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Abstract

This paper presents a general approach to the optimization of func-—
tion calls. We define the class of "low cost function calls®" and in—
troduce a technique of detecting and executing these calls in a mo—
dified shallow binding system known as "standardized shallow bin-
ding". We show that by this technigue the overhead expenses of chan—
ging environments for low cost calls are nearly cut down to zero.
The new method can be applied to any imperative or applicative lan-
guage. In this paper statically scoped LISP is taken as an example;
it is shown how the technique has been applied in the implementation
of a LISP interpreter. We also prove that our method exceeds a num—
ber of optimizations that have been proposed recently.

1. Introduction

Most higher programming languages, such as PASCAL, LISF etc., con-

tain the notion of applvying functions to arguments. In applicative
languages f(e.q. LISF, SA5L) this is the main concept of computation.

However, Ffunction calls are rather expensive operations on von bNeu-
mann  architectures. When an applicative program is executed, a con-—

siderable part of the execution time is spent on changing environ-
ments, i.e. saving and restoring variable bindings. So it is not

surprising that a lot of studies have been dones to reduce these
overhead expenses (L6781, [Fe781, [FeB41, [Sa-JaB41, [Fe/LiB&1).

They all combine a special method of binding variables {("shallow
Binding") with a technigue of handling certain recursive functions
{("tail recursive Ffunctions”; “covered tail recursive functions®,

etc.). Some interesting improvements have been achieved in this area,
but the restriction to special recursive functions has not yet been

oOvEer CoOme.
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Here we will take a more general approach to the optimization of
function calls. Based on the technigue of shallow binding, we will
define a class of function calls for which the overhead expenses can
almost he cut down to zero. We refer to these calls as "low cost
calls”., This notion includes all the above-mentioned concepts and
also covers gquite a number of non-recursive calls that have not been
considered before.

In this paper a technique of detecting and executing low cost calls
iz develaped. It can be used for any imperative ("procedural®) or
applicative programming language, no matter whether the programs are
compiled or interpreted. In this paper we will demonstrate the power
of the new technigue in an implementation of static scope LIBF.

As is usually done, we implement LISP as an interpreter-based inter-
actice system. The interpretation consists of three phases

{1} the read phase: the program and the data are read from the in-
put and stored in the memory in & form that is well suited for
phase (2J.

{(2) the execution phase ("actual interpretation"}: the program,
which is a LIGF function, is applied to the data.

{3} the output phase: the result of the application is printed on
the screen.

The optimization described in this paper follows the basic strategy
aof putting a little extra effort into the read phase in order fo
gain & lot of storage and execution time during the actual interpre-—
tation: When {(or, depending on the implementation, after) the pro-
gram is read from the input, each function call which can be inter—
preted without saving and restoring variable bindings is marked with
the atom T, all the other calls are marked F. So, during the actual
interpretation, the interpreter can execute all the calls marked T
with a minimum of overhead expenses. In this paper we will develop
the decision algorithm needed in the read phase.

We proceed as followss After a short review of the basic technique
of shallew binding, we will first show how shallow binding can be
improved by standardizing identifiers (section 2). This technigue of
netandardized shallow binding" will reduce the overhead expenses of
any function call by approximately 50 per cent. Then we will intro-
duce the notion of low cost calls (section 3). We will =ee that in
general low cost calls are not decidable, i.e, there is no algorithm
that decides whether a given function call in any given program is a
low cost call o- not. However, in the standardized shallow binding
system, the decision problem is a lot simpler so that low cost calls
can actually be detected, and, furthermore, they can be detected
very efficiently. Finally we show that previous approaches, such as
optimizing tail recuwrsive, covered tail recursive and (to a certain
extend) even crossed tail recursive function calls are siople cases
of low cost calls.
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where a., ' is the evaluated argument a., i = 1,...,n,
and p is a pointer to the closure of f,
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#*#lval (id ) loclid ) fval{v Jjloctv )| .cfval{v )|lociv t]n+tla
f f i 1 n n ret
T08
where vall...) is the value of ... before the interpretation of the call,
and 8ot is the interpreter’'s return address when calling EVAL.

- figure 1 -
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Here, periods denote repetition, blanks stand for free storage,
and stars mean data which asre not relevant in this context.

2} HMow, when evaluating b, the value of id, resp. VisesesV £an be
retrieved simply by loading the contents of its value cell. The
value of any non—standard identifier occurring fre= in b is taken
fraom the closure of f.

3} After the evaluation of b, the n+l old values are removed from
the stack and loaded back into the proper value cells i{restoring
the environment).

Note that in step 1 it is not sufficient to save the values of idf,
Vivme-aV- Their addresses have to be saved as well, otherwise
there will be no way of knowing into which cells these values have
to be moved back after the evaluation of b (step 3). This is due to
the fact that the value cells of idf,vl,...,vn are not necessarily
contiguous or ordered, since the programmer is free in his choice of
non—standard identifiers. We will now show how standardizing helps
to simplify the stack situation.

First, 1let us introduce the notion of the "standardized program".
In a standardized program the identifiers of each function are "num—
bered” in the following sense: Let $ be a letter of the LISF-alpha-
bet, arbitrarily chosen, but fixed, so that all $i, i EIND, are ad-—
missible non-standard identifiers. Then the i-th variable of each
function is #i, and the function identifier is $0. An example is gi-
ven below. Let us postpone the problem of free variables for a mo-
ment .

Now, let p be a "closed" LISP- program, i.e. a program in which no
user—defined function has free non—standard identifers. By renaming
all non-standard identifiers systematically within their scopes,
p can be transformed into a unique standardized program ps. We call
ps the ‘*“standardized version of p". Bince pS is unigue, the trans—
farmation s } p —> pg is & function; it is called the "standardiza—

tiaon".
Example :

The standardized version of the well known function LAST
(LABEL LAST ¢X) (COND ((NULL (CDR X}) (CAR X} {7 (LAST (COR X}3i))
is

{LABEL $0 (1) (COND ((NULL (CDR $1)) (CAR $1)}) (T {($0 (CDR $1))1 )}

Obviously, a closed program p and its standardized version pS are
functionally equivalent.

Let us now briefly explain the standardization of non-closed pro—
grams. As an example we consider the following program which conca-
tenates two given lists.
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Example :

The standardized version of

(LAREL AP (X Y)
{ (LABEL HELP (Z) {(COND ((NULL Z) X) (T (CONS (CAR Z) (HELP (CDR Z))}}}) ¥}
is
(LABEL $0 (%1 $2)

({LABEL $0 ($1) {$1>
(COND ({NULL #1) (FREEVAL 1}) (T (CONS (CAR #1) ($0 (CDR #$1)))))) $2))

Here the additional variable list <#%1> tells the interpreter to con-
struct the closure (CLOSURE {(LABEL %0 ($1) ... ) { vali$l} }}, where
val {$1) is the value of %1 {i.e. the value of X in the original pro-
gram). This causes val($1l) to be "frozen in the environment of its
defining occurrence". Finally, the pseudo call (FREEVAL 1) directs
the interpreter to take the first value, which is val($1), from that
closure. With this handling of free non—-standard identifiers, we ob-—
tain :

Theorem :

Let p be any closed or non—closed LISP—-program.
Then g and ps are functienally eguivalent.

This means that any program p can be standardized without changing
its semantics. Let us now look at the interpretation of ps. Due to
shallow binding each identifier %$i is always associated with the
same location loc(#i). For simplicity, we assume that loc(#i) = i,
which means that the value of the i-th variable of any function is
always stored at the same address : i. So when a function f of 0 va-
riables is called by (f Ay e an> or {id Ay e an), our
shallow binding system creates the following state of the memory
{ct., figure 1) :

heap

EERERERERRES p‘F 51’ i s ana an' FEERRERRREER

0 1 sirereav s n
Note that all the value cells are now contiguous and ordered !

stack

#HF val ($0) 0 val (§1) 1 e val (¥n) n n+i

a
ret

TO8

- figure 2 -

Here it is obviously redundant to store the addresses Oyl,...4m.
S0 the stack segment can be reduced to :
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stack

¥4% | val ($0) val (1) - val ($n) n+l a

ret
708

- figure 3 -

This shows that the standardization reduces the overhead expenses of
calling any function by approximately 50 per cent.

In the Ffollowing sections, the technique of shallow binding plus

standardizationy, as proposed above, will be called "standardized
shallow hinding” for short.

3. Low Cost Function Calls

Studying the performance of interpreters which apply shallow binding
or standardized shallow binding, it can be ochserved that most of
their execution time is spent on saving and restoring environments.
For many calls, however, it is not necessary to save and restore the
environment at all (*). This is quite obvious for certain recursive
calls {e.g. tail recwsive and covered tail recwrsive calls — see
[Fe/LiB4l +For definitions)l, and a lot of studies have been done on
that topic within the last vears ([Gr783, [FPe781, [FeB41, [(Sa-JaB4l,
[Fe/Li/5iBs61). In this section we will take a general approach to
the optimization of function calls, which is not restricted to re-
cursive Functions at all. We define a class of function calls which
have the property (%) (see above) and will therefore be referred to
as "low cost calls”.

First of all we have to introduce the notion of the "relevant local
context® of a function call.

Definition =

Let p be a LISP-program, © a function call in p and b the body of
the smallest function ¥ containing c.
Then the relevant local context of ¢ ( for short: rlcic) } is de-
fined to be b excluding
(1) c itself
(2) all the syntactic expressions to the left of c
{3} if c is contained in a conclusion of a conditional form cf,
all the clauses of cf which are to the right of c.

Example :

et us consider the following non-standard function MAPLIZ3. Below,
MAP123 is presented three times. In each case the relevant local
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context of the underlined function call is printed in bold type.

13 {(LABEL MAFLZE (FL FZ F3 Bl
(COND (ONULL E) NILD
CLATOM ED (F1 El
«T (LONS
(F2.
(MAP123 F3 F3 F3 (CDR E}) 1)) ) )
23 {(LABEL MAFLEE (F1 FZ FI &)
(COND (N EX NMIL)
CATOM E} (F1 E))
(T (ZONS
(F2 {Car BN
(MAFLZE FZ FE FE (CDR EXY 1) ) )
3 (LABEL. MAPIRI (F1 F2 FI B
COOND COMULL E) WIS
{LATOM ED (Fi E)
t T {CONS
(F2 (CaR EnN
(MAPLEE F3 FZ F3 (CDR EXr ) )
Let fy b and c be as in the definition above. Then the relevant
local context of c© contains all those syntactic forms which may
stiil be evaluated within b after ¢ is executed. This means that
only the values of those non-standard identifiers which occur free
in rlci{c} may still be accessed within b (as e.g. MAP1I23, F3 and E

in the first example). On the other hand, the values of the function
identifier and the variables of f will not be needed anymore after
the evaluation of b. So we can state

Corollary :

itet p, ¥ and © be as above. Let ¢ be a call of a non-standard func-
tion g. Let Idf{f) resp. Idf{g) be the set consisting of the vari-—
ables and the function identifier of f resp. g, and let Free(rlcic))
denote the set of all non-standard identifers occurring free in
rici{c). I¥f

{C13 Idfig) c IdF{f) and

{C2) Id¥ (g} n Freei{rlc(c}) = @

then the value of any identifier v & Idf(g)
after the execution of .

is not accessed anymore

S0, if (C1) and (C2) hold for a call of a function g, the saving and
restaring of the environment can be omitted for g. Consequently, if
(C1) and (C2) hold Ffor all the non—-standard functions which are
called by o, then c can always be executed without saving and re-

storing. Therefore we define :
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Definitioh 3
tet p, ¥ and ¢ he as above. Then ¢ is called a low cost call iff
for sach non-standard function g in p the following holds:

{ cis a call of g =3 {C1) and (C2) bhold far g )

Examples :

The recursive call of MAF1IZI is a low cost call.

Further, every tail recursive and covered tail recursive call is a
low cost call, since £ = g ( so Idf(Ff) = Ifgi{g: ¥ and rlc(c) never

contains any identifiers at all, so Freelrlcic)) is the empty set.
This means that all the coptimizations discussed in [Gr783, [Pe781,
[FeB41, [Fe/Li/Bi8s] and many cases discussed in [5a—JaB41 are in—
cluded here. Examples of non-recursive low cost calls will be given
lateron in this paper.

However, the example MAPI23 alsc shows the principal problem about
low cost calls: if we try to determine whether the calls (Fi1 E) and
(F2 {(CAR E)) are low cost calls or not, we run into trouble since we
cannot décide which function(s) g will be bound to Fl resp. F2Z
during the interpretation. In the example above this is because the
context of the function is not given. But even if MAP12Z is defined
within another function so that the context of its declaration is
known, the following theorem holds:

Theorem :

In general it is statically undecidable whether a function call < in
a LISF—program p is a low cost call or not.

A proof is given in [Fe83]1 by showing that the decidability of low
cost calls would imply the decidability of correct parameter trans—
mission, which is known to be undecidable for languages like ALGOL
ar LISP {see [La731, [Li/8i791) which allow functional arguments and
free variables in inner functions.

This theorem remains true even if p is supposed to have correct pa-—
rameter transmission ([FeB31).

Now, at this crucial point, the standardization proposed in the
previous section provides the key to & practical sclution:

1et us consider a call ¢ of a function g, e.g. © = {g By ses ank,
in a standardized program p, and let ¢ have correct parameter trans-—
mission, i.8. g is a function of n variables. Since p is standar—
dized, the function identifier of g is %0, and the variables of g
are $1,...,%n, so Idfig) = {$0,%1,...,¥n}. (Note that in a non—stan-
dardized program the set Idf{g) is in general undecidable [FeB51 !'i.
Since both the set Idf(f), f being the smallest function containing
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c, and the set Free{(rlcic)) can be constructed simply by scanning
the program p, (C1)  and (C2) can be computed, so we get the fol-
lowing theorem {([FeB31) :

Theorem 3

Let © be a non—standard function call in a standardized program p
which has correct parameter transmission. Then it is decidable
whether ¢ is a low cost call or not.

This solves the decidability problem under the assumptions that

— the program p is standardized, and

- the program p has correct parameter transmission, and

—- the call ¢ is a non-standard function call.

For practical purposes, none of these assumptions are restrictive
at all, since the standardization is simply a matter of variable
allocation; programs with incorrect parameter transmission terminate
with an error anyway; and the shallow binding mechanism is never ap-—
plied to standard function calls. So the theorem provides a practi-
cal solution to the decidability of low cost calls.

Examples :

In the standardized version of MAF123, all the three calls (F1 E),
(F2 (CDR E)) and (MAP1Z2E FX F3 F3Z (CDR E)) are low cost calls. Note,
however, that neither (F1 E) nor (F2 (CDR E)) are recursive! Further,
crossed {covered) tail recursive calls of functions f and g are low
cast calls in the standardized version, if f and g have the same
number of variables (see =.g. 0ODD and EVEN in [Sa-Ja841).

Finally, we give an efficient algorithm that detects all the low
cast calls in a given standardized program pS in Jjust one pass:

The Detection Algorithm

In addition to the standardization, a2 little transformation is done
to Ffunction calls: fAny call ¢ = (2 a, ... a )} is transformed into
{x t a (- an} where t is a pointer to the variable list of the
smallest function f containing c. This simple transformation will be

helpful later on { see step 5 below ). Now, ps is travered right to
lefty according to the following rules:

1. Bkip constants,

2. Enter each function definition f with an empty set S of addresses.
After leaving ¢, go on only with the set of the free nen-standard
identifiers of f.

3. While traversing ¥, pick up every non-standard identifier and add
it to B.

4. When entering a conditional form cf in £, stack 8.

Let 8 be the accumulated set when entering a conclusion co with-
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in cf, Copy B from TO8 {top of stack) and stack B'. dse § when
traversing co.

Let 8" be the arcumulated set when lezving co. Pop &' and go on
with the union of 8 and 8",

After leaving cf, pop € and dispose of it.

5. Now, let 8§ be the accumulated set when reaching a call
c={xta ....a) within f. Then 8 = Free(rlc{c)). Calculate
{C1) and (C2) as described above, using t to determine Idf({f).
1f both conditions are satisfied, replace t by T, otherwise re-
place t by F.

Now every low cost call in pS is marked T, every non—low cost call
is marked F. So the interpreter can execute function calls most ef-

ficiently in the following way:

The Interpretation of Function Calls

When the interpreter encounters a call o = (8 @ a, ««« an),
¥ and &8,4..-43 are evaluated as is usually done. The marker m
is either T or F. The evaluation of % yields a function g. The in—
terpreter checks for correct parameter transmission and terminates
with an error if g is not an n-ary function. If g is a standard
function, g and al’,...,a * are passed to APPLY as is usually done,
and m is ignored. Otherwise the following two cases have to be dis-—
tinguished:

Case I : m=F

In this case ¢ 1is not a low cost call, so the interpreter procesds
as before, pushing the current values of all v E Idfi{g}, as shown in
the previous figures.

Case 11 = m=T

In this case ¢ is a low cost call, so the saving and restoring of
variable bindings are omitted, and we get the following simplified
state of the memory:

heap
FEBESEERRFES p a,’ rrnr e a ’ FEFEERFRERRR
g i f
0 1 wsaissenna n
stack
FEE val {$0) 1 a
ret
708

Note that val($0) is & pointer to the “"previous closure", i.e. to the
closure of the smallest function f containing ¢.

- figure 4 -
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Here the "1® indicates that, after the evaluation of c, no values

have to be restored, except for the pointer to the previous closure,

which must be restored in order to be able to retrieve the proper

values of the free variables of ¥ furtheron. However, in many cases,

even these entries can be omitted:

-~ For recursive callsy the current closure is the same as the pre-—
vious one.

— For calls of closed functions the current closure does not contain
any values and will never be accessed.

In these cases, the contents of the value cell ¢ do not need to be

updated, and the control can be passed to EVAL by a simple jump in-

stead of a subroutine jump. Thus we can even omit to stack wval (30},

the 1" and the return address a_ So, summing up, we can state:

et

For any execution of a low cost call the stack either does not grow

at  all or grows by only three entries, which is just as little as
for a function of zero variables {cf. figure 3.

4. Conclusion

We have developed an optimized interpreter for static scope LISP.
Its efficiency is the result of combining the technique of standar—
dized shallow binding — which reduces the overhead expenses of any
function call by roughly 5O per cent — with a method of detecting
and executing low cost calls, which eliminates most of the remaining
overhead expenses (for low cost calls). The interpreter has been si-—
mulated in INTERLISP on an IBM 4381 and is currently being implemen—
ted in C on different microcomputers.

Further research will be done in the area of low cost calls, e.g.
concerning the order in which arguments should be evaluated. Permu—
tations of this order might provide for further improvements by ar—
tificially increasing the number of low cost calls.
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