
A G E N E R A L A P P R O A C H TO T H E

O P T I MI Z A T I ON OF F U N C T I O N C A L L S

Kay-Ulrich Felgentreu, Wolfram-Manfred Lippe

Institut f~r Numerische und instrumentelle Mathematik

der Universit~t M~nster

EinsteinstraSe 62, D - 4400 M~nster

Abstract

This paper presents a general approach to the optimization of func-

tion calls. We define the class of "low cost function calls" and in-

troduce a technique of detecting and executing these calls in a mo-

dified shallow binding system known as "standardized shallow bin-

ding". We show that by this technique the overhead expenses of chan-

ging environments for low cost calls are nearly cut down to zero.

The new method can be applied to any imperative or applicative lan-

guage. In this paper statically scoped LISP is taken as an example;

it is shown how the technique has been applied in the implementation

of a LISP interpreter. We also prove that our method exceeds a num-

ber of optimizations that have been proposed recently.

i. introduction

Most higher programming languages, such as PASCAL, LISP etc.~ con-

tain the notion of applying functions to arguments. In applicative

languages (e.g. LISP~ SASL) this is the main concept of computation.

However, function calls are rather expensive operations on yon Neu-

mann architectures. When an applicative program is executed, a con-

siderable part of the execution time is spent on changing environ-

ments~ i.e. saving and restoring variable bindings. So it is not

surprising that a lot of studies have been done to reduce these

overhead expenses ([Gr78], [Pe78], [Fe84], [Sa-Ja84]~ [Fe/Li86]).

They all combine a special method of binding variables ("shallow

binding") with a technique of handling certain recursive functions

("tail recursive functionsH~ "covered tail recursive functions",

etc.). Some interesting improvements have been achieved in this area~

but the restriction to special recursive functions has not yet been

overcome~

42

Here we will take a more general approach to the optimization of

function calls. Based on the technique of shallow binding, we will

define a class of function calls for which the overhead expenses can

almost be cut down to zero. We refer to these calls as "low cost

calls". This notion includes all the above-mentioned concepts and

also covers quite a number of non-recursive calls that have not been

considered before.

In this paper a technique of detecting and executing low cost calls

is developed. It can be used for any imperative ("procedural") or

applicative programming language, no matter whether the programs are

compiled or interpreted. In this paper we will demonstrate the power

of the new technique in an implementation of static scope LISP.

As is usually done, we implement LISP as an interpreter-based inter-

actice system. The interpretation consists of three phases

(I) the read phase: the program and the data are read from the in-

put and stored in the memory in a form that is well suited for

phase (2).

(2) the execution phase ("actual interpretation"): the program~

which is a LISP function, is applied to the data.

(3) the output phase: the result of the application is printed on

the screen.

The optimization described in this paper follows the basic strategy

of putting a little extra effort into the read phase in order to

gain a lot of storage and execution time during the actual interpre-

tation: When (or~ depending on the implementation, after) the pro-

gram is read from the input, each function call which can be inter-

preted without saving and restoring variable bindings is marked with

the atom T, all the other calls are marked F. So~ during the actual

interpretation, the interpreter can execute all the calls marked T

with a minimum of overhead expenses. In this paper we will develop

the decision algorithm needed in the read phase.

We proceed as follows: After a short review of the basic technique

of shallow binding, we will first show how shallow binding can be

improved by standardizing identifiers (section 2). This technique of

"standardized shallow binding" will reduce the overhead expenses of

any function call by approximately 50 per cent. Then we will intro-

duce the notion of l o w cost calls (section 3). We will see that in

general low cost calls are not decidable, i.e. there is no algorithm

that decides whether a given function call in any given program is a

low cost call or not. However, in the standardized shallow binding

system~ the decision problem is a lot simpler so that low cost calls

can actually be detected, and, furthermore~ they can be detected

very efficiently. Finally we show that previous approaches, such as

optimizing tail recursive, covered tail recursive and (to a certain

extend) even crossed tail recursive function calls are simple cases

of low cost calls.

43

2. Shallow Binding and Standardization

The technique of shallow binding for statically scoped LISP (as for

instance described in [Fe/Li/Si86]) can be summarized as follows:

Given a program p, each non-standard identifier id occurring in p

is uniquely associated with one location ("address") loc(id) in the

heap, the so-called value cell of id, which is supposed to contain

the current value of id throughout the whole interpretation (*).

Note that if two functions f and g have the same variable x, both

occurrences of x are identified with the same address. Further, each

non-standard function f occurring in p is enclosed in a list

(CLOSURE f freevals), the so-called closure of f, where freevals is

(a pointer to) the list of the values of the free non-standard iden-

tifiers occurring in f. Note that a function f may have different

closures within the same program p (see [Fe/Li/Si86] for an example)°

This closure technique is known to guarantee static scoping [Fe84]~

Now, let us consider a user-defined (i.e. non-standard) function

f = (LABEL i d f (Vl . . . v n) b) , w h e r e i d f i s t h e f u n c t i o n i d e n t i f i e r
o f f , v. a r e t h e v a r i a b l e s o f f , and b i s t h e body o f f . I n o r d e r i
to guarantee the condition (*), the following steps have to be exe-

cuted when interpreting a call (f a I ... an) or (idf a I ... an)

o f f :

i) B e f o r e t h e e v a l u a t i o n o f b , t h e o l d c o n t e n t s o f t h e v a l u e c e l l s

of idf,Vl,...,v n are pushed onto the stack, along with their

addresses (saving the environment), and the new values (i.e. the

closure of f, which is considered to be the "value of f", and the

values of the arguments a) are loaded into these value cells.
i

Then the evaluation of b is started by a subroutine jump to EVAL.

This gives the following state of the memory:

heap

I o c (i d f) loc(v I) ioc(v n)

where a i ' is the evaluated argument a , i = 1 , . . . , n ,
and p is a polnter to the closure of f .

The val~e ce i ls are not necessari ly contiguous or ordered !

stack

TO8

where v a l (. . .) is the value of . . . before the in te rp re ta t i on of the c a l l ,
and are t is the i n t e r p r e t e r ' s return address when ca l l ing EVAL.

f igure I -

44

Here, periods denote repetition, blanks stand for Tree storage~

and stars mean data which are not relevant in this context.

2) Now, when evaluating b, the value of idf resp. Vl,...,v n can be

retrieved simply by loading the contents of its value cell. The

value of any non-standard identifier occurring free in b is taken

from the closure of f.

3) After the evaluation of b, the n+l old values are removed from

the stack and loaded back into the proper value cells (restoring

the environment).

Note that in step 1 it is not sufficient to save the values of idf,

Vl,...,v n. Their addresses have to be saved as well, otherwise

there will be no way of knowing into which cells these values have

to be moved back after the evaluation of b (step 3). This is due to

the fact that the value cells of idf,Vl,...,v n are not necessarily

contiguous or ordered, since the programmer is free in his choice of

non-standard identifiers. We will now show how standardizing helps

to simplify the stack situation.

First, let us introduce the notion of the "standardized program".

In a standardized program the identifiers of each function are "num-

bered" in the following sense: Let $ be a letter of the LISP-alpha-

bet, arbitrarily chosen, but fixed, so that all ~i, i ~ INo, are ad-

missible non-standard identifiers. Then the i-th variable of each

function is $i, and the function identifier is $0. An example is gi-

ven below. Let us postpone the problem of free variables for a mo-

ment.

Now, let p be a "closed" LISP- program, i.e. a program in which no

user-defined function has free non-standard identifers. By renaming

all non-standard identifiers systematically within their scopes,
s

p can be transformed into a unique standardized program p . We call
s s

p the "standardized version of p,i Since p is unique, the trans-

formation s ! P _> pS is a function; it is called the "standardiza-

tion".

Example :

The standardized version of the well known function LAST

(LABEL LAST (X) (COND ((NULL (CDR X)) (CAR X)) (T (LAST (CDR X)))))

i s

(LABEL $0 ($I) (COND ((NULL (CDR $I)) (CAR $I)) (T ($0 (CDR $ I)))))

s
O b v i o u s l y , a c losed program p and i t s s t a n d a r d i z e d v e r s i o n p

f u n c t i o n a l l y e q u i v a l e n t .

are

Let us now b r i e f l y e x p l a i n t he s t a n d a r d i z a t i o n o f non -c losed p r o -

grams. As an example we c o n s i d e r t he f o l l o w i n g program which conca-

t e n a t e s two g iven l i s t s .

45

Example :

The standardized version of

(LABEL AP (X Y)
((LABEL HELP (Z) (COND ((NULL Z) X) (T (CONS (OAR Z) (HELP (CBR Z)))))) Y))

is

(LABEL $0 ($I $2)
((LABEL $0 ($I) <$I>

(COND ((NULL $I) (FREEVAL i)) (T (CONS (CAR $I) ($0 (ODR $I))>>)) $2))

Here the additional variable list <$I> tells the interpreter to con-

struct the closure (CLOSURE (LABEL $O ($i) ...) (val($1)))~ where

val($1) is the value of $i (i.e. the value of X in the original pro-

gram). This causes val($1) to be "frozen in the environment of its

defining occurrence". Finally, the pseudo call (FREEVAL I) directs

the interpreter to take the first value, which is val($1), from that

closure. With this handling of free non-standard identifiers, we ob-

tain :

Theorem :

Let p be any closed or non-closed LISP-program.
s

Then p and p are functionally equivalent.

This means that any program p can be standardized without changing

its semantics. Let us now look at the interpretation of pS. Due to

shallow binding each identifier $i is always associated with the

same location loc($i). For simplicity, we assume that loc($i) = i,

which means that the value of the i-th variable of any function is

always stored at the same address : i. So when a function f of n va-

riables is called by (f a I ... a n) or (idf a I ... an) , our

shallow binding system creates the following state of the memory

(cf. figure I) :

heap

- - - I °, I I la° I - - - - - -
0 I n

Note that all the value cells are now contiguous and ordered !

stack

I *** I val($O) I 0 I val($1) I I I ... I val($n) I n I n+11 aret I I

TOS
figure 2 -

Here it is obviously redundant to store the addresses O,1,...,n.

So the stack segment can be reduced to :

46

stack

TOS
figure 3 -

|

This shows that the standardization reduces the overhead expenses of

calling any function by approximately 50 per cent.

In t h e f o l l o w i n g s e c t i o n s , t he t e c h n i q u e o f s h a l l o w b i n d i n g p lus

s t a n d a r d i z a t i o n , as proposed above, w i l l be c a l l e d " s t a n d a r d i z e d

s h a l l o w b i n d i n g " f o r s h o r t .

3. Low Cost Func t i on C a l l s

Study ing the per formance o f i n t e r p r e t e r s which app ly s h a l l o w b ind ing

o r s t a n d a r d i z e d s h a l l o w b i n d i n g , i t can be observed t h a t most o f

t h e i r e x e c u t i o n t ime i s spent on sav ing and r e s t o r i n g env i ronments .

For many calls, however, it is not necessary to save and restore the

environment at all (*). This is quite obvious for certain recursive

calls (e.g. tail recursive and covered tail recursive calls - see

[Fe/Li86] for definitions), and a lot of studies have been done on

that topic within the last years ([Gr78], [Pe78], [Fe84], [Sa-Ja84],

[Fe/Li/Si86]). In this section we will take a general approach to

the optimization of function calls, which is not restricted to re-

cursive functions at all. We define a class of function calls which

have the property (*) (see above) and will therefore be referred to

as "low c o s t calls".

F i r s t o f a l l we have t o i n t r o d u c e the n o t i o n o f t h e " r e l e v a n t l o c a l

context" of a function call.

D e f i n i t i o n :

Le t p be a L ISP-program, c a f u n c t i o n c a l l i n p and b t h e body o f

t he s m a l l e s t f u n c t i o n f c o n t a i n i n g c .

Then the r e l e v a n t l o c a l c o n t e x t o f c (f o r s h o r t : r l c (c)) i s de-

f i n e d t o be b e x c l u d i n g

(1) c i t s e l f
(2) a l l t h e s y n t a c t i c e x p r e s s i o n s t o t he l e f t o f c

(3) i f c i s con ta i ned in a c o n c l u s i o n o f a c o n d i t i o n a l form o f ,

a l l t h e c l auses o f c f which a re t o t he r i g h t o f c.

Example :

Le t us c o n s i d e r t h e f o l l o w i n g non -s tanda rd f u n c t i o n MAP123. Below,

MAP123 i s p resen ted t h r e e t imes . In each case the r e l e v a n t l o c a l

47

context of the underlined function call is printed in bold type.

I) (LABEL MAP123 (FI F2 F3 E)

(COND ((NULL E) NIL)

((ATOM E) (FI E))

(T {CONS
(F2 (CAR E))

(MAP123 F3 F3 F3 (CDR E))))))

2) (LABEL MAP123 (FI F2 F3 E)

(COND ((NULL E) N I L)

((ATOM E) ..!F~I_..E~)
(T (CONS

(F2 (CAR E))

(MAP123 F3 F3 F3 (CDR E)))))

3) (LABEL MAPI23 (FI F2 F3 E)

(COND ((NULL E) NIL)

((ATOM E) (FI E))

T ~CONS

(F2 (CAR E))

(MAP123 F3 F3 F3 (CDR E))) ~)

Let f, b and c be as in the definition above. Then the relevant

local context of c contains all those syntactic forms which may

still be evaluated within b after c is executed. This means that

o n l y t h e va lues o f t hose non -s tanda rd i d e n t i f i e r s which occur f r e e

in r l c (c) may s t i l l be accessed w i t h i n b (as e . g . MAP123, F3 and E

i n t h e f i r s t example) . On the o t h e r hand, t h e va lues o f t h e f u n c t i o n

i d e n t i f i e r and t h e v a r i a b l e s o f f w i l l no t be needed anymore a f t e r

the evaluation of b. So we can state

C o r o l l a r y :

Let p, f and c be as above. Let c be a call of a non-standard func-

tion g. Let Idf(f) resp. Idf(g) be the set consisting of the vari-

ables and the function identifier of f resp. g, and let Free(rlc(c))

denote the set of all non-standard identifers occurring free in

t i c (c) . If

(Cl) I d f (g) c I d f (f) and

(C2) I d f (g) n F r e e (r l c (c)) = 0

then t h e va lue o f any i d e n t i f i e r v 8 I d f (g) i s no t accessed anymore
a f t e r t h e e x e c u t i o n o f c~

So, i f (CI) and (C2) ho ld f o r a c a l l o f a f u n c t i o n g, t h e sav ing and

r e s t o r i n g o f t he env i ronment can be o m i t t e d f o r g. Consequent l y , i f

(CI) and (C2) ho ld f o r a l l t he non -s tanda rd f u n c t i o n s which a re

c a l l e d by c , then c can a lways be execu ted w i t h o u t sav ing and r e -
s t o r i n g . T h e r e f o r e we d e f i n e :

48

Definition :

Let p, f and c be as above. Then c i s c a l l e d a low c o s t t a i l

f o r each nOn-standard f u n c t i o n g i n p t he f o l l o w i n g ho lds :

(c is a call of g => (C1) and (C2) hold for g)

i f f

Examples :

The recursive call of MAP123 is a low cost call.

Further, every tail recursive and covered tail recursive call is a

low c o s t c a l l , s i nce f = g (so I d f (f) = I f g (g)) and r l c (c) never

contains any identifiers at all, so Free(rlc(c)) is the empty set.

This means that all the optimizations discussed in [Gr78], [Pe78],

[Fe84], [Fe/Li/Si86] and many cases discussed in [Sa-Ja84] are in-

cluded here. Examples of non-recursive low cost calls will be given

lateron im this paper.

However, the example MAP123 also shows the principal problem about

low cost calls: if we try to determine whether the calls (FI E) and

(F2 (CAR E)) are low cost calls or not, we run into trouble since we

cannot decide which function(s) g will be bound to F1 resp. F2

during the interpretation. In the example above this is because the

context of the function is not given. But even if MAP123 is defined

within another function so that the context of its declaration is

known, the following theorem holds:

Theorem =

In general it is statically undecidable whether a function call c in

a LISP-program p is a low cost call or not.

A p roo f i s g iven i n [Fe85] by showing t h a t the d e c i d a b i l i t y o f low

c o s t c a l l s would imp ly t h e d e c i d a b i l i t y o f c o r r e c t parameter t r a n s -

m i s s i o n , which i s known t o be undec idab le f o r languages l i k e ALGOL

o r LISP (see [L a 7 3] , [L i / S i 7 9]) which a l l o w f u n c t i o n a l arguments and

f r e e v a r i a b l e s i n i n n e r f u n c t i o n s .

Th is theorem remains t r u e even i f p i s supposed t o have c o r r e c t pa-

r ame te r t r a n s m i s s i o n ([F e 8 5]) .

Now, a t t h i s c r u c i a l po in t~ t he s t a n d a r d i z a t i o n proposed i n t h e

p r e v i o u s s e c t i o n p r o v i d e s t h e key t o a p r a c t i c a l s o l u t i o n :

Le t us c o n s i d e r a c a l l c o f a f u n c t i o n g, e . g . c = (g a I . , . an) ,
i n a s t a n d a r d i z e d program p, and l e t c have c o r r e c t parameter t r a n s -

m i s s i o n , i . e . g i s a f u n c t i o n o f n v a r i a b l e s . Since p i s s t a n d a r -

d i z e d , t he f u n c t i o n i d e n t i f i e r o f g i s $0~ and the v a r i a b l e s o f g

are $ 1 , . . . ~ $ n , so I d f (g) = { $ 0 , $ 1 , . . . , $ n } . (Note t h a t i n a n o n - s t a n -

da rd i zed program the s e t I d f (g) i s i n genera l undec idab le [Fe85] !) .

S ince bo th t he se t I d f (f) , f being the s m a l l e s t f u n c t i o n c o n t a i n i n g

49

c, and the set Free(rlc(c>) can be constructed simply by scanning

the program p, (CI) and (C2) can be computed, so we get the fol-

lowing theorem ([Fe85]) :

Theorem :

Let c be a non-standard function call in a standardized program p

which has correct parameter transmission~ Then it is decidable

whether c is a low cost call or not.

This solves the decidability problem under the assumptions that

- the program p is standardized, and

- the program p has correct parameter transmission, and

- the call c is a non-standard function call.

For practical purposes, none of these assumptions are restrictive

at all, since the standardization is simply a matter of variable

allocation; programs with incorrect parameter transmission terminate

with an error anyway; and the shallow binding mechanism is never ap-

plied to standard function calls. So the theorem provides a practi-

cal solution to the decidability of low cost calls.

Examples :

In the standardized version of MAP!23, all the three calls (FIE),

(F2 (CDR E)) and (MAP123 F3 F3 F3 (CDR E)) are low cost calls. Note,

however, that neither (FI E) nor (F2 (CDR E)) are recursive! Further~

crossed (covered) tail recursive calls of functions f and g are low

cost calls in the standardized version, if f and g have the same

number of variables (see e.g. ODD and EVEN in [Sa-Ja84]).

Finally, we give an efficient algorithm that detects all the low

cost calls in a given standardized program ps in just one pass:

The Detection Algorithm

In addition to the standardization, a little transformation is done

to function calls: Any call c = (x a I ... a n) is transformed into

(x t a I ... a n) where t is a pointer to the variable list of the

smallest function f containing c. This simple transformation will be
S

helpful later on (see step 5 below). Now, p is travered right to

left, according to the following rules:

I. Bkip constants.

2. Enter each function de f i n i t i on f with an empty set S of addresses.

After leaving f , go on only with the set of the free non-standard
identifierm of f.

3. While traversing f , pick up every non-standard i d e n t i f i e r and add
i t to B.

4. When entering a condit ional form cf in f , stack S.

Let S ~ be the accumulated set when entering a conclusion co with-

50

5.

in of. Copy B from TOB (top of mtack) and stack B ~. Use B when

traversing co.

Let B" be the accumulated set when leaving co, Pop S' and go on

with the union of S' and S".
After leaving cf , pop S and dispose of i t .

Now, le t S be the accumulated set when reaching a cal l

c = (x t a I a n) within f . Then S = F ree(r l c (c) } . Calculate
(CI) and (C2) am described above, using t to determine I d f (f) .

I f both conditions are sat is f ied~ replace t by T, otherwise re-

place t by F.

Now

i s

f i c i e n t l y i n t h e f o l l o w i n g way:

S .

e v e r y low c o s t c a l l i n p i s marked T~ e v e r y n o n - l o w c o s t c a l l

marked F. So t h e i n t e r p r e t e r can e x e c u t e f u n c t i o n c a l l s most e f -

The Interpretation o f Function Calls

When the i n t e r p r e t e r e n c o u n t e r s a c a l l c = (x m a I ... an) ,

x and al,...,a n are evaluated as is usually done. The marker m

is either T or F. The evaluation of x yields a function g. The in-

terpreter checks f o r correct parameter transmission and terminates

with an error if g is not an n-ary function. If g is a standard

function~ g and a I ,...,a n are passed to APPLY as is usually done,

and m is ignored. Otherwise the following two cases have to be dis-

tinguished:

Case I = m : F

In t h i s case c i s n o t a low c o s t c a l l , so t h e i n t e r p r e t e r p roceeds

as b e f o r e , push ing t h e c u r r e n t v a l u e s o f a l l v ~ I d f (g) , as shown i n

t h e p r e v i o u s f i g u r e s .

Case I I : m = T

In t h i s case c i s a low c o s t c a l l ,

v a r i a b l e b i n d i n g s a r e o m i t t e d , and

s t a t e o f t h e memory:

so t h e s a v i n g and r e s t o r i n g o f

we g e t t h e f o l l o w i n g s i m p l i f i e d

hear

0 1 n

stack

I... I v.1 ,0 11 i
TOS

Note that val(SO) is a pointer to the "previous closure", i .e . to the
closure of the smallest function f c0nteining c.

- figure 4 -

51

Here the "I" indicates that, after the evaluation of c, no values

have to be restored, except for the pointer to the previous closure,

which must be restored in order to be able to retrieve the proper

values of the free variables of f furtheron. However, in many cases,

even these entries can be omitted:

- For recursive calls, the current closure is the same as the pre-

vious one.

- For c a l l s o f c l osed f u n c t i o n s t h e c u r r e n t c l o s u r e does no t c o n t a i n

any va lues and w i l l never be accessed.

In t hese cases , t h e c o n t e n t s o f t he va l ue c e l l 0 do no t need t o be

updated, and the c o n t r o l can be passed t o EVAL by a s imp le jump i n -

s tead o f a s u b r o u t i n e jump. Thus we can even omi t t o s t a c k v a l ($ O) ,

t h e " i " and t h e r e t u r n address a re t . So~ summing up, we can s t a t e :

For any e x e c u t i o n o f a low c o s t c a l l t h e s t a c k e i t h e r does no t grow

a t a l l o r 9rows by o n l y t h r e e e n t r i e s , which i s j u s t as l i t t l e as

f o r a f u n c t i o n o f ze ro v a r i a b l e s (o f . f i g u r e 3) .

4. Conc lus ion

We have developed an optimized interpreter for static scope LISP.

Its efficiency is the result of combining the technique of standar-

dized shallow binding - which reduces the overhead expenses of any

function call by roughly 50 per cent - with a method of detecting

and executing low cost calls~ which eliminates most of the remaining

overhead expenses (for low cost calls). The interpreter has been si-

mulated in INTERLISP on an IBM 4381 and is currently being implemen-

ted in C on different microcomputers.

Further research will be done in the area of low cost calls, e.g.

concerning the order in which arguments should be evaluated. Permu-

tations of this order might provide for further improvements by ar-

tificially increasing the number of low cost calls.

References

[Ba78]

[Ba80]

Baker, H. 8.
Shal low B ind ing i n LISP 1.5

CACM, V o l . 21 No. 7, pp. 565-569, July 1978

B a u c h r o w i t z , N.

V e r g l e i c h e i n e r o p e r a t i o n e l l e n m i t e i n e r d e n o t a t i o n e l -

l en Semant ik f ~ r LISP

D i p l o m a r b e i t am I n s t i t u t f u r I n f o r m a t i k und P r a k t i -

sche Mathemat ik der U n i v e r s i t ~ t K i e l , 1980

[FEB4]

[Fe85]

[Fe/Li 86]

[Fe/Li/Si86]

[Gr78]

[La73]

[Li/Si79]

[McC66]

[Pe78]

[Sa-Ja84]

52

Felgentreu, K.-U.

Implementierung eines schnellen LISP-Interpretierers

Diplomarbeit am Institut far Informatik und Prakti-

sche Mathematik der Universit~t Kiel, February 1984

Felgentreu, K.-U.

Decidability Problems concerning the Optimization of

Function Calls

Bericht Nr. 3/85-I, Institut far Instrumentelle Mathe-

matik der Universit~t Mdnster, 1985

Felgentreu, K.-U., Lippe, W.-M.

Dynamic Optimization of Covered Tail Recursive Func-

tions in Applicative Languages

~to appear in the Proceedings of the ACM Computer

Science Conference February 1986)

Felgentreu, K.-U., Lippe, W.-M., Simon, F.

Optimizing Static Scope LISP by Repetitive Interpreta-

tion of Recursive Function Calls

(to appear in IEEE Transactions on Software Enginee-

ring)

8reussay, P.

Iterative Interpretation o f Tail-Recursive LISP

Procedures

in Ecole de la Recherche, Universite de Paris, 1978

Langmaack, H.

On correct Procedure Parameter Transmission

Higher Programming Languages

Acta In~ormatica 2, p. 110-142, 1973

in

Lippe, W.-M.~ 8imon~ F.

LISP/N - Basic Definitions and Properties

Bericht Nr. 4/79, Institut far Informatik und Prakti-

sche Mathematik, Universit~t Kiel, Oktober 1979

McCarthy~ J., et. al.

LISP 1.5 Programmer's Manual

MIT Press, Cambridge, Massachusetts, 1966

P e r r o t , O. F.
P r i n c i p e s d ' i m p l e m e n t a t i o n de processus reCLtrsi~s

in Ecole de l a Recherche, U n i v e r s i t e de P a r i s , 1978

Saint -James, E.
Recurs ion i s more e f f i c i e n t than I t e r a t i o n

Conference Record o f t he 1984 ACM Symposium on LISP

and F u n c t i o n a l Programming, August 1984

