
A S A F E A P P R O A C H TO P A R A L L E L C O M B I N A T O R

R E D U C T I O N (E X T E N D E D ~ C T)

Chris L. Hankin*, Geoffrey L. Burn**, and Simon L. Peyton Jones***

ABSTRACT

In this paper we present the results of two pieces of work which,
when combined, al low us to go from a program text in a functional
language to a parallel implementation of thai program. We present
techniques for discovering sources of parallelism in a program at compile
time, and then show how this parallelism is na tura l ly mapped into a
parallel combinator set thal we will define.

To discover sources of parallelism in a program, we use abstract
interpretation. Abstract interpretation is a compile-time technique which
is used to gain information about a program that may then be used to
optimise the execution of the program. A part icular use of abstract
interpretation is in strictness analysis of functional programs. In a
language that has lazy semantics, the main potential for parallelism arises
in the evaluation of operands of str ict operators. A function is str ict in an
argument if i ts value is undefined whenever the argument is undefined. If
we can use strictness analysis to detect which arguments a function is
str ict in, we then know that these arguments can be safely evaluated in
parallel because this wi l l not affect the lazy semantics.

Having identified the sources of parallelism at compile-time it is
necessary to communicate these to the run-t ime system. In the second part
of the paper we use an extended set of combinators, including a pair of
paral lel combinators that achieve this purpose.

K e y w o r d s : Combinators, Strictness Analysis, Functional Languages, Parallel Reduction,

Director Strings

* Department of Comput ing, Imperial College of Science and Technology, 180 Queen's Gate, London,
SW7 2BZ, United Kingdom. Electronic Mail : clh@icdoc.
** GEC Research Ltd, Hirst Research Centre, East Lane, Wembley, Middx, HA9 7PP, United King-
dom. Electronic Mail: geoff@hrc63.
*** Department of Computer Science, UniversiSy College London, Gower SI, London, WC1E 6BT,
United Kingdom. Electronic Mail : simonpj@ucl.es

The first two authors were part ial ly funded by ESPRIT Project 415 - Parallel Architectures and
Languages for AIP : A VLSI Directed Approach

10o

I . M a t h e m a t i c a l a n d N o t a t i o n a l P r e l i m i n a r i e s

A semant ica l ly sound method of s t r ic tness ana lys i s is given in [Burn, Hankin and

A b r a m s k y 1985]. We summar i s e the approach in th is section, using a more perspicuous

nota t ion fo l lowing [A b r a m s k y 1985].

As our language we w i l l use the t yped X-calculus w i th a set of base t y p e s and a set

of t y p e d constants . Given base types A , B, . - . , we have type expressions 0., z defined

by

0. ::= A L 0.-00.

The set of t y p e d cons tants is denoted by {c a } (e.g. some t y p e d cons tan t s are 4ir ~,

+int-~int-~int and cons(_]_ A .nilAlis t)Alist)" For each t ype 0. we have an infinite set of t y p e d

var iables Var~r = {x ~ " " - }. Our language of expressions, Exp, consists of t y p e d t e rms e:cr

fo rmed according to the fo l lowing rules :

(1) x e : o- variables

(2) c~ : 0. constants

(3) e : r abstraction
)t x ° . e : 0"'--*7

e 1:0.- '~T e 2 : 0 .
(4) application

e l e 2 : ~

(5) e : 0 . - ~ 0 .)~x e : 0. fixed points

An in terpre ta t ion , 1, is given by

1 = ({DA/},{cl})

where for each base t ype A we have tha t D~ is a bounded-comple te o~-algebraic cpo [Scott

1981]. This is extended to t y p e 0.-~r by defining D ~ ¢ to be the cont inuous maps

D I _.. ~ 1 Each c a is given in te rpre ta t ion c ~ in D

This in te rpre ta t ion induces a semant ic funct ion

E I :Exp- '* Env I "* U D 1

where E n v z = {Env ~ } and E n v ~ = Var ~ ~ D ~ .

E 1 [[x°-]]p = p(x °')

[[%-]] o = ~

101

E 1 [[XxU,e]] p =)ty D1° .E I [[e]] p[y/x ~]

E 1 [[e 1 e z]]P = (E 1 [[el]] p) (E I [[e2]] p)

E I [[//x ell 0 = Jx(E ~ [[e]] 0)

Throughout the rest of the paper we wi l l have a standard in terpre ta t ion ({DJt}.{c ~})

where we have the usual flat domains for integers and booleans etcetera and the s tandard

domain for lists. As constants we wi l l have the usual ar i thmetic and boolean constants,

operators such as + and and, and a condit ional , i f (r : bool"* Or--* o - - - , o', for each type or,

which have their usual interpretat ions. We wi l t call the induced semantic funct ion E st ,

and we wi l l a lways use the env i ronmen t 0 for the s tandard interpretat ion.

For the abstract interpretat ion, we wi l l use the domain 2 = 10.1}, wi th 0~< 1, for the

in terpre ta t ion of all base types A (inc luding lists). We call the induced semantic funct ion

E ~b and use p' for the env i ronment in the abstract in terpre ta t ion . t

We relate the s tandard and abstract interpretat ions, by defining an abstract ion map

so tha t we can show tha t calculat ions in the abstract domain correctly model calculations

in the s t andard domain.

Exp

standard / ~ abstract
interpretation~

abs

For str ictness analysis , this is done by defining on the base type A the map

ab A : D 2 b

abS A (a) =

i i f a = ~D~t

otherwise

We can then define abstract ion maps for each of the finite higher types in a na tura l way.

Details can be found in [Burn, Hankin and Abramsky , 1985].

t Note that in [Burn, Hankin and Abramsky 1985] the standard interpretation of the types was
called Dcr and the abstract interpretation of the types was called Bcr. Also, the standard semanlic
function was called sere, while the abstract semantic function was called tabs.

102

Having defined the abs t rac t ion maps for each finite type, we are then able to set the

abs t rac t in te rpre ta t ion of the cons tants to be the abs t rac t ion of the s t anda rd

interpretation.

The main resul t of [Burn, Hankin and A b r a m s k y , 1985] was the fo l lowing Soundness

Theorem for Strictness Analysis, which says tha t if something is s t r ic t in the abs t rac t

in te rpre ta t ion then i t is s t r ic t in the s t a n d a r d in te rpre ta t ion .

T h e o r e m 1.1:

Given / : c r - , r , in te rpre ta t ions of cons tants such that abscr(E st [[c(r]] p)

E ab [[ca]]p' for all cons tants c c~, and env i ronments p and p' sa t i s fy ing abs z(O(x z)) <.

p'(x ~) for a l l x ~, we have t ha t

(E ~b [[/]] 09 -LD~ = -LD.~ => (E 't [[f]] O) -l-z~ = -Lz~,- []

The s t r ic tness ana lys i s of [Burn, Hankin and A b r a m s k y 1985] a l lows the detect ion

of when a rguments are def ini te ly needed by funct ions , tha t is, the poss ib i l i ty of s t r ic t

appl ica t ions . When we w r i t e ou t an expression in the text , we wi l t indicate the s t r ic t

appl ica t ions by wr i t ing # in between the operator and the operand.

2. P r a g m a t i c s o f S t r i c t n e s s A n a l y s i s

The original work on abs t rac t in terpre ta t ion of appl ica t ive programs [Mycrof t 1981]

t rea ted first order recursion equat ions over flat domains . In th is s i tua t ion i t was sufficient

to find ou t the s t r ic tness of a funct ion in each of i ts a rguments , for th is s t r ic tness

in format ion was cons tant in a l l contexts in which the funct ion was used. This s t r ic tness

in format ion is referred to as context-free strictness in th is paper.

D e f i n i t i o n 2.1:

A funct ion f : o-1~ ' ' ' - ~ ¢ n + l is context-freely strict in i ts ith paramete r if for a l l

s) E DSt j ~ i , we have that IT)

(g ~x [[f]]O) s1 . . . s i _ 1 _I_D~, s i+ 1 " - - s,~ = 3_D~ + ~ []

When we int roduce higher-order functions, the s t r ic tness in format ion for par t i cu la r

a rguments to a funct ion m a y change according to the context in which the funct ion

appears. For instance, tak ing the a p p l y funct ion :

g= ~.fA'* A .~kX A .f(x)

we can see t ha t if g is used in the context g # / e and f is a s tr ict funct ion, then the app ly

103

node between g # f and e could be changed to # because g #] needs the va lue of e.

This issue was addressed in fo rmal ly in [Burn, Hankin and A b r a m s k y 1985]. In the

cur ren t paper we refer to this strictness informat ion as context-sensitive strictness.

D e f i n i t i o n 2.2:

A func t ion f : o.1-~ - - • -*crn+ I is context-sensitively strict in its ith parameter in an

application f e 1 ' " ' en if

(E s' [[f]] ;) E ~t [[el]]p - - . E s' [[e~_l]]p l D g , ESt [[ei+l]]P "'" Est [[en]]P = -]-Dg.+,

D

The pragmatics presented in [Burn, Hankin and Abramsky 1985] have two

shortcomings which are remedied below.

2.1. C o n t e x t - F r e e S t r i c t n e s s I n f o r m a t i o n

The first shortcoming of the abovementioned paper is the lack of consideration of

context-free strictness, wi th the resu l tan t loss of informat ion, and which can be seen by

looking at an example involv ing a higher-order condit ional :

(if condition then f l else f2) expensive

where f l is s t r ic t and f2 is non-str ict . If the condition is true, then we wou ld like to be

able to reduce the above expression to f~ # expensive, which wou ld a l low the oppor tun i ty

for parallel evaluat ion, whi le if it is false, we have to reduce the condit ional to

f2 expensive.

This problem can be solved if we associate the context-free str ictness informat ion

w i th a func t ion so tha t it is available in any application. For func t ions involv ing

func t iona l arguments, this context free strictness in format ion may be weaker than the

str ictness informat ion available in some par t icular contexts.

Theorem 2.3 introduces a test for context-free strictness.

T h e o r e m 2.3:

I f f : 0" 1 Grn-*A and

(~[[Illp')TDg~ "Tz)c, A_~ TD~+ ' " TD~ = o

then f is context-f reely str ict in its ith parameter.

D

104

2.2. C o n t e x t - S e n s i t i v e S t r i c tne s s I n f o r m a t i o n

In [Burn, Hankin and Abramsky 1985] on ly informat ion f rom the first i - t

a rguments in an application was used when determining the context-sensi t ive strictness of

a funct ion in its i th argument. This method has its l imi ta t ions which can be i l lus t ra ted

by considering the app ly function, g, defined earlier. If we apply g to Xx A .x, which is

strict, then we are able to label the apply nodes in the application g # (Xx A .x) # expens ive

as before. However, if we were to reorder the parameters to g , defining g' :

g' = XX A .X f A-~A f (X)

then we can no longer label the apply node involv ing the expensive computat ion in the

call g' e x p e n s i v e # (X x A .x) . Thus the labell ing of the apply nodes is different because of

the different ordering of the parameters. This is clearly unsat isfactory. It would be much

better if we could label apply nodes in an application using the informat ion about the

other arguments in the application; this is formalised in Theorem 2.4.

T h e o r e m 2.4:

Given f : crl-~ crn+ 1 and an application f e 1 " " " e n , if

Eab [W] P' E ab [[el]] P' "" " E ab [[el- 111P' 2 D ~ E ab [[el+ 111P E d' [[en]] O' = _L D ~b
ol an+ 1

then / is context-sensi t ively strict in its i t h argument in the application f e 1 " ' " en"

C3

2.3. Lifting Out Free Variables and t he C o n d i t i o n a l

A th i rd way in which we can improve the a m o u n t of available paral lel ism is again in

the condit ional . Consider a condit ional X y A . i f cond i t ion t h e n e 1 else e 2 where neither the

cond i t ion nor e 2 neo2[s the value y , bu t e 1 does. Then if the value of the condi t ion is t r u e ,

we can trigger the evaluat ion of y . This effect can be obtained by X-abstracting the

variable y f rom the expression e 1 to obtain (Xy . e 1) Y for the expression e r This enables

us to label the applications as fol lows :

X y A .if # cond i t ion ((X y A .e 1) # y) e 2

More generally, if {x 1, . . - ,x n } are the free variables of a branch of the conditional, ei,

then we can convert it to j x 1 " " " xn where f = Xx 1 " ' "Xx~ .e~.

In a s imilar manner , if we are given an n - a r y constant funct ion which is not str ict in

certain arg~unents, a p a r a l l e l or for example, then we can apply the above

105

transformation to get maximum parallelism.

3. Paral lel Combina tors

In this section we define a set of "parallel" combinators. It is intended that these

should be used as the basis for the machine code of a machine such as the COBWEB

machine [Hankin, Osmon and Shute, 1985]. An essential requirement is that the

combinator code should be capable of encoding the two types of strictness information

described in the last section. Our treatment is based on the director string approach -

there is a good match between the director philosophy of viewing combinators as

annotations on applications and our requirement to encode strictness annotations on

applications.

In [Kennaway and Sleep, 1981] four directors are introduced:

^ send the argument to both operator and operand
/ send the argument to the operator
\ send the argument to the operand

destroy the argument

Inner bound variables are abstracted first and occurrences of the bound variable are

replaced by I; if the variable is not used in a subexpression then it is unaffected by the

abstraction algorithm. For example,

Xx.Xy.+ x (x 2 y)

becomes

/ \ (\ + x) (\ (x 2) I).

Kennaway and Sleep go some way towards pointing out the correspondence between

the director strings and Turner's iong reach combinators [Turner 1979]. A complete

combinator definition of directors can only be given after the introduction of two new

combinators [Joy et al. 1985]. The first is a tong reach K which we call J and which has

the following reduction rule:

J x y z => x y

We will also require a long reach version of this which is denoted l ' in the standard way

and which has the following reduction rule:

J ' a x y z => a x y

The correspondence between directors and combinators is then given by the following

106

table:

^ S or S' \B or B'

/ C orC' - J o r J '

The standard eombinators are used to encode the rightmost director on each application

and all other directors are represented by long reach combinators. Returning to our

example, the combinator equivalent is then

C'B(B + I)(B(× 2) I)

The abstraction process to produce parallel code using this approach can be formalised in

the following way. We start by introducing two new combinators P and P ':

P/x= / # x
P ' k f x = k f # x

P and P ' are semantically like I, but each launches a parallel process (and so we have a

natural generalisation of the sequential case, where a sequential evaluator would just treat

a P as an I).

Our strategy is to compile k-expressions annotated by the strictness analyser into the

extended combinator set. We find it convenient to break the compiler into two passes.

The first pass, C, compiles h-expressions into an intermediate form, Dexp, and the second

pass, G, compiles Dexps into combinator code.

Dexp is a convenient notation which makes explicit the fact that combinators are just

annotations on apply nodes. The abstract syntax of Dexp is given below, where from

now on we will ignore types in order to simplify the presentation.

DExp ::= Const
[V a t
t DExp ' < ' Dire~torString ' > ' DExp

DirectorString :: = /* Empty */
[Director DirectorString

Direc tor ::= S IB1C}JIP

The code generation function, G, just converts the code with annotated apply nodes

to the standard combinator code.

We will use !, instead of k, to indicate the parameters in which a function is

context-freely strict and an infix # to indicate strict application. Otherwise, our source

language is a type-free version of Exp, and we will refer to this extended language as Exp

in the following.

107

Now we define C:Exp -~ DExp, which compiles Exps to DExps. It uses an auxil iary

func t ion A:Var --* DExp -~ DExp, which abstracts a variable from a DExp.

We let E , E 1, E 2 denote a rb i t ra ry expressions and D denote a possibly empty

director string,

= A . [[C [[E]]]]
c [[. ~]] = p < > (A . [[C[[~]]]])
C[[E 1 E2]] = C[[EI]] < > C[[E2]]
C[[E 1 # E2]] = C[[E1]] <P > C[[E2]]
c[[~]] = x
c [[d] = c
c[[g~ e]] = Y < > c[[e]]

A x [Ix]] = I
Ax[[y]] = K < > y
A x[[E l < D > E2]]

= (A x [[E l] I) < S D > (A x [[E2]])
= (A x [[E1]]) < C D > I:," 2
= (A x [[E l i]) < P C /) ' > E 2
= E 1 < B D > (A x [[E2]])

= E 1 < J D > E 2
= E 1 < P J D ' > E 2

x E EI & x E .E 2
x E E l & X ¢. E 2 & D ; ~ PD'
x E E l & x ¢. E 2 & D = PD' (*)
x E E I & x E E 2
x E E l & x EE 2& D # P D '
x ~ E 1 & x E E 2 & D = PD' (*)

The two rules (*) t ransform

E 1 < C P D > E 2 to E 1 < P C /) > E 2

(and the same for J) which is correct since:

C ' (P ' D) f g x = P ' D (f x) g = D (f x) # g

P ' (C ' D) f g x = C ' D f # g x = D (f x) # g

but the second a l lows us to ini t iate the paraltel process to evaluate g at an earlier stage.

We now present a code generation scheme G, which t ranslates DExps to combinator

expressions, where d denotes any director :

a [[E l < > Ez]] = C[[E1]] C[[Ez]]
G[[E 1 <D> E2]] = H[[D]]G[[E1]] G[[E2]]
(; [[~]] = x

HI[d]] = d
H[[dD]] = d'(H[[D]])

H is an auxi l iary funct ion which compiles the director strings.

Returning to our earlier example, we find that the funct ion is context-freely str ict in

108

both arguments and all applications are strict and thus we generate the following code :

P (B P (C ' (B ' P) (B ' P + I) ((B ' P) (P x 2) I)))

It is possible to optimise this code, reducing its size and the number of reductions

necessary to evaluate it, by combining the P combinator with the adjacent director :

SP = S 'P S P ' D = S'(P'D)
BP = B'P BP'D= B'(P'D)
CP = C 'P CP'D= C(P'D)
JP = J' P JP'D = J'(P'D)

thus introducing eight new combinators (those appearing on the lef t -hand side of the

equals sign), where an example of a reduction rule is :

B P f g x = f # (g x) = B'P f g x

The code generated for the example then becomes :

P (B P (C ' B P (B P + I) (B P (P x 2) I)))

4. R e l a t i o n W i t h O t h e r W o r k

There are two projects that are closely related to the work reported in this paper.

The more interesting is the work of Oberhauser and Wilhelm [Oberhauser and Wilhelm

1984]. Work has also been done by Meira at the University of Kent [Meira 1985].

Oberhauser and Wilhelm present a combinator abstraction algori thm that produces

code that closely resembles the director-based combinator code. However an important

difference is that they perform flow analysis on the combinator graph to determine

strictness rather that on the source program. Since combinators appear as leaves in their

approach, rather than as annotations on apply nodes, they produce extra annotations

which we claim are redundant. Oberhauser and Wilhelm do have two different types of

strictness annotation but these are not exactly the context free and context sensitive

annotation presented here and it is not clear that their approach is fu l l y higher-order.

Final ly their work is based on different semantic foundations from that described in this

paper [Maurer 1985].

Meira also directly analyses the combinator code. However he uses a more

t radi t ional abstraction algori thm and this means that there is less s imi lar i ty between his

code and the director-based code. He also fails to make the distinction between context-

free and context-sensitive strictness so again it seems unlikely that he would identify as

109

much potential for parallelism as we do.

5. Conclusion

In this paper we have presented a method for translating a program in a functional

language to a parallel implementation of that program, while retaining lazy semantics.

This has involved extending the pragmatics of strictness analysis which is used to

discover sources of parallel evaluation. We have also presented a natural way of defining

a parallel combinator set, based on the notion that combinators are directors.

While the work gives maximum information about higher-order functions over flat

base domains, it gives poor information about functions over recursively defined data

types, for at the moment it only supports mapping them down to the two point domain.

This clearly needs some more work, and [Hughes 1985] and [Wadler 1985] are first steps

in this direction.

6. Acknowledgements

Some of the work presented in this paper is the result of our continued and enjoyable

collaboration with Samson Abramsky, to whom we gratefully extend our thanks. David

Bevan and Rajeev Karia are also due thanks for their interest and useful comments on the

various drafts of the paper.

The work of the first two authors was partially funded by ESPRIT Project 415 -

Parallel Architectures and Languages for AlP : A VLSI Directed Approach.

7. References

Abramsky, S., Abstract b~terpretation, Logical Relations amt Kan Extensions, Draft

Manuscript, 1985.

Burn, G.L., Hankin, C.L., and Abramsky, S., Strictness Analysis for Higher-Order

Functions, To appear in Science of Computer Programming Also : Imperial College of

Science and Technology, Department of Computing, Research Report DoC 85/6, April 1985.

ttankin, C.L., Osmon, P.E., and Shute, M.J., COBWEB: A Combinator Reduction

Architecture, in : Proceedings of IF1P International Conference on Functional

Programming Languages and Computer Architecture, Nancy, France, 16-19 September,

1985, Jouannaud, J.-P. (ed.), Springer-Verlag LNCS 201, pp. 99-112.

Hughes, J., The Design and Iraplementation of Programming Languages, PhD Thesis,

Oxford University, 1983. (Published as Oxford University Computing Laboratory,

Programming Research Group, Technical Monograph PRG-40, September, 1984.)

110

Hughes, d., Strictness Detection in Non-Flat Domains Workshop o12 Programs as Data

Objects, Copenhagen, Denmark, 17-19 October, 1985. (Proceedings to be published in

Springer Verlag LNCS series.)

Joy, M.S., Rayward-Smith, V.J. and Burton, F.W., Efficient Comblnator Code, Computer

Languages 10 3, 1985, pp.211-223.

Kennaway, J.R., and Sleep, M.R., Director Strings as Combinators, University of East

Anglia Report, 1981.

Maurer, D., Strictness Computation Using Generalised ~,-expressions, Workshop on

Programs as Data Objects, Copenhagen, Denmark, 17-19 October, 1985. (Proceedings to

be published in Springer Verlag LNCS series.)

Meira, S.R. de L., On the E~ciency of Applicative Algorithms, PhD Thesis, The University

of Kent at Canterbury, March 1985.

Mycroft, A., Abstract Interpretation and Opt~mising Transformations for Applicative

Programs, PhD. Thesis, University of Edinburgh, 1981.

Oberhauser, H.-G., Wilhelm, R., Flow Analysis in Combinator Implementation of

Functional Programming Languages, Technical Report, Universitat des Saarlandes, D-6600

Saarbrucken, 1984.

Scott, D., lectures on a Mathematical Theory of Computation, Tech. Monograph PRG-19,

Oxford Univ. Computing Lab,, Programming Research Group, 1981.

Turner, D.A., Another Algorithm For Bracket Abstraction, The Journal of Symbolic Logic

44 2, June 1979, pp. 267-270.

Wadler, P., Strictness" Analysis on Non-Flat Domains (by Abstract Interpretation over

Finite Domains), Draft Manuscript, 1985.

