
Toward formal development of programs from
algebraic specifications: implementations revisited

(Extended abstract)
Donald Sannella 1 and Andrzej TarIecki 2

A b s t r a c t
The program development process is viewed as a sequence of implementation steps leading from
a specification to a program. Based on an elementary notion of refinement, two notions of im-
plementation are studied: constructor implementations which involve a construction "on top of"
the implementing specification, and abstractor implementations which additionally provide for ab-
straction from some details of the implemented specification. These subsume most formal notions
of implementation in the literature. Both kinds of implementations satisfy a vertical composition
and a (modified) horizontal composition property. All the definitions and results generalise to the
framework of an arbitrary institution.

1 I n t r o d u c t i o n

There has been a lot of interesting work done on notions of refinement (see e.g. [GTW 78], [GB 80],
[Ehr 81,82], [EKMP 82], [SW 82], [GM 82], [Gan 83], [Lip 83]). In [SW 83] and then in [ST 85b,86b]
we used a very simple notion of specification refinement which seems appropriate for loose specifica-
tions: a specification SP refines to a specification SP', if every model of SP' is a model of SP; this
extends to a notion of refinement of parameterised specifications. This looks suspiciously oversim-
plified, especially in comparison with most previous work in this area. In this paper we elaborate
on how this simple notion can provide a basis for realistic and non-trNial program development.

Roughly speaking, first we allow an implementation of a specification SP by another specification
SP t to consist of a "program" or construction written in terms of SP t to compute the functions
specified in SP. This subsumes most previous notions of implementation in the literature, e.g.
[GTW 78], [Ehr 82], [EKMP 82] and [SW 82]. Then we incorporate ideas concerning behavioural
equivalence of algebras as discussed in [GGM 76], [Rei 81], [GM 82], [ST 86b] (and elsewhere), by
allowing the construction to deliver a result which realises SP not "exactly" but only up to an
equivalence on algebras. This subsumes the notions of implementation in [Ehr 81], [GM 82], [Sch 82]
and [BMPW 86]. These notions extend to parameterised specifications as before.

In order to be useful for stepwise and modular program development, implementations should
compose vertically and horizontally [GB 80]. The simple notion of refinement enjoys both of these
properties. The first extended notion composes vertically and satisfies a (modified) horizontal com-
position property; similar results for the second notion hold only under certain additional conditions.

We present these ideas in the framework of partial algebras [BrW 82]. This is mainly to take
advantage of the reader's intuition, since all of the main definitions and results as well as method*
ological remarks may be directly restated in the framework of an arbitrary institution [GB 84]. This
means that they can be used to develop programs from specifications in a wide variety of logical
systems. Thus, a user of the presented program development methodology may choose the logical
system which is most suited to his particular task. Moreover, different logical systems may be most
suitable at different stages of the development of even a single program, for example when devel-
oping an efficient imperative program from a high-level algebraic specification. We enable this by
allowing specifications to be implemented by specifications in a different institution using what we
call a semi-institution morphism [Tar 86].

1Department of Artificial Intelligence, University of Edinburgh and Laboratory for Foundations of Computer Science,
Department of Computer Seience~ University of Edinburgh

2Institute of Computer Science, Polish Academy of Sciences, Warsaw

97

Unfortunately, for lack of space we are not able to cover this topic here; the interested reader
should consult [ST 87] for a detailed treatment of this subject as well as for all the proofs, examples
and full discussion which we are forced to omit here.

2 Algebraic preliminaries

Due to lack of space we omit the definitions of the following standard algebraic notions: signature
(E), signature morphism (a), the category Sign of signatures with initial (empty) signature ~.¢;
part ial E-algebra A, (closed) E-subalgebra, (weak) E-homomorphism, the category PAlg(E) of
part ial E-algebras; the a-reduct functor _[~: PAlg (E ') --* PAlg (E) for any signature morphism
a: E ~ E; terms t, equations VX.t = t', definedness formulae D(t), part ial (first-order) sentences ~,
and their translations (a(t), etc.) under signature morphisms. All these definitions may be found
in [ST 87] and elsewhere. We write A ,~ ~ to denote that the algebra A satisfies ~, defined in the
usual way (generalised to classes of algebras and sets of sentences as usual).

For any signature ~ and S C_ sorts(E), we say that a E-algebra A is reachable on S if it contains
no proper E-subalgebra with carriers of sorts not in S the same as in A. In other words, every
element of A is the value of a E-term with variables of sorts not in S (for some valuation). Notice
that any E-algebra A contains exactly one ~-subalgebra which is reachable on S and has carriers of
sorts not in S the same as in A, denoted]~s(A). We omit qualification by S in these definitions if
S = sorts(E).

Let A e PAlg (E) . A congruence on A is an equivalence relation =- C tA[×]A[such that for
any f : s l , . . . , s n --~ s in Z and al,bl E)A)s,,...,a,,,b,, e]A[,., if al =-s, bl ,an -=,. b. and
fit(a1 an) and fA(bl bn) are defined, then fA(al an) =, fA(bl b,,). The quotient of
an algebra by a congruence is defined as usual.

3 Specifications and r e f i n e m e n t

We are not going to formally define precisely what specifications are; they are just finite syntactic
objects of some kind. Every specification describes a certain signature and a class of algebras over this
signature. This semantics is made explicit using two mappings which assign to each specification SP
a signature Sig[SP] E [Sign[and a class Mod[SP] C [PAlg(Sig[SP])] of Sig[SP]-algebras. Algebras
in MocI[SP] are called models of SP. We call a specification consistent if it has at least one model.

This rather general description covers high-level user-oriented loose specifications admitting non-
isomorphic models as well as low-level detailed specifications or even programs which for us are just
very tight specifications. We adopt a purely model-theoretic view here and stop the analysis of the
notion of a program at this level. Any application of the methodology we outline would require some
further syntactic constraints on the notion of a program.

Def in i t i on 1 For any signature ~, Spec(~) denotes the collection of all E-specifications, i.e. spec-
ifications SP such that Sig[SP] = ~,, preordered by the inclusion of model classes. For any two
specifications SP1 and SP2, a specification morphism a: SP1 --* SP2 is a signature morphism
a: Sig[SP1] --~ Sig[SP2] such that for any model A2 C Mod[SP2], A2I~ e Mod[SPl].

We assume that Spec(E) contains at least basic specifications. That is, given a signature E and
a (finite, recursive, r.e.) set ¢ of E-sentences, (E, ¢) is a specification with:

Sig[(E, ~)] = Z
Mod[(Z, ~)] = {A e PAlg(E)] A ~ ¢}

If the sentences are all (universally quantified) equations or definedness formulae we call (E, ¢) an
equational specification.

98

Specification-building operations are used to put together little specifications in nice ways to
make progressively bigger ones [BG 77]. Any specification-building operation, given a list of ar-
gument specifications, yields a result specification; semantically, a specification-building operation
is a function on classes of algebras. The only assumption we make about these functions is that
they are monotonic; intuitively, less restrictive argument specifications yield a less restrictive result.
Specification languages like CLEAR [BG 77,80] may be viewed just as sets of such operations plus
some syntactic sugar.

E x a m p l e 1 (t r a n s l a t e) [ST 86a] Given a specification SP and signature morphism a: SigISP] --+
E', t r a n s l a t e SP b y a is a specification with semantics defined as follows:

Sit[translate SP by a] = ~'
Mod[translate SP by a] = {A' e PAlg(E ') i A'I~ e Mod[SP]} []

T r a n s l a t e is actually a family of specification-building operations,

t r a n s l a t e = {transla teo: z~r.,: Spee (E) --+ Spec (E')}oeStgn

For any specification-building operation w we will write w: Spec(E) --+ Spec(E ') , meaning that w
takes Z-specifications to E'-specifications. Note that we have tacitly assumed that ~o is a unary
operation; to simplify the presentation we make the same assumption throughout when convenient.

A specification language usually provides a way for the user to define his own specification-
building operations, i.e. a mechanism for constructing parameterised specifications. There are dif-
ferent approaches to parameterised specifications; in this paper we use the approach of [ST 86a].

Semantically, any parameterised specification can be viewed as a function taking any specification
over a given parameter signature ~par to a specification over a result signature Er,s- Syntactically,
we write a parameterised specification as a)~-expression, ~X: Zpar.SPr,~[X], where X is an identifier
and SPr~[X] is a Zr~s-specification built using specification-building operations which may involve X
as a variable denoting a Ep~,-specification. For any Epar-specification SP, (~X: Ep~,.SPr~,[X])(SP)
is a specification with semantics defined (essentially as 13-conversion) as follows:

5g[(~,X: r~o,.SP, o,[Xl)(SP)] = E~o,
Mod[(~X: Ep~.SP,,,[X])(SP)] = Mod[SF~,,[SP/X]]

We sometimes write ()~X: ~p~.SP,~[X]): Spec(Zp~) --* Spec(H~,,) to indicate the paxameter and

result signatures explicitly.
The programming discipline of stepwise refinement suggests that a program (which is a specifi-

cation) be evolved from a high-level specification by working gradually via a series of successively
more detailed lower-level intermediate specifications. A formalisation of this approach requires a

precise definition of the concept of refinement.

De f in i t i on 2 Given two specifications SP and SP' such that Sig[SP] = Sig[SP'], we say that SP
refines to SP', written SP ,.,.,'> SP', if Mod[SP'] C_ Mod[SP].
Given two parameterised specifications P and P' with the same parameter signature Epic, we say
that P refines to P', written P ~ P', if for any Epic-specification SP, P(SP) ~ P'(SP).

Intuitively~ SP ~ SP' if SP' incorporates more design decisions than SP.
An important issue for any notion of refinement is whether refinements can be composed vertically

(SP ~ SP' and SP' ~ SP" implies SP ~ SP") and horizontally (P ~ P' and SP ,..-.> SP' im-
plies P(SP)> P'(SP')) [GB 80]. The above notion of refinement has both these properties since
specification-building operations are monotonic. These properties allow large structured specifica-

tions to be refined in a gradual and modular fashion.

99

The development of a program from a specification consists of a series of refinement steps
SPo ~ SP1 ~ . . . ~ SP~, where SPo is the original high-level specification and SPn is a pro-
gram. Vertical eomposability guarantees the correctness of SP, with respect to its specification
SPo. This views each of the specifications SPo, . . . , SP, as a single indivisible entity. If, however,
we decompose any of them using a parameterised specification, say SP~ = P(SP), then the further
developments of P and of SP may proceed separately. Horizontal composability guarantees that the
results of these developments may always be combined to give a refinement of SPk and so of SPo as
well. Of course, these (sub)developments may themselves involve further decomposition.

4 C o n s t r u c t o r s a n d implementations
The simple notion of refinement is mathematically elegant but perhaps a bit oversimplified from a
practical point of view. In the sequel, we wilt develop notions of implementation built on top of this
simple notion of refinement which are more suited to practical use. We start with a notion of im-
plementation which involves a construction from the implementing specification to the implemented
specification.

What is a construction? Model-theoretically, the characteristic feature of a construction is that
it transforms an algebra over one signature to yield another algebra over a (possibly different)
signature. Thus, we can identify a construction a with a function s a: PAlg(E) -~ PAlg(E') . This
determines a specification-building operation denoted (ambiguously) by the same symbol. We call
specification-building operations of this kind constructors.

Def in i t ion 3 A constructor determined by a/unction ~: PAId(E) ~ PAlg(E') is a specification-
building operation ~¢: Spee(~.) --~ Spec(E') , where for any E-specification SP, Sig[~(SP)] -- E' and
Mod[~(SP)] = {~(A) I A e Mod[SP]}.

Fact 1 Constructors are monotonic, preserve consistency of specifications, and are closed under
composition. []

E x a m p l e 2 (derive) For any E'-specification SP' and signature morphism ~r: E -~ E', the seman-
tics of the specification der ive f rom SP ~ by a is as follows:

Sig[derive f rom SP ~ by a] = E
Mod[derive f rom SP' by a] = (A]~ [A e Mod[SP'])

The derive specification-building operations (one for each a: E - , E') are constructors determined
by the corresponding reduct functors --In. Intuitively, derive can be used to hide and/or rename
some of the sorts and operations of a specification. []

E x a m p l e 3 (res t r ic t) For any E-specification SP and set S c_ sorts[Z] of sorts, the semantics of
the specification res t r i c t SP on S is as follows:

Sig[restrict SP on S] = E
Mod[restriet SP on S] = {)~s(A) t A e Mod[SP]}

The res t r i c t specification-building opera, ions (one for each E and S C sorts[E]) are constructors
determined by the corresponding restrict functors ~s. :Restrict is used to remove "junk", i.e. to
restrict to the reachable part of Mgebras. []

aFrom the category-theoretic point of view, it is natural to assume that this is a functor (all our examples are) but
since we do not use the morphism part in this paper we take this simplified view here.

100

E x a m p l e 4 (quo t i en t) For any T-specification SP and congruence ~ on ground ~-terms, the
semantics of the specification q u o t i e n t SP w r t ~ is as follows:

Sig[quot ien t SP w r t ~1 = ~
Mod[quotient SP w r t ~] = { A / ~ f A e Mod[SP]}

The q u o t i e n t specification-building operations (one for each Z and ~ on Z-terms) are constructors
determined by the corresponding quotient functors _ / ~ . Intuitively, q u o t i e n t is used to identify
the values of certain terms; usually the congruence ~ is presented via a set of equations. []

E x a m p l e 5 (ex t end) If we have a signature morphism a: Z --* ~ ' then constructors from Spec (~)
to $pec (~ ') will be called synthesizing constructors along a. The intuition is that they just build
new stuff on top of the existing algebras without forgetting anything. One s tandard way to define
such a synthesizing constructor is using the free extension.

Namely, for any signature morphism a: Z --+ ~f and equational Et-specification SP ~, there is
a free functor F~: PAlg (~) ~ Mod[SP'] (the left adjoint to the reduct funcLor _In: Mod[SP'] --.
PAlg(~,)) . That this functor always exists is a well-known fact. For any E-specification SP,
e x t e n d SP to S P ~ v i a a is a specification defined as follows:

Sig[ex tend SP to SP ° v ia a] = ~'
Mod[extend SP to SP' v ia a] = {Fo(A)] A e Mod[SP]}

Note that SP may be an arbitrary specification here, not necessarily equational. In general F~ does
not have to preserve all the properties required by SP (so a was not required to be a specification
morphism a: S P --* SP ~) although it does preserve ground equations deducible from SP. []

N o n - e x a m p l e (t r a n s l a t e) The t r a n s l a t e specification-building operation defined in the last
section is not a constructor. Consider for example any a: ~¢ --* ~, where ~ is non-empty or any
a ' : ~ --* ~ ' which is non-injective on sorts. []

Def in i t i on 4 A synthesizing constructor ~: Spec(E) --* Spec(~ ') is persistent along a signature
rnorphism a: ~ -+ E', written ~: Spec(r ,) -~+ Spec(~ ') , if ~: PAlg (Z) -+ PAlg(E ') is (strongly)
persistent with respect to o, i.e. for any ~.algebra A, to(A)[~ = A.

E x a m p l e 6 (a m a l g a m a t e d un ion) Given two persistent constructors *;1: Spec(E) - -~ Spec(E1)
and ~2: Spec (~) - ~ Spec(E2) , let o l

"El

ty2 t

be a pushout in Sign. For any E-algebra A, define ~(A) to be the unique E*-algebra such that
n(A) J~l, = ~I(A) and n(A)In2, = ~2(A). ~(A) is well-defined since nl(A)In1 = A = n2(A)la~. Thus,
we have defined a function ~: PAlg(E) --* PAlg(E ') . We denote this function and the corresponding
synthesizing constructor (along a l ; a l t = a2;a2 t) by ~;1 + ~2; if any doubts may arise, we add a l , a2
as subscripts to +. Intuitively, ~1+f¢2 "puts together" the constructions n l and ~2. The assumption
of persistency guarantees that this is possible. (See the notion of amalgamated sum in [PB 85] and

[EM 85].) []

Fac t 2 I f a l : S p e c (Z) - - ~ S p e e (~ l) and a2: S p e c (E) - ~ S p e c (~ 2) are persistent constructors
then ~1 + ~2: Spec(E) - -~ Spec(~ ') is a persistent constructor along a =~el a l ;a l ' = a2;a2'. []

t01

E x a m p l e 7 (t r a n s l a t i o n of a c o n s t r u c t o r) There is another operator on constructors connected
with the pushout in Sign. Namely, reconsider the pushout diagram of example 6 and suppose
~;1: S p e c (E) - ~ - + S p e c (~ l) is a persistent constructor. Then for any A2 e PAlg(~2) , define
¢2(~1)(A2) to be the unique ~'-algebra such that o2(~1)(A2)In1, = ~l(A2]a2) and a2(~l)(A2)In2, =
A2. Thus we have defined a function a2(~:1): PAIg(~2) --+ PAlg(G') which we call the translation of
~1 along a2. We use the same notation and terminology to refer to the corresponding synthesizing
constructor (along a2'). Notice that a2(¢~1) is persistent. Intuitively, cr2(~1) performs ~1 on the
up. part" of ~2-algebras and leaves the other components unchanged. Notice that the translation
of a constructor is a more elementary operation than the amalgamated union. Namely, using the
notation of example 6, ~1 + ~2 = t~2;a2(~l) = ¢:1;a1(~2). []

De f in i t i on 5 (c o n s t r u c t o r i m p l e m e n t a t i o n) A specification SP is implemented by a specifica-
tion SP' via a constructor x~: Spec(Sig[SP']) --* Spec(Sfg[SP]), written SP ~ SP', ff SP> ~(SP').

Intuitively speaking, if we want to evaluate a function in SP, we are able to do this provided we
can evaluate any function in SP' since the constructor ~ puts together functions in SP' to obtain all
functions in SP. In this sense, ~ may be viewed as a program parameterised by the (possibly not
yet executable) specification SPq

Notice that , using the constructors introduced in examples 2-5 above, we can reduce many of the
notions of implementation in the literature (e.g. [GTW 78], [Ehr 82], [EKMP 82], [SW 82]) to the
one above. For example, the implementation notion of [EKMP 82] assumes that ~: is the composition
of e x t e n d , der ive , r e s t r i c t and q u o t i e n t constructors (in that order).

Our definition of constructor implementation resembles the notion of implementation given in
[Ehr 81] for single algebras. In [Ehr 81], A is implemented by B via a construction F if A is
(isomorphic to) a quotient of a subalgebra of F(B). When generalising to loose specifications, the
requirement that some quotient of some subalgebra of F(B) be isomorphic to A may be regarded
as a construction only if the subalgebra and quotient are taken uniformly on all models B of the
implementing specification. If we do not require uniformity then this amounts to a non-constructive
step which will be fully subsumed by the notion of abstractor implementation defined in section 5.
There are even closer similarities with the notion of implementation of (parameterised) specifications
in [Lip 83]; see section 6.1 for details.

T h e o r e m 1 (ve r t i ca l c o m p o s i t i o n) /f SP ~ SP' and SP' ~ SP" then SP ~ SP". ~ []

Notice that since ~';~: is an acceptable constructor, there is no reason to require that it has (or
may be transformed to) the same form as either ~ or ~:'. In general this will not be the case. However,
in some special cases it turns out that such normal form theorems may be obtained, often under some
additional assumptions about the specifications involved (see e.g. [Ehr 81], [EKMP 82], [8W 82],
[EWT 83], [Ore 83]). It seems to us that the requirement that the composition of constructors
must be forced into some given normal form corresponds to requiring programs to be written in a
rather restrictive programming language which does not provide sufficiently powerful modularisation
facilities for the job. In some situations, putt ing a constructor into a normal form can be viewed as
an optimization process.

The following simple fact allows us to mechanically strip off outermost constructors if the speci-
fication we want to implement happens to be built in this way.

F a c t 3 For any constructor ~: Spec (~) -+ Spec(~ ') and ~-specifieatfon SP, ~(SP) ~., SP' pro-

vided that SP ~, SP'. []

An interesting special case of this is the amalgamated union of specifications.

102

Def in i t i on 6 For any two specification morphisms a l : SP ~ SP1 and er2: SP --~ SP2, the amal-
gamated union of SP1 and SP2, written SP1 + SP2 (decorated with subscripts SP, trl,a2 on + if
necessary}, is a specification with semantics defined as follows:

sig[sP1 + sP2] = ~;
Mod[SP1 + SP2] = Mad[translate SP1 by al'] U Mad[translate SP2 by aT]

where the following diagram is a pushout in Sign:
ol

Sig[SP] = Sig[SP1]

Sig[SP2] a2' " ~'

T h e o r e m 2 If SP1 ~ SP and SP2 ~ SP where both ~1: Spec(Sig[SP]) - ~ Spec(Sig[SP1]) and
~;2: Spec(Sig[SP]) -el+ Spec(Sig[SP2]) are persistent constructors, then SP1 + SP2 ~ SP. D

This theorem allows us to implement the independent components of a specification separately and
then combine their implementat;.ons provided that they do not affect the common part .

In the above theorem we required ~1 and t¢2 to be persistent on all Sig[SP]-algebras as in the
definition of the amalgamated union of constructors. However, in this context (as well as in similar
situations in the sequel) it is sufficient to require that ~;1 and ~;2 are persistent only on models of SP
(which may be easier to achieve in practice). Of course formally, ~I + ~;2 is then only a constructor
on Mad[SP] rather than on PAlg(Sig[SP]) since it may be undefined on some Sig[SPl-algebras.

T h e o r e m 3 Let a l
E . E1

E2 a2' " El

be a pushout in Sign, tel: Spec(E) -el+ Spec(E1) be a persistent constructor, and SP1,SP2 be E1-
and E2-speeifications respectively. [f SP1 ~ der ive f r o m SP2 by a2 then SPI+SP2 ~ SP2.
[]

This gives another way of decomposing a specification and implementing the components separately.
Namely, we implement one component using (a part of) the other and then we can proceed with the
implementation of the other component.

Summing up, the development process using this notion of implementation would consist of a
sequence of steps SPo ~ SP1 ~ "" ~ SP,. Intuitively, SPo, SP, etc. do not "grow" as happens
when we use the simple refinement notion, where this development would look like:

S P o ~ - ~ ~ l (s P ,) - - - ~ . . . ~ . ~ > ~ (. . . ~.CSP.)...)

Using constructor implementations, we gradually reduce the specification by implementing its parts.
Our goal is to end up with an empty specification over the empty signature, i.e. SPn = (T,¢, 0). Then,
the composition of constructors to,;- . . ;~I forms a program which implements SPo.

103

5 Abstractors and implementat ions

It is often possible to abstract away from some of the details of the user's original specification
without violating the real intention behind it. This is the idea behind the specification technique
known in software engineering as abstract model specification [LB 77], in which the user defines in
a more or less concrete fashion a model which gives the desired results with the intention that any
program giving the same answers is acceptable. This theme has been discussed in [GGM 76], [Rei 81],
[GM 82], [Kam 83], [ST 85a] and elsewhere; the idea goes back (at least) to work on automata theory
in the 1950's [Moo 56].

To formalize these ideas we will consider another class of specification-building operations called
abstractors. Intuitively, any equivalence relation on Z-algebras determines a specification-building
operation which relaxes interpretation of any E-specification SP by admitting as a model any Z-
algebra which is equivalent to a model of SP.

Defini t ion 7 An abstractor determined by an equivalence relation =_- C PAlg(E) × PAlg(~) is a
specification-building operation a~: Spec(~) --* Spec(E) where for any Z-specification SP,

S ig[a~(Sp)] = r.
Mad[a~(SP)l = {A e PAlg(E) I 3A' e Mod[SP].A =__ A'}

In the sequel we will omit the subscript =- when there is no danger of confusion. Also, if a is known
we denote the abstraction equivalence which determines it by =_-~.

Fact 4 Abstractors are monotonic, idempotent, and preserve and reflect consistency of specifica-
tions. []

In general, abstractors are not closed under composition. This fact is neither surprising nor
disturbing; we will not in fact have occasion to compose abstractors.

E x a m p l e 8 (obse rva t iona l abs t r ac t ion) For any E-specification SP and set W of ground Z-
terms, the semantics of the specification a b s t r a c t SP w r t W is as follows [SW 83]:

Sig[abstract SP w r t W] = Z
Mad[abstract SP w r t W] = {A E PAlg(Z) I 3A' E Mad[SP].A =w X)

where for any two algebras A,A ' E PAlg(Z), A --=-w A' iff:

• for all t e W, A p D(t) iff A' p D(t), and

• for all s E 8orts(E) and all t,t ' E W,, A ~ t = t' iff A' ~ t = t'.

Intuitively, W is the set of G-terms which represent computations the user is allowed to perform. We
do not want to distinguish between algebras in which all these computations give the same results.
A similar idea in the context of concurrent processes appears in [deNH 84]. []

E x a m p l e 9 (behav ioura l abs t r ac t ion) An important special case of observational abstraction is
behavioural abstraction. For any E-specification SP and set OBS C sorts(E) of sorts, the semantics
of the specification b e h a v i o u r SP w r t OBS is as follows [SW 83], [ST 86a], [ST 86b]:

Sig[behaviour SP w r t OBS] = Z
Mad[behaviour SP w r t OBS] = {A E PAlg(Z) I 3A' e Mad[SP].A =OBS A'}

where the equivalence =-OBS is just ~-w for W the set of all ground E-terms of sorts in OBS.
Intuitively, OBS is the set of external sorts, visible to the user. []

104

Def in i t ion 8 (a b s t r a c t o r i m p l e m e n t a t i o n) A E-specification SR is implemented by a E'-spcei-
fication SP' wrt an abstraetor a: Spec(E) --* Spec(Z) via a constructor ~: Spec(E ') -~ Spec(E),
written SP ~ sP', if ~(sP) ~ ~(sP').

If in the above definition, a is behavioural abstraction, then intuitively speaking we are imple-
menting the behaviour of SP rather than SP itself. This subsumes the notions of implementation
in [GM 82], [Sch 82] and [BMPW 86]. Notice that the abstractor a cannot be chosen arbitrarily;
the choice depends on the specification SP and the context in which it is to be used. If a abstracts
too much then the implementation will be useless - - for example if -= is the total equivalence on
PAlg(E) then SP 2~> SP' for any SP' and constructor ~: Spec(Sig[SP']) ~ Spec(Sig[SP]).

Suppose SP ~ SP' and SP r ~ SP". We would like to be able to conclude that SP ~ SP".
According to the above argument we assume that a was chosen appropriately for the context in which
SP is to be used and so we do not want to change it even when composing implementations. In
general, there is no hope for such a result. If a I is too "liberal", there is no reason to expect that
transforms any a'(SP')-model to a model of a(SP). However, the following theorem does hold:

T h e o r e m 4 (ve r t i ca l c o m p o s i t i o n) I] SP ~ SP s and SP' ~ , SP then SP ~ SP" provided

preserves the abstraction equivalences, i.e. for any two algebras A1, A2 E PAlg(Sig[SP']) if A1 =--~,
A2 then a(A1) ---~ a(A2). []

A methodological conclusion from this theorem is that the development process should proceed
as follows: starting from a specification SP considered in a context for which an abstractor a is
appropriate, we (abstractor) implement SP, say ST' ~ SP'. The next step should be to establish the
appropriate abstractor up to which SP' may be considered by "pushing ~ through a". Namely, this
should be the abstractor determined by the equivalence a - ~ (- ,) where for A, A' E PAlg(SIg[SP']),
A a - l (~ a) A t iff a(A) ----~ ~(A'). Then, we can proceed with the development of SP' in the context
of the abstractor determined by ~-~(-~) . (Actually, any equivalence finer than a -~ (= ,) will do.)
Similar ideas in the context of concurrent processes appear in [Lar 86].

C o r o l l a r y 1 If SPo ~ "" ~ _ _ a ,_ l (=a ._ ,) then SP, and -a2 C Ell(-----ai) and . . . and - ~ . C -i _

SPo ~ SP,. []

Note that in practice, it is often convenient to sharpen the above results. They hold if the
constructors preserve the equivalences between models of the appropriate specifications (e.g. in the
vertical composition theorem it is sufficient that ~(A1) ~ ~(A2) for any A1 e PAlg(Sig[SP']) and
A2 E Mod[SP'] such that A1 =-~, A2).

In the rest of this section, we show that vertical composition and the above methodological
remarks may work in practice. On one hand, the constructors we have introduced do preserve
appropriate (observational) equivalences; and on the other hand, we show how to push standard
observational equivalences in a satisfactory way through the constructors we have defined.

L e m m a I (der ive) For any signature morphism a: E1 --+ E2 and set W of ground E2-terms,
P j l (- w) : ---aCW), where P~: Spec(E2) --+ Spec(E1) : d 4 ~X: E2. de r ive f r o m X by a. []

L e m m a 2 (r e s t r i c t) For any signature E, S C sorts(E) and set W of ground E-terms, A - w
]~s(A) for all E-algebras A, where Rs: Spec(E) -* Spec(E) =~el AX: E. r e s t r i c t X on S. []

The above lemma gives directly a characterisation of the result of pushing observational equiv-
alence through r e s t r i c t constructors. Moreover, it directly implies that r e s t r i c t steps may be
skipped if we use abstractor implementations.

C o r o l l a r y 2 Under the assumptions of lemma P,]~l(=-w) = - w . []

105

C o r o l l a r y 3 Under the assumptions of lemma 2, if a is the abstractor determined by n-w, then for
any E-specifications SP and SP', SP ~ SP' implies SP ~ SP'. []

~s t a

It is worth pointing out that the above corollary also allows us to throw out r e s t r i c t steps "in
the middle" of the development process (provided that the intermediate equivalence used in this
step satisfies the assumptions of lemma 2). This means that corollary 2 becomes superfluous since
instead of using it to push equivalences through res t r i c t steps we can just skip these steps entirely.

The situation with quo t i en t steps is similar although we need slightly more restrictive assump-
tions (see [ST 87] for details).

Def in i t ion 9 For any signature morphism a: Z ---* Z', constructor ~: Spec(~) --~ Spec(Z') and
sets W and W' of ground Z- and ground ~'-terms respectively, ~ is observably sufficiently complete
(wrt W , W ') if for any term t' E W', either for any A E PAlg(Z) , ~(A) ~ D(t') or there exists a
term t e W such that for any A e PAlg(Z) , ~¢(A) ~ t' = or(t).

Typically, we will consider sets W and W' such that observable sufficient completeness is a weaker
condition than sufficient completeness, which corresponds to the case where W' is the set of all
ground }]'-terms of the sorts a(S) for S =a,f sorts(P.) and W is the set of all ground E-terms.

Def in i t ion 10 For any signature morphism a: ~ --* ~', constructor ~: Spec(Z) --~ Spec(I] ') and
set W of ground E-terms, ~c is observably persistent {wrt W) if for all terms t l , t2 E W of the
same sort and anu A E PAIg(Z) , ~(A) ~ a(t l) = a(t2) iff A ~ t l = t2 and ~(A) ~ D(a(tl)) iff
A ~ D(t l) .

Notice that observable persistency is a weaker condition than the standard persistency.

L e m m a 3 (synthes ize) For any signature morphism a: Z --* Z' which is injective on sorts, con-
structor t~: Spec(Z) --, Spec(~') and sets W and W' of ground Z- and Zt-terms respectively, if
is observably sufficiently complete wrt W, W ~ and observably persistent wrt W then ~¢-i(-~w,) 3 =w.
Moreover, if in addition W is a minimal set such that observable sufficient completeness holds then

'~- ~ (- w ,) = - w . []

As remarked already, constructor implementation using the derive, res t r i c t , quot ient and
ex t end constructors subsumes many of the notions of implementation in the literature. The above
lemmas imply that the extension of any of these notions to a corresponding notion of abstractor
implementation goes through smoothly.

L e m m a 4 (a m a l g a m a t e d un ion) Let ~1: S p e c (Z) - - ~ Spee(Z1) ands:2: S p e e (B) - ~ Spec(E2)
be persistent constructors, W, W 1 , W 2 be sets of ground Z-, ~1- and ~.2-terms respectively such that
~1 is observably sufficiently complete wrt W, W1 and ~2 is observably sufficiently complete wrt W, W 2.
Recall that ~ =def ~;1 + ~2: Spee(P,) ~ Spee(Z ') , where

a l
Z • ZI

Z2 ' P,,'

is a pushout in Sign, is a persistent synthesizing constructor (along a l ; a l ' = a2;a2'} such that for
A e PAlg(Z) , ~(A) is the unique E'-algebra such that ~;(A)1ol, = ~I(A) and to(A) o~, = ~;2(A).
Under these assumptions, ~ is observably sufficiently complete wrt W,W' where W I =def e l (W1) U
~2' (w 2) . []

C o r o l l a r y 4 Under the assumptions of lemma 4, ~c-l(-w ') 2 - w . []

106

L e m m a 5 (t r ans la t ion of a cons t ruc to r) Consider again the pushout diagram from lamina 4.
Let W, W1, W2 be sets of ground E-, E l - and E2-terms respectively, and let s l : Spec(E) _z2+ Spec(E1)
be a persistent constructor. If ~1 is observably su~ciently complete wrt W, W1 and cr2(W) C_ W2
then o2(~1): Spec(E2) --* Spec(E') is observably sui)~eiently complete wrt W 2 , W ~ where W' =
o1'(w1) u ~2'(w 2). []

Coro l l a ry 5 Under the assumptions of lemma 5, o2(~1)-1(~w ,) ~ ~w2. []

6 P a r a m e t e r i s a t i o n a n d i m p l e m e n t a t i o n s

In the same way as the simple notion of refinement on specifications gave rise to a notion of refinement
for parameterised specifications, the definitions of constructor and abstractor implementation extend
to notions of constructor and abstractor implementation for parameterised specifications.

6.1 P a r a m e t e r i s a t i o n and cons t ruc to r imp lemen ta t i ons

Defini t ion 11 For any parameterised specification P: Spec(Ep~r) --* Spec(Er,~) and specification-
building operation w: Spec(E,~,) --~ Spec(E), w(P) is a parameterised specification defined by
w(P) ~-def ~X: Ep~.w(P(X)): Spec(Ep,r) ~ Spec(E).

Defini t ion 12 (cons t ruc to r implementa t ion) For any parametcrised specifications with a com-
mon parameter signature P" Spec(r~po,) -- Spec(~) and P': Spat(r po,) -- Spec(~') and construc-
tor ~: Spec(E t) --~ Spec(E), P is implemented by pw via tc, written P ~ g~, if P-> tc(P').

This subsumes the notion of implementation of parameterised specifications in [SW 82]. It
resembles the one in [Lip 83], where a parameterised specification is a (strongly) persistent functor.
According to [Lip 83], P is implemented by P ' via a construction F (another persistent functor,
obtained by composing certain specification-building operations) if there is some P" and (persistent)
natural transformations i: P" -~ P';F and s: P" -~ P such that i and s are componentwise injective
and surjective respectively. In our framework, this corresponds roughly to an implementation via
the composition of a persistent constructor, a res t r ic t step and a quot ien t step (in that order).
Although there are several other definitions of implementation of parameterised specifications in
the literature (see e.g. [EK 82], [GM 82] and [Gan 83]) it is difficult to compare them with ours
because our definition extends the definition for the non-parameterised ease in the usual way that
a relation is extended from elements to functions (that is, pointwise). In contrast, [EK 82] defines
implementation of parameterised specifications by comparing their bodies and then proves that this
implies our notion of implementation. This is arguably preferable from the point of view of proving
correctness of implementations but we prefer to adopt the natural definition and treat the problem

of proving correctness separately.

T h e o r e m 5 (vert ical compos i t ion) For any parameterised specifications P, P t p , with common
parameter signature Epa~, if P ~ P~ and P~ ~ P" then P ~ P ' . []

As in fact 3, we can strip off outermost constructors from parameterised specifications:

Fact 5 For any parameterised specifications P and P~ and constructor ~ on the result signature of
p , ~(p) ~ P~ provided that P ~ P'. []

Constructor implementations do not compose horizontally. In fact, the standard formulation of
the horizontal composition property is not even well-formed in this case. Namely, if P: Spec(Ep,r) --*
Spec(Ere,) is a parameterised specification, SP is a Ep,r specification and SPitz"> SP', then in
general Sig[SP'] ~ Evar and so P(SP') is not even well-defined. However:

107

T h e o r e m 6 (h o r i z o n t a l c o m p o s i t i o n) Given a parameterised specification P with parameter sig-
nature Ep~r and a Ep~r-speeifieation SP, if P ~ P' and SP ~ SP' then P(SP) ~ P'(tt(SP)).
[]

Although this is not horizontal composition as formulated in [GB 80], it is perfectly adequate for our
purposes. It guarantees that in the case of a specification formed by applying a parameterised spec-
ification P to a E-specification SP, the developments of P and SP may proceed independently and
the results be successfully combined. If P ~ P1 ~ "'" ~ Pn and SP ~ SPx u ~ . . . ~ SPa
then P (S P) ~ P~((#,~; . . - ;#,)(SP~)) . We aim at reducing the parameter specification to
the empty specification and the parameterised specification to the identity. If SP~ = <E$, ~) and
P , =).X: E .X then the composition of constructors tt,~;..- ; # 1 ; ~ ; " " ;gl implements P(SP).

6 . 2 P a r a m e t e r i s a t i o n a n d a b s t r a c t o r i m p l e m e n t a t i o n s

De f in i t i on 13 (a b s t r a c t o r i m p l e m e n t a t i o n) For any parameterised specifications with a com-
mon parameter signature P: Spec(~p~) -~ Spec(E) and P': Spec(Ep~r) -+ Spec(E ') , abstractor
a: Spec(E) --* Spec(E) and constructor to: Spec(E ') -+ Spec(E) , P is implemented by P ' wrt a
via ~, written P ~ P', if a(P) ~ ~(P') .

T h e o r e m 7 (ve r t i ca l c o m p o s i t i o n) For any parameterised specifications P, P~, P" with common
P ~' , parameter signature Ep~,, if P ~ ' and p, ~ p then P ~ P" provided that t; preserves the

abstraction equivalences. []

Applicability of this result in program development requires proving that the constructors we use
preserve the appropriate abstraction equivalences. For this, lemmas 1-5 of section 5 are applicable
just as in the non-parameterised case.

Unfortunately, the horizontal composition theorem for abstraetor implementations does not hold,
even in the form suggested by the horizontal composition theorem for constructor implementations;
parameter specifications cannot in general be abstracted from since parameterised specifications can
make essential use of non-observable parts of the parameter. One way to circumvent this is to restrict
attention to parameterised specifications which use their arguments in an abstract way, so that if
we change the argument to an equivalent one we get a result which is equivalent.

De f in i t i on 14 Let a: Spec(E) -~ Spec(E) be an abstraetor. We say that two E-specifications SP1
and SP2 are a-equivalent if Mod[a(SP1)] = Mod[a(SP2)].

, ~' , ~ p,(,~,(SpO) T h e o r e m 8 (h o r i z o n t a l c o m p o s i t i o n) [[P ~ P and SP ~ SP then P(SP)
provided that P preserves a~-equivalenee, i.e. for any specifieatior~ SP1,SP2 over the (common)
parameter signature of P and p,, P(SP1) and P(SP2) are a-equivalent whenever SP1 and SP2 are
a'-equivalent. []

The requirement that P preserves aLequivalence in the above theorem is guaranteed in either of
the following three cases:

1. P has the form ~X: E.SPI[a'(X)], i.e. P abstracts from its argument before using it.

2. P is built entirely from constructors which preserve the relevant abstraction equivalences.

3. The abstractor a ' is trivial, i.e. for any specification SP, Mod[a'(SP)] = Mod[SP].

The last c~se amounts to the following:

C o r o l l a r y 6 I / P ~ ' P and SP ~ SP' then P(SP) ~ P'(td(SP')). []

108

A constructor implementation SP ~ SP ~ is an abstractor implementation SP ~ SP ~ where the
abstractor ~ is trivial. Notice however that when we push the corresponding equivalence through
~ and the constructors used in the further implementation of SP ~, the resulting abstraction equiv-
alences may determine non-trivial abstractors again and so the use of techniques of abstractor
implementations may be essential further on.

7 C o n c l u d i n g remarks

A number of important problems connected with the ideas presented here remain to be considered.
First, we do not discuss here any methods for proving correctness of refinements; methods for
proving theorems in specifications, especially in the context of observational abstraction [ST 86a,86b],
are relevant to this problem. This would be especially important in the case of parameterised
specifications.

There is a large body of technical work in the literature on different specific notions of imple-
mentation. Viewed in our approach, each of these notions corresponds to a restriction on the choice
of constructors and abstractors which may be used. We have tried to unify and generalise the many
different notions of implementation in the literature. This quest for generality yields a uniform
framework in which we can compare different approaches. We can investigate which of the problems
encountered under different notions of implementation are inherent to the very concept of what an
implementation should be and which are just technicalities caused by the imposed restrictions, and
conversely, which results and properties are consequences of such restrictions and which are inherent
to the nature of implementations. We have not yet tried to pursue this line of investigation in a
systematic manner.

According to our definition, any inconsistent specification refines any specification over the same
signature. But if we succeed in refining a specification to a program then the original specification
must have been consistent. This means that checking consistency is not necessary to ensure correct-
ness of the development process. However, an inconsistent specification is a blind alley. On the other
hand, even a consistent specification may have no computable model and so we cannot in general
avoid blind alleys in program development anyway.

In what we have presented here, constructors are just functions rather than actual pieces of
programs in ~he usual sense. We did not give any particular syntax for defining constructors. It
would be interesting to develop a programming language which would provide facilities for defining
and composing constructors (this would probably require restricting the notion of constructor we
use, as implied in section 3). A good starting point seems to be Standard ML [Mil 85] with mod-
ules [MacQ 85 I, where constructors could be defined as Standard ML functors (i.e. parameterlsed
modules}.

A c k n o w l e d g e m e n t s
Many of the ideas in this paper evolved in close collaboration with Martin Wirsing. Thanks to Oliver
Schoett for many relevant discussions, to Hartmut Ehrig for his criticism which stimulated us to
write these ideas down, and to an anonymous referee who directed our attention to [Lip 83]. Thanks
to Teresa for (gastronomic) care. This work was supported by grants from the Alvey Directorate
and the Polish Academy of Sciences.

8 References

[B M P W 86] Broy, M., MSller, B., Pepper, P. and Wirsing, M. Algebraic implementations preserve
program correctness. Science o/Computer Programming 7, pp. 35-53.

[B r W 82] Broy, M. and Wirsing, M. Partial abstract types. Acta In/ormatica 18 pp. 47-64.

109

[BG 77] Burstall, R.M. and Goguen, J.A. Putting together theories to make specifications. Proc.
5th Intl. Joint Conf. on Artificial Intelligence, Cambridge.

[BG 80] Burstall, R.M. and Goguen, J.A. The semantics of Clear, a specification language. Proc.
of Advanced Course on Abstract Software Specifications, Copenhagen. Springer LNCS 86,
pp. 292-332.

[deNH 84] de Nlcola, R. and Hennessy~ M.C.B. Testing equivalences for processes. Theoretical
Computer Science 34, pp. 83-133.

[Ehr 81] Ehrich, H.-D. On realization and implementation. Proe. lOth Intl. Syrup. on Mathematical
Foundations of Computer Science, Strbske Pleso, Czechoslovakia. Springer LNCS 118.

[Ehr 82] Ehrich, H.-D. On the theory of specification, implementation~ and parametrization of
abstract data types. Journal of the Assoc. for Computing Machinery 29 pp. 206-227.

[EKMP 82] Ehrig, H., Kreowski, H.-J., Mahr, B. and Padawitz, P. Algebraic implementation of
abstract data types. Theoretical Computer Science 20 pp. 209-263.

[EM 85] Ehrig, H. and Mahr, B. Fundamentals of Algebraic Specification I: Equations and Initial
Semantics. EATCS Monographs on Theoretical Computer Science, Springer.

[EWT 83] Ehrig, H., Wagner, E.G. and Thatcher, J.W. Algebraic specifications with generating
constraints. Proc. lOth Intl. Colloq. on Automata, Languages and Programming, Barcelona.
Springer LNCS 154, pp. 188-202.

[Gan 83] Ganzinger, H. Parameterized specifications: parameter passing and implementation with
respect to observability. TOPLAS 5, 3pp: 318~354:

[GGM 76] Giarratana, V., Gimona, F. and Montanari, U. Observability concepts in abstract data
type specification. Proe. 5th Intl. Syrup. on Mathematical Foundations of Computer Science,
Gdansk. Springer LNCS 45.

[GB 80] Goguen, J.A. and Burstall, R.M. CAT, a system for the structured elaboration of correct
programs from structured specifications. Technical report CSL-118, SRI International.

[GB 84] Goguen, J.A. and Burstall, R.M. Introducing institutions. Proe. Logics of Programming
Workshop (E. Clarke and D. Kozen, eds.), Carnegie-Mellon University. Springer LNCS 164,
pp. 221-256.

[GM 82] Goguen, J.A. and Meseguer, J. Universal realization, persistent interconnection and im-
plementation of abstract modules. Proe. 9th Intl. Colloq. on Automata, Languages and Pro-
gramming, Aarhus. Springer LNCS 140, pp. 265-281.

[GTW 78] Goguen, J.A., Thatcher, J.W. and Wagner, E.G. An initiM algebra approach to the
specification, correctness, and implementation of abstract data types. Current Trends in Pro-
gramming Methodology, Vol. 4: Data Structuring (R.T. Yeh, ed.), Prentice-Hall, pp. 80-149.

[Kam 83] Kamin, S. Final data types and their specification. TOPLAS 5, 1 pp. 97-121.

[Lar 86] Larsen, K. Context-dependent bisimulation between processes. Ph.D. thesis, Dept. of
Computer Science, Univ. of Edinburgh.

[Lip 83] Lipeck, U. Ein aIgebraischer Kalkiil ffir einer strukturierten Entwurf yon Datenabstrak-
tionen. Ph.D. thesis, Abteilung Informatik, Universit~t Dortmund.

[LB 77] Liskov, B.H. and Berzins, V. An appraisal of program specifications. Computation Struc-
tures Group memo 141-1, Laboratory for Computer Science, MIT.

[MacQ 85] MacQueen, D.B. Modules for Standard ML. Polymorphism 2~ 2.

[Mil 85] Milner, R.G. The Standard ML core language. Polymorphism 2, 2.

[Moo 56] Moore, E.F. Gedanken-experiments on sequential machines. In: Automata Studies (C.E.
Shannon and J. McCarthy, eds.), Princeton Univ. Press, pp. 129-153.

110

[Ore 83] Orejas~ F. Characterizing composability of abstract implementations. Proe. Intl. Con/.
on Foundations o/ Computation Theory, Borgholm, Sweden. Springer LNCS 158, pp. 335-346.

[PB 85] Parisi-Presicce, F. and Blum, E.K. The semantics of shared submodules specifications.
Proe. 10th Colloq. on Trees in Algebra and Programming, Joint Conf. on Theory and Practice
of Software Development (TAPSOFT), Berlin. Springer LNCS 185, pp. 359-373.

[Rei 81] Reichel, H. Behavioural equivalence - a unifying concept for initial and final specification
methods. Proc. 3rd Hungarian Computer Science Conference, Budapest, pp. 27-39.

[ST 85a] Sannella, D.T. and Tarlecki, A. Some thoughts on algebraic specification. Proc. Srd
Workshop on Theory and Applications of Abstract Data Types, Bremen. Springer Informatik-
Fachberichte Vol. 116, pp. 31-38.

[ST 85b] Sannella, D.T. and Tarlecki, A. Program specification and development in Standard ML.
Proe. 12th ACM Syrup. on Principles o/ Programming Languages, New Orleans, pp. 67-77.

[ST 86a] Sannella, D.T. and Tarlecki, A. Specifications in an arbitrary institution. Report CSR-
184-85, Dept. of Computer Science, Univ. of Edinburgh; to appear in In/ormation and Control.

[ST 86b] Sannella, D.T. and Tarlecki, A. On observational equivalence and algebraic specification.
Report CSR~172-84, Dept. of Computer Science, Univ. of Edinburgh; to appear in Journal of
Computer and Systems Sciences.

[ST 87] Sannella, D.T. and Tarlecki, A. Toward formal development of programs from algebraic
specifications: implementations revisited (full version). Research report, Dept. of Computer
Science, Univ. of Edinburgh (to appear).

[SW 82] Sannelta, D.T. and Wirsing, M. Implementation of parameterised specifications (extended
abstract). Proc. Oth Intl. Colloq. on Automata, Languages and Programming, Aarhus.
Springer LNCS 140, pp. 473-488.

[SW 83] Sannella, D.T. and Wirsing, M. A kernel language for algebraic specification and im-
plementation (extended abstract). Proe. Intl. Conf. on Foundations of Computation Theory,
Borgholm, Sweden. Springer LNCS 158, pp. 413-427.

[Sch 82] Schoett, O. A theory of program modules, their specification and implementation (ex-
tended abstract). Report CSR-155-83, Dept. of Computer Science, Univ. of Edinburgh.

[Tar 86] Tarlecki, A. Software-system development - - an abstract view. Information Processing
'86. North-Holland, pp. 685-688.

