
DESIGN AND IMPLEMENTATION OF
A GENERIC, LOGIC AND FUNCTIONAL

PROGRAMMING LANGUAGE t

Didier BERT, Rachid ECHAHED

ABSTRACT

This paper presents the broad outlines of LPG, a language designed for generic specification and

programming. In this language one may specify different modules which can represent either particular

algebras (ADTs), families of algebras (genetic data types and enrichments) or Y~-structures (theories).

This language is based on Horn clause logic with equality which permits logic and functional

programming to be combined. As modules in LPG can be genetic, an instantiation mechanism is

needed ; such a mechanism is described here as welt as the interpreter and an E-unification algorithm,

thus making LPG a powerful programming language.

t This work is supported in part by the "Centre National de la Recherche Scientifique,

GRECO-Programmation", and in part by the "Centre National d~Etudes des T616communications", under

grant 84/5B.008.790.92.45./PAA.

Authors' address : LIFIA / IMAG BP 68 -38402 Saint Martin d'H~res CEDEX FRANCE.

t20

1 - I N T R O D U C T I O N

A specification language is a tool with which one may specify problems, and than deduce the msniting consequences. In order m

verify the correctness of these consequences, the language must be based upon some logical system. [Gogucn and Burstall 84] give a

generaiization of such systems by introducing the notion of "institution". Soma examples of institutions are Horn clause logic without

equality that underlies ordinary PROLOG, and conditional equational logic on which some specification languages are based, like OBJ2

[Futatsugi ct aL 84] and CLEAR [Burstall and Goguen 77] [Burstail and Goguen 80]. Another institution which generalizes the two

examples above is Horn clause logic with equality. This gives rise to interesting specification languages where logic and functional

programming are combined. EQLOG [Goguen and Mescgucr 84] is such a language.

For several years, we have been working on the design and implementation of an applicative language, called LPG, which is

both a specification language with an algebraic formalism, and a functional programming language in which some parts of specification

can be executed with good efficiency [Bert g3]. One of the aims of the project is to give the user the greatest facilities for paramatetizing

declarations (generic units). This choice allows a static type checking to be done, thus providing an increased security of programming

together with a better efficiency at run time, while relaxing constraints imposed by the usual non generic typed languages. We have now

included a predicate definition mechanism and an algorithm for solving equations and evaluating predicates in a uniform way. In order to

include these facilities, our language is undefiled by Horn clause logic with equality.

In this paper we present an actual implementation of high level notions. An interesting point is the instantiation mechanism :

generic operators look like functional forms [Backus 78] or second order operators, and the same applies to generic predicates.

2 - M A I N F E A T U R E S O F L P G

2.1 P r o g r a m un i t s

LPG (for "Langage de Programmation Generique") allows abstract data types to be defined, following the algebraic specification

method. Other program units are enrichments of data types, and "properties". Syntactically, a program unit is a presentation

(S, g~, l'L C) where S is a set of sorts, fl a family of operator sets indexed by S*x S, I] a family of predicate sets indexed by S*, such

that ~ t~ l] = O. For each sort s, them is an equality predicate symbol =s' hereafter noted "==". C is a set of Horn clauses, of the form :

P0 <== P1 Pn (n>0)

Where Pi is either Q(tl, ..., tm) or t I == t 2 , with Q a predicate symbol and t I t m terms. Each term or predicate must be well typed

with respect to the arity of the operator or predicate symbols that compose iL

For masons of stl, uctumtlon and efficiency, we hierarchically separate the axiomatizatlon of the "==" predicate symbol from that

of the other predicates. The axioms (equations) defining "==" may be conditional, Le. of the three following forms :

t I == 12
or t I == if b t h e n t 2 fl which means : t I == t 2 <== b == true

or tl == if b then t2 else t3 fl which means : tl == t2 <== b == tree

t l == t3 <== b == false

Note that t 2 and t 3 may also include conditional expressions.

Moreover, tim sat of operator symbols t~ is divided into "constructors" and other operators ; these ones must be sufficiently completely

defined [Guttag and Homing 78] with respect to the constructors. Examples of program units in LPG arc :

Example I : Data type of the natural numbers :

type Nat
s o r t s nat
constructors

0 : ->nat

121

s : nat ->nat
o p e r a t o r s

+, * : (nat, nat) -> nat
v a r i a b l e s

n, m : nat
a x i o m s

1: 0 + n ==n
2 : s(m) + n == s(m+n)
3 : 0 * n ==0
4 : s (m)* n = = n + m * n

end

Example 2 : Enrichment of the data types Nat and Bool (8oot is supposed already defined) ; eatsbirds (c, b, h, 1) holds iff when c is the
number of cats and b the number of birds, h is the total number of heads and 1 the total number of legs.

e n r k h On bool_andnat
o p e r a t o r s

= : (nat, nat) -> heel
p red ica t e s

odd, even : nat
eats birds : (nat, nat, nat, nat)

v a r i a b l e s
11, m, cats, birds : nat

a x i o m s
I : 0 = 0 ==true
2 : s(n) = 0 == false
3 : 0 = s(m) == false
4 : s(n) = s(m) == n = m

e l auses
1 : even(0)
2 : even(s(n)) <== odd(n)
3 : odd(s(n)) <== even(n)
4 : cats_birds(cats, birds, cats + birds, 4 * cats + 2.* birds)

end

In order to define genetic (parameterized) units, classes of data types, operators and predicates -that is to say classes of algebras-

need to be characterized. In LPG, this is made by property declarations (like theories in OBJ2 and CLEAR).

Example 3 : Declaration of the associativity property of an operator :

prop Asset
so r t s t
o p e r a t o r s

* : (t, t) -> t
va r i ab l e s

x , y , z : t
a x i o m s

l : x * (y* z) = = (x ' y) * z
end

In the example below, we give the presentations of properties which characterise respectively any data type (eL TRIV in CLEAR [Basstall

and Goguen 80]), any operator, the category of "linear sequence" structures and any binary relation.

Example 4 :

prop Ftype
so r t s t
end

prop Cat.. Seq
sor ts t dora
o p e r a t o r s

prop One operator
sorts tl t2
ope ra to r s

f : t l -> I2
end

prop Relation
so r t s t

t22

nil_op : -> dora p red ica tes
cons_op : (t, dora) -> dora p : (t, t)

end end

2.2 Semantics of da t a types and proper t ies

A model of a first order signature Y = (S, f2, I'[) consists of sets A s for each s ~ S, functions fa~ : Asl x ... x Asn -> A s

for each operator symbol 60 : (sl sn) -> s, ~o ~ 12 and subsets p~ over Asl x ... x Ash for each predicate symbol n : (sl, ..., sn),

n e I I . We say that pn(al, ..., an) "holds" iff (al, ..., an) is in pn.

Let I M be the interpretation of a signature ~ by a model M, we note IM(t) the value of a term t in M, IM[f](t(X)) the value of

t(X) which extends f : X -> M, where X is a set of variables and t(X) is a term containing variables in X. Identically, == is interpreted by

the actual equality in M, and IM[f](n(tl(X) tn(X))) holds in M, iff pg(IM[f] (tl(X)) IM[f] (tn(X))) holds.

A model M satisfies a clause P<== PI ' - " Pn fff for every f : X -> M where X is the set of variables of the clause, IM[f] (P)

holds in M, whenever IM[f~ (Pi) holds in M for all i. A model M satisfies a set C of clauses iff it satisfies every clause in C. Mod (~)

denotes the ctass of models of a signature E, and Mod (X, C) the class of Y-models which satisfy C.

Semantics of a property presentation pp = (~, C) is the class Mod(r', C). On the contrary, semantics of a data type presentation

dtp = (Z, C) is given by the "standard" model of dtp, which is the Herbrand universe on the equivalence classes determined by the

congruence relation generated by == on the terms. If a new presentation contains "old" sorts, operators or predicates, its interpretations

must not change their own ones. It is particularly the case for em-ichments, or for properties importing sorts of data types.

In LPG, we denote a model of a property named p by :

p IT 1 T k ope ra to r s F 1 , F m p red ica t e s P1, "", Phi

where T 1 T k are the carriers of an (heterogeneous) algebra (here they are sorts of data types), F1, ..., F m are maps over the algebra

associated to the operator symbols of the property p, and P1, "", Pn are predicates interpreting predicate symbols of p. For example,

Assoc[nat operators +] denotes a model of Assoc and therefore indicates that "+" on naturals is associative, if the semantic conditions

are satisfied.

From a dual point of view, a theory associated to a presentation p is the set of the clauses which hold in every model of p

[Goguen and Burstai184]. As in CLEAR, we need the notion of morphism between signatures and between theories. Let us briefly recall

the definitions.

Definition 1 : A signature morphism ¢ : (S, I&, rI) -> (s,, ~2,, FI') is a triple (f, g, h) with f : S -> S' a map on sorts, g : ~ -> £Z' a

sort-preserving map on operators, and h : I I ->II ' a sort-preserving map on predicates.

Let ¢ : Z -> Z' be a signature morphism, there exists a function ~ : T z (X) -> Tz,(X') which "translates" terms over the

signature E into terms over Z'. Similarly, it is possible to deduce the map ~ : Mod(~ 3 -> Mod(Y), whinh, for each ~'-model M'

associates a T-model M.

Def in i t ion 2 : A theory morphism ¢ : (Z, C) -> (~ ' , C') is a signature morphism ~ : Z -> ~", such that

~ (M o d (Z ' , C')) ¢ Mod(X, C).

In LPG, it is possible to declare theory morphisms. This is made by a "satisfies", "inherits" or "combines" statement [Bert 83]

within property units. For example, let us consider the property that expresses the equality :

Example 5 :

prop Equality
sor t s t

123

operators
= : (t, t) -> bool

variables
x, y, z : t

axioms
1 :x = x == true
2 : x = y = = y = x
3 : (x = y and y = z) implies (x = z) == tree

satisfies Ftype[t]
end

In this case, the "satisfies" declaration means that there exists a theory morphism between Ftype (theory without operators nor

predicates) and the theory Equality. Therefore, any model "Equality[I" operators equ]" is also a model "Ftype[T]", by "forgetting" the

operator "equ" and the equations attached to i t

Informally, whenever a statement "satisfies p1[...] pn[...]" occurs in a property unit p, this means that there exists a theory

morphism between each of the theories Pl Pn and p. A statement "inherits po[.. .]" occurring in a property unit p has the same

meaning as "satisfies p0[...] ", but in addition the set of axioms in p is augmented by the axioms in P0 (up to renaming induced from the

signature morphism). Finally, a statement "combines pl[. . .] pn[...]" in a property p means that there are no more equations in p

apart those in Pl Pn , imported into p (up to renaming) ; obviously, there are theory morphlsms between Pl Pn and p.

Now, we give in the example below, the presentations of partial and total order properties where morphism declarations are

more expressive :

Example 6 :

prop Partial_Order
so r t s t
operators

<, = : (t,t) -> boot
v a r i a b l e s

x , y , z : t
axioms

l : x < x = = t t ~
2 : x = y = = x-<y a n d y < x
3 : (x < y and y < z) implies (x _< z) == true

satisfies
Equality[t opera tors =]

end

prop Total_Order
sor t s t
operators

_<, = (t, t) -> bool
v a r i a b l e s

x , y , z : t
axioms

1: x_< yory_< x == true
inherits

PartiaI_Order[t operators <, =]
end

2.3 Gener ic data types

An abstact data type (or an enrichment) is generic if it is parameterized by a property, called "required" property. This property

characterizes the class of all models which may be actual parameters of the declared unit. For example, the data type of linear sequences,

parameterized by the type of the elements is defined by :

Example 7 :

type Seq requires Ftype[elem]
sor t s seq
c o n s t r u c t o r s

nil : -> seq[elem]
<+ : (elem, seq[elem]) -> seq[elem]

end

Ftype[elem] denotes a "formal" model of the required property. A formal model "p[...]" parameterizing a generic unit G gives the image of

sorts, operators and predicates of the property p, inside G. Therefore, it defines a theory morphism. In the example 7, the morphism is

F_seq : Ftype -> Seq such that F_seq = (f, g, b) where "f : t ~ elem" and "g, h : ¢ ~ ~". Following [Goguen and Burstall 84], the

"124.

so defined morphism induee~ between the models a fuuctor F seq $: Mod(Ftype) -> Mod(Seq), called the free functor, which is left

adjoint to the forgetful functor F_seq* : Mod(Seq) -> Mod(Ftype). The semantics of this generic data type is the set of models

F_seq$(Mod(Ftype)), and from the theory point of view, we shall be able to speak about the theory Seq constrained by F_Seq, as it is

defined in CLEAR [Burstall and Goguen 80]. In the case of non generic data types, like Nat, we can propose the same semantics, by

considering the morphism F_Nat : Empty -> Nat {0, s} where Empty is the empty theory defined by :
prop Empty
end

and where Nat {0, s} means the theory Nat with only the two bracketed operators. F Nat$(Empty) is reduced to only one (up to

isomorphism) model, which is the initial algebra of the category lvlod(Nat{0, s}), llke in the usual semantics of abstract data types

[Goguen et al. 78]. Let us notice that it always exists a morphism between Empty and any other theory.

Particular conditions should be required to insure that the data types passed as parameters are "protected", but we do not develop

these restrictions here, see [Goguen and Meseguer 82] [Thatcher et aL 82] [Ehrig et al. 84].

2.4 Enrichments, Model declaration

An enrichment is a set of operator or predicate declarations which may require specific properties. For example, the operator of

equality on sequences must require equality on the elements. Sorting operators must require a total or partial order, and so on. Example 8

shows such enrichments and indicates also how to declare models of properties in LPG, in a "models" rubric :

Example 8 :

enrich Equ Seq requires Equality[elem operators eq]
o p e r a t o r s

= : (seq[elem], seq[elem]) -> beol
va r i ab l e s

a, b : elem
s, u : seq[elem]

a x i o m s
1 : nil = nil == true
2 : a <+ s = nil == false
3 : nil = b <+ u == false
4 : a <+ s = b <+ u == eq(a, b) and s = u

models
E_Seq : Equality [seq[elem] operators =]

end

enrich Oa_Nat_.Seq
operators

rev_iota : nat-> seq[naq
variables

n : nat
a x i o m s

1 : rev_iota (0) == nil
2 : rev_iota (s(n)) == s(n) <+ rev_iota (n)

end

This model declaration is semantically valid only if the axioms of the equality hold in the theory Equ_Seq, Le. the morphism

E_Seq : Equality -> E q u S e q defined by :

t ~ seq[elem]

= :(t, t) -> boo1 ~ = : (seq[elem], seq[elem]) -> heol

is indeed a theory morphism.

Let us note that if this model declaration is valid, than Ftype[seq[elem]] is also a declared model (of Ftype), without any extra

verification, because of the morphism Ftype -> Equality (of. example 5).

The reader has probably noted that in the first examples, some theory morphism and model declarations have been omitted. The

reason is that it was too early to introduce them.

2.5 Instantiation of sorts and operators

The declarations of program units are made in an environment. This environment is composed of the names of the theories (e.g.

Seq, Assoc, Ftype, ...), but also of the sorts, operators, predicates and models of the data theories. These names are individually

125

parametetized by the required property of the unit in which they have been declared. An expilcit instance of a sort (sort expression) is

given by the association between the genetic sort and a model of the required property. For example, we can write : "seq.Ftype[nat]" for

the data type of the sequences of natural numbers.

If we have declared the data type set as following :

Example 9 :

type Set r equ i r e s Equality[elem o p e r a t o r s eq]
s o r t s set
c o n s t r u c t o r s

empty : -> set[elem]
insert : (alem, set[alem]) -> set[elem]

end

an explicit occurrence of "set" is : (*) set.Equality[nat ope ra to r s =]

where "=" is the equality operator over the natural numbers. If "Ftype[nat]" is a declared model in the environment, we can simply write

"seq[nat]" for "seq.Ftype[nat]" ; f rom the actual sort, LPG tries to reconstitute the complete instance of the sort "seq". Identically, if

"Equality[nat ope ra to r s =]" is a model named E n a t in the environment, writing "set[nat]" is the same thing as writing "set.E._naf', or

the expression (*). Because of the generic declarations of models, like E Seq in Eqa_Seq, it is possible to combine sorts without any

intermediary declaration, as in the sort expression "set[seq[~eq[nat]]]" which denotes the sort of the data theory of the sets of sequences of

sequences of natural numbers. In this expression, The equality model in the data type "seq[seq[nat]]" is completely deduced from the

declarations, without extra efforts. Sort expressions can freely be used in the profiles of the operators. We can notice that within the

def ini t ion of Set, the express ion "se t [e lem]" is indeed an impl ic i t ins tance of "set" wi th the formal model

"set.Equality[elem opera tors eq]". In this same program unit, "seq[elem]" would mean "seq.Ftype[elem]" where Ftype[elem] is deduced

from the formal model by the theory morphism" Ftype -> Equality".

Operators and predicates defined in genetic units can also be directly instantiated in a term or a literal, according to the type of the

operands. For example, in LPG, knowing that "3" is a denotation o f a natural number and "{1, 2}" a denotation o f a set of natural

numbers, then the term "insert(3, {1, 2})" contains an occurrence of "insert" instantiated by the model "Equality[nat ope ra to r s =]". In

the same way, k n o w i n g that [a, b, el is a denotat ion of a sequence (for a <+ (b <+ (c <+ nil))), the term

"insert([[2]], { [[1, '2], [3]], [hill })" is an instance of "insert" with the model "Equality[seq[seq[nat]] o p e r a t o r s =]" where the

operator "=" is an occurrence of the "=" in Equ__Seq, instantiated itself by the model "Equality [seq[nat] ope ra to r s =]", and so on. The

user is not bothered with complete instantiations of the generic operators or predicates ; the system undertakes to do it, f rom the type

checking and the model declarations.

There exists another kind o f operator/predicate instantiation, that is the explicit instantiation. Some examples allow this case to

be iilnslrated.

Example t0 :

enr i ch Exl r e q u i r e s One_operator [tl , t2 o p e r a t o r s f]
operators

alpha : seq[tl] -> seq[t2]
predicates

graph : (tl, t2)
variables

a: t l
s : seq[tl]

a x i o m s
1 : alpha (nil) == nil
2 : alpha (a <+ s) == f (a) <+ alpha (s)

clauses

enr ich Ex2 r e q u i r e s Relatiou[t p r ed i ca t e s r]
predicates

reflex : (t, t)
variables

x , y : t
clauses

1 : reflex (x, y) <== r (x, y)
2 : reflex (x, x)

end

126

1 : graph (a, f (a))
end

enrich Ex3 requires Total_Order[elem operators ,% =] enr ich Ex4 requires Cat__Seq[t, dora operators n, f]
ope r a to r s ope ra to r s

sort : seq[elem] -> seq[elem] horn : seq[t] -> dora
insert : (elem, seq[elem]) -> seq[elem] va r i ab l e s

p red ica tes a : t
ordeTed? : seq[elem] s : sexl[t]

v a r i a b l e s a x i o m s
x, y : elem 1 : horn (nil) == nil
s : seq[elem] 2 : horn (a <+ s) == f(a, horn(s))

a x i o m s e n d

1 : sort(nil) == nil
2 : sort(x <+ s) == insert(x, sort(s))
3 : insert(x, nil) == x <+ nil
4 : insert(x, y <+ s) == if x ~ y then x <+ (y <+ s)

else y <+ insert(x, s)
fi

c l auses
1 : ordered? (s) <== sort(s) == s

end

The operator "alpha" applies the formal operator "f ' to each element of the sequence parameter ; "graph" is the relation of the graph of f,

for any f ; "reflex" is the least reflexive relation which contains the formal relation r ; "sort" is a sorting operator ; "ordered?" is a predicat

which holds whenever its sequence parameter is ordered (according to the total order used) ; "horn" (for homomorphism) transforms a

sequence of elements to a term where the consmmtors nil and <+ are replaced by n and f respectively. An explicit instance of a generic

operator or predicate is given by the operator or predicate symbol followed by the actual operators and predicates of the instantiating

model. The term "alpha[+]" is an operator expression with the model "One_operator [(nat, nat), nat operators +]", and with the profile

"seq[(nat, nat)] -> seq[nat]". Similarly, "graph [+]" is a predicate expression which denotes the graph of the operation "+".

Operator/predicate expressions have the same prerogatives as operator/predicate symbols, and the explicit instantiation mechanism may be

nested at any level, like in "reflex [graph [alpha [alpha Is]Ill" which is a predicate denoting a subset of (seq [seq [nat]t, seq [~q [nat]]).

More generally, in the genetic context of a formal model M, a sort, operator or predicate expression is either a formal parameter

given in M, or an effective symbol with an instantiating model. A model contains recursively sort, operator and predicate expressions.

Considering these expressions as trees, we call "ending model" a model occurring at a leaf of such a tree. By construction, an ending

model is always of the form ¢ (M), including "Empty" as model of a non genetic symbol. Thus, such an expression ~ is :

- si, o~i, x i : a formal sort, operator or predicate of M ;

- u.p'[t t opera to rs f l predicates Pl, ""]

where p' is the required property of u , and tl . . . , f l ' " , P l"" are not formal ;

- v .¢ (M) where ¢ throws down M to the required model of v.

Let p be the required property of the genetic context, and let M' be p[T 1 T k opera tors F 1 F m predicates Pl Pn], the

instantiation of = by M', noted ~.M' is defined by :

(1) si.M' = T i

(2) o~i.M'= F i

(3) ni.M' = Pi

(4) (u.p'[t 1, ... opera tors fl predicates Pl, ...]).M' = u.p'[tl.M' , ... opera to rs fl.M', ... predicates P1.M', ...]

(5) (v .¢ (M)),M' = v.ep (IV[')

Inductively, to instantiate a term f(a 1 an) or a formula Q(a I am) by a model M', we have :

f (a I an).M' = f.M'(al,M' , awM')

Q (a 1 am).M' = Q.M' (a I.M', am.M')

127

3 - L O G I C P R O G R A M M I N G I N L P G

Given a specification SP (i.e. a set of specifications) and a goal statement "<== P1 Pn" (i.e. a Horn clause whose head is

empty) where the atomic formulae P1 Pn are completely instantiated (containing no formal symbol), we wish to find "solut~ons" of

these formulae, that is to say values of the variables which make the clause valid in the theory SP. As in ordinary logic programming

[Van Emden and Kowalski 76], our algorithm is built on the resolution principle [Robinson 65] that we briefly recall below :

Given two clauses :

A <== A I A i A n

B <== B 1 , . . . ,B m

Suppose there exists a substitution ~ such that o(Ai) = ~(B), by applying the resolution principle, the following clause called resolvent

is deduced :

~(A <== A 1, ..., Ai . i , B1, ..., B m, Ai+ 1 An)

In our case, the substitution ~ is not the most general unifier as in traditional logic programming, but an E-unifier depending on

the set E of equations that define the functions. Furthermore, when B is generic (so is Ai), the actual models instantiating B and A i must

be the same ; otherwise LPG deduces the model instantiating B from that of A i-

Starting from a goal statement C O and using the set of clauses of the specification SP, the algorithm tries to find sequences

CO, C1, . . . ,Cq, one at a time, where C i (i>l) is either a clause in SP or a resolvent and Cq is the empty clause. As in ordinary

PROLOG, the strategy used is depth-fast (with backtracking), the atomic formulae of a goal are evaluated from left to right and clauses

are considered in their order of declaration.

Solving an equation t I == t 2 modulo a set of equations is called E-unification. Two terms t and t' are said E-unifiable iff there

exists a substitution o, called E-unifier of t and t', such that o(t) = E ~(t') with =E being the congruence generated by the set E of

equations. Let U(t, t', E) denote the set of all unifiers of t and t'. When E=¢, U(t, f , E) contains, if it is not empty, one unifier (up to

renaming) tailed the most general unifier. Unfortunately, such a unique unifier does not always exist as soon as E ~ 0. That is why the

notion of complete set of E-unifiers is inWoduced.

Definition 3 : Let E be a set of equations, t and t' be two terms and W be a set of variables containing V, where V is the set of

variables occurring in t and t'. A set S of substitutions is called a complete set of E-unifiers of t and t' away from W iff :

(1) V ~ S , D (~) ~ V a n d I (o) n W = ¢

(2) V ~ E S, ~c U(t, t', E)

(3) V ~ ~ U(t, t', E),] ~' e S, ~'-<E o [V]

S is said to be rednimal iffi t satisfies the further condition :

(4) V ~ , ~ ' ~ S , ~ < E ~ ' [V] ~ =~ '

Note that D(o) denotes the domain of the substitution ~ (i.e. the set of variables x such that ~(x) ~ x), I(o) denotes the set of variables

introduced by ~ (i.e. the set of variables occurring in ~(x) for all x in D(~)) and -<E IV] stands for the preorder on substitutions defined

by : ~ <-E ~' [V] iff V x E V, ~(x) <-E £(x) where t <-E t' iff 3 ~, 0(t) =E t,"

In the case where a set of equations E possesses a canonical term rewriting system, an E-unification algorithm has been given

[Hullot 80]. This algorithm is based on the narrowing relation.

Definition 4 : Let ~ be a term rewriting systen:L A term t is said ~-narrowable into f at occurrence u, with t/u (the subterm of t at

occurrence u) not a variable, iff there exists a rule gi "> di in ~ such that t/u and gi are unifiable. Let ~ be their most general unifier,

then t' is obtained by replacing in ix(t) the subterm ix(t/u) = ~(t)/u by ~(di). This is denoted by : t -N->[u ' i, ~] t'

128

Let us recall a theorem that gives a non deterministic algorithm to compute a complete set of E-anifiers.

Theorem [Hullot 80] : Given an equational theory defined by a canonical term rewriting system ~ . Let t and t' be two terms, H a new

function symbol (H e ~) , and V be a set of variables containing those occurring in t and t'. Let S be the set of substitutions o such that

o is in S iff there exists a -N-> derivation :

M 0 = H(t, t') -N->[u0, i0, 00] M1 = H(t l ' t ' l) -N->[u l , il , ~1] "'" -N->[u(n-1), i(n-1), o(n-1)] Mn = H(tn, fn)

such that t n and t' n are unifiable. O n is normalized (with 0i+l = °i~i and 00 = s) and o = g0n where ~t is the most general unifier of In

and t' n. S is a complete set of E-unifiers of t and t' away from V.

To implement this algorithm, we have chosen depth-first strategy for its efficiency. Terms are always normalized. When

applying one step of narrowing relation, equations are considered in their order of declaration and the subterm chosen to be rewritten, if it

exists, is the innermost and leftmost one as it is mentioned in [Frlbourg 84] and [Jouannaud et al. 83]. Furthermore, we do not deduce an

E-unifier as soon as t n and t' n are unifiable but only when in addition H(in, t'n) is not narrowable. So, the set S of E-unifiers computed

does not always satisfy the condition : "¢ o e U(t, t', E),] o' e S, o' <E o; but when o is ground this condition is satisfied.

Moreover, when E is such that for every operator f of arity s 1 s n and every n-uple of ground terms (t I In), there exists

at most one equation whose left hand side matches f(tl, ..., In), then S satisfies the further condition : V o, o' E S, o <-E o' ~ ~ = o ' .

Another implementation of this algorithm is presented in [Rety et al. 85].

Example 11 : A query is followed by a question mark. Variables must be declared, like within a program unit. After each solution the

user may type a carriage return to obtain another solution if it exists, otherwise, he may type "no" to stop the process. Here we list all

the solutions given by the algorithm.

variables
i, j, cats, birds, heads : nat

end
i + l = = 3 + j ?
for all j : nat (solution 1)
i == s(s(j))

cats_birds (cats, birds, heads, 6) ?
cats == 0 (solution I)
birds == 3
heads == 3

cats == 1 (solution 2)
birds == 1
heads == 2

ordered?[<=, =] ([0, i, 2]) ?
i == 0 (solution 1)
i == 1 (solution 2)
i == 2 (solution 3)

ordered?[>=, =1([0, i, 2]) ?
(no solution)

ordered?[>=, =] ([3, 1,1]) ?
ok

refiex[graph[alpha[s]]]([0, i], [j, s(s(0))]) ?
i == s(0) (solution 1)

129

j == s(0)

i = = s (s (0)) (s o l u t i o n 2)
j = = 0

4 - T H E I N T E R P R E T E R

One may wish to use specLfication language as a programming language for rapid prototyping and therefore programs must run

with a certain efficiency. For this reason, we have written an interpreter for a subset of the equations which reduces very quickly a ground

term to its normal form.

The equations considered by the interpreter are syntactically defined with a "==>" symbol instead of the "==" symbol. They must

meet the conditions :

(1) the root of the left hand side is the operator defined by the equation ;

(2) the operands of the root operator are composed only of constructors and vatiables (in the left hand side) ;

(3) all the variables in the right hand side must occur in the left hand side.

These equations are called "runable" equations. The system LPG translates every runable equation into a pair (f, c), where f is a filter

corresponding to the left hand side, and c is a text in an intermediary code ([code) , corresponding to the right hand side. Interpretation is

performed by a stack machine which is essentially composed of four stacks :

- the value stack (v s t)

- the parameter stack (ps t)

the genetic context stack (c_st)

the return address stack (r_st)

The values are represented in a heap by n-ary trees, refered from v_st and pst_ A node contains the code for a constructor, or is a single

value for the predefined values : nat, string ; the children of a node n refer to the operands of the consWactor assigned in n. A filter is

represented like a value, except that, in this ease, a leaf may be a variable. The filter algorithm takes a pair (f, v) where f is a filter and v a

value, and if succeeds, initializes the parameter stack for the evaluation of the tight hand side associated to the filter f. Some particular

cases must be added to deal with predeflned values (such as integers), but we do not detail them here. Let us notice that the interpreter

never performs type checking, because that was made during parsing ; at the run time, operators are sure of the tight typing of their

operands. It is an advantage of the strongly typed languages.

As usual, r_st contains the retain addresses ; the address of the top is the next statement to execute, after the evaluation of the

]_code of the current operator. The c_st stack refers also to the I_code, in the following way : each element of e st indicates the beginning

of the representation of an effective operator in the I_code.

For example, the piece of the I code tbr the fight hand side of the equation "atpha(a <+ s) = = > f(a) <+ alpha(s)" is only :

statement : ~ r a n d : comment :
value of var i value of a
formal call 0 call of f
value of vat 0 value of s
ca l l index(alpha) call of alpha
cartesianprod 2
call index(<+) call of <+
p o p ~ st 2 pop a and s from p_st
return

Compiling the expression "alpha[aIpha[+]](x)" where x is a variable of type seq[seq[(nat, nat)]] gives the l c o d e :

130

E1
E2

E3

E4

value of var index(x) value of x
jump_to E4
j u m p t o E3 beginning of alpha[+]
call index(+) beginning o f +
return end o f +
p u s h c s t E2 install the genetic context of alpha
call index(alpha)
p o p _ e s t 1 remove the generic context
return end of alpha[+]
p u s h _ c a t E1 install the generic context
call index(alpha) call of the outermost alpha
p o p _ c a t 1 remove the generic context

Operations on a stack st are, in a Pascal-like language :

procedure push (v : value ; vat st : stack) ;

procedure pop (i : integer ; vat st : stack) ; <* to pop i elements from the stack *>

function top (i : integer ; st : stack) : value ; <* to take the ith value under the top *>

Let C be the label of the statement to be executed, the interpretation procedure 1P is described by :

(1) IP(jumpto , i) C := i ;

(2) IP(retum) C := top(0, r s t) ; pop(l , r s 0 ,

O) IP(pop_p st, i) pop(i, p s t) ; C := C + 1 ;

(4) IP(push_c_st, i) push(i, c s t) ; C := C + 1 ;

(5) IP(pop_c_st, i) pop(i, e_st) ; C := C + 1 ;

(6) IP(value of vat, i) push(top(i, p s 0 , v s0 ; C := C + 1 ;

(7) IP(formal call, i) : push(C+l, r a t) ; C := top(i, c_s0 ;

(8) IP(cartesian prod, i) : form the cartesian product cp of the i values at the top of v a t ;

pop(i, v a t) ; push(cp, v_s0 ; C := C + 1 ;

(9) IP(call, i) : push(C+l, r s t) ;

if i is a constructor :

form the value v with a node i and the value top(0, v s t) for arguments,

if any ; pop(l , v_s 0 ; push(v, v_st) ; pop(l , r s t) ; C := C+I ;

else ff i is an operator with parameters :

let (f, c) be the first tunable equation of i such that filter(f, top(0, v a t))

succeeds, then C:= e ;

otherwise the axiomatizat ion of the operator coded by i is not

sufficiently complete ;

else <* i is an operator without parameter *>

let(0, c) be a ranable equation for i then C := c ;

othewise no complete axiomatization.

We have just shown a sketch of the interpreter. The complete LPG provides precondition and exception facilities. Moreover

some built-in input-output functions may be called in the tunable equations. Experiments with LPG as a functional programming

language have been very pleasant and easy. The important fact is that "compiling" an instance of a generic operator consists only in

passing operators as actual parameters ---the generic context- to execute the code of the operator equations. Two different instances of the

same operator are compiled in two different bindings of the generic parameters for the same piece of code.

Example 12 : An invocation of the interpreter is made by typing a ground term followed by the "==>" symbol. The symbol" ^ " stands

for the last value (term) computed by the interpreter :

131

[[I, 21, [3]] = [[1, 21, [311 ==> (implicit instantiation of "=")
m~e (result)

sort[<=, =] ([6, 4, 2, 3]) ==>
[2, 3, 4, 6]

alpba[rev_iota] (^) ==>
[[2, 11, [3, 2, 11, [4, 3, 2, 1], [6, 5, 4, 3, 2, 111

born[nil, +] (^) = >
[2, 1,3,2, 1,4,3,2, 1 ,6 ,5 ,4 ,3 ,2 , 11

horn[l, *] (^) ==>
207360

(explicit instantiation of the operator "sort")

("+" appends two sequences. We suppose this operator defined elsewhere)

5 - C O N C L U S I O N A N D F U T U R E W O R K

We have presented the broad outlines of a project designed for generic specification and programming. In this language, one may

define classes of Z-structures (properties), particular algebras (abstract data types) and families of algebras (generic data types and

enrichments). An E-unification algorithm has been implemented in order to solve equation systems and to evaluate predicates, thus

generalizing ordinary logic programming. The characteristics of the instantiation of sorts and operators, as well as the declaration of

tunable equations make it an applicative programming language. A few other useful features already implemented, but not presented here,

are raising and handling exceptions, and partial binding of the arguments of an operator (curryfication). These features together with the

user defined "functional forms" llke "alpha" and "horn", make LPG a very powerful programming tool.

Some verifications such as the validity of model declarations and theory morphism declarations (~(mod(.Y_,', C') ~ Mod(Y., C))

are not performed in the present implementation, nor is it checked that enrichments preserve the hierarchy. On the other hand, one often

would like to prove theorems in a given specification. So, it seems worthwhile to give the user these facilities ; that is why we are

building an environment for specification analysis. This environment will include the interpreter and the "resolver" presented here as well

as other tools such as a completion algorithm, a system for transformation of programs [Bert and Bensalem 85], a theorem-prover (the

connection with the demonstrator OASIS [B arberye et al. 85] is in the process of being done), and so on.

6 - A C K N O W L E D G E M E N T S

Special thanks are due to P. DRABIK for his par'dcipation in implementing the LPG system. We are also grateful to

J.M. HUFFLEN for his assistance in typing a first draft.

7 - R E F E R E N C E S

[Backus 78] J. Bankus : Can Programmin~ be Liberated From Von Neumann SWIo ? A functional style of algebra of programs CACM,

vol 21, no. 8, pp. 613-641, August 1978.

[Barberyeeta1.83] G. Barberye, T. Joubert, M. Martin, M. Mouffron, E. Paul : ~ . Note technique CNET,

NT/PAAlCLC/LSCI959, 1983.

[Bert 83] D. Bert : Refinements of Generic Specifications With Algebraic T991s. Proceedings of the IFIP 9th World Computer

Congress, pp. 815-820, Paris, September I983.

[Bert and Bensalem 85] D, Bert, S. Bensalem : Algebra of Strongly Tvoed Functional Programs. RR. IMAG-561-LIFIA-33, Grenoble,

132

1985.

[Burstall and Goguen 77] R. M. Burstall, J. A. Goguen : .P_g.King theories together t%Iltake soecifications. Proceedings of 5th

International Joint Conference on Artificial Intelligence, pp. 1045-1058, Cambrige (Massachussets), 1977.

[BurstaU and Goguen 80] R. M. BurstaU, J. A. Guguen : The Semantics of CLEAR, a ~ec!fication language. Proceedings of Advanced

Course on Abstract Software Specification, LNCS, no. 86, pp. 292-332, Copenhagen, 1980.

[Ehfig et al. 84] H. Ehrig, I-I. J. Kreowski, J. W. Thatcher, E. W. Wagner, L Wright : Parameter Passin~ in Al~ebralc Specification

Languages. Theoretical Computer Science, no. 28, pp. 45-81, North-Hollmad, 1984.

[Ffibourg 84] L. Fribourg : Handling Function Definitions Through Innermost Superposifion and Rewriting. LtTP, Rapport no. 84-69,

Paris, 1984.

[Futatsugl et al. 84] K. Futatsugi, J. A. Goguen, J-P. Jouamaaud, J. Meseguer : Principles of OBJ2. CRIN, Rapport no. 84-R-066,

Nancy, 1984.

[Goguen et al. 78] J .A . Goguen, L W. Thatcher, E. W Wagner : ~dl. llaitjal Algebra Apnroaeh to the Specification. Correctness ~ d

Irr~plementation of Abstract Data t~es . Current Trends in Programming Methodology, voL 4 : Data Structuring, chap. 5,

Prentice Hall, 1978.

[Goguen and Burstall 84] L A. Goguen, R. M. Burstall : Introducing Institutions. Proceedings Logics and Programming Workshop,

pp. 221-256, 1984.

[Goguen and Meseguer 82] J. A. Goguen, J. Meseguer : Universal Realisation. Persistent Interconnection and Imnlementation of

Abstract Modules. 9th Colloquium on Automata, Languages and Programming, LNCS, no 140, pp. 265-281, 1982.

[Goguen and Meseguer 84] J. A. Goguen, J. Meseguer : EQuality. Types. Modules and Generics for Logic Programming. Proceedings of

International Conference on Logic Programming, Uppsala, 1984.

[Guttag 78] J.V. Guttag : The Ainebraic Specification of Abstract data types. Acta Informatiea, no. 10, 1978.

[Hullot 80] J-M. Hullot : Canotaical Forms and Unification. Proceedings 5th Conference on Automated Deduction. LNCS, no. 87,

pp. 318-334, 1980.

[Jouannaud et al. 83] J-P. Jouannaud, C. Kirclmer, H. Kirehner : Incremental Constructions of Unification Algorithms in Equational

Theories. Automata, Languages and Programming, pp. 361-375, Barcelona, 1983.

[Rety et al. 85] P. Rety, C. Kirehner, H. Kirchner, P. Lescanne : Narrower : a new algorithm for unification and its application to logic

programming. First International Conference on Rewriting Techniques and Applications. Dijon, 1985.

[Robinson 65] J. A. Robinson : A Machine-Oriented Loeic Based on the Resolution Principle. JACM, vol. 12, no. 1, pp. 23-41, 1965.

[Thatcher et al. 82] J. W. Thatcher, E. W. Wagner, J. B. Wright : Data Type Specification : Parameterization and the Power of

Specification Techniques. ACM TOPLAS, vol. 4, no. 4, pp. 711-732, 1982.

[Van Emdan and Kowalski 76] M.H. Van Emden, R. A. Kowalski : The semantics of Predicate Loeie as a Pm~rammin~ Language.

JACM, vol. 23, no. 4, pp. 733-742, 1976.

