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1. INTRODUCTION 

Kahn [Kahn t974] has introduced a semantic framework for deterministic dataflow nets. Many 

researchers have tried to extend these ideas to nets with nondeterministic nodes, for example 

[Keller 1978], [Brock & Ackerman 1981], [Arnold 1981], [Boussinot 1982]. See also the references 

listed at the end of this paper. A straightforward extension of Kahn's framework does not work, 

because serious anomalies arise, as is shown by [Keller 1978] and [Brock & Ackerman 1981]. We 

introduce these anomalies by two examples, for more details see the original papers. 

EXAMPLE 1 (Keller Anomaly) Consider the following net: 

otJ z 

The tokens on this net will be integers. This net has one input- and one output line and it con- 

sists of three nodes: - a merge node which merges its two input lines, - a split node which outputs 

its input tokens on both output lines, - a plus_l node which adds 1 to each token that passes this 

node. Now consider what happens if we put a "1" on the input fine of this net. It passes the 

merge node, and arrives at the sprit node. The sprit node sends one copy of "1" to the output line 

and one copy to the plus__l node, which adds 1 to "1" and sends "2" to the merge node. Con- 

tinning in this way we see that the desired output is the infinite stream 123 .. . .  Now let us look at 

what happens if we try to apply Kahn's method to this net. First write down the set of equa- 

tions: {merge( I N ,  Y ) = X, sprit( X ) = < O U T ,  Z > ,  p l u s l (  Z ) = Y}. The set of equa- 

tions is derived from the net. IN, OUT, X, Y, Z represent histories on fines in our net. A his- 

tory is a sequence of values. Let e denote the empty history. The nodes are represented by func- 

tions that map histories to (sets of) histories. We are looking for a solution which can be 

obtained by iteration, as in Kahn's approach. We start by ir&ialyzing X = Y = Z = OUT = ¢ 

and IN = 1. We now 'fire' the nodes and compute the 'new' values of these variables: 1. X = I N  

= (  t }, O U T = Z - - Y = {  e }. We repeat this process (iteration): 2. X = I N = Z = (  1 }, Y = (  • }, 

3. X = I N = O U T = Z = (  1 ), Y = (  2 }, 4. X = (  12, 21 ), I N = O U T = Z = (  1 ), Y = (  2 }, 5. 

X = (  12, 21 }, I N = (  1 }, O U T = Z = (  12, 21 }, Y = (  2 }. We can continue this way and get (in 

the limit) sets of histories on all the lines. Remark that now there can be some output (on OUT) 

that is not possible operationally. We see that in the limit there is an infinite stream which starts 

with 21. By operational intuition this is not allowed. 

EXAMPLE 2 (Brock-Ackerman anomaly). Consider the following two networks which each have 
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two input and two output lines: 

double j 
7~ 

-double is a node that when it receives a token will output it twice (for example dou- 

ble(12)= 1t22), -l_buffer is a buffer of length t that behaves like the identity function, -2buffer  

is a buffer of length 2 that, if it contains two tokens outputs both, but if it contains only one 

token, it waits until it receives a second token. If we assume that all nodes work at a finite speed 

(not at zero speed) we see that networks "A" and "B" have the same input-output behaviour. The 

double nodes mask the difference between the two buffers. Now place the networks "A" and "B" 

ha the following context: 

split 

OUT J 
If we insert subnet "A" and use "1" as kaput the output 12.. is possible, but if we insert subnet 

"B" this is not possible. Let us look more careft~y at what happens. When we use subnet "A" 

and use as input token "1" this "1" wilt be doubled. Now imagine that one of these tokens 

remains for some time between the double node and the merge node. The other token passes 

through the merge node and the l_buffer. After this it can go to the split and the plus l node. 

Now it comes back in the subnet "A" as "2" and can pass the merge node before the second "1" 

which was still at its previous position between the double node and the merge node. With sub- 

net "B" this is not possible, because before we have some output from this net both "1" tokens 

must have passed the merge node. So we see, although nets "A" and "B" have the same input- 

output behaviour in isolation, they have different behaviour in some context. We will try to 

explain (informally) some of the concepts of this paper. We look at the behaviour of a node in a 

network. The behaviour consists of three stages: node consumes input, node works on this input, 

node produces output. When a node consumes input, it takes a sequence of tokens (called a 

trace ) from each of its input lines. Then it works on this input, it does some internal processing 

and outputs traces on its output lines. After this output, the node starts again consuming input. 

Note that a node starts outputting after it has finished to consume tokens. The behaviour of a 

node can thus be described by a function that maps (tuples of) sequences of traces to (sets of 
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tuples of) sequences of traces. An  infinite sequence of traces w4tl be called a stream. A finite 

sequence of traces can be made into an infinite by adding •'s. 

EXAMPLE: Consider a node that waits till it has received four integers and then outputs the sum 

of these four integers. The behaviour of such a node can be described by a function q~ that maps 

streams to streams. Let c denote the empty trace. Let O = < 1 1 1 1 , 1 1 1 1 , ' - . >  and 

O'  = < 11,•, 11,e, " • - > be two streams. We have 4 , (®)-  <4,4,  - - • > and 

~ O ' )  = <•,c,4,c,c,4, • .  - > .  

Now we are able to solve the anomalies: we can observe in our model  things like "before we 

input some tokens there must be some output".  For  example ~ < ~ , 3 4 , e , • , - - - >  ) = 

<12,45,c,~,. • .  > can be translated as: first there was no input and the node produced the 

tokens 12, then the input was extended by 34 and this caused 45 to appear on the output line. 

Now we have introduced the general idea, we give an overview of the rest of our paper. In sec- 

tion 2 we introduce some mathematical preliminaries about metric spaces. Section 3 describes our 

domains. We have a domain of tuples of streams and a domain of functions. Both are turned 

into metric spaces. Section 4 deals with the syntax of nets, and in section 5 we construct a map- 

ping from these nets into our domains. In this section we prove a lemma about the order of con- 

nection of lines in our nets. Section 6 is about the generalization of functions and section 7 

discusses the delay function. The next section indicates why the anomalies discussed before do 

not  occur in our framework, and section 9 looks at what happens if we allow nodes with 

unbounded nondeterminism. 

2. MATHEMATICAL PRELIMINARIES 

In this section we collect some basic definitions and properties concerning metric spaces. Let X 

he any set. ~(X) denotes the powerset of X, i.e., the set of all subsets of X. @... (X) denote the set 

of all subsets of X which have property • • • .  A sequence xo,x  1, " " " of elements of X is usually 

denoted by <:x i:>~=0 or, briefly, <xi >i. For  limit, supremum (sup), etc. of a sequence <xi >i. 

We use the notations lira x i, or, briefly, lira i xi, supi xi, etc. 
i--~ o0 

DEFINITION 2.1. A metric space is a pair (M,d) with M a set and d (for distance ) a mapping 

d : M × M ~ [ O , 1 ]  which satisfies the following properties: (a) d(x,y)=O iff x = y ,  (b) 

d(x,y)=d(y,x) ,  (c) d(x,y)<-d(x,z)+d(z,y) 

DEFINITION 2.2. Let (M,d) be a metric space. 

a.Let <xi>i  be a sequence in M. We say that <xi>i  converges to an element x in M called its 

limit, whenever we have: V c > 0 ] N V n > N [ d(x,Xn) < • ]. A sequence <xi>~ in M is a 

convergent sequence if it converges to x for some x ~ X 

b.A sequence <xi>i  is called a Cauchy sequence whenever we have V • > 0 3 N V n,m > N 
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[ d(xn,Xm) < • ] 

c. The space (M,d) is called complete whenever each Cauchy sequence converges to an element in 

M. 

d.A subset X of M is called closed whenever each Cauchy sequence in X converges to an element 

of X. 

DEFINITION 2.3. 

a.Let ( M l , d ] )  and (M2,d2) be two metric spaces. We call the function f : M 1 ~ M 2 continu- 

ous, whenever, for each sequence < x i >  i with limit x in M1, we have that lira i f ( x i )  =- f ( x ) .  

b.Let (M,d)  be a metric space and f : M ~ M. We call fcontract ing if there exists a constant c, 

0 ~ < c < l ,  such that, for all x , y E M ,  d(  f (x) , f (y) ) <~ c .  d(  x , y ). 

c. Let (M,d)  be a metric space and f : M ~ M. We call f non distance increasing if for all 

x,y E M ,  d ( f ( x ) ,  f ( y )  ) <~ d(  x ,  y ). 

PROPOSITION 2.4. Each contracting function is continuous. 

For each metric space (M,d)  we can define a metric ~) on the collection of its nonempty closed 

subsets, denoted by q~nc( M ), as follows: 

DEFINITION 2.5 (Hausdorff distance). Let (M,d) be a metric space, and let X, Y be nonempty 

subsets of M. We put  d'(x, Y) = infy ~ y d(x,y) ,  and 

~l(X, Y) = max(supx ~ x  d'(x, Y ) ,  supy ~ y  d'(y,X)). 

PROPOSITION 2.6. Let (M,d)  be a metric space and c/as in def. 2.5. 

a.(°~nc(M),~l) is a metric space. 

b.If (M,d)  is complete then (rYnc(M), ~ is complete. Moreover, for < X / > i  a Cauchy sequence in 

(Gnc(M),cl) we have lira i X i = { limi xi : Xi ~ Xi, < x i >  i a Cauchy sequence in M }. 

Proofs of proposition 2.6. can be found e.g. in [Dugundji 1966] or [Engelking 1977]. The pro- 

position is due to Hahn  [Hahn 1948]. Useful information on topologies on spaces of subsets 

can be found in [Michael 1951]. 

DEFINITION 2.7. Let A be an alphabet. We use A* to denote the collection of all finite words 

over A and A °' to denote the collection of all infinite words over A. We put  

A st = d f A *  tA A '°. We use e for the empty word, a* for the set of all finite sequences of a's, 

and a '° for the infinite sequence of a's. Analogously we use notations such as (ab)* or (ab) ~°, 

etc. We shall use u,v,w, • • " to range over A st and X, Y, • • • for subsets of A st. 

DEFINITION 2.8. 

a. For  u CA*, [u I denotes the length of u. 
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b.For u,v CA st we put u<~v if there exists w such that u.w =v. We call u aprefix of v. 

c.For u,v E A st, u(n) denotes the prefix of u of length n, in case lu I >~n. Otherwise, u(n)=u.  

We turn A st into a metric space by defining a distance d : A st XASt-~[O,1] as follows: 

DEFINITION 2.9. For u, v EA  st we put d(u,v)=2 -sup(n tu(n)=v(n)) with the understanding that 

2 - ~  =0. 

PROPOSITION 2.10. (A St,d) and (A ,0,d) are complete metric spaces. 

The proof can be found, for example, in [Nivat 1979]. 

3. DOMAINS 

Let IN be the set of integers. Take as alphabet A - INst  Define D O M = A  ~. Members of DOM 

will be surrounded by < and > to avoid confusion with members of INst. In the sequel we will 

call members of DOM streams and members of INst traces. The empty trace v-ill be denoted by c. 

If we give DOM the metric d of definition 2.9 we get by proposition 2.10 a complete metric 

space. For example d(<123,456,7,1,1, . . .  >,<t23,457,6,2,2,  - - .  > ) = ¼ .  Nodes in general 

have more than one input line, so we consider tuples of streams. To be more formal let 

O ~ D O M  n, where DOM n is the set of n-tuples of streams. Let ~I:DOM n ×DOMn--)[0,1] be 

defined by d(O,O)=dfmaxi ~(1 . . . . .  n}d(Oi,-~i). Usually we omit the bar of d. 

PROPOSITION 3.1. (DOMn,d) is a complete metric space for each n. 

By proposition 2.6 we have 

COROLLARY 3.2. (SYnc(DOMn),cl) is a complete metric space for each n. 

Let q~ ~ DOMn---~,c(DOMm). Now define DOM n :m as follows: 

DOMn:'n--{q)14~ is non distance increasing } Non distance increasing is the generalization of 

monotonicity in order-theoretic frameworks. It says something like: if two inputs differ after n 

timesteps, the outputs will differ after n timesteps or later. If q)~DOM'---)~(DOM n) we can 

define the set of fixpoints: FP(~)=  ( 0 1 0  Eq)(O)}. In topology this is a standard way of defining 

fixed points of multivalued functions, see [Nadler 1970]. It is different from certain approaches 

in semantics: for example [de Bakker & Kok 1985] first generalize a function 

q~ ~ DOMn---)62,c(DOMn) to a function 0 E SYnc(DOMn)--)~nc(DOM n) and then solve the equation 

~ X ) = X .  Define D =  U DOM n U Un, mDOMn:m. D will be our semantic domain. We 

have the following facts: 

THEOREM 3.3. Let q)EDOMn-')@nc(DOM n) be a continuous function. Then we have 

i. FP (4)) ~ Pc(DOMn) 
ii.FP (~)= (limiO i I O0 arbitrary ,O i + 1 E ~ o i ) ,  <Oi  > i  a Cauchy sequence } 

PgooF: i. Let ¢:£0i>i be a Cauchy sequence in FP(q)). Let O----limiD) i. We have by 2.3.a 
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O(O)=limiO(Oi). For each i 0 i ~ F P O ) ,  so O i e o ( o i ) ,  so by 2.6.b we have limiO i G0(O), so 

O E ¢(O) thus O ~ FP (~). 

ii. Let "~Oi>i  be a Cauchy sequence such that for each i 0 i+1 Eq(Oi). We have dp(limiOi)--limi 
di~oi) ~ limi oi  + 1 = limiO i so lirn i 0 i E FP (~). 

The other way is easy: if OEFP(4~), then we have O E ~ O ) ,  so < 0 , 0 ,  • • • > is the desired Can- 

chy sequence.E] 

THEOREM 3.4. Let q ~ D O M n ~ , c ( D O M  n) be a contracting function. Then we have that FP(¢)  

is non empty. 

PROOF Cauchy sequences of theorem 3.3 are easy to construct: take a (90 arbitrary, choose 

(9 t EO(O°). Let d(O°,O1)=ot. By the contractivity of ¢ we have d(O(O°),0(O1))~<c.a, 0~<c<l ,  

so there exists a 02 EO(O i) such that d(O1,O2)~<c.a. Continuing this way, we get members of 

FP(¢).  [2. 

The proof of theorem 3.4 is given, in a more general setting in [Nadler 1970]. 

4. SYNTAX o r  NETS 

A net is described by a term, which has an arity, and this arity corresponds to the numbers of the 

input- and the output lines. First we define the class of standard nodes: (for example merge E 

Node 2:1) d n:m ~ Node n:m, d ~ Node = U N°den:m" Let net expressions be defined by: 
n,m 

t E NetExp = U NetExp n:m where NetExp ~:m can be build up in the following way: 
n~B'/ 

t n :m :: = d n :,n (standard node) 

I < t7 ':m' , t~ ~:m2 2> (disjoint union, nl + n z  = n , m l  +m2 =m) 

l tn+k:m { i l : j l ,  " ' ' , i k : j k )  

I t":m+k/U1,",jk} 

In pictures we have: 
- -  17 - -  t 

[ 

f n : m  

.... --°1-- I 
-~L__it n 1 : m 1 

| - ~ ) -  I 

- - n 2 I  

t n 2 : m 2  

- - m 2 - -  t 

(feedback, it input is connected to j t  output, 

1<~it < • " " <ik  <~n + k , V  l, l<~t<~k, l<~ j t~m ) 

(abstraction: we are not interested in the 

J1 " " "jk output lines, l~<jl < - • • <jk<~m +k)  

ii i k 1 \ 
Jl Jk j 
1 ) 2 _ )  

Jl Jk 
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Example: the following picture 

( < m e r g e , p l u s _ t  > { 2 : 2 , 3 : 1 } )  / { 2 }  

~ m + 
is represented 

Compare  with example 1. 

5. SEMANTICS 

Firs t  we need some definitions. Let  @ E D O M  n and XE@(DOMn) .  

( Projection ) X < i ,  . . . , 6  > = 

( Slicing ) X ( i , . . . & )  = 

in  our  syntax as 

U O < i , , . . . , i , >  a n d O < i , . . . & >  = < ® 6 ,  
O ~ X  

< 0 1 ,  ' ' -  , O i , - - 1  , 0 i , + I  , 

U O(i , , . . . , iO and  0 ( 6 , . . . , i 0  = 
o@x 

• "" , O & - t , O / ~ + l  , " ' "  , O n  > 

. . .  ,O/k > .  

" 0  without 0 6  , " " " ,Oik" 

(Concatenat ion)  o : N st X D O M  n --+ D O M  n 

and < X l  . . . .  ,Xn> ° 0 = < x l  ° O1 , " " 

< X  1 . . . . .  Xn > o X = l.J 
O ' E X  

, Xn o On > 

< X l ,  . . . , X n >  o 

( Combination o f  two functions ) Let dp 1 ~ D O M  n, :ml and ~ ~ D O M  n2:m2. 

<q~l ,dY2 > E D O M n l  +n2:ml +m2 

<q~l ,e tr2>(O)=(OEDOMm'+m2[ O < l , .  ,m~> ~ O < l  . . . . .  n , > )  

a n d  ® < m , + l  . . . . . . .  + m 2 >  ~ ( O < n , + l  . . . . . .  l + n 2 > ) }  

( Combination o f  two tuples ) For  each k , l  E N  we define a Joing,l funct ion:  

Joingj : ( < i l  ..... i k >  10~<il < " " " < i k ~ k  + I } × D O M  gXDOMI-- -~DOMk+! 

Joink, t( < i  I . . . . .  ik > ,  O,O) = (9' where 0 ' <  6 . . .  ik > = 0 0 ' ( 6  . . .  ik) = ~ 

Usually we omit  the subscripts  k,1 of the Join function.  

Examples:  let O E D O M  3 be  defined by  O = < < 1 , 1 ,  - ' '  > , < 2 , 2 ,  - . "  > , < 3 , 3 ,  " - -  > >  Then  

O < 1 , 2 > = < < 1 , 1 , - ' ' > , < 2 , 2 , - - -  > >  and  O ( 1 , 2 ) = < < 3 , 3 , - - .  > > .  We also have 

< 1 2 , 3 4 , 5 6 > o O =  < < 1 2 , 1 , 1 , . - - > , < 3 4 , 2 , 2 , - - -  > , < 5 6 , 3 , 3 , . . .  > > .  Let (9' ~ D O M  2 be 

defined by  O ' =  < < 4 , 4 ,  • .  • > , < 5 , 5 , . . .  > > .  Then  J o i n ( < l , 3 , 5 > , O , O ' ) =  

J o i n ( < 2 , 4 > , O ' , O ) =  < < 1 , 1 ,  ' ' -  > , < 4 , 4 ,  - - -  > , < 2 , 2 ,  - ' '  > , < 5 , 5 ,  - ' "  > , < 3 , 3 ,  - - -  > > .  

Let  Env be the set of environments ,  TEEny,  Env =Node---~DOM. Each env i ronment  has  to be  
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type preserving, i.e. if d ~ Node n:rn then we must have ~ / (d )E  D O M  n:m. Now we are 

sufficiently prepared to give the semantics of net expressions• Let [[.]1 : NetExp ~ Env ~ D be 

defined as follows: 

[ dn:m ] y = "~( d n:m ) 

• n2:m2 - . ~ < tT"m',t2 :> ] y = < [ tn>m' ~ -[, ~ tn>m' ]] y > 

[ tn:m+k / ( j l , ' ' ' , j k )  ] Y = hO'((~tn:m+k]Y)(O))(l"l' ' 'jk) 

It n +k :m {i 1 : j l  . . . . .  ik :jk }]Y = ~®.FP ()~O.q(Join ( < i l  . . . . .  ik > ,  < c  . . . . .  e >  oO<j . . . . . .  jk > ,  (9))) 

where ~ = ~ t n +~:m ] y. Observe, that if ~ E D O M  n +k:m, then for all O, 

h-O.q(Join ( < i  1 . . . . .  ik > ,  < e  . . . . .  e > o O < j  . . . . . .  jk>,O)))  is contractive, so we can apply 3.3.ii. 

The theorem and generalizations of it  say that  it does not  mat ter  in which order we connect the 

input  and output  lines. 

THEOREM 5.1.For all 3,EEnv, for all t 2:2 ENetExp  2:2 

~t2:2 ( 1 :1 ,2 :2 ) ]y=  [(t  2:2 { t: 1))( 1:2}IV 

PROOF, Let ~=[[tE:2]]y. We have ~ D O M  2'2. [[t2:2{1:1,2:2)]-/= { O ~ D O M 2 1  0~5(~o  O1, ~o 

O2) ). Recall that  O1 denotes projection on the first co6rdinate. [ft2:2{1:1}]7 = ~0 ' .  

{ O " E D O M 2 :  O " E  ~ e  o 0 " 1 , 0 ' ) }  =dfqd. We have q J E D O M  1:2. [[(t2:2{1:1)){1:2)]7= 

{ O ' " E D O M 2 :  O ' " E  ~'(co0"'2) ) = ~". We have: th ' - -  {O '"@DOM2:  O " ' E ( O " E D O M  2 ] 

O " E  ¢"~q~(co O" 1 eoO'"2) ) )=  ( O ' " E D O M 2 :  O ' " E  q~(<eoO'"l, ¢°O" '2>)) .  [] 

6.  G E N E R A L I Z A T I O N  OF F U N C T I O N S  

Usually functions in networks are not  an element of D O M  n :m. Let there be given a function 

(~ : (Nst)n-->~((Nst) m ), We extend this function ¢ to a function q~ ~ DOMn:m• Take a certain 

input  0 - -  < < 0 H , 0 1 2 , - - -  > , . . . ,  <On l ,On2 ,  - - •  > > .  We define 

¢ ~ 0 )  = { ~ ) I ( < O l l  . . . . .  ~ ) m l > @  t~(<Oll  . . . . .  Onl~>> 

" Z ( < 0 1 1  . . . . .  O m  1 L> = "~{  . . . . .  ~ :>  A~.~(<CO11 . . . . .  0 n , > )  = ~ ) )  

A 

(<011  012 . . . . .  Om lore2 > E¢~(<Ol1012 . . . . .  On IOn2 > )  

V(t/~(OI 1 O12 . . . . .  Om I Om 2) 7__ ~ / x  <~O12 . . . . .  On 2 > = < ¢  . . . . .  C>)) 

7,, . . .  } 

We give an example. The generalized (fair) merge function behaves as follows: 

merge( < <12,¢,¢, . . .  >,<34 ,¢ ,¢ ,  " • -  > > ) =  {<Z1234,c,¢, . . -  > ,  <1324,e,e, - ' •  > ,  

<1342,e,e, . . .  > ,  <3124,~,c, . . .  > ,  <3412,e,e, . . .  > ,  <3142,e,e, . . -  > }  and 



246 

m e r g e ( < < l , 2 , c # , ' ' '  > ,  < 3 , 4 # # ,  ° . .  > > ) =  {<13 ,24## ,  . . '  > ,  <31,24,¢#,  ° . .  > ,  

<13,42,c,~, . - -  > ,  <31 ,42## ,  ' ' '  > }  

Remark: it is possible that this construction does not  give the desired results if we generalize 

functions with unbounded  nondeterminism. For a discussion see section 9. 

7. DELAY FUNCTION 

Our model can also be used to model delay along lines, by the introduction of delay functions. 

On each line of the network we place a delay node. For example the network of example 1 is 

replaced by: 

delay = Pff_EF where PREF : M st ~ @(~d st) is defined by PREF(x)  = ( x '  i x '  <- x ) so the 

delay function is the generalization of the prefix function. 

8. THE ABSENCE OF ~ffE BROCK-ACKERMAN AND KELLER ANOMALIES 

We show why these anomalies do not  occur in our framework. Keller anomaly: we use the idea 

of extension [de Bakker et al 1985]. It is somewhat hidden in the definition of the generalization 

function ""~' of section 5. In  modeling a feed back loop we insist that if we accept a new tuple as 

output, it must extend previous outputs. Therefore it is not possible for new tokens to pass old 

ones. Brock-Ackerman anomaly: with our extended streams it is possible to use some abstract 

time, although not  so explicit as was suggested by Wadge as in [Wadge t981], where , ' s  are intro- 

duced to represent ticks of a clock. Our semantics gives a different meaning to the networks "A" 

and "B" of section 1. For example with input <l,~,2,e,e, - ' -  > output  <c ,  1,2#,12,c, ' ' '  > is 

possible for "A" but  not  for "B". 

9. NODES WITH UNBOUNDED NONDETERMINISM 

In  the previous sections we used as domains for functions DOM n--->•ctosed(DOMm). We further- 

more required that these functions are non  distance increasing. In  this section we look what hap- 

pens if we allow non  closed sets, i.e. take as domains DOMn.-~P(DOMm). Functions that are 

not  an element of a DOMn--~@dosed(DOM m) but  are element of a DOMn--->P(DOM m) for certain 

n,m, are said to be functions with unbounded nondeterminism. 

First of all, we can not use the Hausdorff metric for P(DOMm), because it is only a metric on 

Pdosed(DOMm). AS a consequence, we do not  have our iteration theorem 3.3 at hand. We must 
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reformulate the 'non distance increasing' property. But we can still define FP (~)= {19:@ ~(~9)} ,  

but this fixed point can (in general) not be obtained by iteration. 

We can define our map H :  NetExp--~Env'--~D' as in section 5, where Env'=Node--+D' and D'= 

U n DOMn U U n,m ( ~ ~ DOM n ~ ( D  OM m):vO, O'Vk. O[k ] = O'[k ] implies ~(@)[k ] = q,(O')[k ] } 

where •. • [k] denotes truncation of length k. Now we consider the generalization function . . . .  

of section 5. ^:((Nst)n---~((l%lSt)m)-.~DOMn:m. If we have a function member of 

((Nst)n--->~(([~dst)m), but not a member of ((Nst)n~Pclosea((Nse)m), this construction does not 

always yield the right result. The operationally desired function is then not a member of 

DOM n:m, but is a member of DOMn~.(DOMm).  We have to use another generalization func- 

tion. We therefore must be able to record which output lines depend on which input lines. We 

can do this with coloring of the input lines. [de Bakker et al 1985] use a coloring of bottom ele- 

ments, but for a different purpose. 

10. CO~,W~aUSON WITI~ OTHER F ~ W O g K S  

Broy [Broy 1984] and Park [Park 1983] work with oracles. With oracles, a merge node can be 

made deterministic and fair if we use only fair oracles. Indeed, the Brock-Ackerman anomaly can 

be solved this way, but in our opinion the use of oracles is not the most elegant solution. An 

algebraic approach is also possible, see for example [Back & Mannila 1982] or [Bergstra & Klop 

1982]. Dataflow is modeled by processes~ which can communicate by sending each other tokens. 

Delay is modeled by buffers. There are, however, some restrictions on the functions that can be 

used in these frameworks. Order theoretic approaches used up to now have either difficulties 

with defining an ordering on sets (see for example the discussion in [Abramsky 1983] ), or there 

are no real fixed points, for example in [de Bakker et al 1985] or [Staples & Nguyen 1985]. We 

do not need all the information that is available in the scenarios of Brock and Ackerman [Brock 

& Ackerman 1981]. The same applies to a lot of category theoretic models, in which all informa- 

tion is available. Most of the topological frameworks work in a metric setting with closed or 

compact sets. Our closedness is less "serious". For example 1" is not closed (it does not contain 

1~), but {< l , e ,  • • • > , < l l , e ,  - . .  > , < I l l , e ,  " - -  >,. . .} is dosed, although it does not contain 

< l~ ,c ,  - ' -  > .  With unbounded nondeterminism we can still apply our definitions, but we do 

not have our nice metric topological framework at hand. Future work will try to integrate our 

framework with that of Keller and Panangaden [Keller & Panangaden 1985], combining our fixed 

point technique with their categorical approach via event structures. 
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