
Transformation ordering

F. BELLEGARDE and P. LESCANNE

CRIN CENTRE DE RECHERCHE EN INFORMATIQUE DE NANCY
BP 239

54506 Vandoeuvre les Nancy CEDEX
FRANCE

A B S T R A C T

We define an ordering called transformation ordering which is useful for proving termina-

tion of rewriting systems. A transformation ordering is defined using two relations: a relation

which transforms terms and a relation which ensures the well-foundedness of the ordering. A

property between these two relations called cooperation is required. Cooperation is similar to

confluence and thus may be localized. Therefore, if relations are rewrite relations, it is possible

to decide the cooperation by looking at critical pairs. Transformation orderings prove termina-

tion of rewriting systems that cannot be proved by the classical methods.

Introduct ion

We describe an ordering called transformation ordering for proving termination of rewrit-

ing systems. Let ¢ be a transformation, i.e. a mapping of terms onto terms. In order to prove

that a rewriting system R terminates one proves that when t l rewrites to t2 , ¢(tl) related to

¢(t2) by a well-founded relation. Other termination proof methods [7] are based on the same

idea but the mapping is usually required to be a morphism which is not the case in this paper.

Indeed since ¢ is obtained by a rewriting system T many other transformation systems T are

70

allowed usually. The well-founded relation used to prove terminat ion is also a rewriting system

S. A similar idea appeared recently in proofs of terminat ion of rewriting modulo equational

theories such as associative and commutat ive theories [1,2,8]. Simple proofs of terminat ion

based on t ransformat ion techniques can also be found in [5].

We define t ransformation orderings in the first section. The t ransi t ivi ty and the well-

foundedness of these orderings come from properties mentioned in [1]. In the second section, we

show tha t the properties tha t are necessary to have a well-founded ordering may be localized

and checked by looking a t critical pairs between S and T. We extend the order ing in the fourth

section.

N o t a t i o n s

We suppose the reader is familiar with the basic features and notat ions of term rewriting

systems [9]. Let 17 be a set of operators symbols and V be a set of variables, T(F,V) is the set of

terms with symbols in F and variables in V.

The relations on terms _..~-l, or *-- denote the inverse of the relations --~ between two

terms. ---~" and --~+ respectively denote respectively the transi t ive closure and the strict transi-

t ive closure of --*. We write --*Rto--*n2 for the composition of the two relations --*R2 and --~Rt-

We write --*R1C--*R2 if {(x,y)llx--*Rly}C{(x,y)~lx--~RzY} as sets.

--~ is noetherian if and only if there is no infinite sequence of terms tl , t2,. . . , such tha t

tl--*t2--~ The relation --* is confluenl if for all terms t, t l and t2 such tha t t - - * ' t l and

t -+*t2 , there exists a term t ' such tha t t l - -**t ' and t2--~*t'. In terms of inclusion we have

.--*o---+*C--~*o*---*. If -'*R is noetherian and confluent the normal-form of a te rm t, wri t ten t.[R,

exists and is unique.

A rewriting system is a set R of rules tha t are ordered pairs of terms, wri t ten 1--~r, such

that V(r) C V(1) (V(t) is the set of variables occurring in t). The rewriting relation is wri t ten

"~R or ~ if there is no ambiguity. We say tha t the rewriting system R is confluent or noeth-

7]

erian when the rewriting relation -'+R is confluent or noetherian. A noetherian ordering which is

F-compatible, i.e. s - * t implies f(...s...)-+f(..°t...) for the symbols of F, is called a reduction order-

ing.

1. T R A N S F O R M A T I O N O R D E R I N G

Two relations - '*s and ---~r are considered. - '*s or --*T are not always rewriting relations.

This means tha t when we say --*r is confluent or "-*z is noetherian, we s ta te properties on

abs t rac t relations.

Definition 1 [1]

= > s , r is the relat ion -*~o--*so(--*sU--~r)'O~-- ~,

t

Two terms u and v are related by = > s , r if there exists u' such tha t u --+r u' and v ' such

tha t v --+T v ' which are related by any sequence of --*s and --*T containing at least one --*s-

Definition 2

a:7"s, r is the relat ion ~---~o---~so(--*sU--~T)*.

As we have seen the confluence of " ~ r is the property ~---~,o--*T C_.--~T0~--T, We now

define the cooperation of "~s with "-+T which is a kind of confluence.

Definition 3

"-+s c o o p e r a t e s w i t h -'~T if and only if ~ s , r C =>s,r (Fig. I).

F i g u r e 1:--~ S c o o p e r a t e s w i t h --~T

72

Basically --*r is noetherian and confluent and - '*s cooperates with T then two terms u

and v are related by = > s , r if their t ransformations by T, namely U i r and vJ. r are related by

any sequence of -'~s and --~r containing at least one --*s-

Definition 4

>S,T is the relation = > s , r tO --~7~.

Lemma 1

If -*sO- -~r is noetherian, "-*r is confluent and "-*s cooperates with --*T then > s , r is a

p a r t i a l o r d e r i n g o n t e r m s .

Proof:

• - * s and "-*T are noetherian, thus they are irreflexive. Then --*~ is irreflexive and =>S,T

is irreflexive. Thus >S,T is irrefiexive.

• >S,T is transitive. Recall tha t a relation --~ is t ransi t ive if and only if ~ o -+ C_ ---~. We

get the result by the confluence of " * r , by the hypothesis of cooperation and by definition of

>S,T"

Lemma 2

If -~.gU-"~T is noetherian, --+r is confluent and " * s cooperates with "*T, then >S,T is a

w e l l - f o u n d e d par t ia l ordering.

Proof:

--*~ is noetherian since "-*sU--'*r is noetherian. Therefore, if an infinite sequence t l > s , r

t2 >S,T ... exists, then an infinite sequence =~>s, T O = ~ s , T O = ~ s , T 0 .,, which is, by definition, an

infinite sequence "'+TO"'*sO("'*S[.J""~T) O+'-TO ... exists. Thus we use the confluence of - ' * r and

the cooperation of ---~s' with --~T and show (Fig. 3) tha t an infinite sequence of rewriting with

--*To---*sO('-*sU"+T) 0---~r exists which is a contradiction with the well-foundedness of

---~ s U---~ T .

73

.Figure 3.

--'~T 0 -"~S 0 -"~SUT 0 ~- 'T 0 "'~T 0 "'+S 0 -"~SUT 0 + ' T 0 "--~T 0 -'+S 0 - '~SuT""

UT UT"

Lemma 3

If --~r and -'*s are F-compatible and stable by substitutions then >S,T is F-compatible

and stable by substitutions.

Theorem I

If "-'*s cooperates with -'*T, "~SU--*T is noetherian and --*r is confluent then >s , r is a

well-founded ordering and moreover when -'~s and "~r are F-compatible and stable by substitu-

tion, >s , r is F-compatible and stable by substitution.

Since rewriting relations on T(F,V) are F-compatible and stable by substitutions, we may

state the following result:

Corollary 1

Let S and T be two rewriting systems. Suppose S cooperates with T~ SUT is noetherian

and T is confluent then >S.T is a reduction ordering stable by substitution.

Fac t : With the condition of Theorem 1, a rewriting system that satisfies l>s, T r for all

rules 1--~r is noetherian.

Example 1

The following example comes from [4,5].

a: (x*y)*z --* x*(y*z)
b: f(~)*f(y) -~ f(~*y)
c: f(x)*(f(y)*z) --+ f(x*y)*z.

a, b and c are the rules of a rewriting system R. Proving that R is noetherian is not easy

since the classical methods namely simplification orderings [7] such as recursive path ordering

(RPO) or recursive decomposition ordering (RDO) methods fails. We choose T to be

74

rl : f(x)*y --* f(x*y)
r2: x*f(y) --+ f(x*y)
a: (x*y)*z --* x*(y*z)

in order to push up f and put down *. We choose S to be

f(f(x)) --~ f(x).

T U S is noetherian. S and T satisfy the condition of the forthcoming Theorem 3, we will

see that this implies S and T cooperate. Thus we may use >S,T to prove the termination of R.

We have l >S,T r for all rules of R:

proof

• (x*y)*z ---~fi x*(y*z) (by a E T)

(x*y)*z >s,~" x*(y*z) (by definition)

• f(x)*f(y)JcT=f(f(x*y)) and

f(f(x*y))-*s f(x*y). Thus

f(x)*f(y) =>S,T f(x*y) (by definition) and

f(x)*f(y) >s,r f(x*y) (by definition)

• f(x)*(f(y)*z)J.T=f(f(x*(y*z))),

f(x*y)*z.[T=f(x*(y*z)) and

f(f(x*(y*z))) -'~s f(x*(y*z)). Thus

f(x)*(f(y)*z) =>s,T f(x*y)*z (by definition) and

f(x)*(f(y)*z) >S,T f(x*y)*z (by definition)

2. L O C A L I Z A T I O N OF T H E C O O P E R A T I O N

Thus if we have two rewriting systems S and T such that S cooperates with T, T is

confluent and SDT is noetherian and 1 >s,T r for all rules 1 -+ r of R, then R is noetherian. The

confluence of T may be tested using the Knuth-Bendix procedure. The termination of S U T

may be tested using other well-founded orderings [7]. Only the cooperation of S with T has to be

checked with appropriate methods, for instance using the solution proposed in this section.

75

Like confluence, cooperation may be localized, and we are going to prove a Newman-like

theorem for cooperation.

Definitioon 5

"*s loca l ly c o o p e r a t e s w i t h -'+T if and only if +-To---~s C =>s,T (Fig. 4).

F i g u r e 4: S loca l ly c o o p e r a t e s w i t h T

, ~ L ~ " ~ Theorem 2 ~ ~ kS"~ ¢~

If "-*sU"~T is noetherian and --*T is confluent then the local cooperation implies the

cooperat ion of - '*s with --*T-

Proof:

We use a noetherian induction on "-*SU'*T. Let us have y ~:Ts, T z thus y ~ - ~ x - '*s s

(--~sU--~T)* z, we have to show tha t y =>S,T z-

* If in = 0, we have y=x --*s s (--+sU'-*T)" z thins y ---->S,T z.

o If m > 0 , we have y l such tha t y +_~-1 y l +-T x. F rom the local cooperation, we get y l

=>S,T s. Thus we have x l and s l such tha t y l --*T x l , s --+~ sl and xt --*sO(-.+sU--*T) sl .

a

From the confluence of -'+T, there is an y2 such tha t y "--~T y2 and x l "-+T y2. We notice tha t

(-~5U-~T)" = - ~ ; U - ~ ; O - ~ s O (- ~ s U - ~) ' , and thus we find two subcases.

a

(1) Suppose s (-+sU--*r)* z means s--+Tz. With the confluence of --*T, there is a zl such tha t

sl--+TZl and Z--+TZl. Thus we get xl--*so(--*sU--+T) O--+TZl and thus

X1--+so(--+sU-+T) z l (by "-*T -- (- '~sU-'*T) and t ransi t ivi ty of (--+sU--+T))- Now we

have y2mrs, TZl. So by noetherian induction y 2 = > s , TZl and therefore, by t ransi t iv i ty of

--*T, we conclude tha t y = > s , Tz (Fig. 5).

t

(2) If ("-+sU--*T)* = "-*ro-'*sO("*sU-'*T)*, thus s--+ T z0 --*sO(-+sU-*T)'z and the

confluence of --*T provides a z i such tha t s t - * r z l and z0 - * r z l . Now by noetherian

76

induction, we get zl =>S,T z. Moreover by noetherian induction, we get y2 - ->s , r zl.

i

Therefore by transitivity of -+s,r, we get y2 =:>S,T z and by transitivity of "*r , we con-

clude that y =>s,r z (Fig. 5).

.Figure 5.

%z :::- : ~ , b4.

If S and T are rewriting systems, by looking at critical pairs between S and T it is possible

to decide that S locally cooperates with T.

Definition 6

A critical pair p4--ro--* s q between a rule of S and a rule of T is cooperative if and only

if p = > s , r q.

Definition 7

A rewriting system is variable preserving if and only if all rules are variable preserving

i.e., variables that occur on the lef~hand side 1 do not disappear on the right-hand side r and

thus V(1)=V(r).

Definition 8

A rewriting system is left-linear if and only if all rules are left-linear i.e. , variables occur

only once on the left-hand side.

Theorem 3

Suppose T is a left-linear rewriting system and a variable preserving rewiting system. A

rewriting system S cooperates locally with T if and only if all the critical pairs between S and T

77

are cooperative. The proof looks like the proof of the similar theorem on confluent critical pairs.

3. E X T E N D E D T R A N S F O R M A T I O N O R D E R I N G

Results of Section 1 are useful in many cases like Example 1 and relations T and S can be

easily found. In this section we want to go again further and to show tha t T can be extended by

using any ordering tha t contains S and T. This way, we expect to prove terminat ion of more

rewrit ing systems The problem with T usually arises when both sides of a rewrite rule are

t ransformed by T into the same term.

We now use a well-founded ordering > > such tha t - * s ----- > > and - ' * r _C > > to define a

relat ion between terms, wri t ten -'+Err(T)" This relation extends -"*r in the sense tha t -*Er r (r) C

> > and -'*EXr(T} C =T, The last condition is necessary to ensure the confluence of -'~EXT(T) if

- ' * r is confluent and the cooperation of "~EXT(T) with -"~s if -"~r cooperates with "*s . There-

fore, we define "*ZXT{r) as =T N >:>.

Definition 9

Let "~T be a confluent and noetherian and let >:> be. a well-founded ordering on terms

tha t contains ---*sU---~ r. S--*EXT(T)t if and only if s~ r = t~T and s > > t .

Proposition 1

Suppose -'~s cooperates with a confluent and noetherian relation " * r , > > is a well-

founded ordering on terms tha t contains --~sU--~r then -"~EXT(T) i8 confluent, ---~sU---~xr(r) is

noetherian, - '*z cooperates with --*Exr(r).

Fact-. Therefore ~S,EXT(T) c a n be used to prove termination.

L~mma ~:

Suppose tha t -"t'TI~--'~T2 and --',sIC_---+s2 then = > s , r l ----- = > s , r2 and >s , r l C >s, r2,

=>SI,T C -- = > s 2 , r and >Sl,T C -- >S2,T, =>sl,rlC_=>s2,r~ and >S1,TIC_ >S2,TS.

78

Lemma 5:

--*r -- --*ZXr(T)

F a c t : >S,T C_ >S,EXT(T) (direct consequence of Lemma 4 and 5).

Proof of Proposit ion 1:

• --+SU--~E)CT(T) is noetherian:

obvious since "-~s _C :>> (by hypothesis) and -'~EXT(T) C_ > > by definition.

• -+EX:P(T) is confluent:

If t--+EXT(T)tl and t --+EXT(T)t2, by definition, we have t l S r = t$:r = t2,tT = t ' . Since "*T

a

"+EXT(~) by Lemma 5, we get t l "*EXT(T) t ' and t2 --+EXT(T) t ' thus --*EXT(T) is locally

confluent. Since --*EXT(T) C ~ by definition, --+EXT(T) is noetherian. Now -'*EX~'(T) is locally

confluent and noetherian. Therefore i t is confluent.

• "-'~s cooperates with --+EXT(T)"

Since "-*E):T(:") is confluent and "~SU--+EXT(r) is noetherian, "*s cooperates with -'*/~XT(I")

if it locally cooperates with --+EXT(T) (by Theorem 2). Suppose t ha t tl+--EXT(T)t--+St2. Since

t l ,[T=tJ, r (by definition of --~EXT(T)) and t~T-----~s, Tt2 (by cooperat ion of --~s with "+w), we get

tl--*To=)s, Tt2. Then t l = ~ s , Tt2 (by definition) and tl=:>s,ExT(~)t2 (by Lemma 4 and 5).

Example 2 [10]

The te rminat ion of the rewrit ing system R

r l : f(s(x)) --+ f(p(s(x)))
~2: p(s(o)) ~ o
r3: p(s(s(x))) --~ s(p(s(x)))

is not provable by simplification orderings since f(s(x)) is embedded in f(s(p(x))). But with

the t ransformat ion rule

T': p(8(x)) -* x

79

we get a rule

S': f(s(x)) --* f(x)

T ' is confluent, regular and left-linear. S~UT ' is noetherian. S' cooperates with T' (there is

no critical pair). For the rules r2 and r3, we get l ~ -- rSz~. So let us take a recursive path ord-

ering based on the precedence p>s to extend T'. Then p(s(0) >S.EXT(r') 0 and R terminates.

4. Conc lus ion

The transformation orderings allow us to prove termination of rewrite systems where

methods based on simplification orderings fail. We are currently looking way to implement it in

REVE and to adapt it to the proofs of other systems.

Reference8

i . L. Bachmair and N. Dershowitz, "Commutation, Transformation, and Termination," in Proc.

8th Conf. on Automated Deduction , Lecture Notes in Computer Science, vol. 230, Springer Ver-

lag, Oxford (England), 1986.

2. L. Bachmair and D. Plaisted, "Associative Path Orderings," in Proc. i8t Conference on

.Rewriting Techniques and Applications, Lecture Notes in Computer Science, vol. 202, pp. 241-

254, Springer Verlag, Dijon (France), 1985.

3. J. Backus, "Can Programming Be Liberated From the Von Neumann Style? A Functional

Style And Its Algebra of Programs," Comm. o f A C M , vol. 21, no. 8~ pp. 613-641, 1978.

4. F. Bellegarde, "Utilisation des Syst~mes de R~gcriture d'Expressions Fonctionnelles comme

outils de Transformation de Programmes Itgratifs," Th~se de doctorat d ~ t a t , Universit~ de

Nancy I, Dept. Math~matiques Appliqu~es, 1985.

5. F. Bellegarde, "Rewriting Systems on FP Expressions to reduce the number of Sequences

Yielded." Science of Computer Programming, vol. 6. pp. 11-34, North-Holland, 1986.

8O

6. F. Bellegarde and P. Lescanne, "Termination Proofs Based On Transformation Techniques,"

Submitted To Information and Control, 1986.

7. N. Dershowitz, "Termination," in Proc. lrst Conf. Rewriting Techniques and Applications ,

Lecture Notes in Computer Science, Vol. 202, pp. 180-224, Springer Verlag, Dijon (France), May

1985.

7. I. Gnaedig and P. Leseanne, "Proving Termination of Associative Commutative Rewriting

Systems by Rewriting," Proceeding8 8th International Conference on Automated Deduction ,

Oxford (England), 27-31 July 1986.

9. G. Huet and D. Oppen, "Equations and Rewrite Rules: A Survey," in Formal Languages: Per-

spectives And Open Problems, ed. Book R., Academic Press, 1980.

10. S. Kamin and J.J. Levy, "Attempts for Generalizing the Recursive Path Ordering," Inria,

Rocquencourt, 1982, University of Illinois Report.

