
A COMPILER FOR

CONDITIONAL TERM REWRITING SYSTEMS

St6phane Kaplan
L.R.I. U.A. 410 of the C.N.R.S,

Bat. 490. Universit6 des Sciences

F-9t405 Orsay Cedex (France)

[e-mail : mcvax!inria!lrilkaplan]

A b s t r a c t :

In this paper, we present a compiler for conditional term rewriting systems. With respect to traditional inter-

preters, the gain in execution time that we obtain is of several orders of magnitude. We discuss several

optimizations, among which a method to share code in the premises of the conditional rules, well-adapted to

algebraic specifications.

INTRODUC~ON

During the past decade, term rewriting systems (TRS) have known an increasing number of applica-

tions in several fields of computer science concerned with symbolic evaluation. To list but a few

different utilizations, TRS are used in a significant number of theorem proving systems, to optimize

Prolog-like interpreters where they can enhance the efficiency of the narrowing mechanism, as a proto-

typing tools in algebraic specification environments where they allow to compute the normal form of a

given term, etc...

In all these applications, execution time has become an important factor. Until now and to our

knowledge, term rewriting systems have only been executed in an interpreted mode (except for the

basic specifications that may be directly implemented in an object language under some systems). In

spite of a new generation of improved interpreters ([FGJM 85], [CGSA 85], [GCAS 85], [JD 86]), TRS

have therefore been considered in general as inherently slow. In this paper, we present a compiler for

such systems. This compiler produces Lisp code for each operator symbol of the specification, which

is in turn compiled for the target machine by a classical Lisp compiler. Computing the normal form of

a term then simply consists in evaluating (in the sense of Lisp) a canonical representation of it. The

gain of efficiency is of several orders of magnitude with respect to the interpreted mode. The time

needed to evaluate a given term becomes an acceptable function of its size. This allows to consider

algebraic specifications as directly executable, and the whole formalism of the abstract data types as a

programming language (cf. e.g. WGJM 85]).

26

The compiler described in this paper has been integrated into the ASSPEGIQUE environment for the

development of algebraic specifications (cf. [BC 85L [Assp 86]) ; this altows to directly execute

specifications under this system.

For related works, the language HOPE ([BMS 80], [Darl 86]), that involves rewriting, has been com-

piled, though in a sense different from this paper. Emphasis is on the definition of abstract .instruction

sets and related architectures. Also, our treatment of the pattem-matching process has some similarities

with optimizations of the unification step considered in logic programming language compilation (cf.

e.g. [Warren 80], [Warren 83], [Cohen 85], [HS 86], [Stickel 86]). However, our compiler, though

being still a prototype, turned out to run significantly faster than when compiling directly in Prolog

(experiments performed with the Quintus Prolog compiler). The main reason is that we do not manipu-

late substitutions, but work directly with functional calls.

This article is organized as follows. Section 1 presents the formal concepts that underlie our method ;

we prove there the correction of our compilation scheme. Section 2 describes the main features of the

compiler for non-conditional rules ; some basic optimizations are presented and discussed. In section 3,

we describe our treatment of conditional rules, while section 4 shows advanced features supported by

the compiler. Several benchmarks are given and discussed in section 6. Lastly, section 7 presents

further optimizations.

I. THE FORMAL BACKGROUND

In this section, we present the mathematical background of this article. We suppose that the reader has

some knowledge about the programming language Lisp, and about terms and term rewriting systems

(cf. [HO 80] for a survey of the definitions and fundamental results in the field). However, basic

notions are recalled hereafter.

Z stands for a finite set of ranked symbols. X n is the set of the symbols of X with arity n. X stands for

an enumerable set of variables. Ts,x(X) is the set of the terms with variables built on X and X. We

take for granted the notion of terms, occurrences in terms and substitutions, t lo is the subterm of t

starting at occurrence oL and t[co<---u] is t where tic o is replaced by u.

A term rewriting system is a finite set R of couples (~L,p) of terms of Ts.x(X) such that the variables of

p are included in the variables of ~L. The rewriting relation --> is defined by t--->t' zff there exists

(~,p)~R, an occurrence co of t and a substitution o such that tic o = ~Lo and t'--t[~<---pcr]. --->* is the

reflexive and transitive closure of --->. R is finitely terminating if there exists no infinite sequence (ti)i> o

such that 'qi ti--->t,:+ I, and R is confluent lf-f'qt, t ' , t" , if t--->*t' and t-->*t", then there exists a u such that

t'--->*u and t"---->*u. In the following, all the TRS that we consider are assumed to be finitely terminating

and confluent. Each term t thus admits a unique normal form, i.e. a term t-such that t -->* t-and t- is a

normal form (i.e. there exist no t ' such that "t-->t'). Lastly, the rules ~L-->p of R such that the root

27

symbol of ~. is a given symbol ' f ' are called the rules defining f.

The essential question addressed in this paper is how to efficiently evaluate a term, i.e. compute its nor-

mal form.

Conventions : underlined symbols correspond to functions associated to symbols of X;. For instance, if

f~X z and h,t2 are two terms of Ts,x(X), then f(tl,t2) stands for the result of applying the function f (yet

to be described) to t 1 and t 2, while f(t 1,t2) is the term of Ts,x(X) with root symbol f and subterms t 1 and

t z. Also, to simplify our matter, we shall suppose that all the constants (i.e. the elements of Z °) are

normal forms ; this is of course not compulsory in our actual compiler.

We now provide formal background to the principle of our compiler. We feel that this is useful since

the formal correctness of evaluators is rarely proved in the literature, though being not necessarily obvi-

ous. To this effect, we define a function eval : Ts,x(X)--->Ts,x(X), and associate with each operator sym-

bol f~ X n a function f : (Ts,z(X))n-->Ts~x(X). They are defined, in a mutually recursive way, by the fol-

lowing abstract programs :

eval (t) =
if t = f (t 1 t n) then _.f(eval(tl) eval(tn))
else ;; t trust be a variable

t

and :

__f(t l t n) = -->

; ; le t rj f (~) - ->p j , l< j .~ , be the rules i n R defining f
[] ~ j ~ if there exists a subs t i tu t ion c such that (t 1 tn) = ~.~ then eval(pj~)
else f (t 1 ta)

We use here a non-deterministic choice operator '[] ' . If each test of the choice statement fails, then the

'else' statement is executed. For instance, consider the following TRS (S1) :

x plus zero --~ x x plus s(y) ---) s(x plus y)

The corresponding 'plus' function is :

plum(t I , t 2) =
[] i f t 2 = z e r o t h e n e v a l (tÂ)

if t 2 = s(y) then eval(s (plus(t 1 , y)))
else p lus (t i , t2)

It should be noted that, hereabove, 'plus(h,t2)' is the term with root symbol 'plus' and subterms h, t2 ;

this corresponds to the case where no rule could apply (i.e. t 2 is neither of the form 'zero' nor of the

form 's(y)'). Also, ' s ' is defined by no rule, s_ is simply defined by s_(tl,t2) = S(tl,t2) ; similarly, under

our assumption that constants are irreducible, they are just represented by atoms.

We now have the following result of total correctness :

Theorem 1.1

For any t~Ts,x(X), any computation of eval(t) eventually terminates, producing the normal form

of t.

28

Proof : The ordering

t > t ' tff t---~t' or t ' is a subtenn of t

is well-founded because ~ is finitely terminating. Let us denote by P(t) the property "any computation

of t terminates, producing the normal form of t". We are going to show that P holds on Ts,z(X) by

noetherian induction on >. Ad absurdum, suppose that there exists a taTsy~(X) such that ~P(t). Since

> is well-founded, it is possible to choose t extremal w.r.t. > such that -d:'(t), i.e. ff t > t ' then P(t') (cf.

[Huet 77]). Let us then consider a 'faulty' computation of eval(t) :

® We can suppose that t is not a variable, i.e. that t = f(tl,-.,tn). Since t > ti, then P(ti) for any i.

Thus, the computation of each eva1(ti) terminates, yielding ~i.

® We now consider the next phase of the evaluation, i.e. the computation of f(h , ... , ~n).

- ff the computation chooses a j and a substitution (r such that (t 1,...,t~) = gjc, then t--)pjg and t

> 9jc. Thus, any computation of eval(pjG) eventually stops producing the normal form of piG,

which is also the normal form of t. Thus, the corresponding computation of t terminates produc-

ing T, which is contradictory ;

- else, since the Ti's are normal forms, this means that f(tt,...,t n) is a normal form, and thus the

normal form of t. On the other hand, this is exactly what the procedure produces. We derive

again a contradiction. !

2 . T H E C O D E G E N E R A T I O N P R O C E S S

The compiler generates Lisp code according to the following ideas :

® the eval function of section 1 is implemented by the usual eval function of Lisp

® the code of each _f function is translated into specific Lisp code.

Thus, the compiler generates in a first phase lambda-defirfitinns for each f. In a second phase, this code

is compiled for the target machine by a usual Lisp compiler.

Terms have their natural Lisp representation : a term f(tl,...,tn) is represented by (f t t ... t n) ; variables

are implemented by atoms, and constants are implemented by by atoms bound to their name in Z (still

under the assumption that constants are irreducible). Since in Lisp, a user defined ftmction (interpreted

or compiled lambda) evaluates its argmnents before evaluating its body, it is then easy to check that the

implementation of eval is correct, w.r.t, its definition in section 1.

For each f f, the code generated by the compiler is a simple translation of its definition in section 1. The

search for a matching substitution ¢r is coded directly in the Lisp code of each f. During this pattem-

matching step, any variable x of the lefthand side of the selected rule is locally bound to xo. This

allows to directly evaluate the righthand side of the rule as the result of the reduction. This method has

shown to be much more efficient than a general purpose call of the form "match(~j , (t 1, • • • ,t n))" (cf.

also [Aug 85] where a similar process is described). A related idea is used to implement the unification

29

step when compiling logic programming languages (cf. [Warren 83], [HS 86]).

For instance, the code corresponding to the function plus of section 1 is :

(defun plus (*X1 *)2)
(l e t ((x) (y))

(cord
((and (se tq x *X1) (eq 'zero *7(2)) x)
((and (se tq x *X1)

(e q ' s (care :car *X2))
(se tq y (cadr *X2))) (s (plus x y)))

(t ' (p lus ,*X1 , * ~)))))

Notes :

- The care:car function is a macro that checks whether its arguments is a cons ; if so, it returns its car,

else it returns nil. As a consequence, if " (e q ' s (care:car *X2))" evaluates to non-nri, it is known that

*X2 admits a cadr.

- The rules defining f appear in the body of f in the same order as they are given in R. However, as

opposed to the case of Prolog, the user is invited no t to make use this information (for the systems are

supposed to be confluent).

- In this paper, whenever readability is improved, we have preserved inside the bodies of the _f's the

variable names that occur in the rules of R (as in the previous example). This is optimized in the corn-

prier that actually generates the following, more efficient though less readable, code :

(deftm plus (*X1 "7~)
(cord

((eq 'zero * ~) *X1)
((e q ' s (care :car * ~)) (s (plus *X1 (cadr *X2))))
(t ' (p lus ,*Xl , ' 7~))))

- Also, as a technical point, we always refer in the paper to the 'eq ' Lisp function in order to compare

Lisp objects (for sake of clarity). The compiler also generates calls to the less efficient 'equal ' function,

when needed.

- N o n l e f t - l inear ru les , i.e. rules in the lefthand side of which a variable occurs more than once, are

treated in a straightforward manner. Consider for instance the one-role system :

f (x , a , x) ---) x

the corresponding piece of code would be :

((and (eq ' a *'N2) (ex t *X1 *33)) *X1)
(t ' (f ,*X1 ,*~2 ,*X3))

Let us consider a slightly more complex example ($3) :

rl : f(a) ---> a

r 2 : f(f(f(x))) --> b(x)

r3 : ffffg(x))) ~ c(x)

The relevant piece of code generated for f is :

(S2),

30

(le t ((x n i l) (*XI.I n i l) ? (cond
((eq 'a *X1) a)
((and (eq ' f (care:car "7{1)) (setq *XI.I (cadr *Xl))

(eq ' f (care:car *XI,1)) (setq x (cadr *XI.1))) (b x))
((and (eq ' f (care:car *X1)) (setq *XI.1 (cadr "7(1))

(eq 'g (care:car *XI.t)) (setq x (cadr *XI.I))) (c x))
it ' i f ,*xu)))

The auxiliary variable *X1.I, generated at compile time, helps avoiding the whole computation of

(cadadr *X1), remembering that (cadr *X1) is stored in *XI.1. This is particularly time-saving in the

case of non-unary symbols. Another use of such variable in more advanced code optimization, allowing

the factorization of the tests ha the previous fimction body, is discussed in section 4.

3 . C O N D I T I O N A L T E R M R E W R I T I N G S Y S T E M S

In this section, we present the treatment of conditional rewrite roles by the compiler. Such kind of

rules greatly extend the expressive power of classical term rewriting systems (though they do not

extend their mathematical power. Cf. [BT 86]). Moreover, they arise very naturally when using term

rewriting systems as the operational counterpart of algebraic specifications (cf. [Aft 81], [FGJM 85],

[GK 86]).

By definition, a conditional term rewriting system is a finite set R of formulae :

r : u i =v 1 & ... & u~--v n ~ ~. ---> p, with Var(L) D Var(p) u (ui~=iVar(ui)uVar(vi)).

The rewriting relation is defined (cf. e,g. [ILZ 85], [Kaplan 84,86]) as the smallest relation ~ such that

t ---> t ' iff there exists a rule reR, an occurrence co of t and a substitution ~ such that

- tic 0 = ~¢$ and t ' = t[o~--po]

- for any i, there exists a ~/ieTs,z(X) such that uic~--->*yi and vi~--~*'/i.

--~* stands for the reflexive and transitive closure of --->.

Notions of confluence, termination and normal forms are defined as in section 1. Similarly, one can

extend the definitions of the f 's , simply checking recttrsively that for each i, the normal forms of u i and

v i are equal. The generic form of the Lisp code of an f is :

(c~cl
; ; trealrrent of rule r : u 1 = v I 8~; . .. & tl n = v n
((and

(<does ffl match the arguments of f_ '.~)
(eq ui vl) . . , (eq th vn))

;; treaU-mnt of the next rule, etc . . .

f i-~)-~p

; ; this binds the variables of p
;; this checks for the prmlises

p)

During the evaluation of the (eq u i vi)'s, and possibly during the evaluation of p, a variable x is bound

to its value xc~, ~ being the matching substitution. It is thus the expressions uic, vi~ and p~ that are

actually evaluated in the body of f.

31

E X A M P L E : Consider the system ($4) :

rt : f(a) ~ a

r2 : f ie l (x) ,a ,e l (x)) = g(e2(x)) & h(i(e2(x)),e4(e3(x))) = j(ea(e3(x))) ::~ fig(x)) --)R(el(x) ,e2(x))

r 3 : k(e4(x)) = c =~ fig(x)) -->R(e3(x),e4(e3(x)))

The code associated to f would simply be :

(defun f (*X1) (let ((x))
(cond

((eq *XI 'a) 'a)
((and (eq 'g (care:car *X1)) (setq x (cadr *X1))

(equal (f (el x) a (el x)) (g (e2 x)))
(equal (h (i (e2 x)) (e4 (e3 x))) (j (e4 (e3 x))))) (R (el x) (e2 x)))

((and (eq 'g (care:car *X1)) (setq x (cadr "7(1))
(eq (k (e4 x)) 'c)) (R (e3 x) (e4 (e3 x))))

(t ' (f ,x)))))

Note that in this example, the search of a matching substitution :

"(eq 'g (care:car *XI)) (setq x (cadr *X1)))" may be factorized, because the corresponding two rules

happen to have the same lefthand side. Then, after such a factorization, we remark that some identical

computations are performed several times. To improve on this aspect, we introduce auxiliary variables

to store interesting partial results. This optimization is particularly important since n~es of the form :

P(x) = Tree ~ fix) ---> pl(x)

P(x) = False =~ f(x) --) p2(x)

arise very frequently. Such rules constitute indeed the usual way to simulate if-then-else definitions of

operators (direct if-then-else rewriting would use so-called "negative" rules, that have no well-deft_ned

semantics. Cf. [Kaplan 84]). In such a case, with the previous naive code generation scheme, P(x)

would be evaluated twice at ran-time.

In order to detect common sub-expressions in the premises, the compiler firstly searches for the rules

that have a common lefthand side up to a variable renaming. It then incrementally creates the directed

acyclic graph (DAG) of aU the expressions occurring in the premises of these rotes, in such a way that

two common sub-expressions are pointing toward a same term. For instance, the DAG corresponding to

rules r 2 and r 3 of example (Sa) is :

- ©

32

Notice that only sub-expressions that are not reduced to variables are shared.

When the DAG is completed, the sub-expressions shared by several terms correspond precisely to the

nodes that have strictly more than one ancestor. A local variable *Yi is attached to each such subex-

pression. The code corresponding to the two last rules then becomes :

(le t* (('5'1 (e l x)) (*5'2 (e2 x)) (*Y3 (e3 x)) (*Y4 (e4 *Y3)))
(cond

((and (equal (f *Y1 'a *Y1) (g *5'2))
(equal (h (i *5"2) *Y4) (j *574))) (R *YI *5"2))

((eq (k *Y3) ' c) (R *Y3 *Y4))
(t n i l)))) ;; e tc . . .

A further enhancement is still possible : suppose that the first test "f(el(x),a,e~(x)) = g(ez(x))" failed. It

was useless, and perhaps expensive, to evaluate *Y4 = (e4 *Y3). The value of *Y4 would actually be

needed, in (R *Y3 *Y4), only if the test "k(e3(x)) = c" did succeed. This led us to generate demand-

driven, or lazy, evaluation of the *Yi's. The code actually generated by the compiler is finally :

(l e t ((*Y1) (*22) (*23) (* ~))
(cored

((and (equal (f (se tq *Y1 (el x)) a *Y1) (g (se tq *Y2 (e2 x))))
(equal (h (i *5"2) (se tq *Y4 (e4 (setq *Y3 (e3 x))))) (j *'/4)))
*Yl *Y2))

((eq (k (or *Y3 (se tq *Y3 (e3 x)))) 'c)
(R *5"3 (or *Y4 (e4 *73))))

(t n i l))) ;; e tc . . .

The reader is invited to check that expressions are evaluated, or bound, only if necessary. For instance :

. in the test "k(e3(x)) = c", *Y3 is bound if and only if "f(el(x),a,el(x)) = g(ez(x))" succeeded and

"h(i(ea(x)),e4(e3(x))) = j(e4(e3(x)))" failed. Thus, *Y3 may or may not be bound, which justifies the

code "(or *Y3 (setq *Y3 (e3 x)))" ;

* in the evaluation of the righthand side R(e3(x),e4(e3(x))), *Y3 is certainly bound to e3(x), because

of the previous evaluation of the expression "(or *Y3 (se N *Y3 ...))" ; this is actually why it was

useful to bind *Y3. On the contrary, *Y4 may or may not be bound. Hence the code

"(R *Y3 (or *Y4 (e4 *Y3)))". Of course, it is useless to bind here *Y4 to (e4 *Y3).

It is not difficult to determine which *Yi's are already bound or should be bound : at a given point, the

variables that are surely bound are the ones that occur in the first premise of all the rules tested before

the current one (for the first test "(eq u 1 vt)" is systematically performed), and the ones occurring in the

ui,s and the vi 's of the current _rule that have already been checked (i.e. of index i smaller than the

current one).

This code optimization has enabled us to greatly improve the performance of the compiler, specially in

the case of "if-then-else"-like rules that arise very frequently in algebraic specifications.

33

4. OTHERS FEATURES OF THE COMPILER

4.1. Evaluation strategy

The user of term rewriting systems may wish to gain control over the evaluation strategy. Consider, for

instance, the following specification (that simulates an "if-then-else" operator) ($5) :

K true x y ~ x

K false x y ~ y

A good evaluation strategy for this operator is to evaluate its first argument, and then to apply a reduc-

tion at the top of the expression. This may be done for instance in the OBJ2 system ([FGJM 85]),

where the user may stipulate "E-strategies"; in this case, the operator would be assigned a "(1 0)"

profile.

With our approach, we have been so far constrained to a "call-by-value" strategy, because of the under-

lying evaluation strategy of Lisp. However, it is possible to avoid the computation of a term in Lisp

simply by quoting it. In our system, the user can ascribe to 'K ' the profile '(t nil nil) ' , which means

that :

- the first argument must be systematically evaluated before application of the body of the

operator ;

- the two other arguments are evaluated only if necessary, that is if no reduction could be

applied so far. This is a kind of lazy evaluation.

Notice that a profile '(t ... t) ' corresponds to a call-by-value strategy, and a profile '(nil ... nil)' to a

call-by-name strategy. To implement this feature, the intemal form a of term 'K(b,x,y) ' will be "(K b

(quote x) (quote y))". So when the Lisp function K is called, it applies its body to its arguments after

evaluation, i.e. to <(eval b),x,y>. The corresponding code is :

(defun K (*X1 *7*2 *X3)
(cord
((eq *X1 ' t rue) (eval *32)) ((eq *X1 ' f a l s e) (eval *X3))

; ; i f the mo previous tes t s have fa i l ed , this means that the nowmt foma of
;; *X1, a f te r reduction, is nei ther ' t r u e ' or ' f a l s e ' . Evaluate *X2 and *7(3,
;; and search for r~v reductions :

((progn (setq *32 (eval *7(2)) (se tq *X3 (eval *X3)) n i l)
((eq *X1 ' t rue) *X2) ((eq *X1 ' f a l s e) *X3)
(t ' (K ,*X1 ,*X2 ,*X3))))

Actually, it is often the case (as happens here) that if the pattern matching step failed before evaluation,

it will fail after evaluation ; this is because if the user estimates that some variables need not be

evaluated, the pattern matching process is likely not to rely on their form. In this case, the second set

of tests would simply be omitted. The code of K will thus actually he :

(defun K (*X1 *X2 *X3)
(cord
((eq *XI ' t rue) (eval *X2)) ((eq *X1 ' f a l s e) (eval *X3))

((progn (setq * ~ (eval *X2)) (setq *X3 (eval *)13)) n i l)
(t ' (K ,*X1 , * ~ ,*X3)))))

34

As a last point, it should be noted that the quoting of the arguments is ensured dynamically whenever

needed. For instance, with the previous K and the new role :

K(K(b,bl,b 2) , y , z) --> K(b , K(bl,y,z), K(b2,y,z))

the corresponding code for the righthand side would be :

(K
(K b ' (quote ,bl) '(quote ,b2))

' (quote ,(K bl '(quote ,*X2) '(quote ,*X3))
' (quote , (K b2 ' (quote ,*X2) ' (quote ,*X3)))

This feature allows a reasonably large flexibility for the evaluation strategy. It also appears that a large

number of operators are prone to benefit of such strategies. For instance, the operator 'plus' defined by

($1) would gain in having profile '(nil t)' (cf. [FGJM 85] for a discussion).

Note : several other solutions in order to control the evaluation strategy have been discarded. For

instance, macros could not be used because of recursively defined operators, Iexpr are not defined in

most Lisp dialects, etc...

4.2. Built.in Operators

Since each operator is Lmplemenred as a Lisp function (and each irreducible constant by a Lisp con-

stant), it is easy to substitute the function generated by the compiler by a built-in Lisp function, that

would implement things more efficiently. For instance, in order to implement basic arithmetics and to

circumvent ($1), one could declare :

(setq zero 0) (defun s (*X1) (1+ *X1)) (defun plus (*X1 *"A2) (+ *X1 *32))

etc, ... Typically, in large scale applications, this is going to be done systematically for basic data types

such as integers, booleans, lists, ... with their usual functionalities.

These operators do interact with the code produced by our compiler, since both categories are Lisp

objects. For instance, the result of evaluating "(K true (s (plus (s zero) (s zero))) zero)" is "3". It

should be noted that this result cannot match a term s(x), under this form. It is the responsibility of the

user to take care that such situations do not occur, ff so, several solutions might however be con-

sidered :

- introducing a parsing phase, that would transform "3" into s(s(s(zero)))

- introducing inverse (Lisp) functions for each symbol that receives a built-in implementation. Then

pattern matching becomes possible again, by successive inversion of the symbols in the pattern.

This issue still has to be explored.

Built-in definitions and definitions generated by the compiler will then be "compiled" together by a

Lisp compiler, resulting in still improved efficiency. Built-in definitions would even often be macros

(cf. section 6 and appendix).

The results produced in this fashion are impressive, compared with an interpreted, no built-in mode. It

becomes possible to compute expressions that would require an unrealistic evaluation time with

35

traditional interpreters (cf. section 5). The conclusion of the experiments we made is that, under the

assumption that basic types receive built-in interpretation (which is done once for all), high-level, alge-

braic specifications become executable in a realistic way.

5. QUANTITATIVE EVALUATION OF THE COMPILER

In this section, we compare the performance of a classical interpreter (the evaluator of the ASSPE-

GIQUE environment [BC 85], [Assp 86]), and of the compiler described in this article.

To this effect, two sets of terms have been successively compared :

* terms of the form "factorial(n)", with the usual unary representation of the integers : n =

s(s(...(s(0))...))

terms of the form "sort([n,n-1 1,0])", where 'sort' is a specification of a sort by insertion in

increasing order.

Both set of rules are given in appendix. The purpose of these examples is to test both for the non-

conditional and for the conditional case. The benchmarks have been made on a VAX750 with operating

system UTqIX®4.2. Both the interpreter and the compiler are written in Franz Lisp Opus 38.79. The

Lisp compiler used in order to compile the interpreter, and the _f's produced by our compiler, is Liszt

Opus 8.36. The results are as follows (CPU time is in seconds) :

factorial(n) :

Tinterp

T~omp

Ratio Tinterp
Tcomp

n = l

0.65

0.008

78.4

n = 2 n = 3

1.88 6.37

0.017 0.022

113.0 286.8

n = 4

36.85
I

0.067

552.7

sort([n,n-1 1,0]) :

n = l n = 2 n = 3 n = 4

Tinter p 2.82 5.39 14.55 30.47

Tcomp 0.024 0.030 0.042 0.067

Tinterp
Ratio 115.2 179.7 349.2 457.0

Tcomp

These figures reveal an impressive gain obtained by the compiler. It also seems that the larger the term

36

and the number of rewriting steps, the larger the gain.

Being that the above comparison was relative, the compiler considered by itself leads to reasonably

short computation times for both specifications. This was not so, to our knowledge, with any of the

existing interpreters. Instead, because of their inherent slowness, it appears that TRS interpreters were

mainly used as prototyping tools : a user could perform some experiments on small and not necessarily

relevant terms, in order to check the adequacy of the TRS he wrote w.r.t, what he had in mind. It was

by no mean question on computing with such systems. With a compiler, this whole picture is modified ;

it becomes possible to compute expressions that would have required an unrealistic evaluation time

with traditional interpreters. We believe that it becomes reasonable to use term rewriting systems as

programming languages, and, consequently, to make algebraic specifications directly executable by

rewriting.

This is even more obvious when we use evaluation with built-in operators as described in section 4. In

the next benchmark, we give figures obtained with terms 'sort([n,n-1,...,t,0])', where :

• arithmetics (i.e. constants '0 ' , 'T ' , 'F ' and functions 's ' and '_<') is implemented directly in Lisp ;

® what remains (i.e. the implementation of the lists, and the functions 'sort' and 'insert') is imple-

mented by rewriting. Note that in sorting a list [n,n-1,...,1,0], a large amount of rewriting is still

involved.

We obtained the following results :

!ZcoEflp I n=8
0.11

n = 9

0.14

n = 10

0.18

n = l l

0.24

Thus, in spite of the conditional rewriting involved in the previous benchmark, the execution time

remains reasonable. Also, from a relative point of view, the evaluation of the previous terms is clearly

out of scope of classical interpreters. This leads to the conclusion that conditional algebraic

specifications may be considered as directly executable after compilation, provided a restricted number

of basic types are directly implemented in Lisp (essentially the integers and the booleans). A compiler

does allow to consider algebraic specifications as a realistic programming language, somehow as Prolog

allows to view logic as a programming language.

6. OTHER OPTIMIZATIONS In this section, we describe some important optimizations not discussed so

far. Some of them are already partially implemented in experimental versions of the compiler, while

some others will be the subject of future researches.

* A first point is to re-consider the role of the partial variables *Xi.j.k... generated by the compiler (c£

section 2), As mentioned, they already serve, inside a given pattern matching test, to avoid useless

37

computations. However, they may also be used from a test to a next one. For example, with system

($3), when evaluating the third test :

((and (eq ' f (care :car *X1)) (setq *XI.1 (cadr *X1))
(eq 'g (care :car *XI.1)) (setq x (cadr *XI.1))) (c x)) ,

*Xt.1 might already be bound to ' (ca& *X1)' due to the first "and-test" (but this is not sure). A first

improvement is therefore to replace "(setq *XI.I (cadr *XI))"

by "(or *XI.1 (setq *X1A (cadr *X1)))". This optimization has been implemented on an experimental

version of the compiler. It showed no noticeable improvement, partly because testing whether *X1 is

nil is not significantly faster than accessing cadr's, on a classical non-tagged architecture.

In this case, it is possible to enhance the code still further : we notice that, actually, *XI.1 is bound by

the first "and-test" if and only if *X1 is of the form 'f(z) ' , which the second test does check. Thus,

this test could indeed be reduced to :

((and *XI.1
(eq 'g (care:car *XI.1)) (setq x (cadr *XI.1)))) ;; e tc ~..

This situation seems to occur rather often in practice ; further research is needed to improve on this

aspect of the code.

. It is possible to perform, during the compilation, a flow analysis of the reductions. A particular case

is to detect tail-recursive rules, such as :

x plus zero --) x

x plus s(y) ---) s(x) plus y .

We notice that the righthand sides of the rules occur in terminal position in the code generated by the

compiler :

(defun plus (*XI *~i2)
(cond ; ; . . .

(<does (*XI,*X2) match (x,s(y)) ?> ;; this binds x and y
(plus (s x) y)) ;; . . .

Thus, the tail recursion would be detected by a good Lisp compiler when compiling the previous

definition of 'plus ' . This is actually what happens in Franz Lisp. However, we feel that we should not

rely on this, for portability reasons and because new methods to detect more complicated cases often

come up, which a given Lisp compiler do not necessarily incorporate.

Other flow analysis methods may be considered. Several methods developed for classical programming

languages often prove useful (cf. e.g. [l-Iecht 77], [MJ 81], [AU 77]). Among the works dealing with

flow analysis of term rewriting programs, [Jones 86] considers the transformation of a certain class of

TRS into context-free tree grammars, with application to partial evaluation and optimization. Also,

[FGJM 85] discusses the fact that k is often possible to predict an interesting "evaluation profile" for

some operators, and to foretell which rule is more likely to be applied after a given one (a success pro-

bability of 2/3 is announced, which is remarkable).

38

While "evaluation profiles" already exist in our context (section 4), one can ask what would be the

meaning of one rute calling for another one, since our evaluation is not role-driven. A possible answer

is to generate a specific code fir] for each rule r defining f (i.e. with f as root symbol of the lefthand

side). _fir] is similar to i except that the test corresponding to the pattern-matching for role r appears in

first position in ~r] This assigns higher priority to the application of a given role. This point will be

the subject of future research, from both a theoretical and a practical point of view.

• Consider the rules :

x x 0 --+ 0 x × s(y) -+ x + (x × y)

The code associated to the 'x ' function is :

(defun × (*X1 *'X2)
(cond

((. . .) (. . .))
((. . .) (+ x (x x y)))
(t (. . .))))

The call "(+ x (x x y))" will occur from within the external call '(x *X1 *X2)', which is actually not

necessary. At run time, this results in useless and numerous pushes on the stack of the interpreter, that

also have to be popped finally. Actually, one would like to have the ca~ to "(x *XI *X2)" replaced in

the Lisp stack by the call to "(+ x (x x y))". This might be simulated by catches and throws in standard

Lisp, but would certainly not enhance the performance !

Instead, we are experimenting with the LAL dialect of Lisp (developped by P. Amar), that allows for a

special kind of 'fimcalI' that is not pushed on the stack (and needs of course not be popped). First

benchmarks demonstrate an important gain using this method.

• A last point is that it is useful to simplify at compile time the terms appearing in the bodies of the

_f's, typically within the pieces of code corresponding to the righthand sides of the roles. For instance,

since there is no nile defining the symbol 's ' , the identity s(s(f(x,s(y)))) = s(s(f(x,s(y)))) holds. This

allows to replace an expression "((<match ?> (s (s f i x (s y)))))" by the more efficient form

"(<match ?> '(s (s ,(f x '(s ,y))))". This is realized in our compiler by defining functions such as 's_' in

the following fashion :

(defmacro s (*X1) "(s ,,*X1))

The macro expansion of "(s (s (f x (s y))))" is then identical to " '(s (s ,(f x '(s ,y)))) ", as wanted.

This optimization has already resulted in an important gain, specially when applying a Lisp compiler

(that displaces macros) on the code produced by our compiler.

Further simplification of the terms appearing in the f ' s may be achieved if a prototype of an evaluator

(typically, an in.terpreter) for the term rewriting system under consideration is available at compile time.

This allows for instm-ace to directly produce the normal forms of the righthand sides of the rules inside

the code (this corresponds to the classical constant folding optimization). Thus, instead of generating

the expression "((<match ?>) (factorial zero))", one would generate "((<match ?>) '(s zero))". Also, a

39

non-normalized righthand side such as "(factorial (s x))" would be replaced by

"(times '(s ,x) (factorial x))"

Note that in order to avoid infinite loop during such compile-time normalizations (in the case of non-

terminating TRS), the evaluation should be bounded to some given depth.

This feature will be implemented in future versions of our compiler, using as compile-time evaluator

the interpreter (described in [BC 85], [Assp 86]) of the ASSPEGIQUE environment.

7. CONCLUSION

The experiments led so far with our compiler in the ASSPEGIQUE environment reveal an impressive

gain with respect to traditional interpreters. The performances are still improved by the use of built-in

operators. Some optimizations happened to greatly enhance the resulting gain, Among them, sharing

code among the premises of conditional rules is particularly well-suited to the natural form of algebraic

specifications.

So far, term rewriting systems executed in interpreted way have been used mainly as prototyping tools,

with which it was hardly possible to compute. Compiling TRS tend to modify this situation, allowing to

regard the high-level, mathematical language of algebraic specifications as a real programming

language.

This work has been partially supported by the INRIA, the Agence de l'Informatique, and the METEOR Esprit

Project. It has been realized while the author was visiting the Weizmann Institute (Rehovot - ISRAEL). Discus-

sions with M.Bidoit, and J.-P.Jouannaud have been stimulating. I thank C.Choppy and F.Voisin for very helpful

remarks and suggestions, The integration of the compiler to the ASSPEGIQUE systems has been performed with

the help of F.Capy.

R E F E R E N C E S :

[Aft 81] R.Erickson, D.Thompson (eds.), AFFIRM Reference Manual, USC-ISI, Marina Del Rey (California),
1981.

[Assp 86] M.Bidoit, F.Capy, C.Choppy, N.Choquet, C.Gresse, S.Kaplan, F.Schlienger, F.Voisin, ASSPRO : un

environement de programmation interactif et intbgr~, to appear in T.S.L, 1986.
[AU 77] LAho, D.Ullmann, Principles of Compiler Design, Addison Wesley Publishing Co., 1977.
[Aug 85] L. Augnstsson, Compiling Pattern Matching, Proc. of the Conf. on Functional Programming Languages

and Computer Architectures, LNCS 201 (1985).

[BT 86] J.Bergstra, J.Tucker, Algebraic Specifications of Computable and Semi-Computable Data Types, Report
CS-R8619, CWI, Amsterdam (1986).

40

[BC 85] M.Bidoit, C.Choppy, Asspegique : an Integrated Environment for Algebraic Specifications, Proc. of the

TAPSOFT'85 Conf., LNCS 186 (1985).
[BMS 80] R.Burstall, D.MacQueen, D.Sanella, HOPE : an Experimental Applicative Language, Conf. Record of

the 1980 Lisp Conf., 1980.
[Cohen 85] J.Cohen, Describing Prolog by its Interpretation and its Compilation, CACM 28, 12, September

1985.
[CGSA 85] D.Coleman, RoGaUimore, V.Stavridiou, F.Ali, the Design of a Rewrite Rule Interpreter for UMIST

OBJ, UMIST Internal Report (Manchester), 1985.

[Darl 86] LDarlington~ the Unification of Logic and Functional Languages, in Logic Programming : Relations,
Functions and Equations, DeGroot and Lindstrom Eds., Prentice Hall, 1986.

[FGJM 85] K.Futatsugi, J.Goguen, J.-P.Jouannaud, J.Meseguer, Principles of OBJ2, Proc. of the 12 2 ACM

POPL Conf., New-Orleans, 1985.
[GCAS 85] R.Gallim0re, D.Coleman, F.AIi, V.Stavridiou, UMIST OBJ : A Language for Executable

Specifications, UMIST Internal Report (Manchester), 1985.
[GK 86] M.-C.Gaudel, S.Kaplan, How to Build Meaningful Algebraic Specifications, Esprit Meteor Project

Report, University of Paris-South, 1986.
[Hecht 77] M.Hecht, Flow Anakysis of Computer Programs, North-Holland Publishing Company, 1977.
[HO 80] G.Huet, D.C.Oppen, Equations and Rewrite Rules : a Survey, in Formal Languages : Perspective and

Open Problems, R. Book Ed., Academic Press, 1980.
[HS 86] A,Houri, E.Shapito, A Sequential Abstract Machine for Flat Concurrent Prolog, Technical Report

CS86-20, Weizmann Institute (Israel), 1986.
[I-Iuet 77] G.Huet, Confluent Reductions : Abstract Properties and Applications to Term Rewriting Systems, Proc.

of the 18 th FOCS Symposium, 1977.
[JD 86] A.Josephson, N.Dershowitz, Efficient Implementations of Narrowing : the RITE Way, Internal Report,

University of Illinois, 1986.
[Jones 86] N.Jones, Flow Analysis of Lazy Higher-Order Functional Programs, Internal Report, University of

Copenhagen, 1986.
[Kaplan 84] S.Kaplan, Conditional Rewrite Rules, in Theoretical Computer Science 33, 1984.

[Kaplan 86] S.Kaplan, Simplifying Conditional Term Rewriting Systems, Internal Report, Weizmann Institute

(Israel), 1986.
[MJ 86] A,Mycroft, NJones, A Relational Approach to Program Flow Analysis, in Programs as Data Objects,

LNCS 217, 1985.
[Stickel 86] M.Stickel, A Prolog Technology Theorem Prover : Implementation by an Extended Prolog Compiler,

Proc. of the 8 th CAD Conference, LNCS 230, 1986.
[RZ 85] J.-L.R~my, H.Zhang, Contextual Rewriting, Proc. of the 1 st Conf. on Rewriting Techniques and Applica-

tions, LNCS 202, 1985.
[Warren 80] D.Warren, Logic Programming and Computer Writing, in Software Practice and Experience 10,

1980.
[Warren 83] D.Warren, An Abstract Protog Instruction Set, A.I. Technical Report 309, SRI INternational, 1983.

41

APPENDIX

We present here the term rewriting systems used in the bench-marks of section 5.

• The first specification defines the integer with operators s, plus, times and factorial. This is a non-

conditional specification.

x plus zero ~ x

x plus s(y) --) s(x plus y)

x times zero --~ zero

x times s(y) --* x plus (x times y)

factorial zero ---) s(zero)

factorial s(x) ---) s(x) times factorial(x)

• The second specification defines a sort by insertion. List are constructed via the constructors "empty :

---) list" and "add : integerxlist ---) list".

sort(empty) ---) empty

sort(add(x,1)) ---) insert(x,l)

insert(x,empty) --~ add(x,empty)

(x < y) = true => insert(x,add(y,1)) --) add(x,add(y,1))

(x < y) = false ~ insert(x,add(y,l)) ---) add(y,insert(x,1))

0 < x --~ true

s(x) < 0 ---) false

s(x) < s(y) ---) x _< y

• In the last benchmark of section 5, the declarations of built-in operators are as follows :

(setq zero 0)
(defirncro s (x) '(1+ ,x))
(defrmcro plus (x y) ' (+ ,x ,y))
(defrmcro tkres (x y) ' (* ,x ,y))
(defn,acro < (x y) ' (or (eq ,x ,y) (lessp ,x ,y)))

The 'insert ' and 'sort' functions are still implemented by rewriting.

