
Denotational Semantics of Nets with Nondeterminism

Joost N. Kok

We define a topological framework for streams of traces. With this approach Kahn's method gen-
eralizes to nets with bounded nondeterminism. We consider fixpoints of multivalued functions. We
have a standard fixed point theorem, which can be used to model feed back loops. These fixed
points can also be obtained by iteration. We give a general syntax of nets and see how we can
analyze them in our streamframework. We show how to avoid the Brock-Ackerman and Keller
anomalies. We are able to model the fair merge, which is a continuous function in our framework,
and delay along lines. We prove a lemma that says that the order in which we connect nodes in our
networks does not matter. If we have nets with nodes with unbounded nondeterminism, we can still
use these fixpoints, but we do lose in our topological framework our iteration theorem.

Note: this work has been carried out in the context of LPC: the dutch National Project for Con-
currency, supported by the Netherlands Organisation for the Advancement of Pure Research
(Z.W.O.), grant 125-20-04.

Centre for Mathematics and Computer Science
P.O, Box 4079, 1009 AB Amsterdam, The Netherlands

238

1. INTRODUCTION

Kahn [Kahn t974] has introduced a semantic framework for deterministic dataflow nets. Many

researchers have tried to extend these ideas to nets with nondeterministic nodes, for example

[Keller 1978], [Brock & Ackerman 1981], [Arnold 1981], [Boussinot 1982]. See also the references

listed at the end of this paper. A straightforward extension of Kahn's framework does not work,

because serious anomalies arise, as is shown by [Keller 1978] and [Brock & Ackerman 1981]. We

introduce these anomalies by two examples, for more details see the original papers.

EXAMPLE 1 (Keller Anomaly) Consider the following net:

otJ z

The tokens on this net will be integers. This net has one input- and one output line and it con-

sists of three nodes: - a merge node which merges its two input lines, - a split node which outputs

its input tokens on both output lines, - a plus_l node which adds 1 to each token that passes this

node. Now consider what happens if we put a "1" on the input fine of this net. It passes the

merge node, and arrives at the sprit node. The sprit node sends one copy of "1" to the output line

and one copy to the plus__l node, which adds 1 to "1" and sends "2" to the merge node. Con-

tinning in this way we see that the desired output is the infinite stream 123 Now let us look at

what happens if we try to apply Kahn's method to this net. First write down the set of equa-

tions: {merge(I N , Y) = X, sprit(X) = < O U T , Z > , p l u s l (Z) = Y}. The set of equa-

tions is derived from the net. IN, OUT, X, Y, Z represent histories on fines in our net. A his-

tory is a sequence of values. Let e denote the empty history. The nodes are represented by func-

tions that map histories to (sets of) histories. We are looking for a solution which can be

obtained by iteration, as in Kahn's approach. We start by ir&ialyzing X = Y = Z = OUT = ¢

and IN = 1. We now 'fire' the nodes and compute the 'new' values of these variables: 1. X = I N

= (t }, O U T = Z - - Y = { e }. We repeat this process (iteration): 2. X = I N = Z = (1 }, Y = (• },

3. X = I N = O U T = Z = (1), Y = (2 }, 4. X = (12, 21), I N = O U T = Z = (1), Y = (2 }, 5.

X = (12, 21 }, I N = (1 }, O U T = Z = (12, 21 }, Y = (2 }. We can continue this way and get (in

the limit) sets of histories on all the lines. Remark that now there can be some output (on OUT)

that is not possible operationally. We see that in the limit there is an infinite stream which starts

with 21. By operational intuition this is not allowed.

EXAMPLE 2 (Brock-Ackerman anomaly). Consider the following two networks which each have

239

two input and two output lines:

double j
7~

-double is a node that when it receives a token will output it twice (for example dou-

ble(12)= 1t22), -l_buffer is a buffer of length t that behaves like the identity function, -2buffer

is a buffer of length 2 that, if it contains two tokens outputs both, but if it contains only one

token, it waits until it receives a second token. If we assume that all nodes work at a finite speed

(not at zero speed) we see that networks "A" and "B" have the same input-output behaviour. The

double nodes mask the difference between the two buffers. Now place the networks "A" and "B"

ha the following context:

split

OUT J
If we insert subnet "A" and use "1" as kaput the output 12.. is possible, but if we insert subnet

"B" this is not possible. Let us look more careft~y at what happens. When we use subnet "A"

and use as input token "1" this "1" wilt be doubled. Now imagine that one of these tokens

remains for some time between the double node and the merge node. The other token passes

through the merge node and the l_buffer. After this it can go to the split and the plus l node.

Now it comes back in the subnet "A" as "2" and can pass the merge node before the second "1"

which was still at its previous position between the double node and the merge node. With sub-

net "B" this is not possible, because before we have some output from this net both "1" tokens

must have passed the merge node. So we see, although nets "A" and "B" have the same input-

output behaviour in isolation, they have different behaviour in some context. We will try to

explain (informally) some of the concepts of this paper. We look at the behaviour of a node in a

network. The behaviour consists of three stages: node consumes input, node works on this input,

node produces output. When a node consumes input, it takes a sequence of tokens (called a

trace) from each of its input lines. Then it works on this input, it does some internal processing

and outputs traces on its output lines. After this output, the node starts again consuming input.

Note that a node starts outputting after it has finished to consume tokens. The behaviour of a

node can thus be described by a function that maps (tuples of) sequences of traces to (sets of

240

tuples of) sequences of traces. An infinite sequence of traces w4tl be called a stream. A finite

sequence of traces can be made into an infinite by adding •'s.

EXAMPLE: Consider a node that waits till it has received four integers and then outputs the sum

of these four integers. The behaviour of such a node can be described by a function q~ that maps

streams to streams. Let c denote the empty trace. Let O = < 1 1 1 1 , 1 1 1 1 , ' - . > and

O' = < 11,•, 11,e, " • - > be two streams. We have 4 , (®)- <4,4, - - • > and

~ O ') = <•,c,4,c,c,4, • . - > .

Now we are able to solve the anomalies: we can observe in our model things like "before we

input some tokens there must be some output". For example ~ < ~ , 3 4 , e , • , - - - >) =

<12,45,c,~,. • . > can be translated as: first there was no input and the node produced the

tokens 12, then the input was extended by 34 and this caused 45 to appear on the output line.

Now we have introduced the general idea, we give an overview of the rest of our paper. In sec-

tion 2 we introduce some mathematical preliminaries about metric spaces. Section 3 describes our

domains. We have a domain of tuples of streams and a domain of functions. Both are turned

into metric spaces. Section 4 deals with the syntax of nets, and in section 5 we construct a map-

ping from these nets into our domains. In this section we prove a lemma about the order of con-

nection of lines in our nets. Section 6 is about the generalization of functions and section 7

discusses the delay function. The next section indicates why the anomalies discussed before do

not occur in our framework, and section 9 looks at what happens if we allow nodes with

unbounded nondeterminism.

2. MATHEMATICAL PRELIMINARIES

In this section we collect some basic definitions and properties concerning metric spaces. Let X

he any set. ~(X) denotes the powerset of X, i.e., the set of all subsets of X. @... (X) denote the set

of all subsets of X which have property • • • . A sequence xo,x 1, " " " of elements of X is usually

denoted by <:x i:>~=0 or, briefly, <xi >i. For limit, supremum (sup), etc. of a sequence <xi >i.

We use the notations lira x i, or, briefly, lira i xi, supi xi, etc.
i--~ o0

DEFINITION 2.1. A metric space is a pair (M,d) with M a set and d (for distance) a mapping

d : M × M ~ [O , 1] which satisfies the following properties: (a) d(x,y)=O iff x = y , (b)

d(x,y)=d(y,x) , (c) d(x,y)<-d(x,z)+d(z,y)

DEFINITION 2.2. Let (M,d) be a metric space.

a.Let <xi>i be a sequence in M. We say that <xi>i converges to an element x in M called its

limit, whenever we have: V c > 0] N V n > N [d(x,Xn) < •]. A sequence <xi>~ in M is a

convergent sequence if it converges to x for some x ~ X

b.A sequence <xi>i is called a Cauchy sequence whenever we have V • > 0 3 N V n,m > N

241

[d(xn,Xm) < •]

c. The space (M,d) is called complete whenever each Cauchy sequence converges to an element in

M.

d.A subset X of M is called closed whenever each Cauchy sequence in X converges to an element

of X.

DEFINITION 2.3.

a.Let (M l , d]) and (M2,d2) be two metric spaces. We call the function f : M 1 ~ M 2 continu-

ous, whenever, for each sequence < x i > i with limit x in M1, we have that lira i f (x i) =- f (x) .

b.Let (M,d) be a metric space and f : M ~ M. We call fcontract ing if there exists a constant c,

0 ~ < c < l , such that, for all x , y E M , d(f (x) , f (y)) <~ c . d(x , y).

c. Let (M,d) be a metric space and f : M ~ M. We call f non distance increasing if for all

x,y E M , d (f (x) , f (y)) <~ d(x , y).

PROPOSITION 2.4. Each contracting function is continuous.

For each metric space (M,d) we can define a metric ~) on the collection of its nonempty closed

subsets, denoted by q~nc(M), as follows:

DEFINITION 2.5 (Hausdorff distance). Let (M,d) be a metric space, and let X, Y be nonempty

subsets of M. We put d'(x, Y) = infy ~ y d(x,y) , and

~l(X, Y) = max(supx ~ x d'(x, Y) , supy ~ y d'(y,X)).

PROPOSITION 2.6. Let (M,d) be a metric space and c/as in def. 2.5.

a.(°~nc(M),~l) is a metric space.

b.If (M,d) is complete then (rYnc(M), ~ is complete. Moreover, for < X / > i a Cauchy sequence in

(Gnc(M),cl) we have lira i X i = { limi xi : Xi ~ Xi, < x i > i a Cauchy sequence in M }.

Proofs of proposition 2.6. can be found e.g. in [Dugundji 1966] or [Engelking 1977]. The pro-

position is due to Hahn [Hahn 1948]. Useful information on topologies on spaces of subsets

can be found in [Michael 1951].

DEFINITION 2.7. Let A be an alphabet. We use A* to denote the collection of all finite words

over A and A °' to denote the collection of all infinite words over A. We put

A st = d f A * tA A '°. We use e for the empty word, a* for the set of all finite sequences of a's,

and a '° for the infinite sequence of a's. Analogously we use notations such as (ab)* or (ab) ~°,

etc. We shall use u,v,w, • • " to range over A st and X, Y, • • • for subsets of A st.

DEFINITION 2.8.

a. For u CA*, [u I denotes the length of u.

242

b.For u,v CA st we put u<~v if there exists w such that u.w =v. We call u aprefix of v.

c.For u,v E A st, u(n) denotes the prefix of u of length n, in case lu I >~n. Otherwise, u(n)=u.

We turn A st into a metric space by defining a distance d : A st XASt-~[O,1] as follows:

DEFINITION 2.9. For u, v EA st we put d(u,v)=2 -sup(n tu(n)=v(n)) with the understanding that

2 - ~ =0.

PROPOSITION 2.10. (A St,d) and (A ,0,d) are complete metric spaces.

The proof can be found, for example, in [Nivat 1979].

3. DOMAINS

Let IN be the set of integers. Take as alphabet A - INst Define D O M = A ~. Members of DOM

will be surrounded by < and > to avoid confusion with members of INst. In the sequel we will

call members of DOM streams and members of INst traces. The empty trace v-ill be denoted by c.

If we give DOM the metric d of definition 2.9 we get by proposition 2.10 a complete metric

space. For example d(<123,456,7,1,1, . . . >,<t23,457,6,2,2, - - . >) = ¼ . Nodes in general

have more than one input line, so we consider tuples of streams. To be more formal let

O ~ D O M n, where DOM n is the set of n-tuples of streams. Let ~I:DOM n ×DOMn--)[0,1] be

defined by d(O,O)=dfmaxi ~(1 n}d(Oi,-~i). Usually we omit the bar of d.

PROPOSITION 3.1. (DOMn,d) is a complete metric space for each n.

By proposition 2.6 we have

COROLLARY 3.2. (SYnc(DOMn),cl) is a complete metric space for each n.

Let q~ ~ DOMn---~,c(DOMm). Now define DOM n :m as follows:

DOMn:'n--{q)14~ is non distance increasing } Non distance increasing is the generalization of

monotonicity in order-theoretic frameworks. It says something like: if two inputs differ after n

timesteps, the outputs will differ after n timesteps or later. If q)~DOM'---)~(DOM n) we can

define the set of fixpoints: FP(~)= (0 1 0 Eq)(O)}. In topology this is a standard way of defining

fixed points of multivalued functions, see [Nadler 1970]. It is different from certain approaches

in semantics: for example [de Bakker & Kok 1985] first generalize a function

q~ ~ DOMn---)62,c(DOMn) to a function 0 E SYnc(DOMn)--)~nc(DOM n) and then solve the equation

~ X) = X . Define D = U DOM n U Un, mDOMn:m. D will be our semantic domain. We

have the following facts:

THEOREM 3.3. Let q)EDOMn-')@nc(DOM n) be a continuous function. Then we have

i. FP (4)) ~ Pc(DOMn)
ii.FP (~)= (limiO i I O0 arbitrary ,O i + 1 E ~ o i) , <Oi > i a Cauchy sequence }

PgooF: i. Let ¢:£0i>i be a Cauchy sequence in FP(q)). Let O----limiD) i. We have by 2.3.a

243

O(O)=limiO(Oi). For each i 0 i ~ F P O) , so O i e o (o i) , so by 2.6.b we have limiO i G0(O), so

O E ¢(O) thus O ~ FP (~).

ii. Let "~Oi>i be a Cauchy sequence such that for each i 0 i+1 Eq(Oi). We have dp(limiOi)--limi
di~oi) ~ limi oi + 1 = limiO i so lirn i 0 i E FP (~).

The other way is easy: if OEFP(4~), then we have O E ~ O) , so < 0 , 0 , • • • > is the desired Can-

chy sequence.E]

THEOREM 3.4. Let q ~ D O M n ~ , c (D O M n) be a contracting function. Then we have that FP(¢)

is non empty.

PROOF Cauchy sequences of theorem 3.3 are easy to construct: take a (90 arbitrary, choose

(9 t EO(O°). Let d(O°,O1)=ot. By the contractivity of ¢ we have d(O(O°),0(O1))~<c.a, 0~<c<l ,

so there exists a 02 EO(O i) such that d(O1,O2)~<c.a. Continuing this way, we get members of

FP(¢). [2.

The proof of theorem 3.4 is given, in a more general setting in [Nadler 1970].

4. SYNTAX o r NETS

A net is described by a term, which has an arity, and this arity corresponds to the numbers of the

input- and the output lines. First we define the class of standard nodes: (for example merge E

Node 2:1) d n:m ~ Node n:m, d ~ Node = U N°den:m" Let net expressions be defined by:
n,m

t E NetExp = U NetExp n:m where NetExp ~:m can be build up in the following way:
n~B'/

t n :m :: = d n :,n (standard node)

I < t7 ':m' , t~ ~:m2 2> (disjoint union, nl + n z = n , m l +m2 =m)

l tn+k:m { i l : j l , " ' ' , i k : j k)

I t":m+k/U1,",jk}

In pictures we have:
- - 17 - - t

[

f n : m

.... --°1-- I
-~L__it n 1 : m 1

| - ~) - I

- - n 2 I

t n 2 : m 2

- - m 2 - - t

(feedback, it input is connected to j t output,

1<~it < • " " <ik <~n + k , V l, l<~t<~k, l<~ j t~m)

(abstraction: we are not interested in the

J1 " " "jk output lines, l~<jl < - • • <jk<~m +k)

ii i k 1 \
Jl Jk j
1) 2 _)

Jl Jk

244

Example: the following picture

(< m e r g e , p l u s _ t > { 2 : 2 , 3 : 1 }) / { 2 }

~ m +
is represented

Compare with example 1.

5. SEMANTICS

Firs t we need some definitions. Let @ E D O M n and XE@(DOMn) .

(Projection) X < i , . . . , 6 > =

(Slicing) X (i , . . . &) =

in our syntax as

U O < i , , . . . , i , > a n d O < i , . . . & > = < ® 6 ,
O ~ X

< 0 1 , ' ' - , O i , - - 1 , 0 i , + I ,

U O(i , , . . . , iO and 0 (6 , . . . , i 0 =
o@x

• "" , O & - t , O / ~ + l , " ' " , O n >

. . . ,O/k > .

" 0 without 0 6 , " " " ,Oik"

(Concatenat ion) o : N st X D O M n --+ D O M n

and < X l ,Xn> ° 0 = < x l ° O1 , " "

< X 1 Xn > o X = l.J
O ' E X

, Xn o On >

< X l , . . . , X n > o

(Combination o f two functions) Let dp 1 ~ D O M n, :ml and ~ ~ D O M n2:m2.

<q~l ,dY2 > E D O M n l +n2:ml +m2

<q~l ,e tr2>(O)=(OEDOMm'+m2[O < l , . ,m~> ~ O < l n , >)

a n d ® < m , + l + m 2 > ~ (O < n , + l l + n 2 >) }

(Combination o f two tuples) For each k , l E N we define a Joing,l funct ion:

Joingj : (< i l i k > 10~<il < " " " < i k ~ k + I } × D O M gXDOMI-- -~DOMk+!

Joink, t(< i I ik > , O,O) = (9' where 0 ' < 6 . . . ik > = 0 0 ' (6 . . . ik) = ~

Usually we omit the subscripts k,1 of the Join function.

Examples: let O E D O M 3 be defined by O = < < 1 , 1 , - ' ' > , < 2 , 2 , - . " > , < 3 , 3 , " - - > > Then

O < 1 , 2 > = < < 1 , 1 , - ' ' > , < 2 , 2 , - - - > > and O (1 , 2) = < < 3 , 3 , - - . > > . We also have

< 1 2 , 3 4 , 5 6 > o O = < < 1 2 , 1 , 1 , . - - > , < 3 4 , 2 , 2 , - - - > , < 5 6 , 3 , 3 , . . . > > . Let (9' ~ D O M 2 be

defined by O ' = < < 4 , 4 , • . • > , < 5 , 5 , . . . > > . Then J o i n (< l , 3 , 5 > , O , O ') =

J o i n (< 2 , 4 > , O ' , O) = < < 1 , 1 , ' ' - > , < 4 , 4 , - - - > , < 2 , 2 , - ' ' > , < 5 , 5 , - ' " > , < 3 , 3 , - - - > > .

Let Env be the set of environments , TEEny, Env =Node---~DOM. Each env i ronment has to be

245

type preserving, i.e. if d ~ Node n:rn then we must have ~ / (d)E D O M n:m. Now we are

sufficiently prepared to give the semantics of net expressions• Let [[.]1 : NetExp ~ Env ~ D be

defined as follows:

[dn:m] y = "~(d n:m)

• n2:m2 - . ~ < tT"m',t2 :>] y = < [tn>m' ~ -[, ~ tn>m']] y >

[tn:m+k / (j l , ' ' ' , j k)] Y = hO'((~tn:m+k]Y)(O))(l"l' ' 'jk)

It n +k :m {i 1 : j l ik :jk }]Y = ~®.FP ()~O.q(Join (< i l ik > , < c e > oO<j jk > , (9)))

where ~ = ~ t n +~:m] y. Observe, that if ~ E D O M n +k:m, then for all O,

h-O.q(Join (< i 1 ik > , < e e > o O < j jk>,O))) is contractive, so we can apply 3.3.ii.

The theorem and generalizations of it say that it does not mat ter in which order we connect the

input and output lines.

THEOREM 5.1.For all 3,EEnv, for all t 2:2 ENetExp 2:2

~t2:2 (1 :1 ,2 :2)]y= [(t 2:2 { t: 1))(1:2}IV

PROOF, Let ~=[[tE:2]]y. We have ~ D O M 2'2. [[t2:2{1:1,2:2)]-/= { O ~ D O M 2 1 0~5(~o O1, ~o

O2)). Recall that O1 denotes projection on the first co6rdinate. [ft2:2{1:1}]7 = ~0 ' .

{ O " E D O M 2 : O " E ~ e o 0 " 1 , 0 ') } =dfqd. We have q J E D O M 1:2. [[(t2:2{1:1)){1:2)]7=

{ O ' " E D O M 2 : O ' " E ~'(co0"'2)) = ~". We have: th ' - - {O '"@DOM2: O " ' E (O " E D O M 2]

O " E ¢"~q~(co O" 1 eoO'"2)))= (O ' " E D O M 2 : O ' " E q~(<eoO'"l, ¢°O" '2>)) . []

6. G E N E R A L I Z A T I O N OF F U N C T I O N S

Usually functions in networks are not an element of D O M n :m. Let there be given a function

(~ : (Nst)n-->~((Nst) m), We extend this function ¢ to a function q~ ~ DOMn:m• Take a certain

input 0 - - < < 0 H , 0 1 2 , - - - > , . . . , <On l ,On2 , - - • > > . We define

¢ ~ 0) = { ~) I (< O l l ~) m l > @ t~(<Oll Onl~>>

" Z (< 0 1 1 O m 1 L> = "~{ ~ :> A~.~(<CO11 0 n , >) = ~))

A

(<011 012 Om lore2 > E¢~(<Ol1012 On IOn2 >)

V(t/~(OI 1 O12 Om I Om 2) 7__ ~ / x <~O12 On 2 > = < ¢ C>))

7,, . . . }

We give an example. The generalized (fair) merge function behaves as follows:

merge(< <12,¢,¢, . . . >,<34 ,¢ ,¢ , " • - > >) = {<Z1234,c,¢, . . - > , <1324,e,e, - ' • > ,

<1342,e,e, . . . > , <3124,~,c, . . . > , <3412,e,e, . . . > , <3142,e,e, . . - > } and

246

m e r g e (< < l , 2 , c # , ' ' ' > , < 3 , 4 # # , ° . . > >) = {<13 ,24## , . . ' > , <31,24,¢#, ° . . > ,

<13,42,c,~, . - - > , <31 ,42## , ' ' ' > }

Remark: it is possible that this construction does not give the desired results if we generalize

functions with unbounded nondeterminism. For a discussion see section 9.

7. DELAY FUNCTION

Our model can also be used to model delay along lines, by the introduction of delay functions.

On each line of the network we place a delay node. For example the network of example 1 is

replaced by:

delay = Pff_EF where PREF : M st ~ @(~d st) is defined by PREF(x) = (x ' i x ' <- x) so the

delay function is the generalization of the prefix function.

8. THE ABSENCE OF ~ffE BROCK-ACKERMAN AND KELLER ANOMALIES

We show why these anomalies do not occur in our framework. Keller anomaly: we use the idea

of extension [de Bakker et al 1985]. It is somewhat hidden in the definition of the generalization

function ""~' of section 5. In modeling a feed back loop we insist that if we accept a new tuple as

output, it must extend previous outputs. Therefore it is not possible for new tokens to pass old

ones. Brock-Ackerman anomaly: with our extended streams it is possible to use some abstract

time, although not so explicit as was suggested by Wadge as in [Wadge t981], where , ' s are intro-

duced to represent ticks of a clock. Our semantics gives a different meaning to the networks "A"

and "B" of section 1. For example with input <l,~,2,e,e, - ' - > output <c , 1,2#,12,c, ' ' ' > is

possible for "A" but not for "B".

9. NODES WITH UNBOUNDED NONDETERMINISM

In the previous sections we used as domains for functions DOM n--->•ctosed(DOMm). We further-

more required that these functions are non distance increasing. In this section we look what hap-

pens if we allow non closed sets, i.e. take as domains DOMn.-~P(DOMm). Functions that are

not an element of a DOMn--~@dosed(DOM m) but are element of a DOMn--->P(DOM m) for certain

n,m, are said to be functions with unbounded nondeterminism.

First of all, we can not use the Hausdorff metric for P(DOMm), because it is only a metric on

Pdosed(DOMm). AS a consequence, we do not have our iteration theorem 3.3 at hand. We must

247

reformulate the 'non distance increasing' property. But we can still define FP (~)= {19:@ ~(~9)} ,

but this fixed point can (in general) not be obtained by iteration.

We can define our map H : NetExp--~Env'--~D' as in section 5, where Env'=Node--+D' and D'=

U n DOMn U U n,m (~ ~ DOM n ~ (D OM m):vO, O'Vk. O[k] = O'[k] implies ~(@)[k] = q,(O')[k] }

where •. • [k] denotes truncation of length k. Now we consider the generalization function

of section 5. ^:((Nst)n---~((l%lSt)m)-.~DOMn:m. If we have a function member of

((Nst)n--->~(([~dst)m), but not a member of ((Nst)n~Pclosea((Nse)m), this construction does not

always yield the right result. The operationally desired function is then not a member of

DOM n:m, but is a member of DOMn~.(DOMm). We have to use another generalization func-

tion. We therefore must be able to record which output lines depend on which input lines. We

can do this with coloring of the input lines. [de Bakker et al 1985] use a coloring of bottom ele-

ments, but for a different purpose.

10. CO~,W~aUSON WITI~ OTHER F ~ W O g K S

Broy [Broy 1984] and Park [Park 1983] work with oracles. With oracles, a merge node can be

made deterministic and fair if we use only fair oracles. Indeed, the Brock-Ackerman anomaly can

be solved this way, but in our opinion the use of oracles is not the most elegant solution. An

algebraic approach is also possible, see for example [Back & Mannila 1982] or [Bergstra & Klop

1982]. Dataflow is modeled by processes~ which can communicate by sending each other tokens.

Delay is modeled by buffers. There are, however, some restrictions on the functions that can be

used in these frameworks. Order theoretic approaches used up to now have either difficulties

with defining an ordering on sets (see for example the discussion in [Abramsky 1983]), or there

are no real fixed points, for example in [de Bakker et al 1985] or [Staples & Nguyen 1985]. We

do not need all the information that is available in the scenarios of Brock and Ackerman [Brock

& Ackerman 1981]. The same applies to a lot of category theoretic models, in which all informa-

tion is available. Most of the topological frameworks work in a metric setting with closed or

compact sets. Our closedness is less "serious". For example 1" is not closed (it does not contain

1~), but {< l , e , • • • > , < l l , e , - . . > , < I l l , e , " - - >,. . .} is dosed, although it does not contain

< l~ ,c , - ' - > . With unbounded nondeterminism we can still apply our definitions, but we do

not have our nice metric topological framework at hand. Future work will try to integrate our

framework with that of Keller and Panangaden [Keller & Panangaden 1985], combining our fixed

point technique with their categorical approach via event structures.

248

11. REFERENCES

[Abramsky 1983], A. Abramsky, On Semantic Foundations for Applicative Multiprogramming, Proc.
10th ICALP, (J.Diaz ed.), Barcelona, LNCS 154, Springer, 1983, pp. 1-14.
[Arnold 1981], A. Arnold, Semantique des Processus Communicants, RAIRO 15 (2), 1981, pp.103-
109.
[Back & Mannita 1982], R.J.Back, N. Mannila, A Refinement of Kahn's Semantics to Handle Non-

determinism and Communication, Proc. ACM Symp. on Distributed Comp., Ottawa, 1982, pp.
111-120.
[de Bakker et al 1985], J.W. de Bakker, J.-J.Ch. Meyer, J. Zucker, Bringing Color in the Semantics

ofNondeterministic Dataflow, Preprint, Centre fo Mathematics and Computer Science, 1985.
[de Bakker & Kok 1985], J.W. de Bakker, J.N. Kok, Towards a Topological Treatment of Streams

and Functions on Streams, Proc. 12th ICALP, (W. Brauer ed.), Nafplion, LNCS 194, 1985, pp.

140-149.
[Bergstra & Klop 1983], J. Bergstra, J.W. Klop, Process Algebra for the Operational Semantics of

Static Dataflow Networks, Techn. Report Mathematical Centre IW 222/83, Amsterdam, 1983.
[Boussinot 1982], Boussinot, Proposition de semantique denotationelle pour des reseaux de processus

avec operateur de melange equitable, TCS 18, 1982, pp. 173-206.
[Brock & Ackerman 1981], J.D. Brock, W.B. Ackerman, Scenarios: A Model of Non-determinate

Computation, in Proc. Formalization of Language Concepts, (J. Diaz, L Ramos eds.), LNCS 107,

Springer, 1981, pp. 252-259.
[Broy 1983], M. Broy, Fixed Point Theory for Communication and Concurrency, in: Formal
Description of Programming Concepts-II, (Bjorner ed.), North-Holland, Amsterdam, 1983, pp.

125-148.
[Broy 1984], M. Broy, Nondeterministic Data Flow Programs: How to avoid the Merge Anomaly,

preprint, Fakultat fur Mathematik und Informatik, Universitat Passau, 1984.
[Dugundji 1966], J. Dugundji, Topology, Allen and Bacon Rockleigh, N.J. 1966.
[Engelking 1977], R. Engelking, General topology, Polish Scientific Publishers 1977.
[Faustini 1982], A.A. Faustini, An Operational Semantics for Pure Dataflow, in: Proc. 9th ICALP,
(M. Nielsen, E.M. Schmidt, eds.), LNCS 140, Springer, 1982, pp. 212-224.
[Hahn 1948], H. Hahn, Reelle Funktionen, Chelsea, New York, 1948.
[Kahn 1974] G. Kahn, The Semantics of a Simple Language for Parallel Programming, in: Proc.

IFIP74, North-Holland, Amsterdam, 1977, pp. 993-998.
[Kahn & MacQueen 1977], G. Kahn, D.B. MacQueen, Coroutines and Networks of Parallel

Processes, in Proc. IFIP 1977, North-Holland, Amsterdam, 1977, pp. 993-998.
[Keller 1978], R.M. Keller, Denotational Models.for Parallel Programs with Indeterminate Opera-

tors, in: Formal Description of Programming Concepts, (E.J. Neuhold ed.), North-Holland,

Amsterdam, 1977, pp. 337-366.
[Keller & Panangaden 1985], R.M. Keller, P. Panangaden, Semantics of Networks Containing
Indeterminate Operators, in: Seminar on Concurrency, Carnegie-Mellon University, (S.D. Brookes,
A.W. ROscoe, G. Winskel eds.), Lecture Notes in Computer Science 197, pp. 479-496, 1985.
[Kosinski 1978], P.R. Kosinski, A Straightforward Denotational Semantics for Nondeterminate Data

249

Flow Pr%erams, in: 5th ACM POPL, 1978, pp. 214-221.
[Michael 1951], E. Michael, Topologies on spaces of subsets, Trans. AMS 71 (1951), pp12-182.

[Nadler 1970], Nadler, S.B., Some Results on Multi-Valued Contraction Mappings, in Set-Valued
Mappings, Selections and Topological Properties of 2 x, (W.M. Fleischman ed), Lecture Notes in

Mathematics, pp. 64-69, 1970.

[Nivat 1979], M. Nivat, Infinite words, infinite trees, infinite computations, Foundations of Com-
puter Science III. 2, Mathematical Centre Tracts 109 (1979) 3-52.

[Park 1983], D. Park, The Fairness Problem and Nondeterministic Computing Networks, in: Foun-

dations of Computer Science IV.2, (J.W. de Bakker, J. van Leeuwen eds), Mathematical Centre
Tracts 159, Amsterdam, 1983, pp. 133-161.

[Staples & Nguyen 1985], J. Staples, V.L. Nguyen, A Fixpoint Semantics for Nondeterministie
Dataflow, Journal of the ACM, april 1985, 32(2), 1985, pp. 411-445.

[Wadge 19811, W.W. Wadge, An extensional Treatment of Dataflow Deadlock, in Theoretical Com-
puter Science t3 (1981), pp. 3-15, 1981.

