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Abstract 

This paper presents a general approach to the optimization of func- 

tion calls. We define the class of "low cost function calls" and in- 

troduce a technique of detecting and executing these calls in a mo- 

dified shallow binding system known as "standardized shallow bin- 

ding". We show that by this technique the overhead expenses of chan- 

ging environments for low cost calls are nearly cut down to zero. 

The new method can be applied to any imperative or applicative lan- 

guage. In this paper statically scoped LISP is taken as an example; 

it is shown how the technique has been applied in the implementation 

of a LISP interpreter. We also prove that our method exceeds a num- 

ber of optimizations that have been proposed recently. 

i. introduction 

Most higher programming languages, such as PASCAL, LISP etc.~ con- 

tain the notion of applying functions to arguments. In applicative 

languages (e.g. LISP~ SASL) this is the main concept of computation. 

However, function calls are rather expensive operations on yon Neu- 

mann architectures. When an applicative program is executed, a con- 

siderable part of the execution time is spent on changing environ- 

ments~ i.e. saving and restoring variable bindings. So it is not 

surprising that a lot of studies have been done to reduce these 

overhead expenses ([Gr78], [Pe78], [Fe84], [Sa-Ja84]~ [Fe/Li86]). 

They all combine a special method of binding variables ("shallow 

binding") with a technique of handling certain recursive functions 

("tail recursive functionsH~ "covered tail recursive functions", 

etc.). Some interesting improvements have been achieved in this area~ 

but the restriction to special recursive functions has not yet been 

overcome~ 
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Here we will take a more general approach to the optimization of 

function calls. Based on the technique of shallow binding, we will 

define a class of function calls for which the overhead expenses can 

almost be cut down to zero. We refer to these calls as "low cost 

calls". This notion includes all the above-mentioned concepts and 

also covers quite a number of non-recursive calls that have not been 

considered before. 

In this paper a technique of detecting and executing low cost calls 

is developed. It can be used for any imperative ("procedural") or 

applicative programming language, no matter whether the programs are 

compiled or interpreted. In this paper we will demonstrate the power 

of the new technique in an implementation of static scope LISP. 

As is usually done, we implement LISP as an interpreter-based inter- 

actice system. The interpretation consists of three phases 

(I) the read phase: the program and the data are read from the in- 

put and stored in the memory in a form that is well suited for 

phase (2). 

(2) the execution phase ("actual interpretation"): the program~ 

which is a LISP function, is applied to the data. 

(3) the output phase: the result of the application is printed on 

the screen. 

The optimization described in this paper follows the basic strategy 

of putting a little extra effort into the read phase in order to 

gain a lot of storage and execution time during the actual interpre- 

tation: When (or~ depending on the implementation, after) the pro- 

gram is read from the input, each function call which can be inter- 

preted without saving and restoring variable bindings is marked with 

the atom T, all the other calls are marked F. So~ during the actual 

interpretation, the interpreter can execute all the calls marked T 

with a minimum of overhead expenses. In this paper we will develop 

the decision algorithm needed in the read phase. 

We proceed as follows: After a short review of the basic technique 

of shallow binding, we will first show how shallow binding can be 

improved by standardizing identifiers (section 2). This technique of 

"standardized shallow binding" will reduce the overhead expenses of 

any function call by approximately 50 per cent. Then we will intro- 

duce the notion of l o w  cost calls (section 3). We will see that in 

general low cost calls are not decidable, i.e. there is no algorithm 

that decides whether a given function call in any given program is a 

low cost call or not. However, in the standardized shallow binding 

system~ the decision problem is a lot simpler so that low cost calls 

can actually be detected, and, furthermore~ they can be detected 

very efficiently. Finally we show that previous approaches, such as 

optimizing tail recursive, covered tail recursive and (to a certain 

extend) even crossed tail recursive function calls are simple cases 

of low cost calls. 
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2. Shallow Binding and Standardization 

The technique of shallow binding for statically scoped LISP (as for 

instance described in [Fe/Li/Si86]) can be summarized as follows: 

Given a program p, each non-standard identifier id occurring in p 

is uniquely associated with one location ("address") loc(id) in the 

heap, the so-called value cell of id, which is supposed to contain 

the current value of id throughout the whole interpretation (*). 

Note that if two functions f and g have the same variable x, both 

occurrences of x are identified with the same address. Further, each 

non-standard function f occurring in p is enclosed in a list 

(CLOSURE f freevals), the so-called closure of f, where freevals is 

(a pointer to) the list of the values of the free non-standard iden- 

tifiers occurring in f. Note that a function f may have different 

closures within the same program p (see [Fe/Li/Si86] for an example)° 

This closure technique is known to guarantee static scoping [Fe84]~ 

Now, let us consider a user-defined (i.e. non-standard) function 

f = (LABEL i d f  (Vl  . . .  v n)  b ) ,  w h e r e  i d f  i s  t h e  f u n c t i o n  i d e n t i f i e r  
o f  f ,  v. a r e  t h e  v a r i a b l e s  o f  f ,  and b i s  t h e  body o f  f .  I n  o r d e r  i 
to guarantee the condition (*), the following steps have to be exe- 

cuted when interpreting a call (f a I ... an) or (idf a I ... an) 

o f  f : 

i) B e f o r e  t h e  e v a l u a t i o n  o f  b ,  t h e  o l d  c o n t e n t s  o f  t h e  v a l u e  c e l l s  

of idf,Vl,...,v n are pushed onto the stack, along with their 

addresses (saving the environment), and the new values (i.e. the 

closure of f, which is considered to be the "value of f", and the 

values of the arguments a ) are loaded into these value cells. 
i 

Then the evaluation of b is started by a subroutine jump to EVAL. 

This gives the following state of the memory: 

heap 

I o c ( i d f )  loc(v I ) . . . . . . . . . .  ioc(v n) 

where a i '  is the evaluated argument a , i = 1 , . . . , n ,  
and p is a polnter to the closure of f .  

The val~e ce i ls  are not necessari ly contiguous or ordered ! 

stack 

TO8 

where v a l ( . . . )  is the value of . . .  before the in te rp re ta t i on  of the c a l l ,  
and are t is the i n t e r p r e t e r ' s  return address when ca l l ing  EVAL. 

f igure I - 
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Here, periods denote repetition, blanks stand for Tree storage~ 

and stars mean data which are not relevant in this context. 

2) Now, when evaluating b, the value of idf resp. Vl,...,v n can be 

retrieved simply by loading the contents of its value cell. The 

value of any non-standard identifier occurring free in b is taken 

from the closure of f. 

3) After the evaluation of b, the n+l old values are removed from 

the stack and loaded back into the proper value cells (restoring 

the environment). 

Note that in step 1 it is not sufficient to save the values of idf, 

Vl,...,v n. Their addresses have to be saved as well, otherwise 

there will be no way of knowing into which cells these values have 

to be moved back after the evaluation of b (step 3). This is due to 

the fact that the value cells of idf,Vl,...,v n are not necessarily 

contiguous or ordered, since the programmer is free in his choice of 

non-standard identifiers. We will now show how standardizing helps 

to simplify the stack situation. 

First, let us introduce the notion of the "standardized program". 

In a standardized program the identifiers of each function are "num- 

bered" in the following sense: Let $ be a letter of the LISP-alpha- 

bet, arbitrarily chosen, but fixed, so that all ~i, i ~ INo, are ad- 

missible non-standard identifiers. Then the i-th variable of each 

function is $i, and the function identifier is $0. An example is gi- 

ven below. Let us postpone the problem of free variables for a mo- 

ment. 

Now, let p be a "closed" LISP- program, i.e. a program in which no 

user-defined function has free non-standard identifers. By renaming 

all non-standard identifiers systematically within their scopes, 
s 

p can be transformed into a unique standardized program p . We call 
s s 

p the "standardized version of p,i Since p is unique, the trans- 

formation s ! P _> pS is a function; it is called the "standardiza- 

tion". 

Example : 

The standardized version of the well known function LAST 

(LABEL LAST (X) (COND ((NULL (CDR X)) (CAR X)) (T (LAST (CDR X)))))  

i s  

(LABEL $0 ($I) (COND ((NULL (CDR $I)) (CAR $I)) (T ($0 (CDR $ I ) ) ) ) )  

s 
O b v i o u s l y ,  a c losed  program p and i t s  s t a n d a r d i z e d  v e r s i o n  p 

f u n c t i o n a l l y  e q u i v a l e n t .  

are 

Let  us now b r i e f l y  e x p l a i n  t he  s t a n d a r d i z a t i o n  o f  non -c losed  p r o -  

grams. As an example we c o n s i d e r  t he  f o l l o w i n g  program which conca-  

t e n a t e s  two g iven  l i s t s .  
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Example : 

The standardized version of 

(LABEL AP (X Y) 
((LABEL HELP (Z) (COND ((NULL Z) X) (T (CONS (OAR Z) (HELP (CBR Z)))))) Y)) 

is  

(LABEL $0 ($I $2) 
((LABEL $0 ($I) <$I> 

(COND ((NULL $I) (FREEVAL i)) (T (CONS (CAR $I) ($0 (ODR $I))>>)) $2)) 

Here the additional variable list <$I> tells the interpreter to con- 

struct the closure (CLOSURE (LABEL $O ($i) ... ) (val($1) ))~ where 

val($1) is the value of $i (i.e. the value of X in the original pro- 

gram). This causes val($1) to be "frozen in the environment of its 

defining occurrence". Finally, the pseudo call (FREEVAL I) directs 

the interpreter to take the first value, which is val($1), from that 

closure. With this handling of free non-standard identifiers, we ob- 

tain : 

Theorem : 

Let p be any closed or non-closed LISP-program. 
s 

Then p and p are functionally equivalent. 

This means that any program p can be standardized without changing 

its semantics. Let us now look at the interpretation of pS. Due to 

shallow binding each identifier $i is always associated with the 

same location loc($i). For simplicity, we assume that loc($i) = i, 

which means that the value of the i-th variable of any function is 

always stored at the same address : i. So when a function f of n va- 

riables is called by (f a I ... a n ) or (idf a I ... an) , our 

shallow binding system creates the following state of the memory 

(cf. figure I) : 

heap 

- - - I  °, I I .......... la° I - - - - - -  
0 I . . . . . . . . . .  n 

Note that all the value cells are now contiguous and ordered ! 

stack 

I *** I val($O) I 0 I val($1) I I I ... I val($n) I n I n+11 aret I I 

TOS 
figure 2 - 

Here it is obviously redundant to store the addresses O,1,...,n. 

So the stack segment can be reduced to : 
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stack 

TOS 
figure 3 - 

| 

This shows that the standardization reduces the overhead expenses of 

calling any function by approximately 50 per cent. 

In  t h e  f o l l o w i n g  s e c t i o n s ,  t he  t e c h n i q u e  o f  s h a l l o w  b i n d i n g  p lus  

s t a n d a r d i z a t i o n ,  as proposed above, w i l l  be c a l l e d  " s t a n d a r d i z e d  

s h a l l o w  b i n d i n g "  f o r  s h o r t .  

3. Low Cost Func t i on  C a l l s  

Study ing the  per formance o f  i n t e r p r e t e r s  which app ly  s h a l l o w  b ind ing  

o r  s t a n d a r d i z e d  s h a l l o w  b i n d i n g ,  i t  can be observed t h a t  most o f  

t h e i r  e x e c u t i o n  t ime  i s  spent  on sav ing  and r e s t o r i n g  env i ronments .  

For many calls, however, it is not necessary to save and restore the 

environment at all (*). This is quite obvious for certain recursive 

calls (e.g. tail recursive and covered tail recursive calls - see 

[Fe/Li86] for definitions), and a lot of studies have been done on 

that topic within the last years ([Gr78], [Pe78], [Fe84], [Sa-Ja84], 

[Fe/Li/Si86]). In this section we will take a general approach to 

the optimization of function calls, which is not restricted to re- 

cursive functions at all. We define a class of function calls which 

have the property (*) (see above) and will therefore be referred to 

as "low c o s t  calls". 

F i r s t  o f  a l l  we have t o  i n t r o d u c e  the  n o t i o n  o f  t h e  " r e l e v a n t  l o c a l  

context" of a function call. 

D e f i n i t i o n  : 

Le t  p be a L ISP-program,  c a f u n c t i o n  c a l l  i n  p and b t h e  body o f  

t he  s m a l l e s t  f u n c t i o n  f c o n t a i n i n g  c .  

Then the  r e l e v a n t  l o c a l  c o n t e x t  o f  c ( f o r  s h o r t :  r l c ( c )  ) i s  de-  

f i n e d  t o  be b e x c l u d i n g  

(1) c i t s e l f  
(2) a l l  t h e  s y n t a c t i c  e x p r e s s i o n s  t o  t he  l e f t  o f  c 

(3) i f  c i s  con ta i ned  in  a c o n c l u s i o n  o f  a c o n d i t i o n a l  form o f ,  

a l l  t h e  c l auses  o f  c f  which a re  t o  t he  r i g h t  o f  c.  

Example : 

Le t  us c o n s i d e r  t h e  f o l l o w i n g  non -s tanda rd  f u n c t i o n  MAP123. Below, 

MAP123 i s  p resen ted  t h r e e  t imes .  In  each case the  r e l e v a n t  l o c a l  



47 

context of the underlined function call is printed in bold type. 

I) (LABEL MAP123 (FI F2 F3 E) 

(COND ((NULL E) NIL) 

((ATOM E) (FI E)) 

( T {CONS 
(F2 (CAR E ) )  

(MAP123 F3 F3 F3 (CDR E ) )  ) )  ) ) 

2) (LABEL MAP123 (FI F2 F3 E) 

(COND ( (NULL  E) N I L )  

((ATOM E) ..!F~I_..E~) 
(T (CONS 

(F2 (CAR E)) 

(MAP123 F3 F3 F3 (CDR E) ) )  ) ) 

3) (LABEL MAPI23 (FI F2 F3 E) 

(COND ((NULL E) NIL) 

((ATOM E) (FI E)) 

T ~CONS 

(F2 (CAR E)) 

(MAP123 F3 F3 F3 (CDR E) )) ~ ) 

Let f, b and c be as in the definition above. Then the relevant 

local context of c contains all those syntactic forms which may 

still be evaluated within b after c is executed. This means that 

o n l y  t h e  va lues  o f  t hose  non -s tanda rd  i d e n t i f i e r s  which occur  f r e e  

in  r l c ( c )  may s t i l l  be accessed w i t h i n  b (as e . g .  MAP123, F3 and E 

i n  t h e  f i r s t  example) .  On the  o t h e r  hand, t h e  va lues  o f  t h e  f u n c t i o n  

i d e n t i f i e r  and t h e  v a r i a b l e s  o f  f w i l l  no t  be needed anymore a f t e r  

the evaluation of b. So we can state 

C o r o l l a r y  : 

Let p, f and c be as above. Let c be a call of a non-standard func- 

tion g. Let Idf(f) resp. Idf(g) be the set consisting of the vari- 

ables and the function identifier of f resp. g, and let Free(rlc(c)) 

denote the set of all non-standard identifers occurring free in 

t i c ( c ) .  If 

(Cl) I d f  (g) c I d f  ( f )  and 

(C2) I d f ( g )  n F r e e ( r l c ( c ) )  = 0 

then t h e  va lue  o f  any i d e n t i f i e r  v 8 I d f ( g )  i s  no t  accessed anymore 
a f t e r  t h e  e x e c u t i o n  o f  c~ 

So, i f  (CI) and (C2) ho ld  f o r  a c a l l  o f  a f u n c t i o n  g,  t h e  sav ing  and 

r e s t o r i n g  o f  t he  env i ronment  can be o m i t t e d  f o r  g. Consequent l y ,  i f  

(CI) and (C2) ho ld  f o r  a l l  t he  non -s tanda rd  f u n c t i o n s  which a re  

c a l l e d  by c ,  then c can a lways  be execu ted  w i t h o u t  sav ing  and r e -  
s t o r i n g .  T h e r e f o r e  we d e f i n e  : 
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Definition : 

Let  p,  f and c be as above. Then c i s  c a l l e d  a low c o s t  t a i l  

f o r  each nOn-standard f u n c t i o n  g i n  p t he  f o l l o w i n g  ho lds :  

( c is a call of g => (C1) and (C2) hold for g ) 

i f f  

Examples : 

The recursive call of MAP123 is a low cost call. 

Further, every tail recursive and covered tail recursive call is a 

low c o s t  c a l l ,  s i nce  f = g ( so I d f ( f )  = I f g ( g )  ) and r l c ( c )  never 

contains any identifiers at all, so Free(rlc(c)) is the empty set. 

This means that all the optimizations discussed in [Gr78], [Pe78], 

[Fe84], [Fe/Li/Si86] and many cases discussed in [Sa-Ja84] are in- 

cluded here. Examples of non-recursive low cost calls will be given 

lateron im this paper. 

However, the example MAP123 also shows the principal problem about 

low cost calls: if we try to determine whether the calls (FI E) and 

(F2 (CAR E)) are low cost calls or not, we run into trouble since we 

cannot decide which function(s) g will be bound to F1 resp. F2 

during the interpretation. In the example above this is because the 

context of the function is not given. But even if MAP123 is defined 

within another function so that the context of its declaration is 

known, the following theorem holds: 

Theorem = 

In general it is statically undecidable whether a function call c in 

a LISP-program p is a low cost call or not. 

A p roo f  i s  g iven  i n  [Fe85]  by showing t h a t  the  d e c i d a b i l i t y  o f  low 

c o s t  c a l l s  would imp ly  t h e  d e c i d a b i l i t y  o f  c o r r e c t  parameter  t r a n s -  

m i s s i o n ,  which i s  known t o  be undec idab le  f o r  languages l i k e  ALGOL 

o r  LISP (see [ L a 7 3 ] ,  [ L i / S i 7 9 ] )  which a l l o w  f u n c t i o n a l  arguments and 

f r e e  v a r i a b l e s  i n  i n n e r  f u n c t i o n s .  

Th is  theorem remains t r u e  even i f  p i s  supposed t o  have c o r r e c t  pa-  

r ame te r  t r a n s m i s s i o n  ( [ F e 8 5 ] ) .  

Now, a t  t h i s  c r u c i a l  po in t~  t he  s t a n d a r d i z a t i o n  proposed i n  t h e  

p r e v i o u s  s e c t i o n  p r o v i d e s  t h e  key t o  a p r a c t i c a l  s o l u t i o n :  

Le t  us c o n s i d e r  a c a l l  c o f  a f u n c t i o n  g,  e . g .  c = (g a I . , .  an ) ,  
i n  a s t a n d a r d i z e d  program p, and l e t  c have c o r r e c t  parameter  t r a n s -  

m i s s i o n ,  i . e .  g i s  a f u n c t i o n  o f  n v a r i a b l e s .  Since p i s  s t a n d a r -  

d i z e d ,  t he  f u n c t i o n  i d e n t i f i e r  o f  g i s  $0~ and the  v a r i a b l e s  o f  g 

are  $ 1 , . . . ~ $ n ,  so I d f ( g )  = { $ 0 , $ 1 , . . . , $ n } .  (Note t h a t  i n  a n o n - s t a n -  

da rd i zed  program the  s e t  I d f ( g )  i s  i n  genera l  undec idab le  [Fe85]  ! ) .  

S ince bo th  t he  se t  I d f ( f ) ,  f being the  s m a l l e s t  f u n c t i o n  c o n t a i n i n g  
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c, and the set Free(rlc(c>) can be constructed simply by scanning 

the program p, (CI) and (C2) can be computed, so we get the fol- 

lowing theorem ([Fe85]) : 

Theorem : 

Let c be a non-standard function call in a standardized program p 

which has correct parameter transmission~ Then it is decidable 

whether c is a low cost call or not. 

This solves the decidability problem under the assumptions that 

- the program p is standardized, and 

- the program p has correct parameter transmission, and 

- the call c is a non-standard function call. 

For practical purposes, none of these assumptions are restrictive 

at all, since the standardization is simply a matter of variable 

allocation; programs with incorrect parameter transmission terminate 

with an error anyway; and the shallow binding mechanism is never ap- 

plied to standard function calls. So the theorem provides a practi- 

cal solution to the decidability of low cost calls. 

Examples : 

In the standardized version of MAP!23, all the three calls (FIE), 

(F2 (CDR E)) and (MAP123 F3 F3 F3 (CDR E)) are low cost calls. Note, 

however, that neither (FI E) nor (F2 (CDR E)) are recursive! Further~ 

crossed (covered) tail recursive calls of functions f and g are low 

cost calls in the standardized version, if f and g have the same 

number of variables (see e.g. ODD and EVEN in [Sa-Ja84]). 

Finally, we give an efficient algorithm that detects all the low 

cost calls in a given standardized program ps in just one pass: 

The Detection Algorithm 

In addition to the standardization, a little transformation is done 

to function calls: Any call c = (x a I ... a n ) is transformed into 

(x t a I ... a n) where t is a pointer to the variable list of the 

smallest function f containing c. This simple transformation will be 
S 

helpful later on ( see step 5 below ). Now, p is travered right to 

left, according to the following rules: 

I. Bkip constants. 

2. Enter each function de f i n i t i on  f with an empty set S of addresses. 

After leaving f ,  go on only with the set of the free non-standard 
identifierm of f. 

3. While traversing f ,  pick up every non-standard i d e n t i f i e r  and add 
i t  to B. 

4. When entering a condit ional form cf in f ,  stack S. 

Let S ~ be the accumulated set when entering a conclusion co with- 
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5.  

in of. Copy B from TOB (top of mtack) and stack B ~. Use B when 

traversing co. 

Let B" be the accumulated set when leaving co, Pop S' and go on 

with the union of S' and S". 
After leaving cf ,  pop S and dispose of i t .  

Now, le t  S be the accumulated set when reaching a cal l  

c = (x t a I . . . .  a n ) within f .  Then S = F ree( r l c (c ) } .  Calculate 
(CI) and (C2) am described above, using t to determine I d f ( f ) .  

I f  both conditions are sat is f ied~ replace t by T, otherwise re-  

place t by F. 

Now 

i s  

f i c i e n t l y  i n  t h e  f o l l o w i n g  way: 

S . 

e v e r y  low c o s t  c a l l  i n  p i s  marked T~ e v e r y  n o n - l o w  c o s t  c a l l  

marked F. So t h e  i n t e r p r e t e r  can e x e c u t e  f u n c t i o n  c a l l s  most e f -  

The Interpretation o f  Function Calls 

When the i n t e r p r e t e r  e n c o u n t e r s  a c a l l  c = (x m a I ... an) , 

x and al,...,a n are evaluated as is usually done. The marker m 

is either T or F. The evaluation of x yields a function g. The in- 

terpreter checks f o r  correct parameter transmission and terminates 

with an error if g is not an n-ary function. If g is a standard 

function~ g and a I ,...,a n are passed to APPLY as is usually done, 

and m is ignored. Otherwise the following two cases have to be dis- 

tinguished: 

Case I = m : F 

In  t h i s  case  c i s  n o t  a low c o s t  c a l l ,  so t h e  i n t e r p r e t e r  p roceeds  

as b e f o r e ,  push ing  t h e  c u r r e n t  v a l u e s  o f  a l l  v ~ I d f ( g ) ,  as shown i n  

t h e  p r e v i o u s  f i g u r e s .  

Case I I  : m = T 

In  t h i s  case c i s  a low c o s t  c a l l ,  

v a r i a b l e  b i n d i n g s  a r e  o m i t t e d ,  and 

s t a t e  o f  t h e  memory: 

so t h e  s a v i n g  and r e s t o r i n g  o f  

we g e t  t h e  f o l l o w i n g  s i m p l i f i e d  

hear 

0 1 . . . . . . . . . .  n 

stack 

I... I v.1 ,0  11 i 
TOS 

Note that val(SO) is a pointer to the "previous closure", i .e .  to the 
closure of the smallest function f c0nteining c. 

- figure 4 - 
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Here the "I" indicates that, after the evaluation of c, no values 

have to be restored, except for the pointer to the previous closure, 

which must be restored in order to be able to retrieve the proper 

values of the free variables of f furtheron. However, in many cases, 

even these entries can be omitted: 

- For recursive calls, the current closure is the same as the pre- 

vious one. 

- For c a l l s  o f  c l osed  f u n c t i o n s  t h e  c u r r e n t  c l o s u r e  does no t  c o n t a i n  

any va lues  and w i l l  never  be accessed. 

In  t hese  cases ,  t h e  c o n t e n t s  o f  t he  va l ue  c e l l  0 do no t  need t o  be 

updated,  and the  c o n t r o l  can be passed t o  EVAL by a s imp le  jump i n -  

s tead  o f  a s u b r o u t i n e  jump. Thus we can even omi t  t o  s t a c k  v a l ( $ O ) ,  

t h e  " i "  and t h e  r e t u r n  address  a re  t .  So~ summing up, we can s t a t e :  

For any e x e c u t i o n  o f  a low c o s t  c a l l  t h e  s t a c k  e i t h e r  does no t  grow 

a t  a l l  o r  9rows by o n l y  t h r e e  e n t r i e s ,  which i s  j u s t  as l i t t l e  as 

f o r  a f u n c t i o n  o f  ze ro  v a r i a b l e s  ( o f .  f i g u r e  3 ) .  

4. Conc lus ion  

We have developed an optimized interpreter for static scope LISP. 

Its efficiency is the result of combining the technique of standar- 

dized shallow binding - which reduces the overhead expenses of any 

function call by roughly 50 per cent - with a method of detecting 

and executing low cost calls~ which eliminates most of the remaining 

overhead expenses (for low cost calls). The interpreter has been si- 

mulated in INTERLISP on an IBM 4381 and is currently being implemen- 

ted in C on different microcomputers. 

Further research will be done in the area of low cost calls, e.g. 

concerning the order in which arguments should be evaluated. Permu- 

tations of this order might provide for further improvements by ar- 

tificially increasing the number of low cost calls. 
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