
O P T I M I Z I N G E Q U A T I O N A L P R O G R A M S

Robert Strandh

Department of Computer Science, The Johns Hopkins University
Baltimore, Maryland 21218

ABSTRACT

Equational programming [HO82b] involves replacing subterms in a term

according to a set of equations or rewrite rules. Each time an equation is

applied to the term, the subterm that matches the left hand side of the equa-

tion is replaced by the corresponding right hand side. In that process several

nodes of the term tree are created. Some of these nodes may later turn out to

be useless, and will be reclaimed.

This paper discusses important relationships between two equational programs.

In particular we define the term mutual confluence and show that two equa-

tional programs with the mutual confluence property have the same output

behavior with very general assumptions about the reduction strategy. As an

application of our result, we discuss source-to-source transformations of an
equational program E to an equational program F . Our transformations are

used as a part of a compiler to improve execution time of E by avoiding the

creation of too many nodes in the reduction process. We show that our

transformations indeed give E and F the mutual confluence property, thus
preserving the output behavior of E when transformed to F .

Preserving the output behavior is more general than preserving just normal

forms, in that we allow for infinite computations where we output stable parts

of the term, i.e., parts that can never change as a result of further reductions.

1. I n t r o d u c t i o n

The equational programming language [HO82b] was created as an experiment in lazy

evaluation. The creators emphasized simple semantics over execution speed. Lazy evaluation

was chosen because it allows for a bigger class of programs to halt whenever a reasonable out-

put of the program can be deduced. A minimum of builtin functions is provided, and all of

them are entirely equivalent to the inclusion of a large, possibly infinite, set of equations. This
is true in particular for the arithmetic functions, such as add, and the arithmetic comparison
functions, such as less. No builtin conditional function is provided. The function i / can easily

be specified by the user by the two equations i](true , x , y) = x and il~false, x , y) ~- y .

Such a definition would not work in a language that uses innermost evaluation (e.g. Lisp),

14

whenever one of the arguments to if involves an infinite or erroneous computation.

The input to an equational program is a term, such as reverze[(a b e)] or

add ~actorial[4l;factorial[3]],

The input term is reduced in zero or more steps to an output term. The output term (if any) is

equal to the input, as a logical consequence of the equations. The output is in normal form,
i.e., it cannot be further reduced. A program may fail to produce a term in normal form, as a

result of an infinite computation. Notice that in that ease, we may still get some output from

the program, namely parts of the term that cannot change as a result of further reductions. In

the case of an infinite computation the output either stops after some finite time, or goes on

forever, displa~dng an increasingly large part of an infinite output term, or the program runs

out of memory and produces a failure. The output of the examples shown above will be

(c b a) and 30 respectively, provided that we have defined reverse, factorial, and add in the

natural way.

In a program, each equation is interpreted as a rewrite rule. The left hand side of the equation

is a pattern that may match a subterm of the term that is currently reduced. A tree pattern
matcher [HO82a] is a table driven automaton. In each state, the automaton looks at the root

symbol of the current subterm and decides what state to go to next and how to move in the

term tree. The decisions are based on the root symbol and the current state. If a match

occurs, the subterm that matched, is replaced by the corresponding right hand side of the

equation. This process is repeated until no more matches can be made, at which point the

resulting term is written as output. In practice, the program does not wait until a term is in

normal form, but rather starts writing part, of the term to the output as soon as it can be

shown that some part of the term will never change.

In programming with equations [HOS] the major consumer of CPU time is the creation nodes

in right hand sides. There are two ways to improve performance. One is to optimize the time

taken to create such a node. The other is to avoid creating such nodes if possible. This paper

discusses the second method.

As a motivation for the current work, consider the following term, representing the right hand

side of some equation. We assume that the function if has the standard definition:

i / [equ b [h [~]];q;f b [h [~ l]];i b [h Ix 111t

We notice two things with this term. The first is that, if we generate this term tree in the

straightforward way, then we end up creating the subterm g [h [x]] three times. The problem

is that g [h [x]] is a common subterm in the term. The second is that once we have evaluated

the subterm equ [g [h [x]];0], the value of which is usually either true or false, then the equa-

tions for if will keep exactly one of its arguments and throw away the other. This means that

no matter what the value of the predicate is, we end up throwing away either f [g [h [x]]] or
i[g [h [x]]]. Here, the problem is that the term has deep subterms that are costly to build, and

may be useless.

15

The reader may argue that these cases are rare. However, deep subterms occur naturally in

may programs. Common subterms (or common subexpressions) may be rare, but when such

subexpressions do occur, it is potentially disastrous not to take care of them. Consider the fol-

lowing definition. It takes a list of pairs (the list and the pairs are both constructed using cons)
and returns a structure (constructed with the symbol struct) of two elements: a list of the first

element of each pair in the original list and a list of the second element of each pair in the ori-

ginal list:

split [O] = struct [0;0];
split [((f . s) . rest)] = struct [(f . f irs ts [split [rest]]);(t , seconds [split [rest]])];

Notice that it is here quite natural to have the expression split [rest] occur twice in the right

hand side of the second equation. If we create the right hand side in the straightforward

manner, without taking into consideration the common subexpressions, we will evaluate the

expression split [rest] twice. The recurrence relation for the cpu time taken to compute the

function split becomes t (n) = 2t (n - l) + c , were t (n) is the time it takes to compute the
function for an input size of n, and e is a constant. With t (0) ~--- 1, the solution is exponen-

tial. If we recognize the common subexpression and compute it only once, we get

t (n) = t (n - l) + c which is linear. In one example, we managed to improve performance of

an equational program (a type checker for the language ML) by a factor of more than 100 for
some inputs by recognizing and eliminating common subexpressions.

In order t o remedy the two problems discussed above, we will make a source-to-source

transformation of the set of equations. The transformation will preserve the input-output

behavior of the original set of equations, but intermediate steps may differ. In real life, our

transformations may not be made as explicit source-to-source transformations, but rather may

be a part of the compilation process. It is, however, conceptually easier to view the transforma-
tions as operating directly on the source code, and giving a different source program as a
result.

The implementation of the equational language requires the set of equations to have the strong
left sequentiality property. This property is defined and treated in more detail in [OD85].

Strong sequentiality is also discussed in detail in [HL79]. For the purpose of this paper it

suffices to note that the property is stronger than the non-overlapping property required for the

system of equations to have the Church-Rosser property (or equivalently the confluence pro-

perty), and that the property is trivially preserved if an equation is added, where the root of
the left hand side is a symbol that has no other occurrence in any left hand side of the system,

including the left hand side of the new equation. Ill this paper, we will not elaborate on strong
left sequentiality, but simply show that our transformations are of the kind that trlviMly
preserves the property. The interested reader is referred to [OD85] for details.

16

2. Re la t ed w o r k

Baekus [Ba78] realized early the advantages of functional style. Friedman and Wise

[FW76] and Henderson and Morris [HM76] pioneered lazy evaluation. Equational programming

was created by Hoffmann and O'Donnell [HO82b] [HOS85] [ODS5]. Strong sequentiality was

defined by Huet and Levy [HL79], and is discussed in [OD85] together with strong left sequen-

tiality. Important results on confluence appear in [OD77]. Thatte [Th85] shows how to

transform a regular equational program to a program where the usage of symbols in equations

is more restricted, Our results apply in particular to such programs.

3. Mutual Properties of Equational Programs

In what follows, we use capital letters T , U, V, ... to denote arbitrary terms. The nota-

tion T [~Z] means a term that contains references to the variables in ~ --= xl , x2, ... ,x n . We

use lower ease letters f , g, h , ... to denote literal symbols in terms. Lower case s , t , u are

used to denote symbol variables. E and F are equational programs. Atomic symbols are

shown as lower case letters a , b, c , ._. We use standard Arabic digits to denote numerals.

Lower case letters v, w, x , ... denote variables. For instance:

T [x , y , z] ~ f [x ;g [1;y ;z];a]

We use the arrow --+ to mean reduction in one step, and -~* to mean reduction in zero or

more steps. A subscript on an arrow as in ---*E and -+~ means reduction with respect to the

set E of equations. It is left out whenever E is understood. We write L (E) to refer to the

language of E , i.e., set of terms made up of symbols used in E .

For the remainder of this paper we assume that all equational programs are regular [OD77],

which guarantees that our programs have the Church-Rosser property, or equivalently, the

confluence property. Recall that a system E of equations has the confluence property iff

W --+~X and W --+~ Y implies that ~ Z such that X --+~ Z and Y -+7 Z . We now

introduce the concept of mutual confluence. The parallel to the confluence property should be
obvious.

Definition h
Two systems, E and F , of equations are said to have the mutual confluence property, iff

for every W ~ L (E) N L (F) , W - * T X and W --~F* Y implies that ~ Z such that

X - " ~ Z and Y -.*~ Z , and

17

for every W C L (E) n L (F), W is in normal form with respect to E iff W is in nor-

mal form with respect to F .

L e m m a 1:
The mutual confluence property guarantees mutual uniqueness of normal forms, i.e., if

X e L (E) N L (F) is in normal form then for every W E L (E) N L (F) , W - - ~ X if

and only if W ~F* X .

Proof:

Only if: Since W -*7 X and (trivially) W --~F* W, it follows from the mutual confluence

property that ~ Z such that X - - ~ Z and W ~F* Z . Since X is in normal form, the

length of the reduction path X -+7 Z must be zero, or equivalently, X = Z . It follows

that W --*~ X . The if part is symmetrical.

We now switch our attention to the output of a reduction system. We shall define u node set
of a term T to be a set of pairs, (p ,s) where p is a path from the root of the term. A path is

a sequence of positive integers il,i2,.. . ,i k . A path uniquely defines a position in a term by giv-

ing a sequence of child numbers in a left to right order to follow, starting at the root. We

represent a path with numbers separated by periods, e.g. 2.3.1 for the first child of the third

child of the second child of the root. The path to the root node is represented by the symbol

4. The second element of a pair is the symbol of the node specified by the path. A stable node
set of a term T is a node set of T in which all the nodes are stable, i.e., they cannot change

as a result of any reductions in E . An output set of a term T is a stable node set, O, of T

such that if (p . i , s) E 0 for some path p , some integer i and some symbol s , then

(p ,t) E 0 for some symbol t . Intuitively, an output set is a set of stable nodes such that all

ancestors of that node are also stable and members of the set. An output set of T is also an

output set of every term U such that T ---~ U in any program E . To justify calling such a

set an output set, we consider a general output scenario, where some process issues a sequence

of demands for symbols, located at certain positions of a term. Presumably such a process

must know the symbols of all the ancestors of a node, in order to demand the symbol of that

node. Otherwise there is a risk that the node does not exist. Furthermore, a node given as the

response to a demand from such a process, has to be stable, to insure that it will not change as

a result of further reductions. The set of all demands for output together with the responses,

up to some time t after start of reduction thus forms an output set. All reasonable output

strategies (e.g. leftmost outermost) can be thought of as special cases of our general scenario.

Finally we define the maximal output set of a term T (written Om~x(T)) to be the output set

of T such that every other output set of T is a subset of Omax(T). The statement "O is an

output set of T" wilt be written O __C Omax(T)

Now suppose that some output process P generates a sequence D of demands for output from

equational program E working on input term T . We shall assume that P generates a

demand, waits for the response, generates a new demand, etc, until either P decides to stop,

or until the program enters an infinite computation trying to satisfy a demand, in which case

the last demand will remain unsatisfied. P may stop either because the demands and responses

represent a term in normal form, or simply because no more demands are needed by P . The

t8

sequence D , called a demand sequence, will consist of pairs of demands and responses, where a

demand is a path and a response is a symbol. Elements of a demand sequence are similar to the

elements of an ou tpu t set, bu t possibly augmented by (p ,e) which denotes an unsatisfied

demand. If (p ,e) is an element of D then it is always the last element. Initially, the only res-

tr ict ion we have on P is tha t at any time, the elements of D make up an ou tput set, again

possibly augmented by (p ,e). We shall call such an ou tput process a general outpu t process.

The set of possible demand sequences may vary depending on reduction strategy. Initially, we

shall consider parallel reduction as it is the most general strategy. By a parallel strategy we

mean a s trategy where we first find all possible redexes in the term and then reduce them all in

some order, e.g. innermost first. The process is then repeated for the new term.

Before we state our main theorem, we state some intermediate results

L e m m a 2:

T -+* U implies O max(T) C 2 0 max(U).

P r o o f :

This is an immediate consequence of the fact that Omax(T) contains all nodes that are

both stable in T , and whose every ancestor is also stable in T .

L e m m a 3:

If for some term T , T -+ ~ U then a parallel reduction strategy will reduce T in finite

t ime to some term U ' , such tha t Omax(U) _ Omax(U r).

P r o o f :

We use Theorem 8 in [OD77]. From that theorem, ~_t follows that a parallel strategy will

find a term U ~ such that U --+* U ~ Using lemma 2 it follows that

Omax(U) ~ Omax(U')

D e f i n i t i o n 2:

An equationa! program F is said to mimic an equational program E %r a reduction and

ou tpu t strategy S if for every term T E L (E) N L (F) , every possible demand sequence

D of E on input T is also a possible demand sequence of F on input T .

We shall consider two reduction systems E and F to have the same output behavior if E

mimics F and F mimics E .

T h e o r e m 1:
Two regular reduct ion systems E and F that have the mutual confluence property have

the same ou tpu t behavior using a general output process and a parallel reduction strategy.

Proof:
We prove that F mimics E . Consider any possible demand sequence, D of E and an

input term T . Case 1: the last element of D is a satisfied demand. Then D represents an

ou tpu t set of some term V sueh that T --+~ V. Since E and F have the mutual

19

confluence property, ~ U such that V - + 7 U and T - - - ~ U. By lemma 2,

Omax(V) C_. Omax(U) By Iemma 3 a parallel reduction strategy in F wilt, in finite time,

find a term U ' such that O max(U) C O max(U r), and therefore

Omax(V) C Om~.x(U I). It follows that D is a possible demand sequence of F on input

T . Case 2: the last element of D is an unsatisfied demand. Call the last element I. Case
1 applies to the sequence D - l . A term UI will be created by F as above. We must

show that no term created by F will satisfy t . Suppose such a term exists. Call it W.

Then U l --~F* W. Now T --~F* W and T --*E* V. By the mutual confluence property it

follows that ~ Z such that V --+7 Z and W --+F* Z . By lemmu 3 a parallel reduction

strategy in E will eventually produce a term X such that O max(Z) _--. O max(X). Since l

would be satisfied by W it would also be satisfied by Z and X . In other words, E would

eventually satisfy l which contradicts our assumptions. By a similar symmetric argument,

E also mimics F . It follows that E and F have the same output behavior.

The results stated above are valid even if we use other output strategies that the general one,

and other reductions strategies than the parallel one. We must be careful, however, that the

output strategy is not more general than the reduction strategy. Imagine for instance a system

where we use the general output strategy, but a leftmost-outermost reduction strategy. In one

system, say E we may get a term like c l [f [x];c 2[x]] where c 1 and c 2 are stable, and f Ix]
generates an infinite computation. In a system F we may get c 1If [x];h[x]] where

h Ix] --* c 2[x]. Even if E and F have the mutual confluence property, F does not mimic E .

A demand sequence D ~--- (e,c 1),(2,c 2) is valid for E, whereas D ~--- (c,c 1),(2,e) is valid for

F , if a teftmost outermost reduction strategy is used. The reason is, of course, that when the

demand for the second child of the root is processed by F , it goes off in a leftmost reduction,

trying to reduce f [x], thus ending up in an infinite computation.

In our implementation of the equational language, the reduction process uses a strategy similar

to leftmost-outermost. The output strategy is leftmost outermost, but the reduction order tries

to make nodes in the term stable in a leftmost-outermost order. This means that reduction

process may sometimes deviate from leftmost-outermost, if necessary to make the node

requested by the output process stable. We shall call this strategy leftmost-outermost-
stablizing. Where a leftmost-outermost output strategy is used, demand sequences are res-

tricted. If two elements (p.i.q ,8) and (p.j.r ,t) appear in a demand sequence D for some paths

p , q and r , s o m e i n t e g e r s i and j and some symbols s and t where i < j , t h e n (p . i . q , s)

always appears before (p . f ir , t) in D . We state here, without proof, a similar result to the
one above but for the leftmost-outermost-stablizing strategy.

T h e o r e m 2:

Two reduction systems, E and F that have the mutual confluence property, have the

same output behavior using a leftmost-outermost-stablizing reduction strategy.

Proof:

Omitted.

20

4. T r a n s f o r m a t i o n s t h a t P r e se rve M u t u a l Conf luence

We mentioned in the introduction that we are interested in source-to-source transforma-

tions from E to F . In particular, we are interested in programs that simulate other programs.

D e f i n i t i o n 3:

An equational program F is said to simulate an equational program E iff

for all terms W E L (E) A L (F), W -+E X implies W -+~* X ,

for all terms W e L (E) V t L (F) , W -+~* Y implies ~ U such that Y -~F* U and

W -+~ U, and

for all terms W C L (E) F 1 L (F) , W is in normal form with respect to E iff W is in

normal form with respect to F .

T h e o r e m 3:
If an equational program F simulates an equational program E , then E and F have the

mutual confluence property.

P r o o f :

The mutual confluence property requires that if W -*7 X and W --+F* Y then there

must exist a Z such that X --+~ Z and Y -+F Z From definition 3, we know that there

is a U such that Y -~F U and W --+E U. Clearly U C L (E) P1 L (F). Since E has

the confluence property, there is a Z such that W ~E* Z and U --*~ Z . By definltion 3,

it must also be the case that U --+p* Z , and therefore Y -+~ Z.

The second part of definition 1%llows immediately from definition 3.

5. M a k i n g a t e r m shal low

Our first transformation is used where a term is so big that there is a risk that we end up
throwing away a substantial part of the term, depending on the sequence of reductions per-

formed.

We define the depth of a term to be the longest path from the root of the term to a leaf of the

term. In this context, we witI treat as leaves of a term, any variable or constant. The

justification for the above is that these categories of symbols do not need a node allocated for

them in the term. Constants that are explicitly mentioned in the program are pro-allocated at

compile time, and variables pre-exist at runtime. Pro-allocating constants at compile time

21

gives us the automatic advantage of sharing.

We will say a term is deep if it has a depth of at least three. A term that is not deep is shal-

low.

Let E be a set of equations containing the equation U[~] = T0, where

To~--~--to[Tl[~l];T~[~2];...;Tn[~n]] is a deep term of arity n . Then a nonempty subset

S C { T 1 , T 2 , T~ } of terms have a depth of at least 2. Otherwise T o would have a depth

of no more than 2, and would thus not be deep.

We create a modified set of equations F from E by applying the following transformation:

T r a n s f o r m a t i o n 1:

F is created f r o m E by replacing T O i n E b y a n e w t e r m T 0' . To t is created from T O

by replacing exactly one T i E S in T O by the term t i [~i] where t i is a new literal symbol

of arity I ~" I" In addition, we add a new equation t i [~.] -~ T i [~.] to F .

The term To t may or may not be shallow. In addition, we have created a new set of equa-

tions that may have deep right hand sides. These newly created right hand sides will eventu-

ally be processed recursively so that in the end, all right hand sides are shallow.

T h e o r e m 4:

If applied to a program that has the strong left sequentiality property, transformation 1

preserves that property, and thereby the Church-Rosser property.

Proof'.

The left hand side of the new equation is t i [~.], where t i is a new symbol, i.e., it does not

occur in any place other than at the root of the added equation. As mentioned in the

introduction, adding an equation with such a left hand side, trivially preserves the strong
left sequentiality property. The strong left sequentiality is sufficient for the Church-
Rosser property to hold. It follows that the Church-Rosser is preserved.

T h e o r e m 5:

Transformation 1 implies that F simulates E .

Proof Sketch:

Each reduction in E has a counterpart in F except where U [~] is used. In E a reduction

U [~] - + to[Tl[~l];T2[~2];. . . ;Ti[xi]. . . ;T n [~n]] is simulated in F by the two reduction
steps

U [~?] --+ to[Tl[~t];T~[~2];...;t i [x i]...;T~ [~n]] -'+ to[T~[~l];T2[~];. . . ;Ti [xi]..-;Tn [~n If-
To prove the second half of the definition 3 requires some additional terminology that is

outside the scope of this paper. It should be clear, however, that we can construct the

required term U by reducing all nodes in Y of the form t i [Z] to T i [Z].

22

6. F i n d i n g c o m m o n s u b e x p r e s s i o n s

This topic has been discussed by many different authors in the context of code generation.

In combinat ion with making a term shallow, we have some additional considerations that nor-

malIy do not exist in the context of the present, literature. To illustrate that , consider the fol-

lowing right hand side:

f [g [h ix];h ix [y]]

It is tempting to consider h[x] a common subexpression of this term. However, consider the

case where the term above is the then clause of some if expression. If we start to compute the

common subexpressions, only to find somewhat later that the else clause will be used, and the

then clause wilt be thrown away, then we wasted the effort. Consequently, we shall consider a

subexpression common only if it appears in more than one child of the root symbol. We call

such a common snbexpression root common.

Let E be an equational program containing the equation U [~F] -~- T0[TI[~'];Y] where TI[~F] is

a root common subexpression in T 0.

T r a n s f o r m a t i o n 2:
F is created from E by replacing T O by the term t0 [Tl [~] ;~] , where t o is a new symbol

of arity] 3Y [+ 1. In addit ion we add a new equation to[y ;]F] = To[y IF]

T h e o r e m 6:
If applied to a program that has the strong left sequentiality property, t ransformation 2

preserves tha t property, and thereby the Church-Rosser property.

Proof:

The left hand side of the new equation is ti [y ;~-], where t i is a new symbol, i.e., it does

not occur in any place other t han at the root of the added equation. For the same reason

as in Theorem 4, it follows that the Church-Rosser is preserved.

T h e o r e m 7:

Trans%rmat ion 2 implies tha t F simulates E .

P r o o f S k e t c h :

Similar to the proof of Theorem 5.

Transformat ion 2 is useful, especially if the right hand side of an equation contains a root com-
mon suhexpression that will take a substant ia l computat ion to reduce. Such expressions occur

natura l ly in many programs. In our implementat ion, t ransformat ion 2 interacts with transfor-

mat ion 1 in the following way: we apply t ransformation 2 where possible, also to new equa-
tions generated by the t ransformation. When no more instances can be found, apply transfor-

mat ion 1 to some equation. If no such instance can be found, stop. Otherwise apply

23

transformation 1 once, and then repeat the entire process by trying to apply transformation 2

again. Notice that transformation 2 may apply to one of the new equations created by

transformation 1 because of the way we define root common subexpression above.

We conclude with an example of the two transformations applied to Ackermann's function.
The original equation is:

a (m ,n) = i f (equ (m ,O),add (n ,1),

i f (equ (n ,O),a (subtract (m ,1),1),
a (subtract (m ,1),a (m ,subtract (n ,1)))))

The only common subexpression, subtract (m ,1), is not root common, so transformation 2 does

not apply. The third child of the right hand side is deep, so transformation 1 applies. We get:

a (m ,n) --~ i f (equ (m ,O),add (n ,1),p l (m ,n));

p l (m ,n) = if (equ (n ,O),a (subtract (m ,1);1),
a (subtract (m ,1),a (m ,subtract (n ,1))))

where p 1 is a new symbol. The right hand side of the first equation is shallow. The right hand

side of the second equation has a root common subexpression, subtract (m ,1), that appears in
both the second and the third child. Applying transformation 2 gives:

a (m ,n) ~- i f (equ (m ,O),add (n ,1),p l (m ,n));

p l (m ,n) -.~ p 2(subtract (m ,1),m ,n);

p 2(x ,m ,n) --- if (equ (n ,0),a (x ,1),a (x ,a (m ,subtract (n ,1))))

where p2 is a new symbol, and x is a new variable. The right band side of the third equation is
deep, so we apply transformation 1 to the third child:

a (m ,n) = i f (cqu (m ,O),add (n ,1),p l(m ,n));
p l(m ,n) = p 2(subtract (m ,1),m ,n);
p 2(x ,m ,n) = i f (equ (n ,O),a (x ,1), v 3(x ,m ,n));
p 3(x ,m ,~) = a (~ ,a (m ,subtract (n ,1)))

where p3 is a new symbol. Finally, the right hand side of the last equation is deep, so transfor-
mation 1 applies to the second child:

a (m ,~) = i / (~qu (m ,0) ,a~ (n ,1),p l(m , .));
p l(ra ,n) = p 2(subtract (m ,1),m ,n);
p 2(x ,m ,n) = if (equ (n ,0),a (x ,1),p 3(x ,m ,n));
p 3 (x , m , n) = a (x ,p 4(m ,n));
p 4(m ,n) = a (m ,subtract (n ,1))

In the final program, all the right hand sides are shallow, and there are no common subexpres-
sions in any one right hand side. The two programs have the same output behavior in our

implementation, and the transformations described are routinely applied by the compiler.

24

7. Bib l iography

AC75

Ba78

FW76

Ga85

ttL79

HM76

HO82a

HO82b

HOS85

Jo84

KMP77

0D77

OD85

Th85

Aho, A. V. and Corasick, M. J. "Efficient String Matching: An Aid to Bibliographic
Search", Communications of the ACM 18:6 pp. 333-340 (1975).

Backus, J. "Can Programming Be Liberated from the von Neumann Style? A Func-
tional Style and its Algebra of Programs", Communications of the ACM21:8 pp. 613-
641 (1978).

Friedman, D. and Wise, D. "Cons should not evaluate its arguments", 3rd Interna-
tional Colloquium on Automata, Languages and Programming., Edinburgh University
Press pp. 257-284 (1976).

Gabriel, R. P. Performance and Evaluation of Lisp Systems, MIT Press, Cambridge,
Mass. (i985).

Huet, G. and Ldvy, J.-J. "Computations in Non-ambiguous Linear Term Rewriting
Systems", IN2~IA Technical Report ~359 (1979).

Henderson, P. and Morris, J. H. "A Lazy Evaluator", 3rd A CM Symposium on Princi-
ples of Programming Languages pp. 95-103 (1976).

Hoffmann, C., O'Donnell, M. "Pattern Matching in Trees", Journal of the ACM, pp.
88-95 (1982).

Hoffmann, C., O'Donnell, M. "Programming with Equations", ACM Transactions on
Programming Languages and Systems pp. 83-112 (1982).

Hoffmann, C., O'Donnell, M. and Strandh, R., "Programming with Equations",
Software, Practice and Experience, (December 1985).

Johnsson, T. "Efficient Compilation of Lazy Evaluation", Proceedings of the ACM
SIGPLAN 1984 Symposium on Compiler Construction, Montreal (1984).

Knuth, D. E., Morris, J. and Pratt, V. "Fast Pattern Matching in Strings" SIAM
Journal on Computing 6:2 pp. 323-350 (1977).

O'Donnell, M. J. Computing in Systems Described by Equations, Lecture Notes in
Computer Science v. 58, Springer-Vcrlag (1977).

O'Donnell, M, J. Equational Logic as a Programming Language, MIT Press, Cam-
bridge, Mass. (1985).

Thatte, S° "*On the Correspondence Between Two Classes of Reduction Systems"
information Processing Letters 20, pp. 83-85, (1985).

