A VERY INTELLIGENT BACKTRACKING METHOD FOR LOGIC PROGRAMS

By Christian Codognet, Philippe Codognet and Gilberto Filé
U.E.R. de Mathématiiques et d’ Informatique
Université de Bordeaux |
351, Cours de la Libé&ration
33405 Talence Cédex, France

introduction

The growing interest for Logic Programming and in particular
for Prolog together with its relatively poor performance metivates the
study of methods for improving the efficiency of the transiators of
this language.

One of Prolog’s drawbacks is certainiy its backtracking mecha-
nism simple, but blind : on an unification failure, it goes back to
the state preceding the last resocilution step.

In this paper we shali describe an inte!ligent backtracking
method (IB method for short) initially developed by T. Pietrzykowski
8. Matwin and P. Cox, [Pie82, Mat82, Mat83, Cox84]. The (B method
consists in representing the resuit of the refutation procedure in a
way different from that used in Prolog and which allows a precise
analysis of the causes of the unification failure. In the IB method
one determines a set of backtrack points such that it is sure that the
centinuation of the computation from any of them does not lead to the
"same™ unification failure. The normal backtracking of Prolog does not
give such a guarantee and the "same"” unification failure may be
repeated several times.

Since it constructs several backtrack points (a priori equi-
valent}) from each of which an independent computation can be star—
ted, the IB method presents the following advantages (besides skip~
ping useless deduction / backtracking steps)

(i) it lends itself naturaliy to a paraliel implementation : a
process is associated to each backtrack point, all the processes
being independent ,

(ii) it allows te preserve as far as possible the already done
deduction work aveiding in this way the risk of deleting some deduc—
tiens that must be redone later on. This risk is present if one
chooses only one of the backtrack points forgetting about the other
ones (& la Prolog or a4 la [BRUB41).

318

The paper i5 organized as follows. In the first part the
basic concepts of the B method are discribed and an important
redundancy problem inherent to the method is pointed out : since
the total deduction work is performed by independent computaticns
it can happen that some deducticns are done more than once. In the
secand part of the article a solution to this problem is presented.

1. Basic definitions

We will assume the reader familiar with the fundamentals of
logic programming, see [L10o841. From now on we will consider a logic
program to be a pair <8,G>, where S s a set of definite clauses
and G is a clause of the form & Aj,...,Aq, a » 1 called the goal
ocf the program.

1.1 Fundamental structures

in the existing Prolog interpreters the execution of a logic
program consists {(abstractly) of a depht-first search of a SLD-tree
that is realized in practice by means of a push-down stack. In the
intelligent backtracking method {(IB method) that we present the
execution of a legic program <S,G> consists of dynamically building
the two graphs described in points f{(a) and (b) below :

{a) A plan for <S.G> , that contains the purely deductive part of

the proof, is a tree P whose rvroot is labelled by G and whose other
nodes ate variants of clauses of S. Moreover, every arc (ny,ng) of

P (where ny is the father and ng the son) is labelled by a triple
<s,t,m> defined as follows

{i) if ny= A & Ag,...Aq (or «Ay,...,Aq if n; is the root of P}
and ng= B & By,...,By, then, for some i € [1,g3,8 = Ay and t = B;
A; will be called the source of the arc and B its targedi,

(ii) m is an integer uniquely identifying the arc in the plan.

An arc {ni,ng) of P represents a resclution step betiween the two
clauses n; and ng and the source and target of the arc are the
opposite unifiable literals chosen for the step (see Example 1 below) .

(b The Dynamic conflict graph associated fo the plan P,

denoted DCG(P), that records the bindings ameng all variables, is

an oriented graph whose vertices are non oriented and connectsd
graphs. Each of these latter graphs represents a set of variables that
are bounded to the same value. Their nodes are, therefore, variables
or functions symbols and each arc, say (X,Y), is labeled by an integer
identifying the arc of P (see point (a) (ii)}which is responsable

of the binding between the 2 {variables or function) symbels X and
¥. These non oriented graphs are (improperiy) called classes. The
oriented arcs of DCG(P) represent the functional dependencies among
the classes, see Example 1. Clearly, at each moment of the computation

317

DCG(P) represents the substitution corresponding to the deductions
contained in P.

Exampie 1 : At ths place of the classical proof tree of Fig.1({(a}
the {B method constructs the pian and the corresponding DCG shown
in Fig. 1(b).

(a) wp(a,¥)vq(a,y) POXLF(X))r(X)
\/ {a/X,f(a)/Y}
~g(a,f(a))vr(a)
plan P
(2E.N.90Y)) YL)
1 .|
(b) _ 1
CrOGF))=rx)) (x=a)

Figure 1 . An example of a plan and its DCG

In the DCG(P) of Fig.1{b), the oriented arc is labeled by V¥
in order to remember that Y has been instantiated to f(X) ;
morecver, the fact that this arc rung from f to X (and not just
from one class to the other one) is an important information.

In Example 2 we continue the deduction of Exampie 1 in order
te explain in what a deduction step consists.

Example 2 - in order to expand the plan P of Fig.1(b) by perfor-
ming a deduction step, assume to have the clause ¢ : g(X,f{X)) « .
In P there are 2 literals which ave neither source nor target of
any arc : g(a,Y) and r(X). Such literals are called open. We want
te expand the literal aq(a,Y) (hence expanding P) resolving it
against clause c. Such a deduction step, applied to P, produces
the plan P’ which is shown in Fig.2 together with DCG(P’)..

(=r(aY), a@,y)) (vL2 f)
P 2 DCGYP*) : v l
PLTX) < r(0 D) (L) =) (Xlif..'z:_zl)

2
Figure 2. A deduction step,

318

A pilan without open literals is said to be glosed.

Remark : Consider any logic program <5,G>. Let | be an atom of G

or of the premise of a clause of S. The set {s/s is a clause of S
whose concliusion is unifiable with I} is calied the statjc set

of potentials of |, denoted SSP(l), and esach element of this set

is called a potential of |. To each literal | of a pian for <§,G>,

at each moment of the computaticn, is asscciated a subset of SSP (I}
that is called its actual set of potentiais, shortly ASP(l). When the
literal | is first added to the plan then ASP (1)=S8P(l}) and along the
deduction ASP(!) decreases. Clearly, if | is an open literal the
meaning of ASP (!} is that only the clauses contained in this set can
be used for expanding |. Hence in the deduction process described in
examples 1 and 2, clause ¢ was in ASP(a(a,Y)}) in the plan P shown in
Fig. 1(b), but no more in the plan P’ of Fig.2. Thus, whenever we have
a plan with an open literal | such that ASP(!) # g the deduction can
continue with the expansion of |. For knowing wether the executed
deduction step is successful or not, one has to examine the DCG
produced, as explained below.

1.2 Success and failure of a deduction step.

A deduction step may fail because of 2 reasons : let P be the
plan produced by the deduction step,

(a) a clash is found, i.e., at least one class of DCG(P) coentains
more than one function symbol,

(by an infinite term is constructed, i.e., DCG(P} contains a cycle.

A set of arcs of P partecipating in the construction of a clash or
cf an infinite term is called a gonflict. This notion is explained
in the following example.

Example 3 : Fig.3(a) shows a plan whose DCG centains a clash. The class
3 3

in which 2 different function symbols appear is (b — x — a), call it
ctass 1, but the clash propagates to the cther class, call it ciass 2
the different terms f(a) and f(b) are associated to class 2. A conflict
causing the clash is found by collecting the labels of the arcs of a
path (in the DCG) connecting a and b and traversing both classes

1 Y 1 2 3 Z
for instance, for the path : g =—— X é=— f —— ¥ —— 7 —=— f —3> b, the
conflict is {1,2,3%. Clearly, nc other conflict can be found for this
clash. Observe the usefulness of the variables labeling the directed
edges of the DCG : they specify that, in class 2, cycles connecting
Z,Y and f must be considered.
tn Fig.3(b) a plan whose DCG contains an infinite term is given. The
unigue cenflict is {1,2% which is constructed by collecting the labels

1 1 2 2

of the arcs of the path : V —— f —3 X —— |y — 2 —— g —> V.

319

= ptf(X),X) L= £ £
(< ptEi(x),x)) W W 2%y £)
! 2 3 l Y
Y, = r(Y,Y)
(p(y,a) = x¢) LTS 5 N
2
(a) (xr(zW =aq(EfmW))
3
(qlEm), £WD) <)
(rxim, v) (v == £)
1 I v
1.2 2
(pw,v,m < q@,gm) , rw) (X =——U—12—9)
z
(b) 2 (v =—w)

Figqure 3

From now on T'p is the set of all conflicts of DCG(P).
Ohserve that in case of failure the arc added to the pian in the
iast deduction step is an element of every conflict. A plan P is
ynifiable if DCG(P) has neither a clash nor an infinite term. A
deduction step is successful if the plan it produces isg unifiable.

1.8 Solutions of the conflicts.

In the case of a not unifiable plan, one has to backtrack,
that i8 to determine the set of plan arcs whose removal restores the
unifiability of the plan.

Definition : Let P be a non unifiabie plan and Tp its conflict set,
a golution 8 of I'p is a set of labels of arcs of P s.t.¥¥Er, ¥nS< g&.

0
Let oo(Fp) be the set of all! solutions of Ty. To each
solution 8 = {aj,...yany corresponds & plan PS squal to the
initial pian P iess the elements of 8§ (and thsir descendants) ;
these plans are called backtrack points.

Let "Present,” be the unary predicate such that Presentp(m) is
true if P contains the arc labeled by m. Observe that PS satisfies

— n
S=AND (~Presenty (az))
i=1

320

n
Henceforth we note Presentp(a;) simply by a; and hence S=AND~aj;.
i=1
Our aobjsctive is to delete as |ittle as possiblie the original plan.
Te this end we consider in a first time the partial crder <, on
the arcs of the plan determined by iis tree structure defined as
follows
iet a and b be two arcs of the plan P, then
a <pb =3 the (unique) path from the root of P to the source of a
containg the arc b.
For each conflict ¥ of I'p, we construct a reduced coenflict ¥
containing enly the arcs of ¥ minimal w.r.t. <,

¥’ = {agy/for no a’€¥ with a’% a a’<,a} .

Hence we obtain the reduced conflict set Tp={¥"/¥ € Ip}. As
previously, one can now compute o (T}) and obviously ¢ (Tigo (Fp).

We will consider only solutiens in o (Py) disregarding those in

B =g (Fp) ~ @ (T}) : the backtrack points corresponding to solutions
in B are eventualiy reached, by backiracking, in the deductions of the
backtrack points corresponding to o (Ty) (if these deductions do

nct loop). In order to further reduce the number of solutions, we
consider also the partial order among the solutions determined by

set incliusion.

Let o (I'4)={8€g (T'})/¥S'€c (I'}), 8¢ 8 = 8'=8). Again, only the
backtrack peoints corresponding to the solutiens in @ (I'}) are
considered because they will generate, by backtracking, the plans
corresponding to the solutions in o (Tp)-o (Fp).

Exemple 4 : Assume that after a few steps of computation, we have
the plan P shown in Figure 4 together with DCG(P}. lts conflict

set is Tp={{1,2,4%,{3,43}. Since arc 2 i3 not minimal w.r.t.

<psTp= {{1,43,{3,4¥r and thus,

T (P;):{{1,8;4}{1,3},{1,4}){4,3},{4}} and the minimal ones (w.r.t.c)
are g (Pp)=4{1,3},{4}}.

patn) (yﬁziu—“-T-“-p

1 2 T

Gar <) G <runmyufy)y) (atx 2y
3 4
(rz,2)) (m(b,T,T))

4 p)

Figure 4. A non unifiable plan and its DCG

321

1.4 Deduction/backiracking algorithm

The inttial plan P;,; for a logic program <8,G> is reduced
to a single node : a variant of G. And thus, DCG(Pjni) is formed
by isolated classes, each of them containing only a variable of G.

in the following algorithm, the "store™ contains the present
coliection of plans.

Deduction/backtracking algorithm

Begin
Send the original plan Pij,; to the store
While store #Zg
Dg Take a plan P from the store
1f 3 open literal | such that ASP(l)=g
Then Backtrack 1 (x see below for details x)
Eise while I'j}=% and P is not closed.
Do choose an copen literal | of P and a clause
CEASP (1} and perform a deduction step
expanding | with ¢, cf. exampls 2

(=]
[+%

1f Tp#@
Then Generate the unifiable plans corresponding to the
solutions in ¢3(I'p) and send them to the store

Eise SUCCESS

Backtrack Z (% see below for details x}

m

Fi
Od
End

Backtrack 1 : 3 open literal such that ASP(l) = #&.

Let {a;,...,ap} be the set of the arcs of P
leading to clauses containing at least one such
literal : generate all thes plans corresponding to

the solutions of the conflicts, Ip={{fai},...,{as}}
and send them to the store.

Backtrack 2 : SUCCESS
In order to find more successes : generate all the plans
corresponding to the sclutiens of Pp={{a/a is an arc
leading to a leaf of P¥} and send them to the store.

1.5 Redundancy problem.

Let us now see a serious drawback of the |B method : the
resclution of conflicts generates plans whose search spaces may
have overlapping parts. Hence some computations can be redundant.

322

Exampie & : Assume we have the nonunifiable plan P (shown
schematically in Fig.58) where the actual potentials of the literals of

P are represented by dotted lines. Assume alsoc that Ty={{1,23}. Iis
minimal sclutions are o1 (T3)={{1}3,{2%}. The next step (cf. 1.4
above) is to generate the two plans Py and Pg of Fig.5 . Assume
that Py and Pg have conflicts Iy={{1",23% and DP}={{1,2"3}, and
hence solutions oy (Py)={{17 3,423} and o4 (Py)={{13,{2° 3}, respecti-
vely. Four plans will be generated, two of which cannot be expanded
further as 1’ and 2° are without petentials. Thus the plan P' of
Fig.5 is produced twice : redundancy !

P P].
........... Y (T
PZ pt

Figure 5. An example of redundancy

2 - Getting rid of the redundancy

Assume that a reduced conflict set p of a ptan P has n
sociutions S¢,...,S,. We recall that for each $; , the corresponding

plan PS; (Py for short) satisfies 8; (c¢f.1.3). The intuitive idea to
get rid of redundancy is to force a partition of the search-space
of the logic program <5,G>. To aveid redundancy between P; and the
=1 - —

plans Pq,...,Pi-1, P; must satisfy the formula Fj= AND ~ §; A Si.
The product : i=1

i-1 —

AND ~ S; is called a constraint and is noted C; ;

j=1

— ni i-1 nj
As S5 = AND ~ ay(j), we have C; = AND (OR ayx(i)).
k=1 j=1 k=1

Of course, we want this property of P; to be transmissibie to its
subsequent expansions. Hence all the plans generated from Py will
net be redundant with these generated by Py, j < i (and also j # i}.

In what follows, we will explain how we can preduce effi-
ciently a seguence of sclutions S = <8y,...,8;4> such that each formuta
F;, i€[1,n1, can be reduced to an irreductible equivalent formula
IRR({F3) which is just a conjunction of literals (a or ~s8 where

323

a is an arc of the pifan Py . For the moment, left us see how to use

(i) for each a€lRR(F;}, remove from P the arc a {and all
its descendants).

(ii}y for each ~a€lRR({F;}, block in P the path from the
raoct to a {included}, i.e. : eliminate all potentials for each iiteral
u of an arc of the path, (now, ASP(u) = g). Keeping an arc indeed
is egquivalent to keep all arcs from the roet to it.

In this way all subseguent expansion of P; wili satisfy
IRR(F3j) and hence F;. Clearly, if IRR(F;) is unsatisfiable no plan
is generated.

Let us now examine how we can construct a seguence of
splutions § = <83,...,8,> such that for each F;, i€[1,n], one can
easily construct an eguivalent conjuncton of liteals IRR(Fy).

2.1 Conflict tree.

Far a non empty conflict set T we define a tree, called a
conflict tree for TI', each branch of which is a conflict. Rather
than giving a formal definition we introduce this concept by means
of an exampla.

Example & @ Let T = {{5,1,23,{5,1,43,45,2,3%,415,3,4%. The two
trees of Fig.6 are possible conflict trees for T.

5 5
N\ ERN
AVVA A /N
2///\\4 2 4 1 3 1 3
Figure 6. Two conflict trees.

2.2 Cut language

Again we use an exampie for introducing a new concept, that
of cut language of a tree. In Fig.7 the cut language of the first
tree of Fig.6 is given. As shown in Fig.7 each slement of Cut (1)
is a transversal cut of the tree.

/—\-\,,-- 3--- Cut(t)= {5,1.3,1.2.4,2.4.3,2.4.2.4>
/"

’ A
iy Sy B A k=it

Figure 7. An exampife of a cut l!anguage.

324

For sECut (t), B * B1jyeeeylky, we define Sg={o; i€l1,nl>. Let t be a
confiict tree for a set of conflicts I'. |t is easy to see that for
®ECut (t) ;8¢ is a solution of I' and that the minimal sotutions of T

(with respect to ¢) are contained in {Sg/®€ECut(t)}, in general,
together with nonminimal sclutions.

Observe that a total order can be naturalliy defined on the
cut language : for two elements of Cut(t), we determine the first
branch of t (from the ieft) on which they differ, the cut with the
“higher” node on this branch is the inferior one with respect to this
order. in the previous example the elements of Cut(t) are written in
increasing order. Unfortunately, this crder doss not directiy induce
one on {Sg/@€Cut (1)} as cne can have Sg= Sp and & # g, for o and
g€Cut (t) as shown in Fig.8.

3 Jl—=1.2.1
/l, l
' = {{1,3,5%, ::;1:;-:::21\ 4
{2,3,5%, v
{1,2,4,53) ‘e p=1.2.2

Figure 8. Two cuts o and p such that S¢=Sp

This problem is easy to scive. Let t be a conflict tree for a set
of conflicts I'. Let ®y,«.s3®p be the seguence of the elements
of Cut(t) with respect to the order defined above. Let 87 =<8y ,...,8« >.
Finally, 8§ is cbtained from S’ eleminating any Sg such t n
i
that there is an 8¢ with i<j such that S¢ . S¢ « S i8 the sequence
i i J

of sclutiens that we will use far solving T.

2.3 Computation of the constraints

Fact 1 : Using the seguence S of sclutions of a set of conflict T

defined above, each formula Fi; = (SiA Cj) reduces bpoleanly to a
conjunction IRR(F;) of nepative arcs (all these of S;) and positive
ones {(some of those of Cj)

a]
Recal!l that an arc a or ~ a represents the literal Presenty(a)
and ~Presentp(a), respectively.
We will not give the proof of Fact 1 here (it can be found in

[CodR51), but simply remark that it does not hold, in general,
for a sequence of the minimal soclutions of a set of conflicts. This
is the 1st reascn for choosing the sequence § (where there may be

325

nonminimal sofutions) over the minimal seguences. The 2Znd reason is
that for S the IRR(F;)’s can be computed very efficientliy, as explai-
ned below.

Leti us now caracterize the positive elements of IRR(Fy)
let 8;€68 and o be the minimal element of Cut(t) such that Sg=8;.
A iabe! b is an ancestor of 8; if there exists a branch of t
oen which a node labeled by b is8 "higher” than the one that belongs
te @ (ocbviously, w&Cut(t) implies that o has an slemeni on
each branch of t).

Fact 2 : b ancestor of 8; € S e b positive facter of IRR(F;}) ;

and thus IRR(F;) = 83 ™ AND(b/bo is an ancestor of Sy).
]

The constraint C; of a solution S; is then easily computable
as only the ancestors of 8; have toc be known. The construction of
$=<84,...,8x> is done by a search of the conflict tree, and the
simultaneous updating of a stack of ancestors gives us the
constraints Cq,...,Ch.

2.4 Completeness.

The IB method with constraints (now called CIB method) is
complete, with respect to the (B method, for not looping deductions;
in the case of a plan generating an infinite deduction,the success
set may be different, [Cod85]. The CIB method may miss certain
success because, intuitively, it relies more on backtracking : in
the (redundant} {B method several! computation seguences can lead to
the same success, only the finiteness of pne of them is required to
actually have this success.

in any case the method (with or without constraints) is. not
complete (just as the blind backtrack of Prolog) because its (depth-—
first) search strategy cannot handle the infinite deductions.

2.5 Conclusions

The CIB method seems more suited to implement both OR and
AND parailelism than the usual way of executing Prolag

(i) fer the OR parallelism a process can be associated to each
unifiable plan generated by the backtrack method (each process
independent from the others).

(ii) for AND paratieiism the DCG graph of a plan P will surely be
useful in coordinating the work of several processes expanding P.

328

For these reasons it is surely very interesting to explore
the usefulness of the CIB mehtod in paralle! implementations of logic
programming.

REFERENCES

{Bru841 M. Bruynocoghe and L.M. Pereira ; Deduction revision by
intelligent backtracking. In impiementation of Prolog,
Compbell {ed.), Ellis Hood 1984, 194-215&.

[Cox841 P.T. Cox ; Finding backtrack points for intelligent back-
tracking. In implementation of Prolog, op.cit.,216-233

[Cod851 C. Codognet and P. Codogneti ; Un backtracking inteliigent pour
Prolog. D.E.A. Thesis, Université de Bordeaux |,France

[Lic841 J.W. Lioyd ; "Foundations of Logic Programming”. Springer
Verlag, Series in Symbolic Computation, 1984.

[Mat82] S.Matwin and 7. Pietrzykaowski ; Exponential improvement of
exhaustive backtiracking : data structures and
implementation. Sixth CADE, LNCS 138, Springer Verlag
1882, 240-258.

[Mat831 S. Matwin and T. Pietrzykowski ; Intelligent packtracking for
automated deduction in FOL. Logic Programming
Workshop 83, Algarve, Portugal, 188-181.

{Pie 821 T. Pietrzykowski and $. Matwin ; Exponentia! improvement of
exhaustive backtracking : a strategy for plan-based
deduction, Sixth CADE, LNCS 138, Springer Verlag
1982, 223-239.

