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ABSTRACT 

In this paper we present the results of two pieces of work which, 
when combined, al low us to go from a program text  in a functional 
language to a parallel  implementation of thai  program. We present 
techniques for discovering sources of parallelism in a program at compile 
time, and then show how this parallelism is na tura l ly  mapped into a 
parallel combinator set thal  we will  define. 

To discover sources of parallelism in a program, we use abstract 
interpretation. Abstract  interpretation is a compile-time technique which 
is used to gain information about a program that  may then be used to 
optimise the execution of the program. A part icular  use of abstract  
interpretation is in strictness analysis of functional programs. In a 
language that  has lazy semantics, the main potential  for  parallelism arises 
in the evaluation of operands of str ict  operators. A function is str ict  in an 
argument if i ts  value is undefined whenever the argument is undefined. If 
we can use strictness analysis  to detect which arguments a function is 
str ict  in, we then know that  these arguments can be safely evaluated in 
parallel  because this wi l l  not affect the lazy semantics. 

Having identified the sources of parallelism at compile-time it is 
necessary to communicate these to the run-t ime system. In the second part  
of the paper we use an extended set of combinators, including a pair of 
paral lel  combinators that  achieve this purpose. 
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I .  M a t h e m a t i c a l  a n d  N o t a t i o n a l  P r e l i m i n a r i e s  

A semant ica l ly  sound  method  of s t r ic tness  ana lys i s  is given in [Burn, Hankin  and 

A b r a m s k y  1985]. We  summar i s e  the  approach in th is  section, using a more  perspicuous 

nota t ion  fo l lowing  [ A b r a m s k y  1985]. 

As  our  language we  w i l l  use the  t yped  X-calculus w i th  a set of  base t y p e s  and a set 

of t y p e d  constants .  Given base types  A ,  B, . - . ,  we  have type  expressions 0., z defined 

by 

0. ::= A L 0.-00. 

The set of t y p e d  cons tants  is denoted by {c a } (e.g. some t y p e d  cons tan t s  are  4ir ~, 

+int-~int-~int and cons(_]_ A .nilAlis t )Alist )" For  each t ype  0. we have an infinite set of t y p e d  

var iables  Var~r = {x ~ " " - }. Our  language of  expressions,  Exp, consists of  t y p e d  t e rms  e:cr 

fo rmed  according to the  fo l lowing  rules : 

(1) x e : o- variables 

(2) c~  : 0. constants 

(3) e : r abstraction 
)t x ° . e  : 0"'--*7 

e 1:0.- '~T e 2 : 0 .  
(4) application 

e l e 2 : ~  

( 5 )  e : 0 . - ~  0 .  )~x e : 0. fixed points 

An  in terpre ta t ion ,  1, is given by 

1 =  ({DA/},{cl}) 

where  for  each base t ype  A we  have tha t  D~ is a bounded-comple te  o~-algebraic cpo [Scott 

1981]. This  is extended to t y p e  0.-~r  by  defining D ~ ¢  to be the  cont inuous  maps 

D I _.. ~ 1 Each c a is given in te rpre ta t ion  c ~ in D 

This in te rpre ta t ion  induces a semant ic  funct ion  

E I :Exp- '*  Env  I "* U D 1  

where  E n v  z = {Env ~ } and E n v  ~ = Var  ~ ~ D ~ .  

E 1 [[x°-]]p = p(x °') 

# [[%-]]  o = ~ 
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E 1 [[XxU,e]] p = )ty D1° .E I [[e]] p[y/x ~] 

E 1 [[e 1 e z ]]P = (E 1 [[el]] p ) ( E  I [[e2]] p) 

E I [[//x ell 0 = Jx(E ~ [[e]] 0) 

Throughout  the rest of the paper we wi l l  have a standard in terpre ta t ion ({DJt}.{c ~}) 

where we have the usual  flat domains  for integers and booleans etcetera and the s tandard  

domain for lists. As constants  we wi l l  have the usual  ar i thmetic  and boolean constants,  

operators such as + and and, and  a condit ional ,  i f ( r  : bool"* Or--* o - - - ,  o', for each type or, 

which have their  usual  interpretat ions.  We wi l t  call the induced semantic  funct ion  E st , 

and we wi l l  a lways  use the env i ronmen t  0 for the s tandard  interpretat ion.  

For the abstract  interpretat ion,  we wi l l  use the domain 2 = 10.1}, wi th  0~< 1, for the 

in terpre ta t ion of all  base types  A ( inc luding lists). We call the induced semantic  funct ion  

E ~b and  use p' for the env i ronment  in the abstract  in terpre ta t ion . t  

We relate the s tandard  and abstract  interpretat ions,  by defining an abstract ion map 

so tha t  we can show tha t  calculat ions in the abstract  domain correctly model calculations 

in the s t andard  domain.  

Exp 

standard / ~ abstract 
interpretation~ 

abs 

For str ictness analysis ,  this is done by defining on the base type  A the map 

ab A : D 2  b 

abS A (a) = 

i i f a  = ~D~t 

otherwise 

We can then define abstract ion maps for each of the finite higher types in a na tura l  way.  

Details can be found  in [Burn, Hankin  and  Abramsky ,  1985]. 

t Note that in [Burn, Hankin and Abramsky 1985] the standard interpretation of the types was 
called Dcr and the abstract interpretation of the types was called Bcr. Also, the standard semanlic 
function was called sere, while the abstract semantic function was called tabs. 
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Having defined the abs t rac t ion  maps  for  each finite type,  we are  then able to set  the  

abs t rac t  in te rpre ta t ion  of  the  cons tants  to be the  abs t rac t ion  of  the  s t anda rd  

interpretation. 

The main resul t  of [Burn, Hankin  and A b r a m s k y ,  1985] was  the  fo l lowing  Soundness 

Theorem for Strictness Analysis, which says  tha t  if  something is s t r ic t  in the  abs t rac t  

in te rpre ta t ion  then i t  is s t r ic t  in the  s t a n d a r d  in te rpre ta t ion .  

T h e o r e m  1.1: 

Given / : c r - , r ,  in te rpre ta t ions  of cons tants  such that abscr(E st [[c(r]] p) 

E ab [[ca]]p' for  all  cons tants  c c~, and  env i ronments  p and p' sa t i s fy ing  abs z(O(x z)) <. 

p'(x ~) for  a l l  x ~, we  have t ha t  

(E ~b [[/]] 09 -LD~ = -LD.~ => (E 't [[f]] O) -l-z~ = -Lz~,- [] 

The s t r ic tness  ana lys i s  of [Burn, Hankin  and A b r a m s k y  1985] a l lows  the detect ion 

of  when  a rguments  are  def ini te ly  needed by funct ions ,  tha t  is, the  poss ib i l i ty  of  s t r ic t  

appl ica t ions .  When  we  w r i t e  ou t  an expression in the  text ,  we  wi l t  indicate the  s t r ic t  

appl ica t ions  by wr i t ing  # in between the operator  and  the operand.  

2. P r a g m a t i c s  o f  S t r i c t n e s s  A n a l y s i s  

The  original  work  on abs t rac t  in terpre ta t ion  of  appl ica t ive  programs [Mycrof t  1981] 

t rea ted  first  order  recursion equat ions over  flat domains .  In th is  s i tua t ion  i t  was  sufficient 

to find ou t  the  s t r ic tness  of a funct ion in each of  i ts  a rguments ,  for  th is  s t r ic tness  

in format ion  was  cons tant  in a l l  contexts  in which  the  funct ion was  used. This  s t r ic tness  

in format ion  is referred to as context-free strictness in th is  paper.  

D e f i n i t i o n  2.1: 

A funct ion f : o-1~ ' '  ' - ~ ¢ n + l  is context-freely strict in i ts  ith paramete r  if  for  a l l  

s) E DSt j ~ i ,  we have that IT) 

(g  ~x [[f]]O) s1 . . .  s i _  1 _I_D~, s i+  1 " - -  s,~ = 3_D~ + ~ [ ]  

When  we int roduce higher-order  functions,  the  s t r ic tness  in format ion  for  par t i cu la r  

a rguments  to a funct ion  m a y  change according to  the  context  in which the funct ion  

appears.  For  instance, tak ing  the a p p l y  funct ion : 

g= ~.fA'* A .~kX A .f(x) 

we can see t ha t  if  g is used in the  context  g # / e and  f is a s tr ict  funct ion,  then  the app ly  
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node between g # f and  e could be changed to # because g # ] needs the va lue  of e. 

This  issue was addressed in fo rmal ly  in [Burn, Hankin  and A b r a m s k y  1985]. In the 

cur ren t  paper we refer to this  strictness informat ion  as context-sensitive strictness. 

D e f i n i t i o n  2.2: 

A func t ion  f : o.1-~ - - • -*crn+ I is context-sensitively strict in its ith parameter  in an 

application f e 1 ' " ' en if 

(E s' [ [ f ] ] ; ) E  ~t [ [el]]p - - .  E s' [[e~_l]]p l D g ,  ESt [[ei+l]]P "'" Est [[en]]P = -]-Dg.+, 

D 

The pragmatics presented in [Burn, Hankin and Abramsky  1985] have two 

shortcomings which are remedied below. 

2.1. C o n t e x t - F r e e  S t r i c t n e s s  I n f o r m a t i o n  

The first shortcoming of the abovementioned paper is the lack of consideration of 

context-free strictness,  wi th  the resu l tan t  loss of informat ion,  and  which can be seen by 

looking at an example involv ing  a higher-order condit ional  : 

(if  condition then f l else f2)  expensive 

where f l  is s t r ic t  and f2  is non-str ict .  If the condition is true, then we wou ld  like to be 

able to reduce the above expression to f~ # expensive, which wou ld  a l low the oppor tun i ty  

for  parallel  evaluat ion,  whi le  if it is false, we have to reduce the condit ional  to 

f2  expensive. 

This problem can be solved if we associate the context-free str ictness informat ion  

w i th  a func t ion  so tha t  it  is available in any  application. For func t ions  involv ing  

func t iona l  arguments,  this context free strictness in format ion  may be weaker than the 

str ictness informat ion  available in some par t icular  contexts. 

Theorem 2.3 introduces a test for context-free strictness. 

T h e o r e m  2.3: 

I f f  : 0" 1 . . . .  Grn-*A and  

(~[[Illp')TDg~ "Tz)c, A_~ TD~+ ' " TD~ = o 

then f is context-f reely  str ict  in its ith parameter.  

D 
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2.2. C o n t e x t - S e n s i t i v e  S t r i c tne s s  I n f o r m a t i o n  

In [Burn, Hankin  and Abramsky  1985] on ly  informat ion f rom the first i - t  

a rguments  in an application was used when determining the context-sensi t ive strictness of 

a funct ion in its i th  argument.  This method has its l imi ta t ions  which can be i l lus t ra ted 

by considering the app ly  function,  g,  defined earlier. If we apply  g to Xx A .x, which is 

strict, then we are able to label the apply nodes in the application g # (Xx A .x)  # expens ive  

as before. However, if we were to reorder the parameters to g ,  defining g' : 

g' = XX A .X f  A-~A f (X )  

then we can no longer label the apply node involv ing  the expensive computat ion in the 

call g'  e x p e n s i v e  # ( X x  A .x) .  Thus  the labell ing of the apply  nodes is different because of 

the different ordering of the parameters. This is clearly unsat isfactory.  It would  be much 

better  if we could label apply nodes in an application using the informat ion about  the 

other arguments  in the application; this is formalised in Theorem 2.4. 

T h e o r e m  2.4: 

Given f : crl-~ . . . .  crn+ 1 and an application f e  1 " " " e n ,  if 

Eab [W] P' E ab [[el]] P' "" " E ab [[el- 111P' 2 D ~ E ab [[el+ 111P . . . .  E d'  [[en ]] O' = _L D ~b 
ol an+ 1 

then / is context-sensi t ively  strict  in its i t h  argument  in the application f e 1 " ' " en" 

C3 

2.3. Lifting Out  Free  Variables and t he  C o n d i t i o n a l  

A th i rd  way  in which we can improve the a m o u n t  of available paral lel ism is again in 

the condit ional .  Consider a condit ional  X y  A . i f  cond i t ion  t h e n  e 1 else e 2 where neither the 

cond i t ion  nor e 2 neo2[s the value y ,  bu t  e 1 does. Then if the value of the condi t ion  is  t r u e ,  

we can trigger the evaluat ion of y .  This effect can be obtained by X-abstracting the 

variable y f rom the expression e 1 to obtain (Xy . e  1 ) Y for the expression e r This enables 

us to label the applications as fol lows : 

X y  A .if # cond i t ion  ( ( X y  A .e 1 ) # y) e 2 

More generally, if {x 1, . . -  ,x n } are the free variables of a branch of the conditional,  ei, 

then we can convert  it  to j x 1 " " " xn  where f = Xx 1 " ' "Xx~ .e~. 

In a s imilar  manner ,  if we are given an n - a r y  constant  funct ion  which is not  str ict  in 

certain arg~unents, a p a r a l l e l  or  for example, then we can apply  the above 
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transformation to get maximum parallelism. 

3. Paral lel  Combina tors  

In this section we define a set of "parallel" combinators. It is intended that these 

should be used as the basis for the machine code of a machine such as the COBWEB 

machine [Hankin, Osmon and Shute, 1985]. An essential requirement is that the 

combinator code should be capable of encoding the two types of strictness information 

described in the last section. Our treatment is based on the director string approach - 

there is a good match between the director philosophy of viewing combinators as 

annotations on applications and our requirement to encode strictness annotations on 

applications. 

In [Kennaway and Sleep, 1981] four directors are introduced: 

^ send the argument to both operator and operand 
/ send the argument to the operator 
\ send the argument to the operand 

destroy the argument 

Inner bound variables are abstracted first and occurrences of the bound variable are 

replaced by I; if the variable is not used in a subexpression then it is unaffected by the 

abstraction algorithm. For example, 

Xx.Xy.+ x (x 2 y) 

becomes 

/ \ ( \ +  x) ( \ ( x 2 )  I). 

Kennaway and Sleep go some way towards pointing out the correspondence between 

the director strings and Turner's iong reach combinators [Turner 1979]. A complete 

combinator definition of directors can only be given after the introduction of two new 

combinators [Joy et al. 1985]. The first is a tong reach K which we call J and which has 

the following reduction rule: 

J x y z  => x y  

We will also require a long reach version of this which is denoted l '  in the standard way 

and which has the following reduction rule: 

J ' a x y z  => a x y  

The correspondence between directors and combinators is then given by the following 
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table: 

^ S or S' \B or B' 

/ C  orC' - J o r J '  

The standard eombinators are used to encode the rightmost director on each application 

and all other directors are represented by long reach combinators. Returning to our 

example, the combinator equivalent is then 

C'B(B + I)(B(× 2) I) 

The abstraction process to produce parallel code using this approach can be formalised in 

the following way. We start by introducing two new combinators P and P ': 

P/x= / # x  
P ' k f x  = k f # x  

P and P '  are semantically like I, but each launches a parallel process (and so we have a 

natural generalisation of the sequential case, where a sequential evaluator would just treat 

a P as an I). 

Our strategy is to compile k-expressions annotated by the strictness analyser into the 

extended combinator set. We find it convenient to break the compiler into two passes. 

The first pass, C, compiles h-expressions into an intermediate form, Dexp, and the second 

pass, G, compiles Dexps into combinator code. 

Dexp is a convenient notation which makes explicit the fact that  combinators are just 

annotations on apply nodes. The abstract syntax of Dexp is given below, where from 

now on we will ignore types in order to simplify the presentation. 

DExp ::= Const  
[ V a t  
t DExp ' < '  Dire~torString ' > '  DExp 

DirectorString :: = /* Empty */ 
[ Director DirectorString 

Direc tor  ::= S IB1C}JIP 

The code generation function, G, just converts the code with annotated apply nodes 

to the standard combinator code. 

We will use !, instead of k, to indicate the parameters in which a function is 

context-freely strict and an infix # to indicate strict application. Otherwise, our source 

language is a type-free version of Exp, and we will refer to this extended language as Exp 

in the following. 
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Now we define C:Exp -~ DExp, which compiles Exps to DExps. It  uses an auxil iary 

func t ion  A:Var --* DExp -~ DExp, which abstracts  a variable from a DExp. 

We let E ,  E 1, E 2 denote a rb i t ra ry  expressions and  D denote a possibly empty  

director string, 

= A .  [ [ C [ [ E ] ] ] ]  
c [ [ . ~ ] ]  = p < > ( A .  [[C[[~]]]]) 
C[[E 1 E2]]  = C[[EI]] < > C[[E2]] 
C[[E 1 # E2]] = C[[E1] ] <P  > C[[E2]] 
c[[~]] = x 
c [ [d]  = c 
c[[g~ e]] = Y < > c[[e]] 

A x [Ix]] = I 
Ax[[y]]  = K < >  y 
A x[[E l < D >  E2]] 

= (A x [ [E l ] I )  < S D >  (A x [[E2]])  
= (A x [[E1]])  < C D >  I:," 2 
= (A x [ [ E l i ] )  < P C / ) ' >  E 2 
= E 1 < B D >  (A x [[E2]])  

= E 1 < J D >  E 2 
= E 1 < P J D ' >  E 2 

x E EI  & x E .E 2 
x E E l & X  ¢. E 2 & D ; ~  PD'  
x E E l & x  ¢. E 2 & D  = PD'  (*) 
x E  E I & x E  E 2 
x E E  l & x EE 2& D # P D '  
x ~ E  1 & x E E  2 & D  = PD' (*) 

The two rules (*) t ransform 

E 1 < C P D >  E 2 to E 1 < P C / ) >  E 2 

(and the same for J) which is correct since: 

C ' ( P ' D ) f g x  = P ' D ( f x )  g = D ( f x ) # g  

P ' ( C ' D ) f g x  = C ' D f # g x  = D ( f x ) # g  

but  the second a l lows us to ini t iate  the paraltel  process to evaluate g at an earlier stage. 

We now present a code generation scheme G, which t ranslates  DExps to combinator  

expressions, where d denotes any  director : 

a [ [E l  < > Ez]] = C[[E1]] C[[Ez]] 
G[[E 1 <D> E2]] = H[[D]]G[[E1]] G[[E2]] 
( ; [ [ ~ ] ]  = x 

HI[d]] = d 
H[[dD]] = d'(H[[D]]) 

H is an auxi l iary  funct ion which compiles the director strings. 

Returning to our  earlier example, we find that  the funct ion  is context-freely str ict  in 
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both arguments and all  applications are strict and thus we generate the following code : 

P ( B P ( C ' ( B ' P ) ( B ' P  + I ) ( ( B ' P ) ( P  x 2) I))) 

It is possible to optimise this code, reducing its size and the number of reductions 

necessary to evaluate it, by combining the P combinator with the adjacent director : 

SP = S 'P  S P ' D =  S'(P'D) 
BP = B'P BP'D= B'(P'D) 
CP = C 'P  CP'D= C(P'D) 
JP = J' P JP'D = J'(P'D) 

thus  introducing eight new combinators (those appearing on the lef t -hand side of the 

equals sign), where an example of a reduction rule is : 

B P f g x  = f # ( g x )  = B'P f g x  

The code generated for the example then becomes : 

P ( B P ( C ' B P ( B P  + I ) ( B P ( P  x 2) I))) 

4. R e l a t i o n  W i t h  O t h e r  W o r k  

There are two projects that  are closely related to the work reported in this paper. 

The more interesting is the work  of Oberhauser and Wilhelm [Oberhauser and Wilhelm 

1984]. Work  has also been done by Meira at the University of Kent [Meira 1985]. 

Oberhauser and Wilhelm present a combinator abstraction algori thm that  produces 

code that  closely resembles the director-based combinator code. However an important  

difference is that  they perform flow analysis on the combinator graph to determine 

strictness rather that  on the source program. Since combinators appear as leaves in their 

approach, rather than as annotations on apply  nodes, they produce extra annotations 

which we claim are redundant. Oberhauser and Wilhelm do have two different types of 

strictness annotation but these are not exactly the context free and context sensitive 

annotation presented here and it is not clear that  their  approach is fu l l y  higher-order. 

Final ly  their  work  is based on different semantic foundations from that  described in this 

paper [Maurer 1985]. 

Meira also directly analyses the combinator code. However he uses a more 

t radi t ional  abstraction algori thm and this means that  there is less s imi lar i ty  between his 

code and the director-based code. He also fails to make the distinction between context- 

free and context-sensitive strictness so again it seems unlikely that  he would identify as 
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much potential for parallelism as we do. 

5. Conclusion 

In this paper we have presented a method for translating a program in a functional 

language to a parallel implementation of that program, while retaining lazy semantics. 

This has involved extending the pragmatics of strictness analysis which is used to 

discover sources of parallel evaluation. We have also presented a natural way of defining 

a parallel combinator set, based on the notion that combinators are directors. 

While the work gives maximum information about higher-order functions over flat 

base domains, it gives poor information about functions over recursively defined data 

types, for at the moment it only supports mapping them down to the two point domain. 

This clearly needs some more work, and [Hughes 1985] and [Wadler 1985] are first steps 

in this direction. 

6. Acknowledgements  

Some of the work presented in this paper is the result of our continued and enjoyable 

collaboration with Samson Abramsky, to whom we gratefully extend our thanks. David 

Bevan and Rajeev Karia are also due thanks for their interest and useful comments on the 

various drafts of the paper. 

The work of the first two authors was partially funded by ESPRIT Project 415 - 

Parallel Architectures and Languages for AlP : A VLSI Directed Approach. 

7. References 

Abramsky, S., Abstract b~terpretation, Logical Relations amt Kan Extensions, Draft 

Manuscript, 1985. 

Burn, G.L., Hankin, C.L., and Abramsky, S., Strictness Analysis for Higher-Order 

Functions, To appear in Science of Computer Programming Also : Imperial College of 

Science and Technology, Department of Computing, Research Report DoC 85/6, April 1985. 

ttankin, C.L., Osmon, P.E., and Shute, M.J., COBWEB: A Combinator Reduction 

Architecture, in : Proceedings of IF1P International Conference on Functional 

Programming Languages and Computer Architecture, Nancy, France, 16-19 September, 

1985, Jouannaud, J.-P. (ed.), Springer-Verlag LNCS 201, pp. 99-112. 

Hughes, J., The Design and Iraplementation of Programming Languages, PhD Thesis, 

Oxford University, 1983. (Published as Oxford University Computing Laboratory, 

Programming Research Group, Technical Monograph PRG-40, September, 1984.) 



110 

Hughes, d., Strictness Detection in Non-Flat Domains Workshop o12 Programs as Data 

Objects, Copenhagen, Denmark, 17-19 October, 1985. (Proceedings to be published in 

Springer Verlag LNCS series.) 

Joy, M.S., Rayward-Smith, V.J. and Burton, F.W., Efficient Comblnator Code, Computer 

Languages 10 3, 1985, pp.211-223. 

Kennaway, J.R., and Sleep, M.R., Director Strings as Combinators, University of East 

Anglia Report, 1981. 

Maurer, D., Strictness Computation Using Generalised ~,-expressions, Workshop on 

Programs as Data Objects, Copenhagen, Denmark, 17-19 October, 1985. (Proceedings to 

be published in Springer Verlag LNCS series.) 

Meira, S.R. de L., On the E~ciency of Applicative Algorithms, PhD Thesis, The University 

of Kent at Canterbury, March 1985. 

Mycroft, A., Abstract Interpretation and Opt~mising Transformations for Applicative 

Programs, PhD. Thesis, University of Edinburgh, 1981. 

Oberhauser, H.-G., Wilhelm, R., Flow Analysis in Combinator Implementation of 

Functional Programming Languages, Technical Report, Universitat des Saarlandes, D-6600 

Saarbrucken, 1984. 

Scott, D., lectures on a Mathematical Theory of Computation, Tech. Monograph PRG-19, 

Oxford Univ. Computing Lab,, Programming Research Group, 1981. 

Turner, D.A., Another Algorithm For Bracket Abstraction, The Journal of Symbolic Logic 

44 2, June 1979, pp. 267-270. 

Wadler, P., Strictness" Analysis on Non-Flat Domains (by Abstract Interpretation over 

Finite Domains), Draft Manuscript, 1985. 


