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A b s t r a c t  
The program development process is viewed as a sequence of implementation steps leading from 
a specification to a program. Based on an elementary notion of refinement, two notions of im- 
plementation are studied: constructor implementations which involve a construction "on top of" 
the implementing specification, and abstractor implementations which additionally provide for ab- 
straction from some details of the implemented specification. These subsume most formal notions 
of implementation in the literature. Both kinds of implementations satisfy a vertical composition 
and a (modified) horizontal composition property. All the definitions and results generalise to the 
framework of an arbitrary institution. 

1 I n t r o d u c t i o n  

There has been a lot of interesting work done on notions of refinement (see e.g. [GTW 78], [GB 80], 
[Ehr 81,82], [EKMP 82], [SW 82], [GM 82], [Gan 83], [Lip 83]). In [SW 83] and then in [ST 85b,86b] 
we used a very simple notion of specification refinement which seems appropriate for loose specifica- 
tions: a specification SP refines to a specification SP', if every model of SP' is a model of SP; this 
extends to a notion of refinement of parameterised specifications. This looks suspiciously oversim- 
plified, especially in comparison with most previous work in this area. In this paper we elaborate 
on how this simple notion can provide a basis for realistic and non-trNial program development. 

Roughly speaking, first we allow an implementation of a specification SP by another specification 
SP t to consist of a "program" or construction written in terms of SP t to compute the functions 
specified in SP. This subsumes most previous notions of implementation in the literature, e.g. 
[GTW 78], [Ehr 82], [EKMP 82] and [SW 82]. Then we incorporate ideas concerning behavioural 
equivalence of algebras as discussed in [GGM 76], [Rei 81], [GM 82], [ST 86b] (and elsewhere), by 
allowing the construction to deliver a result which realises SP not "exactly" but only up to an 
equivalence on algebras. This subsumes the notions of implementation in [Ehr 81], [GM 82], [Sch 82] 
and [BMPW 86]. These notions extend to parameterised specifications as before. 

In order to be useful for stepwise and modular program development, implementations should 
compose vertically and horizontally [GB 80]. The simple notion of refinement enjoys both of these 
properties. The first extended notion composes vertically and satisfies a (modified) horizontal com- 
position property; similar results for the second notion hold only under certain additional conditions. 

We present these ideas in the framework of partial algebras [BrW 82]. This is mainly to take 
advantage of the reader's intuition, since all of the main definitions and results as well as method* 
ological remarks may be directly restated in the framework of an arbitrary institution [GB 84]. This 
means that they can be used to develop programs from specifications in a wide variety of logical 
systems. Thus, a user of the presented program development methodology may choose the logical 
system which is most suited to his particular task. Moreover, different logical systems may be most 
suitable at different stages of the development of even a single program, for example when devel- 
oping an efficient imperative program from a high-level algebraic specification. We enable this by 
allowing specifications to be implemented by specifications in a different institution using what we 
call a semi-institution morphism [Tar 86]. 
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Unfortunately, for lack of space we are not able to cover this topic here; the interested reader 
should consult [ST 87] for a detailed treatment of this subject as well as for all the proofs, examples 
and full discussion which we are forced to omit here. 

2 Algebraic preliminaries 

Due to lack of space we omit the definitions of the following standard algebraic notions: signature 
(E), signature morphism (a), the category Sign  of signatures with initial (empty) signature ~.¢; 
part ial  E-algebra A, (closed) E-subalgebra, (weak) E-homomorphism, the category PAlg(E)  of 
part ial  E-algebras; the a-reduct functor _[~: PAlg (E ' )  --* PAlg (E)  for any signature morphism 
a: E ~ E; terms t, equations VX.t = t', definedness formulae D(t), part ial  (first-order) sentences ~, 
and their translations (a(t),  etc.) under signature morphisms. All these definitions may be found 
in [ST 87] and elsewhere. We write A ,~ ~ to denote that  the algebra A satisfies ~,  defined in the 
usual way (generalised to classes of algebras and sets of sentences as usual). 

For any signature ~ and S C_ sorts(E), we say that  a E-algebra A is reachable on S if it contains 
no proper E-subalgebra with carriers of sorts not in S the same as in A. In other words, every 
element of A is the value of a E-term with variables of sorts not in S (for some valuation). Notice 
that  any E-algebra A contains exactly one ~-subalgebra which is reachable on S and has carriers of 
sorts not in S the same as in A, denoted ]~s(A). We omit qualification by S in these definitions if 
S = sorts(E). 

Let A e PAlg (E) .  A congruence on A is an equivalence relation =- C tA[ × ]A[ such that  for 
any f :  s l , . . . , s n  --~ s in Z and al,bl E )A)s,,...,a,,,b,, e ]A[,., if al =-s, bl . . . .  ,an -=,. b. and 
fit(a1 . . . . .  an) and fA(bl . . . . .  bn) are defined, then fA(al . . . . .  an) =, fA(bl . . . . .  b,,). The quotient of 
an algebra by a congruence is defined as usual. 

3 Specifications and r e f i n e m e n t  

We are not going to formally define precisely what specifications are; they are just  finite syntactic 
objects of some kind. Every specification describes a certain signature and a class of algebras over this 
signature. This semantics is made explicit using two mappings which assign to each specification SP 
a signature Sig[SP] E [Sign[ and a class Mod[SP] C [PAlg(Sig[SP])] of Sig[SP]-algebras. Algebras 
in MocI[SP] are called models of SP. We call a specification consistent if it has at least one model. 

This rather general description covers high-level user-oriented loose specifications admitting non- 
isomorphic models as well as low-level detailed specifications or even programs which for us are just 
very tight specifications. We adopt a purely model-theoretic view here and stop the analysis of the 
notion of a program at this level. Any application of the methodology we outline would require some 
further syntactic constraints on the notion of a program. 

Def in i t i on  1 For any signature ~, Spec(~)  denotes the collection of all E-specifications, i.e. spec- 
ifications SP such that Sig[SP] = ~,, preordered by the inclusion of model classes. For any two 
specifications SP1 and SP2, a specification morphism a: SP1 --* SP2 is a signature morphism 
a: Sig[SP1] --~ Sig[SP2] such that for any model A2 C Mod[SP2], A2I~ e Mod[SPl]. 

We assume that  Spec(E)  contains at least basic specifications. That  is, given a signature E and 
a (finite, recursive, r.e.) set ¢ of E-sentences, (E, ¢) is a specification with: 

Sig[(E, ~)] = Z 
Mod[(Z, ~)] = {A e PAlg(E)  ] A ~ ¢} 

If the sentences are all (universally quantified) equations or definedness formulae we call (E, ¢) an 
equational specification. 
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Specification-building operations are used to put together little specifications in nice ways to 
make progressively bigger ones [BG 77]. Any specification-building operation, given a list of ar- 
gument specifications, yields a result specification; semantically, a specification-building operation 
is a function on classes of algebras. The only assumption we make about these functions is that 
they are monotonic; intuitively, less restrictive argument specifications yield a less restrictive result. 
Specification languages like CLEAR [BG 77,80] may be viewed just  as sets of such operations plus 
some syntactic sugar. 

E x a m p l e  1 ( t r a n s l a t e )  [ST 86a] Given a specification SP and signature morphism a: SigISP ] --+ 
E', t r a n s l a t e  SP b y  a is a specification with semantics defined as follows: 

Sit[translate SP by  a] = ~'  
Mod[translate SP by  a] = {A' e PAlg(E ' )  i A'I~ e Mod[SP]} [] 

T r a n s l a t e  is actually a family of specification-building operations, 

t r a n s l a t e  = {transla teo:  z~r.,: Spee  (E) --+ Spec  (E')}oeStgn 

For any specification-building operation w we will write w: Spec(E)  --+ Spec(E ' ) ,  meaning that  w 
takes Z-specifications to E'-specifications. Note that  we have tacitly assumed that  ~o is a unary 
operation; to simplify the presentation we make the same assumption throughout when convenient. 

A specification language usually provides a way for the user to define his own specification- 
building operations, i.e. a mechanism for constructing parameterised specifications. There are dif- 
ferent approaches to parameterised specifications; in this paper we use the approach of [ST 86a]. 

Semantically, any parameterised specification can be viewed as a function taking any specification 
over a given parameter signature ~par to a specification over a result signature Er,s- Syntactically, 
we write a parameterised specification as a )~-expression, ~X: Zpar.SPr,~[X], where X is an identifier 
and SPr~[X] is a Zr~s-specification built using specification-building operations which may involve X 
as a variable denoting a Ep~,-specification. For any Epar-specification SP, (~X: Ep~,.SPr~,[X])(SP) 
is a specification with semantics defined (essentially as 13-conversion) as follows: 

5g[(~,X: r~o,.SP, o,[Xl)(SP)] = E~o, 
Mod[(~X: Ep~.SP,,,[X])(SP)] = Mod[SF~,,[SP/X]] 

We sometimes write ()~X: ~p~.SP,~[X]): Spec(Zp~)  --* Spec(H~,,) to indicate the paxameter and 

result signatures explicitly. 
The programming discipline of stepwise refinement suggests that  a program (which is a specifi- 

cation) be evolved from a high-level specification by working gradually via a series of successively 
more detailed lower-level intermediate specifications. A formalisation of this approach requires a 

precise definition of the concept of refinement. 

De f in i t i on  2 Given two specifications SP and SP' such that Sig[SP] = Sig[SP'], we say that SP 
refines to SP', written SP ,.,.,'> SP', if Mod[SP'] C_ Mod[SP]. 
Given two parameterised specifications P and P' with the same parameter signature Epic, we say 
that P refines to P', written P ~ P', if for any Epic-specification SP, P(SP)  ~ P'(SP).  

Intuitively~ SP ~ SP' if SP' incorporates more design decisions than SP. 
An important  issue for any notion of refinement is whether refinements can be composed vertically 

(SP ~ SP' and SP' ~ SP" implies SP ~ SP") and horizontally (P ~ P' and SP ,..-.> SP' im- 
plies P(SP) .....> P'(SP')) [GB 80]. The above notion of refinement has both these properties since 
specification-building operations are monotonic. These properties allow large structured specifica- 

tions to be refined in a gradual and modular fashion. 
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The development of a program from a specification consists of a series of refinement steps 
SPo ~ SP1 ~ . . .  ~ SP~, where SPo is the original high-level specification and SPn is a pro- 
gram. Vertical eomposability guarantees the correctness of SP, with respect to its specification 
SPo. This views each of the specifications SPo, . . . ,  SP, as a single indivisible entity. If, however, 
we decompose any of them using a parameterised specification, say SP~ = P(SP),  then the further 
developments of P and of SP may proceed separately. Horizontal composability guarantees that the 
results of these developments may always be combined to give a refinement of SPk and so of SPo as 
well. Of course, these (sub)developments may themselves involve further decomposition. 

4 C o n s t r u c t o r s  a n d  implementations 
The simple notion of refinement is mathematically elegant but perhaps a bit oversimplified from a 
practical point of view. In the sequel, we wilt develop notions of implementation built on top of this 
simple notion of refinement which are more suited to practical use. We start with a notion of im- 
plementation which involves a construction from the implementing specification to the implemented 
specification. 

What is a construction? Model-theoretically, the characteristic feature of a construction is that 
it transforms an algebra over one signature to yield another algebra over a (possibly different) 
signature. Thus, we can identify a construction a with a function s a: PAlg(E) -~ PAlg(E') .  This 
determines a specification-building operation denoted (ambiguously) by the same symbol. We call 
specification-building operations of this kind constructors. 

Def in i t ion  3 A constructor determined by a/unction ~: PAId(E) ~ PAlg(E')  is a specification- 
building operation ~¢: Spee(~.) --~ Spec(E') ,  where for any E-specification SP, Sig[~(SP)] -- E' and 
Mod[~(SP)] = {~(A) I A e Mod[SP]}. 

Fact  1 Constructors are monotonic, preserve consistency of specifications, and are closed under 
composition. [] 

E x a m p l e  2 (derive) For any E'-specification SP' and signature morphism ~r: E -~ E', the seman- 
tics of the specification der ive f rom SP ~ by a is as follows: 

Sig[derive f rom SP ~ by a] = E 
Mod[derive f rom SP' by a] = (A]~ [ A e Mod[SP']) 

The derive specification-building operations (one for each a: E - ,  E') are constructors determined 
by the corresponding reduct functors --In. Intuitively, derive can be used to hide and/or rename 
some of the sorts and operations of a specification. [] 

E x a m p l e  3 ( res t r ic t )  For any E-specification SP and set S c_ sorts[Z] of sorts, the semantics of 
the specification res t r i c t  SP on S is as follows: 

Sig[restrict SP on S] = E 
Mod[restriet SP on S] = {)~s(A) t A e Mod[SP]} 

The res t r i c t  specification-building opera, ions (one for each E and S C sorts[E]) are constructors 
determined by the corresponding restrict functors ~s.  :Restrict is used to remove "junk", i.e. to 
restrict to the reachable part of Mgebras. [] 

aFrom the category-theoretic point of view, it is natural to assume that this is a functor (all our examples are) but 
since we do not use the morphism part in this paper we take this simplified view here. 
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E x a m p l e  4 (quo t i en t )  For any T-specification SP and congruence ~ on ground ~-terms, the 
semantics of the specification q u o t i e n t  SP w r t  ~ is as follows: 

Sig[quot ien t  SP  w r t  ~1 = ~ 
Mod[quotient  SP w r t  ~] = { A / ~  f A e Mod[SP]} 

The q u o t i e n t  specification-building operations (one for each Z and ~ on Z-terms) are constructors 
determined by the corresponding quotient functors _ / ~ .  Intuitively, q u o t i e n t  is used to identify 
the values of certain terms; usually the congruence ~ is presented via a set of equations. [] 

E x a m p l e  5 ( ex t end )  If we have a signature morphism a: Z --* ~ '  then constructors from Spec (~) 
to $pec (~ ' )  will be called synthesizing constructors along a. The intuition is that  they just build 
new stuff on top of the existing algebras without forgetting anything. One s tandard way to define 
such a synthesizing constructor is using the free extension. 

Namely, for any signature morphism a: Z --+ ~f and equational Et-specification SP ~, there is 
a free functor F~: PAlg (~ )  ~ Mod[SP'] (the left adjoint to the reduct funcLor _In: Mod[SP'] --. 
PAlg(~,)) .  That  this functor always exists is a well-known fact. For any E-specification SP, 
e x t e n d  SP to  S P  ~ v i a  a is a specification defined as follows: 

Sig[ex tend  SP to  SP ° v ia  a] = ~'  
Mod[extend SP to  SP' v ia  a] = {Fo(A) ] A e Mod[SP]} 

Note that  SP may be an arbitrary specification here, not necessarily equational. In general F~ does 
not have to preserve all the properties required by SP (so a was not required to be a specification 
morphism a: S P  --* SP  ~) although it does preserve ground equations deducible from SP.  [] 

N o n - e x a m p l e  ( t r a n s l a t e )  The t r a n s l a t e  specification-building operation defined in the last 
section is not a constructor. Consider for example any a: ~¢ --* ~, where ~ is non-empty or any 
a ' :  ~ --* ~ '  which is non-injective on sorts. [] 

Def in i t i on  4 A synthesizing constructor ~: Spec(E)  --* Spec(~ ' )  is persistent along a signature 
rnorphism a: ~ -+ E', written ~: Spec(r , )  -~+ Spec(~ ' ) ,  if ~: PAlg (Z)  -+ PAlg(E ' )  is (strongly) 
persistent with respect to o, i.e. for any ~.algebra A,  to(A)[~ = A. 

E x a m p l e  6 ( a m a l g a m a t e d  un ion)  Given two persistent constructors *;1: Spec(E)  - -~  Spec(E1) 
and ~2: Spec (~)  - ~  Spec(E2) ,  let o l  

"El 

ty2 t 

be a pushout in Sign.  For any E-algebra A, define ~(A) to be the unique E*-algebra such that 
n(A) J~l, = ~I(A) and n(A)In2, = ~2(A). ~(A) is well-defined since nl(A)In1 = A = n2(A)la~. Thus, 
we have defined a function ~: PAlg(E)  --* PAlg(E ' ) .  We denote this function and the corresponding 
synthesizing constructor (along a l ; a l  t = a2;a2 t) by ~;1 + ~2; if any doubts may arise, we add a l ,  a2 
as subscripts to +.  Intuitively, ~1+f¢2 "puts together" the constructions n l  and ~2. The assumption 
of persistency guarantees that  this is possible. (See the notion of amalgamated sum in [PB 85] and 

[EM 85].) [] 

Fac t  2 I f  a l :  S p e c ( Z ) - - ~ S p e e ( ~ l )  and a2: S p e c ( E ) - ~ S p e c ( ~ 2 )  are persistent constructors 
then ~1 + ~2: Spec(E)  - -~  Spec(~ ' )  is a persistent constructor along a =~el a l ;a l '  = a2;a2'. [] 
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E x a m p l e  7 ( t r a n s l a t i o n  of  a c o n s t r u c t o r )  There is another operator on constructors connected 
with the pushout in Sign.  Namely, reconsider the pushout diagram of example 6 and suppose 
~;1: S p e c ( E ) - ~ - + S p e c ( ~ l )  is a persistent constructor. Then for any A2 e PAlg(~2) ,  define 
¢2(~1)(A2) to be the unique ~'-algebra such that  o2(~1)(A2)In1, = ~l(A2]a2) and a2(~l)(A2)In2, = 
A2. Thus we have defined a function a2(~:1): PAIg(~2)  --+ PAlg(G')  which we call the translation of 
~1 along a2. We use the same notation and terminology to refer to the corresponding synthesizing 
constructor (along a2').  Notice that  a2(¢~1) is persistent. Intuitively, cr2(~1) performs ~1 on the 
up. part" of ~2-algebras and leaves the other components unchanged. Notice that  the translation 
of a constructor is a more elementary operation than the amalgamated union. Namely, using the 
notation of example 6, ~1 + ~2 = t~2;a2(~l) = ¢:1;a1(~2). [] 

De f in i t i on  5 ( c o n s t r u c t o r  i m p l e m e n t a t i o n )  A specification SP is implemented by a specifica- 
tion SP' via a constructor x~: Spec(Sig[SP']) --* Spec(Sfg[SP]), written SP ~ SP', ff SP .....> ~(SP'). 

Intuitively speaking, if we want to evaluate a function in SP, we are able to do this provided we 
can evaluate any function in SP' since the constructor ~ puts together functions in SP' to obtain all 
functions in SP. In this sense, ~ may be viewed as a program parameterised by the (possibly not 
yet executable) specification SPq 

Notice that ,  using the constructors introduced in examples 2-5 above, we can reduce many of the 
notions of implementation in the literature (e.g. [GTW 78], [Ehr 82], [EKMP 82], [SW 82]) to the 
one above. For example, the implementation notion of [EKMP 82] assumes that  ~: is the composition 
of e x t e n d ,  der ive ,  r e s t r i c t  and q u o t i e n t  constructors (in that  order). 

Our definition of constructor implementation resembles the notion of implementation given in 
[Ehr 81] for single algebras. In [Ehr 81], A is implemented by B via a construction F if A is 
(isomorphic to) a quotient of a subalgebra of F(B).  When generalising to loose specifications, the 
requirement that  some quotient of some subalgebra of F(B) be isomorphic to A may be regarded 
as a construction only if the subalgebra and quotient are taken uniformly on all models B of the 
implementing specification. If we do not require uniformity then this amounts to a non-constructive 
step which will be fully subsumed by the notion of abstractor implementation defined in section 5. 
There are even closer similarities with the notion of implementation of (parameterised) specifications 
in [Lip 83]; see section 6.1 for details. 

T h e o r e m  1 (ve r t i ca l  c o m p o s i t i o n )  /f  SP ~ SP' and SP' ~ SP" then SP ~ SP". ~ [] 

Notice that  since ~';~: is an acceptable constructor, there is no reason to require that  it has (or 
may be transformed to) the same form as either ~ or ~:'. In general this will not be the case. However, 
in some special cases it turns out that  such normal form theorems may be obtained, often under some 
additional assumptions about the specifications involved (see e.g. [Ehr 81], [EKMP 82], [8W 82], 
[EWT 83], [Ore 83]). It seems to us that  the requirement that the composition of constructors 
must be forced into some given normal form corresponds to requiring programs to be written in a 
rather restrictive programming language which does not provide sufficiently powerful modularisation 
facilities for the job. In some situations, putt ing a constructor into a normal form can be viewed as 
an optimization process. 

The following simple fact allows us to mechanically strip off outermost constructors if the speci- 
fication we want to implement happens to be built in this way. 

F a c t  3 For any constructor ~: Spec (~)  -+ Spec(~ ' )  and ~-specifieatfon SP, ~(SP) ~., SP' pro- 

vided that SP ~, SP'. [] 

An interesting special case of this is the amalgamated union of specifications. 
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Def in i t i on  6 For any two specification morphisms a l :  SP ~ SP1 and er2: SP --~ SP2, the amal- 
gamated union of SP1 and SP2, written SP1 + SP2 (decorated with subscripts SP, trl,a2 on + if 
necessary}, is a specification with semantics defined as follows: 

sig[sP1 + sP2] = ~; 
Mod[SP1 + SP2] = Mad[translate SP1 by al'] U Mad[translate SP2 by aT] 

where the following diagram is a pushout in Sign:  
ol  

Sig[SP] = Sig[SP1] 

Sig[SP2] a2' " ~' 

T h e o r e m  2 If SP1 ~ SP and SP2 ~ SP where both ~1: Spec(Sig[SP]) - ~  Spec(Sig[SP1]) and 
~;2: Spec(Sig[SP]) -el+ Spec(Sig[SP2]) are persistent constructors, then SP1 + SP2 ~ SP. D 

This theorem allows us to implement the independent components of a specification separately and 
then combine their implementat;.ons provided that  they do not affect the common part .  

In the above theorem we required ~1 and t¢2 to be persistent on all Sig[SP]-algebras as in the 
definition of the amalgamated union of constructors. However, in this context (as well as in similar 
situations in the sequel) it is sufficient to require that  ~;1 and ~;2 are persistent only on models of SP 
(which may be easier to achieve in practice). Of course formally, ~I  + ~;2 is then only a constructor 
on Mad[SP] rather than on PAlg(Sig[SP]) since it may be undefined on some Sig[SPl-algebras. 

T h e o r e m  3 Let a l  
E . E1 

E2 a2' " El 

be a pushout in Sign,  tel: Spec(E)  -el+ Spec(E1) be a persistent constructor, and SP1,SP2 be E1- 
and E2-speeifications respectively. [f SP1 ~ der ive  f r o m  SP2 by  a2 then SPI+SP2 ~ SP2. 
[] 

This gives another way of decomposing a specification and implementing the components separately. 
Namely, we implement one component using (a part  of) the other and then we can proceed with the 
implementation of the other component. 

Summing up, the development process using this notion of implementation would consist of a 
sequence of steps SPo ~ SP1 ~ "" ~ SP,. Intuitively, SPo, SP, etc. do not "grow" as happens 
when we use the simple refinement notion, where this development would look like: 

S P o  ~ - ~  ~ l  ( s P , )  - - - ~  . . . ~ . ~ >  ~ ( .  . . ~.CSP.)...) 

Using constructor implementations, we gradually reduce the specification by implementing its parts. 
Our goal is to end up with an empty specification over the empty signature, i.e. SPn = (T,¢, 0). Then, 
the composition of constructors to,;- . .  ;~I forms a program which implements SPo. 
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5 Abstractors  and implementat ions  

It is often possible to abstract away from some of the details of the user's original specification 
without violating the real intention behind it. This is the idea behind the specification technique 
known in software engineering as abstract model specification [LB 77], in which the user defines in 
a more or less concrete fashion a model which gives the desired results with the intention that any 
program giving the same answers is acceptable. This theme has been discussed in [GGM 76], [Rei 81], 
[GM 82], [Kam 83], [ST 85a] and elsewhere; the idea goes back (at least) to work on automata theory 
in the 1950's [Moo 56]. 

To formalize these ideas we will consider another class of specification-building operations called 
abstractors. Intuitively, any equivalence relation on Z-algebras determines a specification-building 
operation which relaxes interpretation of any E-specification SP by admitting as a model any Z- 
algebra which is equivalent to a model of SP. 

Defini t ion 7 An abstractor determined by an equivalence relation =_- C PAlg(E)  × PAlg(~)  is a 
specification-building operation a~: Spec(~)  --* Spec(E) where for any Z-specification SP, 

S ig[a~(Sp)]  = r. 
Mad[a~(SP)l = {A e PAlg(E) I 3A' e Mod[SP].A =__ A'} 

In the sequel we will omit the subscript =- when there is no danger of confusion. Also, if a is known 
we denote the abstraction equivalence which determines it by =_-~. 

Fact  4 Abstractors are monotonic, idempotent, and preserve and reflect consistency of specifica- 
tions. [] 

In general, abstractors are not closed under composition. This fact is neither surprising nor 
disturbing; we will not in fact have occasion to compose abstractors. 

E x a m p l e  8 (obse rva t iona l  abs t r ac t ion )  For any E-specification SP and set W of ground Z- 
terms, the semantics of the specification a b s t r a c t  SP w r t  W is as follows [SW 83]: 

Sig[abstract SP w r t  W] = Z 
Mad[abstract  SP w r t  W] = {A E PAlg(Z)  I 3A' E Mad[SP].A =w X )  

where for any two algebras A,A '  E PAlg(Z),  A --=-w A' iff: 

• for all t e W,  A p D(t) iff A' p D(t), and 

• for all s E 8orts(E) and all t,t '  E W,, A ~ t = t' iff A' ~ t = t'. 

Intuitively, W is the set of G-terms which represent computations the user is allowed to perform. We 
do not want to distinguish between algebras in which all these computations give the same results. 
A similar idea in the context of concurrent processes appears in [deNH 84]. [] 

E x a m p l e  9 (behav ioura l  abs t r ac t ion )  An important special case of observational abstraction is 
behavioural abstraction. For any E-specification SP and set OBS C sorts(E) of sorts, the semantics 
of the specification b e h a v i o u r  SP w r t  OBS is as follows [SW 83], [ST 86a], [ST 86b]: 

Sig[behaviour SP w r t  OBS] = Z 
Mad[behaviour  SP w r t  OBS] = {A E PAlg(Z)  I 3A' e Mad[SP].A =OBS A'} 

where the equivalence =-OBS is just ~-w for W the set of all ground E-terms of sorts in OBS. 
Intuitively, OBS is the set of external sorts, visible to the user. [] 
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Def in i t ion  8 ( a b s t r a c t o r  i m p l e m e n t a t i o n )  A E-specification SR is implemented by a E'-spcei- 
fication SP' wrt an abstraetor a: Spec(E)  --* Spec(Z)  via a constructor ~: Spec(E ' )  -~ Spec(E),  
written SP ~ sP', if ~( sP) ~ ~( sP'). 

If in the above definition, a is behavioural abstraction, then intuitively speaking we are imple- 
menting the behaviour of SP rather than SP itself. This subsumes the notions of implementation 
in [GM 82], [Sch 82] and [BMPW 86]. Notice that the abstractor a cannot be chosen arbitrarily; 
the choice depends on the specification SP and the context in which it is to be used. If a abstracts 
too much then the implementation will be useless - -  for example if -= is the total equivalence on 
PAlg(E)  then SP 2~> SP' for any SP' and constructor ~: Spec(Sig[SP']) ~ Spec(Sig[SP]). 

Suppose SP ~ SP' and SP r ~ SP". We would like to be able to conclude that  SP ~ SP". 
According to the above argument we assume that  a was chosen appropriately for the context in which 
SP is to be used and so we do not want to change it even when composing implementations. In 
general, there is no hope for such a result. If a I is too "liberal", there is no reason to expect that 
transforms any a'(SP')-model to a model of a(SP). However, the following theorem does hold: 

T h e o r e m  4 (ve r t i ca l  c o m p o s i t i o n )  I] SP ~ SP s and SP' ~ ,  SP then SP ~ SP" provided 

preserves the abstraction equivalences, i.e. for any two algebras A1, A2 E PAlg(  Sig[SP']) if A1 =--~, 
A2 then a(A1) ---~ a(A2). [] 

A methodological conclusion from this theorem is that  the development process should proceed 
as follows: starting from a specification SP considered in a context for which an abstractor a is 
appropriate, we (abstractor) implement SP, say ST' ~ SP'. The next step should be to establish the 
appropriate abstractor up to which SP' may be considered by "pushing ~ through a". Namely, this 
should be the abstractor determined by the equivalence a - ~ ( - , )  where for A, A' E PAlg(SIg[SP']), 
A a - l ( ~ a )  A t iff a(A) ----~ ~(A'). Then, we can proceed with the development of SP' in the context 
of the abstractor determined by ~-~(-~) .  (Actually, any equivalence finer than a -~ (= , )  will do.) 
Similar ideas in the context of concurrent processes appear in [Lar 86]. 

C o r o l l a r y  1 If SPo ~ "" ~ _ _ a ,_ l (=a ._ , )  then SP, and -a2 C Ell(-----ai) and . . .  and - ~ .  C -i  _ 

SPo ~ SP,. [] 

Note that  in practice, it is often convenient to sharpen the above results. They hold if the 
constructors preserve the equivalences between models of the appropriate specifications (e.g. in the 
vertical composition theorem it is sufficient that  ~(A1) ~ ~(A2) for any A1 e PAlg(Sig[SP']) and 
A2 E Mod[SP'] such that  A1 =-~, A2). 

In the rest of this section, we show that vertical composition and the above methodological 
remarks may work in practice. On one hand, the constructors we have introduced do preserve 
appropriate (observational) equivalences; and on the other hand, we show how to push standard 
observational equivalences in a satisfactory way through the constructors we have defined. 

L e m m a  I (der ive)  For any signature morphism a: E1 --+ E2 and set W of ground E2-terms, 
P j l ( - w )  : ---aCW), where P~: Spec(E2) --+ Spec(E1) : d 4  ~X: E2. de r ive  f r o m  X by a. [] 

L e m m a  2 ( r e s t r i c t )  For any signature E, S C sorts(E) and set W of ground E-terms, A - w  
]~s(A) for all E-algebras A, where Rs: Spec(E)  -* Spec(E)  =~el AX: E. r e s t r i c t  X on S. [] 

The above lemma gives directly a characterisation of the result of pushing observational equiv- 
alence through r e s t r i c t  constructors. Moreover, it directly implies that  r e s t r i c t  steps may be 
skipped if we use abstractor implementations. 

C o r o l l a r y  2 Under the assumptions of lemma P, ]~l(=-w) = - w .  [] 
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C o r o l l a r y  3 Under the assumptions of lemma 2, if a is the abstractor determined by n-w, then for 
any E-specifications SP and SP', SP ~ SP' implies SP ~ SP'. [] 

~s t a  

It is worth pointing out that  the above corollary also allows us to throw out r e s t r i c t  steps "in 
the middle" of the development process (provided that the intermediate equivalence used in this 
step satisfies the assumptions of lemma 2). This means that  corollary 2 becomes superfluous since 
instead of using it to push equivalences through res t r i c t  steps we can just skip these steps entirely. 

The situation with quo t i en t  steps is similar although we need slightly more restrictive assump- 
tions (see [ST 87] for details). 

Def in i t ion  9 For any signature morphism a: Z ---* Z', constructor ~: Spec(~)  --~ Spec(Z')  and 
sets W and W' of ground Z- and ground ~'-terms respectively, ~ is observably sufficiently complete 
(wrt W , W ' )  if for any term t' E W', either for any A E PAlg(Z) ,  ~(A) ~ D(t') or there exists a 
term t e W such that for any A e PAlg(Z) ,  ~¢(A) ~ t' = or(t). 

Typically, we will consider sets W and W' such that observable sufficient completeness is a weaker 
condition than sufficient completeness, which corresponds to the case where W'  is the set of all 
ground }]'-terms of the sorts a(S) for S =a,f sorts(P.) and W is the set of all ground E-terms. 

Def in i t ion  10 For any signature morphism a: ~ --* ~', constructor ~: Spec(Z)  --~ Spec(I] ')  and 
set W of ground E-terms, ~c is observably persistent {wrt W )  if for all terms t l , t2  E W of the 
same sort and anu A E PAIg(Z) ,  ~(A) ~ a( t l )  = a(t2) iff A ~ t l  = t2 and ~(A) ~ D(a(tl))  iff 
A ~ D(t l ) .  

Notice that  observable persistency is a weaker condition than the standard persistency. 

L e m m a  3 (synthes ize)  For any signature morphism a: Z --* Z' which is injective on sorts, con- 
structor t~: Spec(Z) --, Spec(~') and sets W and W'  of ground Z- and Zt-terms respectively, if 
is observably sufficiently complete wrt W, W ~ and observably persistent wrt W then ~¢-i(-~w,) 3 =w. 
Moreover, if in addition W is a minimal set such that observable sufficient completeness holds then 

'~- ~ ( - w  , ) = - w  . [] 

As remarked already, constructor implementation using the derive,  res t r i c t ,  quot ient  and 
ex t end  constructors subsumes many of the notions of implementation in the literature. The above 
lemmas imply that the extension of any of these notions to a corresponding notion of abstractor 
implementation goes through smoothly. 

L e m m a  4 ( a m a l g a m a t e d  un ion)  Let ~1: S p e c ( Z ) - - ~  Spee(Z1) ands:2: S p e e ( B ) - ~  Spec(E2) 
be persistent constructors, W, W 1 , W 2  be sets of ground Z-, ~1- and ~.2-terms respectively such that 
~1 is observably sufficiently complete wrt W, W1 and ~2 is observably sufficiently complete wrt W, W 2. 
Recall that ~ =def ~;1 + ~2: Spee(P,) ~ Spee(Z ' ) ,  where 

a l  
Z • ZI 

Z2 ' P,,' 

is a pushout in Sign, is a persistent synthesizing constructor (along a l ; a l '  = a2;a2'} such that for 
A e PAlg(Z) ,  ~(A) is the unique E'-algebra such that ~;(A)1ol, = ~I(A) and to(A) o~, = ~;2(A). 
Under these assumptions, ~ is observably sufficiently complete wrt W,W'  where W I =def e l  (W1) U 
~2' ( w  2 ) . []  

C o r o l l a r y  4 Under the assumptions of lemma 4, ~c-l(-w ') 2 - w .  [] 
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L e m m a  5 ( t r ans la t ion  of  a cons t ruc to r )  Consider again the pushout diagram from lamina 4. 
Let W, W1, W2 be sets of ground E-, E l -  and E2-terms respectively, and let s l :  Spec(E) _z2+ Spec(E1) 
be a persistent constructor. If ~1 is observably su~ciently complete wrt W, W1 and cr2(W) C_ W2 
then o2(~1): Spec(E2) --* Spec(E') is observably sui)~eiently complete wrt W 2 , W  ~ where W' = 
o1'(w1) u ~2'(w 2). [] 

Coro l l a ry  5 Under the assumptions of lemma 5, o2(~1)-1(~w ,) ~ ~w2. [] 

6 P a r a m e t e r i s a t i o n  a n d  i m p l e m e n t a t i o n s  

In the same way as the simple notion of refinement on specifications gave rise to a notion of refinement 
for parameterised specifications, the definitions of constructor and abstractor implementation extend 
to notions of constructor and abstractor implementation for parameterised specifications. 

6.1 P a r a m e t e r i s a t i o n  and cons t ruc to r  imp lemen ta t i ons  

Defini t ion 11 For any parameterised specification P: Spec(Ep~r) --* Spec(Er,~) and specification- 
building operation w: Spec(E,~,) --~ Spec(E),  w(P) is a parameterised specification defined by 
w(P) ~-def ~X: Ep~.w(P(X)): Spec(Ep,r) ~ Spec(E).  

Defini t ion 12 ( cons t ruc to r  implementa t ion)  For any parametcrised specifications with a com- 
mon parameter signature P" Spec(r~po,) -- Spec(~) and P': Spat(r po,) --  Spec(~') and construc- 
tor ~: Spec(E t) --~ Spec(E),  P is implemented by pw via tc, written P ~ g~, if P .....-> tc(P'). 

This subsumes the notion of implementation of parameterised specifications in [SW 82]. It 
resembles the one in [Lip 83], where a parameterised specification is a (strongly) persistent functor. 
According to [Lip 83], P is implemented by P '  via a construction F (another persistent functor, 
obtained by composing certain specification-building operations) if there is some P" and (persistent) 
natural transformations i: P" -~ P';F and s: P" -~ P such that i and s are componentwise injective 
and surjective respectively. In our framework, this corresponds roughly to an implementation via 
the composition of a persistent constructor, a res t r ic t  step and a quot ien t  step (in that order). 
Although there are several other definitions of implementation of parameterised specifications in 
the literature (see e.g. [EK 82], [GM 82] and [Gan 83]) it is difficult to compare them with ours 
because our definition extends the definition for the non-parameterised ease in the usual way that 
a relation is extended from elements to functions (that is, pointwise). In contrast, [EK 82] defines 
implementation of parameterised specifications by comparing their bodies and then proves that this 
implies our notion of implementation. This is arguably preferable from the point of view of proving 
correctness of implementations but we prefer to adopt the natural definition and treat the problem 

of proving correctness separately. 

T h e o r e m  5 (vert ical  compos i t ion)  For any parameterised specifications P, P t p ,  with common 
parameter signature Epa~, if P ~ P~ and P~ ~ P" then P ~ P ' .  [] 

As in fact 3, we can strip off outermost constructors from parameterised specifications: 

Fact  5 For any parameterised specifications P and P~ and constructor ~ on the result signature of 
p ,  ~(p) ~ P~ provided that P ~ P'. [] 

Constructor implementations do not compose horizontally. In fact, the standard formulation of 
the horizontal composition property is not even well-formed in this case. Namely, if P:  Spec(Ep,r) --* 
Spec(Ere,) is a parameterised specification, SP is a Ep,r specification and SPitz"> SP', then in 
general Sig[SP'] ~ Evar and so P(SP') is not even well-defined. However: 
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T h e o r e m  6 ( h o r i z o n t a l  c o m p o s i t i o n )  Given a parameterised specification P with parameter sig- 
nature Ep~r and a Ep~r-speeifieation SP, if P ~ P' and SP ~ SP' then P(SP)  ~ P'(tt(SP)). 
[] 

Although this is not horizontal composition as formulated in [GB 80], it is perfectly adequate for our 
purposes. It guarantees that  in the case of a specification formed by applying a parameterised spec- 
ification P to a E-specification SP, the developments of P and SP may proceed independently and 
the results be successfully combined. If P ~ P1 ~ "'" ~ Pn and SP ~ SPx u ~  . . .  ~ SPa 
then P ( S P ) ~  P~((#,~; . . - ;#,)(SP~)) .  We aim at reducing the parameter specification to 
the empty specification and the parameterised specification to the identity. If SP~ = <E$, ~) and 
P ,  = ).X: E .X then the composition of constructors tt,~;..- ; # 1 ; ~ ; " "  ;gl implements P(SP).  

6 . 2  P a r a m e t e r i s a t i o n  a n d  a b s t r a c t o r  i m p l e m e n t a t i o n s  

De f in i t i on  13 ( a b s t r a c t o r  i m p l e m e n t a t i o n )  For any parameterised specifications with a com- 
mon parameter signature P: Spec(~p~)  -~ Spec(E)  and P': Spec(Ep~r) -+ Spec(E ' ) ,  abstractor 
a: Spec(E)  --* Spec(E)  and constructor to: Spec(E ' )  -+ Spec(E) ,  P is implemented by P '  wrt a 
via ~, written P ~ P', if a(P) ~ ~(P') .  

T h e o r e m  7 (ve r t i ca l  c o m p o s i t i o n )  For any parameterised specifications P, P~, P" with common 
P ~' , parameter signature Ep~,, if P ~ ' and p,  ~ p then P ~ P" provided that t; preserves the 

abstraction equivalences. [] 

Applicability of this result in program development requires proving that  the constructors we use 
preserve the appropriate abstraction equivalences. For this, lemmas 1-5 of section 5 are applicable 
just as in the non-parameterised case. 

Unfortunately, the horizontal composition theorem for abstraetor implementations does not hold, 
even in the form suggested by the horizontal composition theorem for constructor implementations; 
parameter  specifications cannot in general be abstracted from since parameterised specifications can 
make essential use of non-observable parts of the parameter.  One way to circumvent this is to restrict 
attention to parameterised specifications which use their arguments in an abstract way, so that if 
we change the argument to an equivalent one we get a result which is equivalent. 

De f in i t i on  14 Let a: Spec(E)  -~ Spec(E)  be an abstraetor. We say that two E-specifications SP1 
and SP2 are a-equivalent if Mod[a(SP1)] = Mod[a(SP2)]. 

, ~' , ~ p,(,~,(SpO ) T h e o r e m  8 ( h o r i z o n t a l  c o m p o s i t i o n )  [[ P ~ P and SP ~ SP then P(SP)  
provided that P preserves a~-equivalenee, i.e. for any specifieatior~ SP1,SP2 over the (common) 
parameter signature of P and p,, P(SP1) and P(SP2) are a-equivalent whenever SP1 and SP2 are 
a'-equivalent. [] 

The requirement that  P preserves aLequivalence in the above theorem is guaranteed in either of 
the following three cases: 

1. P has the form ~X: E.SPI[a'(X)], i.e. P abstracts from its argument before using it. 

2. P is built entirely from constructors which preserve the relevant abstraction equivalences. 

3. The abstractor a '  is trivial, i.e. for any specification SP, Mod[a'(SP)] = Mod[SP]. 

The last c~se amounts to the following: 

C o r o l l a r y  6 I / P  ~ ' P and SP ~ SP' then P(SP)  ~ P'(td(SP')). [] 
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A constructor implementation SP ~ SP ~ is an abstractor implementation SP ~ SP ~ where the 
abstractor ~ is trivial. Notice however that  when we push the corresponding equivalence through 
~ and the constructors used in the further implementation of SP ~, the resulting abstraction equiv- 
alences may determine non-trivial abstractors again and so the use of techniques of abstractor 
implementations may be essential further on. 

7 C o n c l u d i n g  remarks  

A number of important problems connected with the ideas presented here remain to be considered. 
First,  we do not discuss here any methods for proving correctness of refinements; methods for 
proving theorems in specifications, especially in the context of observational abstraction [ST 86a,86b], 
are relevant to this problem. This would be especially important  in the case of parameterised 
specifications. 

There is a large body of technical work in the literature on different specific notions of imple- 
mentation. Viewed in our approach, each of these notions corresponds to a restriction on the choice 
of constructors and abstractors which may be used. We have tried to unify and generalise the many 
different notions of implementation in the literature. This quest for generality yields a uniform 
framework in which we can compare different approaches. We can investigate which of the problems 
encountered under different notions of implementation are inherent to the very concept of what an 
implementation should be and which are just technicalities caused by the imposed restrictions, and 
conversely, which results and properties are consequences of such restrictions and which are inherent 
to the nature of implementations. We have not yet tried to pursue this line of investigation in a 
systematic manner. 

According to our definition, any inconsistent specification refines any specification over the same 
signature. But if we succeed in refining a specification to a program then the original specification 
must have been consistent. This means that  checking consistency is not necessary to ensure correct- 
ness of the development process. However, an inconsistent specification is a blind alley. On the other 
hand, even a consistent specification may have no computable model and so we cannot in general 
avoid blind alleys in program development anyway. 

In what we have presented here, constructors are just  functions rather than actual pieces of 
programs in ~he usual sense. We did not give any particular syntax for defining constructors. It 
would be interesting to develop a programming language which would provide facilities for defining 
and composing constructors (this would probably require restricting the notion of constructor we 
use, as implied in section 3). A good starting point seems to be Standard ML [Mil 85] with mod- 
ules [MacQ 85 I, where constructors could be defined as Standard ML functors (i.e. parameterlsed 
modules}. 
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