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ABSTRACT 

In 1975 I s tarted a small project to explore the consequences of implementing equational pro- 

grams with no semantic compromises. Latest results include a compiler that  executes exactly 

the logical consequences of an equational program, with run-time speed comparable to compiled 

Franz LISP. This paper describes the accomplishments of the project very briefly, concentrating 

on shortcomings and directions for future work. 

1 I n t r o d u c t i o n  

The most common approach to providing semantics for programming languages is to regard a 

program as the definition of a collection of functions. In some cases great ingenuity is required 

to construct the unique function associated with each symbol in a program. Inputs and outputs 

are regarded as values in the domains of the defined functions, and the input /output  behavior 

of the implementation of a program is expected to be exactly the function associated with some 

designated symbol in the program. I prefer, at least at the foundational level, to regard a program 

as an utterance in a dialogue between a person and a computer, and to explain its meaning in 

the style of mathematical logic preceding Computer Science. Inputs and outputs are additional 

utterances in the same dialogue, so they inhabit the syntactic world of the program, rather than a 

separate semantic world. Such a view leads to the following schema for Logic Programming. 

A program is a set of assertions in some logical language. 

An input is a question, specifying syntactically a set of possible (not necessarily correct) 

answers [BS76] 

A correct output for a given input is a logical consequence of the program that  answers 

the input question. 

A sound implementation of a program is code that  reads questions, and produces only 

correct answers. A complete implementation is one that  produces a correct answer 

whenever one exists. 

Prolog is the best-known example of Logic Programming. Aside from certain semantic compro- 

mises, it fits the schema above, with a program being a set of Horn clauses in the pure (i. e, 

equalityless) first-order predicate calculus, questions being of the form, "For what x l , . . . ,  x~ does 



C[x~,. . . ,x~] hold?", with corresponding answers of the form "C['rl,...,n]'. Languages with a 

Punctional Programming flavor may also be viewed as Equational Logic Programming languages, 

as follows. 

An Equational Logic Program consists of a set of universally quantified equations. 

A term containing no instance of a left-hand side of an equation is in normal form. 
An input is a question of the form "What  is r?" for some ground term ~-. 

An answer to such a question is an equation "~- = v" where v is a ground term in 

normal form. 

Occurrences of instances of left-hand sides of equations are called redexes, rewriting of redexes to 

corresponding right-hand sides is called reduction. Inputs and outputs are, of course abbreviated 

in practice. In Prolog~ the question, "For what X l , . . . ,  x; does C[x~,..., x~] hold?" is presented as 

" C [ x l , . . . ,  xi]", and the answer "C[v l , . . . ,  T;]" is returned as "xl = T1,. . . ,  x~' = ~'i". In Equational 

Logic Programming the question, "What  is T?" is presented as "7", and the answer % = ~" is 

returned as "t2'. 

In 1975, I s tarted a small project to explore the consequences of implementing Equational 

Logic Programming with no semantic compromises. Christoph Hoffmann, Paul Chew, Robert 

Strandh~ Paul  Golick, and Giovanni Sacco all collaborated in various ways. [ODo87] describes 

the project in more detail. In essence, we produced a programming language whose programs are 

sets of equations which, when treated as rewrite rules, are regular systems of rules [Klo80], i.e., 

they are nonoverlapping and teft-J~near. [ODo77] proves that  regular systems have the confluence, 
or Church-Rosser property, which is sufficient to guarantee the completeness of term-rewriting as 

an implementation of Equational Logic Programming. At first, I encountered great skepticism 

about the potential  efficiency of such a language, so the project to date has emphasized efficient 

implementation with no compromises in the semantics. 

We now have a compiler, produced by Robert Strandh, that clearly establishes that  accept- 

able performance is achievable. The compiler accepts regular systems of equations, with a small 

additional restriction called ~trong lefl-sequentiality [HO79] based on Huet and L6vy's strong ~e- 
quentiaIity [HL79], that  allows left-right sequential processing similar to, but actually more general 

than, leftmost-outermost reduction. Compiled programs are guaranteed to behave precisely as 

required by the description of Equational Logic Programming above. The requirement of com- 

pleteness leads to the uniform use of outermost reduction, which is often called lazy evaluation 
[HM76] [FW76]. Some pragmatically essential notational extensions are available, including the 

conventional ari thmetic primitives, but all such extensions are precisely equivalent semantically 

to large sets of equations: Fast pattern-matching techniques, using precomputed finite-automaton 

transition tables, guarantee tl~at tile run-time cost of a single rewriting step is independent of 

the number and complexity of left-hand sides of equations - -  in contrast to the sequential search 

techniques used in most Prolog implementations. 

Run-tlme performance of the current system is bet ter  than compiled Franz LISP for many 

examples. Franz LISP is not considered to be an especially fast implementation, but i~, is clearly 

an acceptable one, so there is no longer any question that usefully efficient Equational Logic 

Programming languages may be implemented by term-rewriting, although the limits of performance 



cannot be known until a lot more at tention is given to coding details and optimizations. More 

thorough descriptions of the current system are available in [HOS85] [0Do87] [ODo85]. In this 

paper I concentrate on shortcomings of the language, and directions for further research. 

2 R e g u l a r  S y s t e m s  are Too L i m i t e d  

It is easy to write equational programs that look very similar to LISP programs. In particular, if 

each equation has the form f (~)  = r ,  then T is essentially a lazy LISP definition of the function f ,  

using a somewhat prettier notation. Such minor notational improvement hardly justifies the effort 

of developing a new programming language. In particular, the large amounts of work that  went into 

clever pattern-matching techniques is wasted on such a program, as a very naive strategy indexing 

on the head symbol does just as well. It  is easy to transfer some of the conditional structure of r 

above into multiple left-hand sides, e.g. f ( x )  = cond(null(x), 71, "r2) may be replaced by f([]) = T~ 

and f([xly]) = r~ (I use Prolog notation for lists in this paper, even when discussing LISP), but 

such definition by cases still seems like a minor notational change, and certainly does not exercise 

the pattern-matcher very rigorously. Unfortunately, although the regular systems of equations are 

theoretically much more general than LISP programs, typical examples of concepts that  do not 

code nicely into LISP are also troublesome to express with regular sets of equations. 

For example, consider a LISP program for polynomial addition. A polynomial a~Xm+. . .+aoX ° 

is represented by the list [a0, . . .  ,a,~]. A simple LISP function, perhaps called P O L Y P L U S ,  

goes down a pair of lists adding corresponding elements, and eliminating trailing zeroes. The 

trouble with such a program is that it represents the concept of addition in three different ways, 

depending on the computational intention. First,  there is the standard LISP function P L U S  

to add two integer numerals. Next, there is the user-defined P O L Y P L U S  to add polynomials, 

which mathematically is the same sort of addition, merety applied to an expression with unknowns. 

Finally, each cons in a list of coefficients represents an addition and a multiplication, since the 

list of coefficients [ao , . . . ,  am] is really just an encoding of the Hornet-rule form ao + X x (al + 

X × ( . . .  (am-1 + X × a m ) "  ')). It would be much more natural merely to take equations from 

a high-school algebra text~ and massage them to reduce sums of Horner-rule forms to a single 

Homer-rule form. A first a t tempt seems to succeed with 

1) (i + X × a ) + ( j  + X x b ) - - ( i + j ) +  X × ( a + b )  

2) ( i + Z x a ) + j = ( i + j ) + X × a  

3) i + ( j +  X × b) = ( i + j ) +  X × b 

plus the equations defining addition of numerals 

where i and j range over integer numerals, a and b are unqualified variables~ arid X is an atomic 

symbol standing for the variable of the polynomial (not to be confused with a variable in the 

equations). These equations code nicely into an executable equational program [ODo85], but they 

fail to remove trailing zeroes. The conceptually natural  way to eliminate the zeroes is to add the 
two equations 

4) x × 0 = 0  
5) a + O = a  



but this introduces overlaps. For example, equations 2 and 4 overlap in (7 + X × 0 ) +  23. There is a 

regular solution, but  it is rather ugly [ODo85], and involves sneakily encoding control information 

into semantically irrelevant aspects of the form of a polynomial. 

There is one example --- weak reduction in the Combinator Calculus, with the binary function 

A P P L Y  appearing both leftmost and nonleftmost in left-hand sides - -  where the perfect system 

of equations is regular but not LiSP-like [ODo85]. There is also potential benefit in complex 

left-hand sides and sophisticated pat tern matching if an equational program is used to represent 

the information in a database. Buneman and Frankel [BF79] have proposed equational databases 

as an alternative to relational ones. Equational Logic Programming seems to have the same 

natural  connection to equational databases that Prolog has to relational databases. The normal 

Protog strategy of sequential search works very badly for programs representing databases, but the 

pattern-matching tables used in the equational programming implementation look a lot like trie 

indexes already, and might lead straightforwardly to an efficient implementation. 

t t  appears, however, that  a really desirable equational programming language should allow 

benign overlaps that  do not destroy the Church-Rosser property. Of course, the Chureh-Rosser 

property is undecidable, so decidable sufficient conditions are required. The Knuth-Bendix pro- 

cedure [KB70] solves this problem for systems in which every reduction sequence leads to normal 

form. Their procedure detects overlaps (called cri t ical  pairs) ,  constructs examples where a term a 

reduces by overlapping equations to/3 and 7, then reduces/3 and 7 to see if they reach a common 

normal form. This procedure does not halt if either of/3 and 7 has no normal form, but  it could 

certainly be converted to an algorithm that  explored a finite number of reductions of/3 and 7 

and searched for common, not necessarily normal, forms. Unfortunately, even if all such/3s and 

7s reduce to common forms, this only establishes the local C t ~ r c h - R o s a e r  propert~l - -  when a 

reduces to/3 and to 7 ir~ one s tep,  then/3 and 7 reduce to a common form. The full Church-Rosser 

property applies also to many-step reductions. The local Chureh-Rosser property implies the full 

Church-Rosser property only for terminating systems. Further theoretical research is needed to de- 

termine whether some variation of the Knuth-Bendix procedure can provide a useful generalization 

of equational programming allowing some nonregnlar systems o£ equations. 

Although nothing seems to be known about useful extensions of the Knuth-Bendix procedure 

to nonterminating systems, there are two paradigmatic sources of benign overlap that  may serve 

as a guide. Many overlaps are the result of an equation expressing the assoeiativity of an operator, 

for example (i + j )  + k = i + ( j  + k). This equation overlaps itself in ((1 + 2) + 3) + 4. There is a lot 

of good l i terature on special techniques to deal with associativity, but no general technique that  

captures assoeiativity naturally as a special case. Note that  we may wish to require associativity 

of a function defined implicitly by a term schema, as well as requiring it of functions with explicit 

one-symbol names. The other typical benign overlap that  occurs in equational definitions involves 

the interaction of a distributive property with a cancellation, identity or idempotence property. 

For example, i × ( j  + k) = i x j + i x k overlaps with i + 0 = i in 2 x (5 + 0). There are probably no 

essentially new techniques for guaranteeing the Church-Rosser property required to deal with the 

typical cases, merely a careful choice of existing techniques. In particular, finite termination usually 

holds for the subsystem involving the overlapping equations. Some relatively easy analysis of the 

interaction of nonterminating regular systems with terminating, but  nonregular, Church-Rosser 



systems might prove to be very valuable. 

Sufficient relaxation of the nonoverlapping restriction will allow programming techniques that  

go well beyond those available in the regular systems of equations. There are also many natural 

equations, such as equa l (x , x )  = true,  that violate the left-linearity constraint. Such violations 

seem to be less cormnon, and less crucial in practice, and the theoretical results needed to deal 

with them appear  to be quite difficult. Paul Chew [Che81] proved that  nonoverlapping, but not 

necessarily left-linear, equations produce unique normal forms, but they do not always have the 

Church-Rosser property. Uniqueness of normal forms, without the Church-Rosser property, is not 

enough to guarantee completeness of a term-rewriting implementation, since it may be necessary 

to back out of a nonterminating reduction path in order to get on one that  leads to normal form. 

Given nice ways of guaranteeing the Church-Rosser property without left-linearity, there are still 

serious problems in implementing such systems, since there are implicit equality tests involved in 

determining whether an equation is applicable (Section 7). 

3 Parallelism in Equational Programs 

The equational programs accepted by the current implementation are all sequentiM, in the sense 

that in every term not in normal form, there is at least one outermost redex (called an index by 

Huet and L6vy) that  must be reduced in order to reach normal form. A correct implementation 

may choose to work on several redexes in parallel, but a sequential strategy that  always reduces 

an index is guaranteed to find a normal form whenever it exists, without wasting any reductions. 

In contrast, consider the parallel or equatiorLs or(true,  x)  --- true,  or(x,  true)  = true.  Faced with 

a term of the form or(a,  fl), there is no way in general to choose which of the subterms a or fl to 

reduce, and work on either may prove to be wasted. Intuitively, a parallel (or at least interleaved) 

reduction of a and/~ seems to be required. 

The known techniques for analyzing sequentiality [HL79] [ODo85] [HOS85] [HO79] extend nat- 

urally to techniques for detecting a small number of cases in which parallel reduction is required. 

That  is, index seta may be identified, where in order to reach normal f o r m a t  least one redex in 

each set must be reduced, but it is not apparent which. Sequential systems are precisely those in 

which there is always at least one singleton index set. When all index sets have multiple elements, 

the essential idea is to choose some index set, and fork off parallel processes to handle each member 

of the set. 

In principle, there is a simple implementation of this idea, but the precise space and time over- 

head of the implementation is extremely important in practice, and this has never been anMyzed. 

On the one hand, the amount of s tate information for each process, and the data  structure for 

maintaining the set of active processes, must be very small. On the other hand, due to sharing of 

subterms, the goals of several subprocesses may be the same through long subcomputations, and it 

is crucial to detect this and avoid repeating the work. Because of the nontrivial depth of left-hand 

sides, not all processes working at the same node behave in the same way, so detection of process 

equivalence is not quite trivial. A careful design of data  structures and algorithms satisfying the 

constraints above has never been done, and is crucial to the practicality of inherently parallel 

equational programming. The application of index sets to efficient computation on truly parallel 



machines is another intriguing line for future study. Given information about the availability of 

idle processors, it should be possible to use the index sets to choose a reasonable subset of redexes 

to reduce, balancing the possibility of slowing down convergence to normal form by not processing 

a needed redex against the possibility of wasting a processor on an irrelevant redex. 

4 Incremental Input and Output 

The run-time input /ou tpu t  interface of the currently implemented Equational Logic Programming 

system is quite primitive - -  a completely defined finite term is provided as input, and the system 

produces the normal form, if any, as output. So, the demand-driven lazy evaluation used internally 

by the system is not available at the interface. The first and obvious step is to produce a potentially 

infinite output term as its parts become known. Such incremental output is already implemented 

in the kernel of the system, becau~  it is actually easier to program than batched output. Part  

of the theory of sequentiality involves criteria for determining that  a certain symbol in a term is 

s t a b l e  - -  that  is, that  no future reduction steps can possibly change it. I t  is elementa~ry to output 

the next symbol in a developing normal form as soon as it becomes stable, even though the entire 

normal form is not known. In the current implementation, the pret ty-printer  does not support 

incremental output,  so output can be viewed incrementally only in its crude form. This problem 

is very simple to solve, in principle. Incremental reading of the input as it is needed is also very 

easy to program, but  that  has not yet been done [ODo85]. 

A more serious problem conceptually is the arbitrariness of the left-to-right prefix order in which 

symbols of a term appear  in conventional notation. The current implementation's treatment of 

incremental output,  and the easy version of incrementai input, require terms to be processed in that 

fixed order. Some prefix order is reasonably natural, but the left-to-right one may not be. A very 

flexible interface would involve a dialogue, in which the consumer of a term specifies dynamically 

the next symbol to produce, subject only to the constraint that  an argument may not be seen before 

the symbol of which it is an argument. A nice open topic for research is the design of a protocol 

for such dialogues - -  perhaps it should involve a language for moving multiple cursors around 

a term, and querying the symbol at a designated cursor. It is tempting to allow the consumer 

to determine also when certain subterms are shared, but that  idea presents very tricky design 

problems. Also, parallel queries may be desirable. Finally, it should be possible to reevaluate an 

input term incrementally after a c h a n g e  (as opposed to an extension). Such a facility would make 

equational programs veo.  at t ract ive for defining semantic back ends to structure editors. 

An amusing semantic problem arises when input and output terms are processed incrementally. 

There is no way to guarantee, when producing a single symbol of output,  that  the remainder of 

the normal form is well defined and finite. In fact, it is very natural  and convenient to request 

output of an infinite list - -  e.g. ,  the list of all primes - -  and to interrupt the process after seeing 

enough. Similarly~ the producer of input cannot be prevented from extending the input term 

infinitely. While it seems perfectly clear what we want an implementation to do with infinite input 

and output  terms, the semantics of Equational Logic Programming do not explain what sorts of 

infinite incremental behaviors are correct. The most obvious idea for extending the semantics is to 

suppose that ,  in every mode!, each infinite term denotes a value, just as do finite terms. Providing 



such values seems to require continuity assumptions for all functions, and leads to semantics that 

cannot be realized computationally. For example, given the equations 

a =  [01a]; b :  [0lb] 

the inputs a and b both produce the same output - -  the infinite list of 0s. It is not, however, a 

logical consequence of these equations that a = b, and it is clearly undecidable and nonenumerable 

in general whether two terms are equal in the sense of producing the same infinite result (this is 

just the program equivalence problem). 

So, I prefer to regard the infinite output 7/for the finite input ~, not as an assertion of the 

infinite equation oL = T/but rather as an abbreviation for the infinite conjunction of finite equations 

(3:~1. ~ = ~,[~',]) ^ (3~,~. o, = ,7~[~]) ^ . . .  

where the ~h[~i]s are larger and larger approximations to the infinite term ~1, with each :~ being a 

list of distinct variables used in the unknown positions. So, with the equation a = [01a], and the 

input a, the output [0, 0 , . . . ]  abbreviates 

( 3 ~ .  ,~ = [ot~]), ' ,  ( 3 ~ .  ,~ = [o, o lx ] )  ^ . . .  

The notion of correctness follows immediately from this form, but there is some problem in defining 

what is an infinite answer to a question "what is a?" The basic idea is to let an answer be 

any finite or infinite conjunction of the form above, where each Th[~'i ] is in normal form, and 

remains in normal form whenever normal forms are substituted for x'i (the tempting alternative of 

merely requiring that every reduction of every instance ~h[~ retains the form 7/~[~ 3] leads to obvious 

uncomputabitities). Furthermore, we should require an implementation to find the maximal correct 

answer under the instance ordering of infinite terms with variables, else the completely undefined 

output would always be acceptable. If the input a and the output ~ are both infinite, then the 

appropriate interpretation of the output is 

( v ~ , .  3 & .  ,~,[ ,&] = ~,[:~:,]) ^ . . .  ^ ( v ~ , .  3z, s( , ) .  o~,[,&] = ,U(,)[~-.~O)])A 

(W~.  3~)(,)+,. ,~,[~] = '7~C~)+,[~s(,)+,])^'.. 

Where the a~[@i]s are larger and larger approximations to the infinite term ~, and similarly for ~/ 

as before, and f is some strictly increasing function. Notice how the function f is used to decouple 

the rates of production of the input and output. In general, ai is the portion of the input processed 

to determine r/y(O. I allow ~+1 - ~, so each new input symbol does not necessarily produce new 

output. The natural extension of the current implementation is not complete for the semantics 

suggested above, because input and output terms are always presented in left-right prefix order. 

There is no great technical difficulty in adapting the order of presentation to the results of rewriting, 

but it is hard to devise a good humanly-readable notation for the results using sequential input 

and output of strings. Rather, interactive input and output seems to be required. 



5 Modularity 

For practical purposes, a major failing of the current Equational Logic Programming Language 

is the complete lack of high-level programming support. Some facilities, such as type checking, 

are elementary to add as preprocessing steps. While it is not hard to design some reasonably 

useful modular constructs, it is very difficult to find modular  constructs that  are simultaneously 

semantically natural,  practically convenient, and feasible to implement efficiently. First,  we require 

combining operations that  operate on the meanings of equational programs, rather than their texts. 

The most natural  representative of the meaning of a program P seems to be a triple consisting of the 

term language defined by P, the set of models satisfying the equations in P, and the set of normal 

forms. In [ODo85] I tried to develop semantic constructs for combining such triples. Aside ~om 

some glaring errors in the definitions, the basic idea seems to be a failure, because combinations of 

regular systems are not necessarily regular, nor are they Church-Rosser. What  is worse, regularity 

seems to be inherently a property of the program text, and not just its meaning. So, there seems 

to be no way of guaranteeing the good behavior of a combination of programs, without looking at 

their textual interactions. Goguen et al. have developed some useful modular constructs for the 

equational language OBJ, but they do not follow any discipline, such as regularity, for guaranteeing 

completeness [BGS0] [FGJM85]. 

While I still hope that  a thoroughly satisfactory modular t reatment of Church-Rosser equational 

programs can be found~ there seems to be more immediate promise in abandoning the Church- 

Rosser property. Given my commJtment to completeness, abandonment of the Church-Rosser 

property requires a semantics that  is no longer based on equational logic. A natural  alternative 

is subset logic. Let every term represent a set of values, where functions are required to operate 

pointwise (i. e., f ( S )  = U{ f ( {x} )  ] x e S }). Instead of the equality relation, use the subset relation 

to express programs. Subset logic is complete with the reflexive, transitive, and substitution rules 

of equality, omitt ing the symmetric rule. So, nondeterministic term rewriting from left to right is a 

complete implementation for subset logic, with no restrictions on the rules. Technlcall~% it doesn't  

matter  whether the left side of a rule is a subset of the right, or vice versa, as long as the direction 

is always the same. Intuitively, it seems more natural  to think of reduction as producing a subset 

of the input term, since then a term may be thought of as denoting a set of possible answers. 

Thus, a single line of a Subset Logic Program looks like a _D ~. Note that  normal forms do not 

necessarily denote singleton sets, although it is always possible to construct models in which they 

do. 

6 Indeterminate  Computat ions  

Subset Logic Programming naturally supports programs with indeterminate answers, since normal 

forms are not unique, and the logic programming schema allows any of possibly many correct 

answers to be produced. I t  would also be possible to require the set of all correct answers to be 

output,  but it  would be more natural  to view- a system of this sort as equational, since the output set 

is unique. While Equational Logic Programming extends naturally to infinite inputs and outputs, 

without changing its application to finite terms, such extension of Subset Logic Programming is 



more subtle. K only finite terms are allowed, then infinite computations may be regarded as a sort 

of failure, and a finite normal form must be found whenever one exists. If incremental output of 

possibly infinite normal forms is desired, then there is no effective way to give precedence to the 

finite forms when they exist. The most natural idea seems to be to follow all possible reduction 

paths, until  one of them produces a stable symbol for output. Whenever such a symbol is output, 

all reduction paths producing different symbols at the same location are dropped. Only a reduction 

path that  has already generated all of the symbols that have been output is allowed to generate 

further output.  The details work out essentially the same as with infinite outputs for equational 

programs, merely substituting D for =.  It is not at all clear whether this logically natural  notion 

of commitment to e~ symbol, rather than a computation path, is useful. I cannot find a natural 

semantic scheme to support  the more conventional sort o f  commitment to a computation path, 

although a user may program in such a way that multiple consistent paths never occur. 

Efficient implementation of Subset Logic Programming presents a very interesting challenge. It 

is obviously unacceptable to explore naively the exponentially growing set of reduction sequences. 

A satisfying implementation should take advantage of local Church-Rosser behavior to prune the 

search space down to a much smaller set of reductions that  is still capable of producing all of the 

possible outputs. The correct definition of the right sort of local Church-Rosser property is not even 

known. It is not  merely the Church-Rosser property for a subset of rules~ since two rules that  do not 

interfere with one another may interfere differently with a third, so that  the order in which the two 

noninterfering rules are applied may still make a difference to the outcome. Pattern-matching and 

sequencing techniques must be generalized as well, and a good data  structure designed to represent 

simultaneously the many different reductions under consideration as compactly as possible. Sharing 

of equivalent subterms becomes problematic since it may be necessary to reduce two different 

occurrences of the same subterm in two different ways. Significant solutions to these problems could 

be well worth the effort, since Subset Logic Programming would capture the useful indeterminate 

behavior of Prolog, while avoiding the repeated generation of the same solution by slightly different 

paths. 

7 Proving Equality and Solving Equations 

While reducing input terms to normal forms is useful, and sufficient in principle for all computa- 

tion, there are other sorts of derivations from equational programs that  could be very useful. Term 

rewriting is already widely used for testing equality, using systems of rules that are guaranteed 

always to produce unique normal forms [HO80]. A significant extension of these techniques to 

systems without termination could be very valuable. Even when applied to terminating systems, 

techniques designed for nonterminating systems are often more efficient, since they must avoid un- 

necessary and potentially infinite subcomputations. Three substantial technical problems arise in 

such a generalization. First,  the Knuth-Bendix procedure for checking, and in some cases produc- 

ing, the Church-Rosser property fails completely in the presence of infinite reduction sequences, as 

discussed in Section 2. In addition, although the Church-Rosser property guarantees that  if c~ =/3 

holds, then R may be proved by reducing c~ and/~ to some common form, sequencing techniques 

that  suffice for producing normal forms may fail to prove equalities of terms without normal forms. 
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For instance, to prove that  f(c~) = f (~) ,  it may suffice to reduce c~ and ~ to a common form, or it 

may be necessary to apply a reduction involving the outermost symbol f to one or both sides. At 

first it appears that  only complete reduction sequences - -  which reduce every redex - -  can be sure 

of doing enough reductions, at  the cost of much wasted work. Finally, even if enough reductions 

are tried, a proof may be missed because the two terms are out of synchronization, and the current 

state of one agrees with some old forgotten state of the other, so we may have to search through 

many different reduction sequences to find a common form. 

The first problem, of guaranteeing the Church-Rosser property, may be solved by restricting 

to regular systems of equations, although that  restriction seems too strong even for programming 

applications, a M  is likely to be even less desirable for theorem proving. Significant generalization of 

the Knuth-Bendix procedure in this direction is completely open. The second problem, sequencing, 

is not solved, but a promising direction is apparent. Jayaraman noticed that,  when trying to 

prove ~ = 8, as long as the outermost symbols disagree, only outermost reductions need be tried 

[Jay85]. Once the outermost symbols agree, it is necessary to explore in Parallel further outermost 

reductions and a decomposed problem of proving equality of corresponding arguments. Within 

each argument the same reasoning applies. It seems likely that  disagreement of the outermost 

symboIs will be very common, so this observation can save a lot of steps. A remaining problem, 

not treated by Jayaraman, is to implement the required parallelism efficiently. In particular, the 

globatly outermost step will often be the same as one of the outermost steps within a subproblem, so 

an efficient implementation should take care not to repeat work that  is required in several different. 

ways. There appears to be some convergence between these ideas based on term rewriting, and 

recent work on resolution-based equational theorem proving [DH86]. 

The final problem, of avoiding search through many different reduction sequences, is probably 

solved by a careful application of Paul Chew's directed congruence clo~ure algorithm [Che80]. 

Congruence closure was originally intended to provide decision procedures for theories of finite sets 

of equational postulates, with no variables. The essential idea is to construct an undirected graph 

whose nodes represent subterms of the left- and right.hand sides of postulated equations, and of 

the terms being tested for equality, and whose edges represent known equalities. Initially, the only 

edges are those given by the postulates. Then, the transitive and congruence properties of equality 

are applied as closure operations, adding edges to the graph (symmetry is handled implicitly by 

using undirected edges). It is easy to see that all equalities between terms corresponding to nodes 

in the graph that  are logical consequences of the postulates will be generated by this procedure. 

Kozen noticed that  there is a polynomial time algorithm for congruence closure [Koz77], and 

Downey, Sethi and Tarjan developed the theoretically most efficient algorithms [DSTS0], but the 

basis for practical work, and the inspiration for Chew's study of congruence closure, comes from 

Nelson and Oppen, who used a theoretically slower, but for most applications better, algorithm in 

automatic theorem provers [NOS0]. For Equational Logic Programming, the congruence closure 

technique looks very attractive, because it never evaluates the same term twice. Unfortunately, 

the technique d o ~  not appty directly, because of the use of variables in equational programs. 

In principle, it is possible ~o extend congruence closure to equations with variables, by enu- 

merating the ground instances of these equations, and performing the closure operation on the 

larger and larger finite sets of equations without variables so generated. In conversation. I learned 
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that Oppen had applied such a method quite satisfactorily to theorem proving. For programming 

language implementation, the potentially exponential waste of enumerating unnecessary instances 

is not acceptable. Chew showed that it is possible to generalize the data structures used in con- 

gruence closure to represent a directed graph of known reductions, and to extract efficiently from 

those data structures the most reduced equivalent to a given term, using all possible applications 

of all instances of reduction rules considered so far. Part of that term may be undefined, but 

the well-defined part is always suiTicient to determine the next outermost reduction that would be 

made by a term rewriter. Instead of actually performing a reduction, Chew's directed congruence 

clo~ure procedure adds the next instance of a reduction rule that would be applied to an initially 

empty finite set of ground instances, and performs congruence closure on the result [Che80]. 

The directed congruence closure technique has never been tested in practice, although it appears 

to be susceptible to efficient implementation. Such an implementation could turn out to be very 

valuable, possibly subsuming all of the special techniques that have been developed for "memoing." 

In fact, once the directed congruence closure procedure has processed a set of instances of rules, 

the resulting data structure represents, in a compressed form, all of the possible results of applying 

all possible subsets of those instances to all possible occurrences in the term being reduced. Thus, 

an apparently exponential, and in some cases where a finite set of instances produce a reduction 

loop, infinite, search space can be managed efficiently. An extension of such techniques incorpo- 

rating derived equations between nonground terms would be very interesting and useful. Once the 

theoretical problems regarding which derived equations to add are solved, Strandh's incremental 

algorithm for generating pattern-matching tables [Str84] will probably provide a good technique 

for adding such rules on the fly. 

Beyond proving equalities, it would be very useful to be able to solve equalities between terms 

with variables. This is precisely the problem of unification modulo a set of equations, and has been 

studied extensively in the attempt to combine Prolog with Functional Programming, but without 

definitive solution. Given a good solution to the problem of proving equalities between ground 

terms, a solution to the unification problem may probably be derived by running the prover as 

if the two terms were ground, then, whenever the procedure tries to look at a variable position, 

considering possible instantiations. It is easy to show that only instantiations that immediately 

either match the other term, or contribute to a redex, need be considered. 
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