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(1~ Introduction 

The Knuth-Bendix Algorithm is a procedure for transforming a set of equations into a confluent term 

r e ~ t i n g  system. It has recently been applied in theories where only the congruence on ground terms 

of the equational theory is of interest, for example in the domain of inductive proofs (e.g. [MU 80], 

[HH 82], [KM 831, [JK 85]) or in the domain of program synthesis (e.g. [DE 85]). Although it is 

sufficient for these applications to generate term rewriting systems which are confluent on ground 

terms, the classical Knuth-Bendix Algorithm tries to generate a term rewriting system which is 

confluent on all terms. This often leads to cases where the classical Knuth-Bendix Algorithm 

generates an infinite system, even though the infinite system contains a finite ground confluent 

system. Unfortunately the ground confluence of a term rewriting system is in general undecidable 

[KN 87]. 

In this paper we will introduce a sufficient criterion for ground confluence which is stronger than the 

classical confluence test. This criterion allows us to prove the ground confluence of term rewriting 

systems where the classical Knuth-Bendix Algorithm does not termdnate. 

Our criterion for ground confluence seems to be the first general criterion for ground confluence 

which is stronger than the classical confluence test. On the other hand some work has been done in 

the context of inductive proofs to generate a ground confluent term rewriting system. In [GO 85] and 

[FR 86] not all critical pairs are generated for testing the ground confluence. 

In [GO 85] a term rewriting system is split into three disjoint sets, a confluent set of rules (A) which 

are axioms for the inductive theory, a set of rules (I) which are inductive consequences of A and a set 

containing all other rules (O). The critical pairs are computed only from A c) O but they are reduced 

by all rules (A u I tu O). If the function symbols can be split into constructors and defined functions, 

then the number of critical pairs can be further reduced by considering only overlappings where 

variables are replaced by constructor terms. 

In [FR 86] the term rewriting system is also split into axioms (A) and a set containing all other roles 

(O). Critical pairs between rules of O are not considered and for a role in O only critical oveflappings 

at a single position in the left hand side of the rule have to be considered. For this position a critical 

overlapping with a rule from A has to exist for every (constructor-) ground instance of the rule. If no 

position in the rule satisfies this condition, then the confluence criterion can not be applied. 

For both methods one needs special informations about the term rewriting system: 
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- One has to to identify a subset of rules as axioms A 

- In [GO 85] one has to identify also a set of consequences I 

- In [FR 86] one has to choose a position in the left hand side of a rule 

If one is not able to identify a set of axioms in a set of rules R which is smaller than R, then both 

methods can not be applied. This is the case for example in program synthesis where one starts with 

an unstructured set of equations. But also in the area of inductive proofs, one may get problems if the 

term rewriting system contains more than one complete set of axioms in a set of rules. In [GO 86] 

one can fred an example with two complete sets of axioms, where the Knuth-Bendix Algorithm with 

the ground confluence criterion of [GO 85] or [FR 86] does not terminate if we choose the wrong set 

of axioms. 

In [FR 86], one has to choose also positions in left hand sides of rules. Often, a wrong choice also 

causes the completion procedure to generate an infinite system. 

In this paper we give a general ground confluence criterion for terminating term rewriting systems 

(section 3) which can be improved (section 4) for term rewriting systems with function symbols 

which occur in no irreducible ground term (convertible functions). 

This general criterion has been implemented as part of a simple completion procedure. This 

implemetations allows also inductive proofs by consisteny with the KBA but does not require the 

choice of a set of axioms or the choice of a position in a rule as in [GO 85] and [FR 86]. With this 

implemetation we could not only prove the examples from [GO 85] and [FR 861 to be ground 

confluent but we also proved the ground confluence of systems where the methods in [GO 85] and 

[FR 86] fail, even though the conditions for the application of these methods were satisfied 

([GO 861). 

( 2 )  N o t a t i o n  a n d  B a s i c  D e f i n i t i o n s  

We assume familiarity of the reader with the basic proofs and results of the Knuth-Bendix Algorithm 

(e.g. [HU 77], [HO 80], [KB 70]), its extension for inductive proofs (e.g. [MU 80], [HH 82]) and 

the generalized Newman Lemma [WB 83]. 

We denote by VA the set of all variables and by FS the set of all function symbols. TE(F,V) is the set 

of all terms constructed by variables from V c VA and by function symbols from F c FS. A single 

term is denoted by t or by ~, 13, Y or 8 if it occurs in a rule or equation. Occurences in terms are 

denoted by u, v and w. The symbol e denotes the top level occurence of a term. O(t) is the set of all 

occurences of the term t and O'(t) is the set of all non variable occurences of t. V(t) returns all 

variables of the term t. Substitutions are denoted by c, 'c and q~. 

A set of pairs of terms is denoted by P, if we consider this pairs as rules we will denote it by R and if 

we consider these pairs as equations we will denote it by E. a --~ 13 and 7 ~ 8 denote single rules 

and ~ = ~ and y = ~ denote single equations. For every term rewriting system R in this paper we 
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assume a R-compatible term ordering > (s --~ R t ~ s > t), therefore we consider only terminating 

term rewriting systems. Further we assume that no left hand side of a rule consists of a single 

variable. A one step derivation with a rule in P is denoted by t ~ p t" and ~-~ p is the symmetric 

closure of  ~ p. --~ p and ~-~ p are the reflexive and transitive cIosures of --~ p and ~ p. Two 

terms t t and t 2 are subconnected in one step below a term t (h ~ P, t t2), if t 1 m p t 2, t > t I and t > 

t 2. The reflexive and transitive closure of  ~ p, t is denoted by ~ p, t" 

The set IRR(R) contains all terms which are irreducible in R and IRRG(R) contains all ground temas 

from IRR(R). Terms from tRR(R) are called to be in R normal form. If t has a unique normal form in 

tL then this normal form is denoted by t $ R 

A term rewriting system is ground confluent, iff for ali derivations t~ and t 2 from a ground term t, 

there exists a term t which is derivable from t 1 and t 2. 

In this paper we will distinguish between critical overlappings CO(R) and critical triples CT(R) of a 

term rewriting system R, These two sets are defined as follows: 

Let R be a term rewriting system. CO(R) denotes the set of all critical overlappings of R: 

CO(R)  = [ (~ ---* [~, u, 7 --* 8) [ 

--~ 9 , 7 - - '  6 ~  R ^ u e  O ' ( a )  ^ 3  g, x : G ( c 0 / u  = z(7) } 

CT(tx ---4 ~, u, ~? --~ 8) returns a critical triple for a critical overlapping from CO(R): 

CT(tx --~ [3, n, y ~ 5) := ((y(t~), t~(a) [ u ~ cy(tp(8)) ], 6([3)) 

with: - q0 is a renaming substitution of  7 

- V(q~(7)) c~ V(a) = 0 

- d is a most general unifier of ct/u and q)(7). 

We denote the set of all critical triples of R by CTS(R). 

The confluence and the subconnectedness of a critical u'iple are defined as follows: 

_(_2,2) Definition 

Let R be a term rewriting system and (h, t2, t3) be a triple of terms. Then: 

- (t 1, t 2, t 3) is conf luent  in R iff 3 t : t 2 - ~  R t ^ t 3 - ~  R t 

- ( tp  t 2, t a) is subcannec ted  in R i f f  t2¢-~ R, n t3- 

(3) A Criterion for,,,,, g round  conf luence  

In this section we in~oduce a sufficient criterion for ground confluence. We start with the observation 

that a term rewriting system is ground confluent iff every ground instance of a critical triple is 
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confluent. Usually there are infinitely many ground instances of critical triples, therefore we have to 

find a finite sufficient test. For confluent critical triples the confluence of every ground instance of the 

triple is obviously satisfied, but aU ground instances of other critical triples may be confluent even 

though the triple itself is not confluent. The key idea of our method is to generate a finite set M of 

instances for a critical triple (t 1, t 2, t3) which is not confluent. Then all ground instances of 

(tl, t2, t3) are confluent, if  all triples in M are confluent and the ground instances of  M contain all 

ground instances of (t 1, t 2, t 3) (M covers (t 1, t 2, t3)). Unfortunately this methods does not work for 

many interesting examples, because these finite sets M do not exist for every critical triple which is 

not confluent. On the other hand we could find finite sets M covering these triples, where the sets M 

contain only subconnected critical triples. Then all ground instances of the critical triples are also 

subconnected. In fact the subconnectedness of every ground instance of a critical triple is sufficient 

for proving the ground confluence (theorem 3.2 basing on the result of [WB 83]). 

Following this idea, the criterion for proving the ground confluence can be extended as follows: 

We create a finite set M of instances for a critical triple (tl, t2, t3) if the critical triple is not 

confluent 

We prove that every triple (t ' l ,  t'2, t'3) from M is subconnected 

The critical triple (tl, t2, t3) is ground subconnected if  every ground instance of (tl, t2, t3) is 

also a ground instance of a triple in M 

We will now formalize these ideas. The proofs for this section and the next section can be found in 

[GO 861. 

We will first give some notation: 

(3.1) Definition 

Let (tp t 2, t3) be a triple of terms and M be a set of triples of terms. 

I(M) denotes the set of all ground instances of triples in M: 

I(M) := { (O(tl), O(t2), O(t3)) I (tl, t2, t3) ~ M 

t,V x ~ V(tl) t..) V(t2) U V(t3) : (~(x) e TE(FS, ~)  } 

(tl, t2, t 3) is g round  confluent if  all ground instances of (t 1, t 2, t3) are confluent: 

V (t ' l ,  t'2, t'3) ~ I({ (tl, t2, t3) }) 3 t" : t'2 *---~ R t"/,, t" 3 ~ R t" 

( t l ,  t2, t3) is g r o u n d  s u b c o n n e c t e d  if all ground instances of  ( h ,  t2, t3) are 

subconnected: 

V (t ' l ,  t'2, t'3) e I({ (t 1, t 2, t3) }) : t" 2 ~ R, t ' l  t'3 

The basis for this paper is the next theorem: 

(3.2) Theorem 

Let R be a terminating term rewriting system. Then, R is ground confluent iff every critical triple is 

ground subconnected: 

V (t 1, t 2, t3) ~ I(CTS(R)) : t 2 ~-~ R, tl t3 
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Every ground instance of a triple is subconnected if the triple is covered by a subconnected set of 

triples M (definition 3.3, 1emma 3.4): 

(3.3~ Defin'ttkQ.a 

Let M 1 and M 2 be sets of triples of terms. M 1 covers M 2 iff every ground instance of a triple in in 

M 2 is also a ground instance of a triple in MI: 

I(M2) = t(M1) 

Let R be a term rewriting system, (tl, t2, t3) a triple of terms and M be a set of triples of terms with: 

V (t ' l ,  t'2, t'3) e I(M) : t" 2 ~ R, t ' t  t'3 

Then, (t I, t,2, t3) is ground subconnected if M covers { (t 1, t 2, t3) }. 

Now we need a way to generate instances of critical triples and to prove that these instances are 

subconnected. The method in this paper bases on an extension of the confluence test given by 

[WB 83] and [KU 85]. 

For a critical triple which is not confluent we try to unify the left hand sides of rules with a subterm of 

the first component of the triple. Assume (tp t 2, t3) = CT (o~ --* ~, u, 7 ~ 6) is a critical triple 

which is not confluent and y" --~ 6" is a rate where y" is unifiable with h/v by ~. Then the rules 

0~ ~ ~, y----~ 8 and y" --~ 6" can be applied at (r(ti): 

c(t t)  ~ R or(t2) with "/---* 5 at u 

R C~(tl) [ v ~ (J(8") ] with y" --~ 8" at v 

R c(t3) with a ~ 13 at e 

The triple (C(tl), ~(t2), ~J(t3)) is subconnected if the triples (C(tl), cJ(t2), ~(tl) [ v ~--- (r(8") ]) and 

((r(tl), o(t l)  [ v ~ {J(8") ], c(t3)) are confluent: 

~(t 1) 

6(t e) ~(tl)[  v ~ -  6(5")] ~(ta) 

*J¢ "',l, 
® ® 

We try to prove the confluence of these triples by considering the positions where the rules ~--~ 6, 

7" ---* 6" are applied (case 1) for the triple (~(tt), {J(t,z), ~J(h) [ v e--- cr(83 ] ) and the positions where 
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the rules 7" ----* 8", ct ~ 13 are applied (case 2) for the triple ((Y(tl), ~J(tl) [ v ~ (y(8") ], ~5(t3)). 

If two rules are applied at positions which do not critically overlap, then the derived terms can be 

reduced to a common term, otherwise we will check the critical overlappings between the roles. 

We formalize this idea by introducing a new set DCO(C,R) (double critical overlappings) of critical 

overlappings. DCO(C, R) contains an element of the form (~ --~ 13, u, 7---~ 5, v, 7" ---, 8") if 

(c~ 2_~ 13, u, 7---* 8) is an element from C and a non variable subterm of the first component from 

(tl, t2, t3) = CT(0~ --~ 13, u, 7----~ 8) is unifiable with the left hand side of a rule 7" ~ 8" from R. We 

denote the instance of the triple CT(cc ---* 13, u, 7--~ 8) by DCT(c~ ---~ 13, u, 7----~ 8, v, 7" ~ 8") 

(double critical triple). The set DCTS(C,R) contains a double critical triple for every element from 

DCR(C, R). 

(3.5"~ Definition 

Let R be a set of term rewriting rules and C a subset of CO(R). We define the sets DCO, DCT and 

DCTS on R and C as follows: 

DCO(C,  R ) : =  { (cc--~ 13, u, 7----~ 8, v, 7 ' - -*  8")I (a---~ 13, u, 7---~ 8) e C AT ' - -*  8"e  R 

^ ( (tt, t 2, t3) = CT(Cc ---* 13, u, 7-"* 8) 

v e O'(t l)  ^ 3 (~, 'C : ~ ( t l ) / V  = Z(7") ) } 

D C T ( a  ~ 13, u, 7---~ 8, v, 7 '  ---* 5") := (O(tl), ~(t2), ~(t3)) 

with: (h, t2, ts) = cr(~---~ 13, u , 7 ~  8) 
A qO" renaming substitution of 7" and V(q0"(y3 ) n V(tl) = 0 

^ a is a most general unifier of t Jv  and q0"0f 3) 

DCTS(C,  R) := { DCT(~x ---* ~, u, y---~ g, v, 7" ---* 8") 1 

(cc---413, u, 7---~8, v, 7"---~8") e DCO(C, R) } 

In lemma 3.6 we give the criterion for the ground subconnectedness of a double critical triple 

DCT(~  --* 13, u, y----~ 8, v, 7" ~ 8"). If there is no critical overlapping between the rule 7" ~ 8" 

and the rules ~---* 13 and y---* 8 (the conditions v e O'(o0, u = v.u" ^ u" e 0"(7') and v = u.v" ^ 

v" e 0"(7) are not satisfied), then the ground subconnectedness is immediately satisfied. Oherwise 

we have to check critical overlappings between the rule 7" --* 8" and the rules oc ~ t3 and 7--~ 8. 

(3.6) Lemma 

Let R be a term rewriting system and (~x ~ 13, u, y--~ 8, v, 7" ~ 8") be from DCO(CO(R), R). The 

triple DCT(cx ~ 13, u, y--~ 8, v, 7" --* 8") is ground subconnected, if: 

( v e O'(e0 ~ CT(~ ~ 13, v, 7" --~ 8") is confluent ) 

A ( U = V . U ' A U ' e  O ' ( 7 " ) ~ C T ( 7 ' - - - ~ 8 " , u ' , T - - ~ 8 ) i s c o n f l u e n t )  

A ( v = u . v ' ^ v ' e  O ' ( y ) ~ C T ( y - - * & v ' , 7 ' - - - - ~ 8 " ) i s c o n f l u e n t )  

Basing on these def'mitions and Lemmata, we can give a criterion for ground confluence: 
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Q m u n d ~  

(1) Let: CONFL-CO := { (o~ --+ 13, n, 7--~ 8) t (or ~ 8, u, 7 ~ 8) e CO(R) 

and CT(a --# [3, u, 7 ~ 8) is confluent } 

NOT-CONFL-CO := { (c~ ---- 9, u, 7--* 8) 1 (c~ ~ 13, u, Y ~ 5) e CO(R) 

and CT(cz ---* 13, u, 7 ~ 5) is not confluent } 

(2) Let: CONNECq'ED-DCO 

:= { (or-- ,  ~, u, 7 - - , 5 ,  v, 7 " - - , 5 3  I 

(o~ --e ~, u, 7----+ 8, v, 7" --~ 8") ~ DCO(NOT-CONFL-CO, R) 

^ ( v e  O ' ( 0 t ) ~ ( 0 t - - + ~ , v ,  7 " - -~8" )e  CONFL-CO)  

A ( u = v . u ' , ' , u ' e  O ' ( ? ' ) ~ ( 7 " - - + 8 " , u ' , y - - - - ~ 8 ) e  CONFL-CO)  

*, ( v = u . v ' ^ v ' e  O'(7) ~ (7--~8,  v ' ,7" - -~8")  e CONFL-CO)} 

(3) Then R is ground confluent, if CONN~ECTED-DCO ~ CONFL-CO covers 

NOT-CONFL-CO 

For the correctness of this criterion, we have to prove that every critical triple of R is ground 

subconnected (Theorem 3.2). If a triple is confluent, then it is also ground subconnected. Otherwise 

we consider a set of subconnected triples CONN~CrED-DCO (Lemma 3.6). Then, the critical triple 

is subconnected if it is covered by the set of subconnected triples CONNECTED-DCO 

CONFL-CO (Lemma 3°4)° 

To complete this confluence criterion, we need a method for proving the coveredness property. With 

the test of  Kounalis [KO 85] for example we can prove the coveredness of a set of terms by another 

set of terms. This test can be extended to triples of terms by introducing a new ternary operator f and 

applying it to every triple. Then, we check the coveredness of a set of triples M 1 by a set of triples 

M 2 as follows: 

(1) Transform the triples in M 1 and M 2 into terms: 

M" 1 := { f(t 1, t 2, t3) I (t 1, 12, t.3) e M 1 } 

M"2 := { f(tp 12, t 3) I (t 1, t 2, t.3) e M 2 } 

(2) M 1 is covered by M 2 iff M ' I  is covered by M "2 
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(4t An extens ion to conver t ib le  funct ions  

In this section we introduce a weaker rewrite relation ---*> R- For this relation a rule may only be 

applied if  the variables on the left hand side of the rule are replaced by normal forms 

(definition 4.1).The relation ---~> R is ground confluent iff the relation ~ R is ground confluent 

(theorem 4.2), therefore it is sufficient to prove the ground confluence of - -~ R" We now assume 

that some function symbols do not occur in ground term normal forms (convertible functions). Then 

a rule can not be applied to a ground term if a variable of  the rule is replaced by a term containing at 

least one of the convertible function symbols. Therefore we consider only overlappings where 

variables are replaced by terms without convertible function symbols (theorem 4.5). Further we 

consider instances sets M of critical triples covering only ground instances of triples where variables 

are replaced by terms without convertible functions (lemma 4.7). 

(4.1) Definition 

Let R be a term rewriting system. We define the relations ---,, R, I~--~l R and I~---~1 R, t as follows: 

" t l  - - ' ~ '  R t2 ¢ : ,  : =1 cz - - ~  13 e R : 3 o 3t u ~ 0 ( 0  : t l / U  = c(et) 

^ (V x ~ V(~) : 6(x) ~ IRR(R) ) 

^ t 2 = tl[ u ~ o(~) ] 

- tl t~---41R t 2 ¢=~ : tl ----~> R t2 v t2 ---~> R t 1 

- t 1 Ib----II R ,  t t2 ¢* : t 1 tb--~t R t2 ^ t > t 1 ^ t > t 2 

We denote by 2_~ the reflexive and transitive closure of---~ and by I L l  the reflexive and transitive 

closure of  II----qt. 

The relations ----~> R and --~ R have the same normal forms, their symmetric, transitive and reflexive 

closures are equivalent and --*) R is confluent iff --* R is confluent: 

(4.2) Theorem 

Let R be a term rewriting system. Then: 

- V t : t irreducible by ---*~ R ¢:* t irreducible by - - -  R 

"Jl--~lR = ~ R  andl~-~lR, t = ~-~R,t  

"--~> R is (ground-) confluent iff----~ R is (ground-) confluent. 

Note that these results for - -~  R are not restricted to ground terms, but only the restriction to ground 

terms allows us to restrict the replacement of  variab]es to terms without convertible functions. 

We now modify the criterion given in section 2 for the relation ----~> R by considering only those 

function symbols F which are not convertible for the computation of critical overlappings and for the 

coveredness criterion of  a critical triple. 

In definition 4.3 we restrict the critical overlappings to cases where variables in rules can be replaced 

by terms without convertible functions: 
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(4.3) Definition_ 

Let R be a term rewriting system and F = FS. We define the set of critical overlappings COF(R ) and 

the set of critical triples CTSF(R) as follows: 

COF(R) := { (ix--4 ~, u , T - - , 8 ) I  a - - ~  ~ ,T - -~8  ~ R A U E  O'(0~) 

A 3 ~ ,  • : C~(CZ)/u = *(7) 

A V x ~ V((z) : c(x) ~ TE(F,VA) 

A V x e V(~') : '~(x) ~ TE(F,VA) } 

CTSF(R ) := { CT(et - +  ~, u, T--~ 8) I (0t ~ ~3, u, T---* 8) e COF(R) } 
Note, that CO(R) is equal to COFs(R) and CTS(R) is equal to CTSFs(R).  

Instead of considering all ground instances of triples, we consider only instances where variables are 

replaced by ground terms without convertible function symbols: 

(4.4) Definition (modified version of definition 3.1) 

Let (t 1, t 2, %) be a triple of terms, F c FS a set of function symbols and M be a set of triples of 

tel~2ns. 

IF(M ) denotes the set of all ground instances in F of triples in M: 

IF(M ) : -  { (o(tl), o(t2), o(t3) ) t (t 1, t2, %) e M 

AV x ~ V(tl) '.J V(h) u 7(%) : ci(x) e TE(F, O) } 

(t 1, t.2, %) is g round  confluent in F if  all ground instances in F of (t 1, t 2, %) are confluent: 

V (t ' l ,  t'2, t'3) ~ IF( { (t 1, t2, t3) }) 3 t" : t '2 -~  R t" ^ t'3 2-~ R t" 

(tl ,  t2, %) is g r o u n d  subconnee ted  in F if  all ground instances in F of (t 1, t 2, %) are 

su~onnected: 

V (t ' l ,  t 'z, t'3) ~ IF({ (tl, t2, 5)  }):  t 'z~-~R, t-1 t'3 

A term rewriting system is ground confluent if all ground instances in F of CTSF(R) are 

subconnected and FSW contains only convertible function symbols: 

(4.5) Theorem (modified version of theorem 3.2) 

Let R be a terminating term rewriting system, F = FS a set of function symbols and FS',t ~ contains 

only convertible function symbols. Then, R is ground confluent iff: 

V (t> t 2, %) E IF(CTSF(R) ) : t 2 ~-~ R, n % 

The definition of the coveredness property can also be extended for convertible functions: 

~ .6 )  Definition (modified version of definition 3.3) 

Let M 1 and M 2 be sets of triples of terms and F = FS a set of function symbols. M 1 covers M 2 in 

F iff: 

IF(IVl2) = IF(Mi) 
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Every ground instance in F of a critical triple is subconnected if it is covered in F by a subconnected 

set of triples M: 

(4,7) Lemma (modified version of lemma 3.4) 

Let R be a term rewriting system, F c FS a set of function symbols, (t t, t2, t3) a triple of terms and 

M be a set of triples of terms with: 

V (t" 1, t" 2, t'3) e IF(M) : t" 2 ~ R, t ' l  t'3 

Then, (t 1, t 2, t3) is ground subconnected in F if M covers { (t" 1, t" 2, t'3) }. 

Now, we can also give a modified criterion for ground confluence: 

Ground Confluence Criterion 

(1) Let: 

(2) Let: 

CONFL-CO := ( (c~ ~ 9, u, 7---~ 5) I (c~ --~ ~, u, 7--~ 8) e COFs(R ) 

and CT(a ~ 13, u, y ~ 5) is confluent } 

NOT-CONFL-CO := { (o~ ---- [5, u, 7---" 8) t (o~ --~ ~, u, y---~ 5) e COF(R ) 

and CT(a----  [5, u, 7----~ 5) is not confluent } 

CONNECTED-DCO 

:= { (~--- ,  [5, u, 3'---, 8, v, 3"---,8") I 

( a  ~ I~, u, y----~ 8, v, ~" ~ ~') e DCO(NOT-CONFL-CO, R) 

^ ( v e O'(0t) ~ (a  --~ [5, v, y" ~ 8") e CONFL-CO) 

^ ( u = v . u ' A u ' e  O ' (~/3~(~/ ' - - -~5" ,u ' ,~ / - - -~8)e  CONFL-CO) 

A ( V = U . V ' A V ' e  O ' (~ / )~(7-- -~8,  v ' ,~/ ' - - - -~83e CONFL-CO) } 

(3) Then R is ground confluent, if CONNECrED-DCO u CONFL-CO covers 

NOT-CONFL-CO in F 

Note, that we consider all confluent critical triples from COFs(R) because this may help us to prove 

more triples in DCO(NOT-CONFL-CO, R) to be confluent than to consider only confluent critical 

triples from COF(R ). 

The coveredness test of Kounalis [KO 85] has not to be modified, because it allows us to distinguish 

constructors (F) and defined function symbols (FSXF), and to prove the coveredness of a set of terms 

only for constructor ground instances. 

(5) Conclusion 

The ground confluence criterion developed in this paper was implemented as part of simple 

completion procedure. This implementation allowed us to prove the ground confluence of many 

systems where the classical Knuth-Bendix generates an infinite system. We can prove also the 
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ground  conf luence  o f  every  conf luen t  and  te rmina t ing  t e rm rewr i t ing  sys tem because  the  cri terion 

conta ins  comple teIy  the classical  conf luence  t e s t .  I f  we apply our  cri terion for induct ive  proofs, than 

the g round  conf luence  can be  p roven  wi thou t  spl i t t ing the te rm rewr i t ing  sys tem into axioms and 

o ther  rules  and wi thou t  choos ing  pos i t ion  in rules,  wh ich  was necessary  in [GO 85] or  [FR 86]. In 

fact, we  could  p rove  more  systems to be  g round  conf luen t  than wi th  the me thods  g iven  in [GO 85] 

and  [FR 86],  bu t  i t  is no t  obv ious  tha t  our  m e t h o d  is a s t ronger  cr i ter ion for  any t e rm  rewri t ing  

system. 

Example 

Here, we show by an example how our ground confluence ~est works. This example has been considered in [FR 86] and 
could be proven to be ground confluent, even though the classical Knuth-Bendix Algorithm generates an infinite set of 
rules. Other examples can be found in [GO 8~. 
Consider the following set of rules: 

(1) add(0,y) --~ y 
(2) add(s(x),y) ~ s(add(x,y)) 
(3) add(u,add(v,w)) --~ add(add(u,~:),w) 

For this Term rewriting system add is convertible. 
We get the following critical overlappings and critical triples: 

(rule 3, 2, rule 2) : (add(u,add(s(x),y)), add(u,s(add(x,y))), add(add(u,s(x)),y) ) 
(rule 3, e, rule 2) : (add(s(×),add(v,w)), s(add(x,add(v,w))), add(add(s(x),v),w) ) 
(rule 3, 2, rule 1) : (add(u,add(O,y)), add(u,y), add(add(u,O),y) ) 
(rule 3, e, rule 1) : (add(O,add(v,w)), add(v,w), add(add(O,v),w) ) 
(ruIe 3, 2, rule 3) : (add(x,add(y,add(z,u))), add(x,add(add(y,z),u)), add(add(x,y),add(z,u))) 

Now, the critical triples of the second critical overlapping (rule 3, ~, rule 2), the fourth critical overlapping (rule 3, e, 
rute 1) and the fifth critical overlapping (rule 3, 2, rule 3) are confluent. The other critical triples: 

(rule 3, 2, rule 2) : (add(u,add(s(x),y)), add(u,s(add(x,y))), add(add(u,s(x)),y) ) 
(rule 3, 2, rule 1) : (add(u,add(0,y)), add(u,y), add(add(u,0),y) ) 

are not confluent but belong to COF(R ) therefore we generate instances by unifying left hand sides of rules with their 

first elements: 
(rule 3, 2, rule 2, e, rule 2) : 

(add(s(u),add(s(x),y)), add(s(u),s(add(x,y))), add(add(s(u),s(x)),y) ) 
(rule 3, 2, rule 2, e, rule 1) : 

(add(0,add(s(x),y)), add(0, s(add(x,y))), add(add(0,s(x)),y) ) 
(rule 3, 2, rule 1, e, rule 2) : 

(add(s(u),add(0,y)), add(s(u), ~,), add(add(s(u),0),y) ) 
(rule 3, 2, rule 1, ~, rule 1) : 

(add(0,add(0,y)), add(0,y), add(add(0,0),y) ) 
Now, we can prove that all these triples are subconnected. Consider for example the triple of the overlapping (rule 3, 2, 
rule 2, s, rule 2): 

add(s(u),add(s(x),y)) 

add(s(u),s(add(x,y))) s(add(u,add(s(x),y)) add(add(s(u),s(x)),y) 

%¢ "-,~ 
s(add(u,s(add(x,y))) s(add(add( u,s( x)),y)} 
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This triple is subconnected because there is no critical overlapping between the two positions where rule 2 is applied 
and the critical overlapping between rule 3 and rule 2 is confluent. The triple is not confluent because we are not able 
to derive a common term from add(s(u),s(add(x,y))) and add(add(s(u).s(x)),y) ). 
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