implies f l(t l) ~ f2(t2).

195

Theorem 3. ~ is a congruence on behaviours (without the i-enclose and n-enclose combinators).

Pr99f. - bh 1' ~ bh 2' and a I = a 2 implies a 1 A bh 1' ~ a 2 A bh2'. Obvious.

- For all srt ~ SORTS, bhfunct 1 ~ bhfunct 2 implies choosesr t bhfunct 1 ~ chooses~ bhfunct 2.

Obvious.

- bhfunet 1 ~ bhfunct 2 implies fix 1 bhfunct 1 ~ fix 1 bhfunct 2. Analogously to the proof of Proposition

4.6 of [M21.

- For all sat ~ SORTS, b h l ' ~ bh 2' and bhfunct 1 ~ bhfunct 2 implies

defsr t bh 1' in bhfunct 1 ~ de f s r t bh 2' in bhfunct 2.

We show that

R = (< defsr t bh' in bhfunct', defsr t bh" in bhfunct"> I bh' ~ bh" and bhfun~t' ~ bhfunct"} u Id,

where Id indicates the identity relation, is a bisimulation up to ~ (i.e. ~R ~ is a bisimulation).

I fR is a bisimulation up to ~, thenR c ~R ~ c ~.

Let <bhl,bh2> be an element of R, we prove, by cases, that

if b h l ~ > bhl ' , then bh 2 a > bh 2' and bh 1' R ~ bh2'.

° bh' a > bhl,, ' bh 1, = defsrt bhl,, in bhfunct' and a ~: RETURNsrt(..).

By the hypothesis bh" ~ > bh2" and bhl" ~ bh2", thus bh2---~--a > bh2',

bh2'= defsr t bh2" in bhfunct" and b h l ' R ~ bh2'.

° bh' = re tu rns r t t t and bhfunct ' (t l) - - -~-> bh 1'.

By the hypothesis bh" = r e t u r n s r t t 2 and t 1 = t2; bhfunct'(tl) ~ bhfuncf'(t2) implies

bhfunct,,(t2) a > bh 2, and bh 1' ~ bh2'; thus bh 2 ~t > bh 2, and bh 1' R ~ bh2'.

° bh' = re turnsr t l t 1 with srtl~srt. Thus bh I = re turnsr t l t I RETURNsrtl(tl)-> stop.

By hypothesis bh" = re turnsr t l t 2 with t 1 = t2, thus bh 2 = re turnsr t l t 2 RETURNsrtl~2L> stop.

Proposition 4, (clef/return properties). For every srt ~ SORTS

1) defsr t (r e t u r n s r t t) in bhfunct ~ bhfunct(t).

2) For every srtl e SORTS such that srtl ~ srt defsr t (re turnsr t l t l) in bhfunct ~ returnsr t l t 1.

3) For every srtl e SORTS

Isfree(tl,bhfunct) = false D

defsr t (choose t l : srtl in bh(tl)) in bhfunct ~ choose t l : srtl in (defsr t bh(tl) in bhfunct).

4) defsr t (a A bh) in bhfunet ~ a A (defsr t bh in bhfunct).

Proof, 1), 2) and 3) Obvious, because - implies ~. 4) obvious. []

Proposition ~ (choose properties)

1) For every n,m.~>l, srt 1 srtn,srtl',...,Srtm'~ SORTS

[for all terms t 1 t n of sort srt 1 srt n respectively

there exist tl ',...,t m' terms of sort srtl',...,srt m' respectively such that bhl(t 1 tn)~ bh2(ti',...,tm')]

and

[for all terms tl ' , . . . ,t m' of sort srtl',...,srt m' respectively

there exist t 1 t n terms of sort srt 1 srt n respectively such that bh2(tl',...,tm') ~ bhl(t I tn)]

196

implies

choose t l : srt 1 in ... choose tn: s r tn in bh l (t 1 tn) ~

choose t l ' : srt 1' in ... choose tm': srt m' in bh2(ti ' , . . . , tm') .

2)(Idempotence) For every srt e SORTS

[for all terms t of sort srt bhfunct(t) ~ bh] implies choosesr t bhfunct ~ bh.

Proof. Obvious from the definition of ~ . []

For simplicity we consider only the combinator fix 1, i.e. the unary fixpoint combinator.

For expressing the properties of the fix 1 combinator we need the following definitions and lemmas.

der bh indicates the derivation tree of bh, i.e. the labelled tree associated to bh in the transition system;

given a derivation tree tr, ltrtn indicates the truncation of tr at depth n. Given a term f of sort

funct(srtl,srt2), fn(t) indicates f applied n times to t.

Similarly as in [M1] for CCS, we define that a variable x of type behaviour is guardf~[in bh (i.e. x is

preceded in bh by a A..., for some action a); we omit the trivial definition by induction on the structure of

behaviours.

Lemma 1. (basic fix lemma) If the variable x is guarded in bh(x), then given A = fix 1)L x . bh(x) and

for m > 1 Am= ()~ x . hh(x))m(stop), we have that

for all n > 1 Ider AIn = tder Anl n = Ider An+ql n (for all q >_ I),

Proof. By arithmetic induction on n. []

Lemma 2. (fix-context lemma) For all terms bh(y) of sort behaviour with a hole of sort behaviour,

if bhfunct =)~ x . bhl(X) with x guarded in bhl(X), A = bh(fix 1 bhfunct) and for all p > 1

Ap = bh(bhfunctP(stop)), then we have that for all n > 1 Ider AIn = Ider A n In.

Proof, By structural induction on bh(y). []

Proposition 6, (fix 1 properties)

1) For all terms bhl(Y), bh2(Y) of sort behaviour with a hole of sort behaviour,

for all bhfunct = ;Lx. bh(x) with x guarded in bh(x)

[for all n > 1 tder (bhl(bhfunctn(stop)))ln = Ider (bh2(bhfunctn(stop)))tn] implies

bhl(fix 1 bhfunct) ~ bh2(fix I bhfunct).

2) If x is guarded in bh(x), then

Isfree(x,bhfunct) - false implies

defsr t (fix 1%x. bh(x)) in bhfunct ~ fix 1 Xx. (defsr t bh(x) in bhfunct).

Proof. Obvious, by Lemma 2. []

3.2 Strong equivalence properties of parallel combinator
Here we use ~ (~ bold) to indicate the strong extensional equivalence of the algebraic transition system

SYST (with transition relation D== [3==> [:]:state x extflag x state -¢bool) defining one of our calculi

197

and P-SYST and S-SYST indicate respectively the systems defined by the parallel and synchronous steps

(recall that SYST has been defined following the three steps SMoLCS methodology).

Also in this case we need to distinguish the normal states of SYST and as in the previous section to do

this we add some transitions to SYST; precisely
skipl...Iskiplgc CORRECT_> stop[go;

which allow to distinguish the correct terminal states from the incorrect ones..

Provosition 7. ([properties)

1) For every bh 111""[bhlnlg ° ' bh21] ''-1 bh2n]g ° e WSig(SYST)lstate
such that bh l l ~ bh21 bhln ~ bh2nwe have that bhl-1]...I bh~lnlgO ~ bh21[...I bh2nlgO;

2) for every bhms[go ~ WSig(SYST)lstat e seedlbhmslgo ~ bhmslgo ;

3) for every bhms[go ~ WSig(SYST)Jstat e, for every bh ~ WSig(SYST)Ibehaviou r such that bh ~ skip
bhlbhmslgo ~ bhms[go.

Proof. 1) By Lemma 3. 2) and 3) Obvious. []

~mm~3_~(Monitofing step)

For every bh111...I bhlnlgO , bh211...I bh2nlgO ~ WSig(SYST)lstat e,

for every extf~ WSig(SYST)[extfl, ag such that bh l l ~ bh 21,...,bhln ~ bh2n we

i) for every bhll'l...I bhln'[go a WSig(SYST)lstat e
SYST I - b h l l I...I bhlnlgo ==extf==> bhll'[...I bhln'lgo ' implies

have that

there exist bh 2 '1 [b h2 '[go' a W • I such that 1 ... n Slg(SYST) state
SYST 1- bh211...] bh2nlgo ==extf==> bh21'j...I bh2n'[go ' and bh l l ' ~ bh21',...,bhln'~ bh2n';

ii) converse of i).

Proof, By Lemma 4, recalling that in a SNIoLCS system the monitoring decision depends only on the

possible actions of the behaviours and not on their states. []

Lemma 4, (Parallelism step)

For every bh 111-.I bhlnlg o' bh21[-..I bh2n[gO ~ WSig(SYST)lstate'

for every a~ WSiglSYST)[ac t such that bh11 ~ bh21 bhln ~ bh2n we have that

i) for every bh 1 l'l..-I bhln'lg o' e WSig(SYST)lstate
P-SYST [- b h l l I...I bhln[gO ~ a ~ > bh11'l...I bhl n'[go' implies
there exist bh 2 '1 I b h2 'lgo' ~ W •] such that 1 '" n Slg(SYST) state
P-SYST I- bh211...I bh2nlgO ~------a~> bh21'l...I bh2n'lgo ' and
bh l l ' ~ bh21',...,bhln'~ bh2n';

ii) converse of i).

Proof. By Lemma 5. []

Lemma 5. Under the same hypotheses of Lemma 3, we have that

i) for every bhll'l...I bhln'lgo ' ~ WSig(SYST)lstate

198

S-SYST l - b h l l I..-I b h l n l g o ~ a ~ > bhll 'l. . .I bhln'tgo ' implies

there exist bh21't...I bh2n'lgo' ~ WSig(SYST)Istate such that

S-SYST t- bh21I.-.I bh2n lgo===a~> bh21 I...I bh2nlgO and

b h l l ' ~ bh21',. . . ,bhln'~ bh2n';

ii) converse of i).

Proof, By cases on the form of a. []

Proposition 8, (i-enclose, n-enclose properties)
1) For every n >--1 i -enclose(skipl . . . l sk iplgo) ~skip n-enclose(skipl . . . lskiplbgo) - sk ip .

"v
n tir~es n times

2) For srt e SORTS for every n > 0

A Isfree(t,bhi) = false A Isfree(t,go) = false D

l < i < n

i-enclose((choose t: srt in bh) [bhll...IbhnlgO) ~ choose t: srt in(i-enclose(bh]bhll...lbhnlgo))

n-enclose((choose t: srt in bh) [bhll...lbhnlbgo) ~ choose t: srt in(n-enclose(bh Ibhl[...lbhnlbgo))

3) st ~ st' D i-enclose(st) ~ i-enclose(st ') , sst ~ sst' D n-enclose(sst) ~ n-enclose(ss t ')

where Z indicates the strong equivalence on the transition system SUB-SYST (parameter of the

calculus) representing the noninductive concurrent components.

Proof, Obvious. []

Now we can extend Theorem 3 to all behaviours.

Theorem 3,BIS, ~ is a congruence on behaviours.

Proof. By Theorem 3, Proposition 7 and Proposition 8. []

Conclusion

We have presented a proposal for a family of calculi, which are a partial instantiation of the SMoLCS

parameterized schema. The novelties of these calculi lie in their high level of parameterization, in the

possibility of defining functional modules and of considering processes just as data types. In this sense

we personally see our calculi as a development for high-level specifications of the work started with CCS

and SCCS, which we consider basic calculi, much as lambda-calculi are w.r.t, higher level languages.

We are well aware that our presentation here is far from being satisfactory in many respects. We plan to

come out with a more explanatory paper with full proofs. We are currently pursuing two directions of

interesting research: first we are looking at a nice proof techniques for a generalization of strong

equivalence handling labels with behaviours as subterms and including extensionality; second, we have

already explored in part the possibility of calculi where the behaviour labels include, so to speak, the code

for the interactions at synchronization, parallelism and monitoring level, while still keeping the fult

expressive power of SMoLCS specifications; but it is not clear whether this calculus can be elegant and

simple enough to be really useful.

Finally we want to emphasize that the family of calculi AC we have used in the Ada Formal Definition

199

project can be seen as an upgrading of the V D M metalanguage Meta IV to handle concurrency and abstract

data types.

A p p e n d i x 1: Recursive specifications
Let SPEC = u {~,, Ax) I Ax is a set of posi t ive condi t ional axioms on Z}, where SIG is the set of all

Z ~ SIG

(classes o f i somorphic) signatures. A recursive definit ion of a specification has form

(*) ID = S (D) ,

where S is a funct ion f rom SPEC into SPEC.

Af ter hav ing def ined an order ing ~ on SPEC we can see (*) as def in ing]J3 as the least f ixpoint of S (if

there exists).

G iven S I = (Z 1 , A x l) and S2=(Z2,Ax2) , S 1 , S 2 iff Z 1 is a subs ignature o f E 2 and Ax 1 ~ Ax2;

g iven E 1 = (S o r t s l , O p n s l) and E 2 = (Sorts2,Opns2) , E 1 is a subs ignature of E 2 iff Sorts 1 £2 Sorts 2

and Opns 1 £ 2 0 p n s 2.

I f S is cont inuous , then (*) defines the specification ID in the fol lowing way: ID = 1.u.b. s n (I D ±) ,
n ~ 0

where tD_L is equal to the specification with only one sort named id and nei ther operat ions nor axioms.

W h e n e v e r S is g iven by compos ing cons tant specif icat ions, the parametr ic specif icat ions, P R O D , N~a.p,

M S E T and the "+" and " e n r i c h ... by.. ." operators , then it is cont inuous.

Clearly also sets o f mutual ly recursive specifications can be def ined in the same way.

W h e n e v e r the 1.u.b.of the cha in { s n (I D _ L) } n > 0 is ob ta ined as the k- th step for some k, then the

specification can be given in a non recursive way.

Here as an example we report a nonrecurs ive definit ion of the specification PROC, def ined recursively in

subsec t ion t .1.

PROC = enrich NAT+ LOC + BUFID + CHID by
sorts value, proc, instr
opns < D, D>: instr × lmem ~ proc

Emptymap: ~ lmem
[] [D/D]: lmem x loc x value ~ lmem
[(D) : lmem x loc --~ value

Nit: -~ proc
Pval: proc ~ value

Nval: nat ~ value

{Op: value x ... × value -~ value I Op: nat x ... × nat --~ nat ~ Sig(NAT) }
Writebuf, Readbuf: loc × build --~ instr

Send, Rec: loc × chid ~ instr

Skip: ~ instr
Start: proc ~ instr

; V1, [] + [: instr x instr --~ instr
While [] ~ 0 Do ~: loc x instr ~ instr
Seq-Instrl: ... --~ instr

Seq-Instrn: ... ~ instr

200

axioms "all total"
{Op(Nval(n 1),...,Nval(nk)) = Nval(Op(nl,...,nk))

I Op: nat x .. x nat --~ nat ~ Sig(NAT) }
Eq(ll,12) = Irue ~ (Im[v/ll])(12) - v

Eq(ll,12) = false ~ (Im[v/ll])(12) = lm(12)

i 1;(i 2; i3) - (i 1; i2); i 3 Skip; i - i

il+i 2 = i2+ i 1 i1+(i2+i3)- (il+i2)+i 3.

Acknowledgements, We wish to acknowledge the invaluable cooperation of Martin Wirsing in building

the foundations of the SMoLCS approach. Moreover we wish to thank all our friends of the Genoa-CRAI

group (Alessandro Giovini, Franco Mazzanti, Elena Zucca), who have used, tested and improved our

calculi in the Ada FD project. Many thanks also to Ombretta Arvigo for her patient Mac-typing and more

generally for her cooperation at any time.

REFERENCES

(LNCS stands for Lecture Notes in Computer Science, Springer Verlag).

[AGMRZ] E.Astesiano, A.Giovini, F.Mazzanti, G.Reggio, E.Zucca, The Ada challenge for new formal
semantic techniques, in Proc. of the 1986 Ada International Conference, Edinburgh,
Cambridge University Press, UK, 1986.

[AMRW] E.Astesiano, G.F.Mascari, G.Reggio, M.Wirsing, On the parameterized algebraic
specification of concurrent systems, Proc. CAAP '85 - TAPSOFT Conference, LNCS n.
185, 1985.

[AMRZ] E.Astesiano, F.Mazzanti, G.Reggio, E.Zucca, Applying the SMoLCS specification
methodology to the CNET architecture, CNET - Distribute Systems on Local Network, vol 2,
pp. 255-267, ETS Pisa,1985.

[AMRZ1] E.Astesiano, F.Mazzanti, G.Reggio, E.Zucca, Formal specification of a concurrent
architecture in a real project, Proc. of ACM-ICS'85, North Holland, 1985.

[AR1] E.Astesiano, G.Reggio, A syntax-directed approach to the semantics of concurrent languages,
in Proc. 10th IFIP World Congress (H.J. Kugler ed.), North Holland,p. 571-576, 1986.

[AR2] E.Astesiano,G. Reggio, Comparing direct and continuation styles for concurrent languages,
to appear in Proc. STACS 87', LNCS, 1987.

JAR3] E.Astesiano, G.Reggio, The SMoLCS approach to the formal semantics of programming
languages - A tutorial introduction - to appear in Proc. of CRAI Spring International
Conference: Innovative software factories and Ada, 1986.

[ARWl] E.Astesiano, G.Reggio, M.Wirsing, Relational specifications and observational semantics, in
Proc. of MFCS'86, LNCS n. 233, 1986.

[ARW2] E.Astesiano, G.Reggio, M.Wirsing, On the algebraic specification of function spaces, in
preparation.

[ARW3] E.Astesiano, G.Reggio, M.Wirsing, A modular parameterized algebraic approach to the
specification of concurrent systems, in preparation.

[BJ] D.Bjc~rner, C.B.Jones, The Vienna development method: The Meta-Language, LNCS n. 61,
1978.

201

[BWll M.Broy, M.Wirsing, On the algebraic specification of finitary infinite communicating
sequential processes, in Proc. WIP TC2 Working Conference on "Formal Description of
Programming Concepts Ir', (D. BjCrner ed.), North Holland, 1983.

[BW2]

[BW3]

M.Broy, M.Wirsing, Partial abstract types, Acta Informatica 18, 1982.

M.Broy, M.Wirsing, Algebraic definition of a functional programming language and its
semantic models, R.A.I.R.O. vok 17,1983.

[CRAI-DDC] E.Astesiano, C.Bendix Nielsen, N.Botta, A.Fantechi, A.Giovini, P.Inverardi, E. Karlsen,
F.Mazzanti, J. Storbank Pedersen, G.Reggio, E.Zucca, Deliverable 7 of the CEC MAP
project: The Draft Formal Definition of ANSI/MIL-STD 1815 Ada, 1986.

[HI H.Hussmann, Rapid prototyping for Algebraic Specifications RAP system user's manual,
MIP 8502, Universitat Passau, 1985.

[M1] R.Milner, A calculus of communicating systems, LNCS n. 92, 1980.

[M2] R.Milner, Calculi for synchrony and asynchrony, TCS 25, 267-310, 1983.

No] F,Morando, An interpreter for concurrent systems SMoLCS specifications, Thesis (in italian)
University of Genova, Italy, 1986.

[P] G.Plotkin, A structural approach to operational semantics, Lecture notes, Aarhus University,
1981.

[sw] D.T.Sannella, M.Wirsing, A kernel language for algebraic specifications and implementation,
in Proc. Int. Conf. on Foundations of Computation Theory, Borgholrn, Sweden, LNCS
n.158, 1983.

[W] M.Wirsing, Structured algebraic specifications: a kernel language, TCS Vol.42 n. 2, 1986.

