
COMPILER GENERATION FROM P~LATIONAL SEMANTICS

Mads Dam I

Frank Jensen 2

ABSTRACT

We consider the problem of automatically deriving correct compilers

from relational semantic specifications of programming languages. A re-

lational semantics is an assignment of initial-state final-state rela-

tions (defined by means of proof rules) to programs. Compilers are ge-

nerated in three steps. First, the language definition is transformed

into a stack semantics in which the sto~age of semantic values is made

explicit. Next, stack rules are assembled into a socalled language

scheme containing exactly one rule for each language construct. We

consider languages for which non-deterministic branches may be re-

placed by deterministic ones. Finally, rules are expanded for the

purpose of recursion detection, thus obtaining schemes which may be

used for code generation in a syntax-directed compiler.

I. Introduction

In this paper we consider relational semantic specifica-

tions of programming languages and the problem of deriving

correct compilers from such specifications in an automatic

way. In relational semantics meaning is given to programs as

relations between initial and final states.

The term "relational semantics" seems to have originated

with the relational theories of Hoare and Lauer in [Hoare/

Lauer 73]. Their semantics, however, have a much less opera-

tional flavour than the one considered here, in that they

e.g. use invariant properties for the semantics of loops. Our

relational semantics is much closer to the deductive systems

proposed by Greif and Meyer ([Greif/Meyer 81]) as an alterna-

tive to the semantics of Hoare and Lauer. Also Plotkin pro-

posed the use of relational semantics in his work on struc-

tural operational semantics ([Plotkin 81]), and in fact our

understanding of relational semantics has been heavily in-

fluenced by his work.

IAuthors' address: University of Edinburgh, Dept. of Computer Science,

James Clerk Maxwell Building, The King's Buildings, Mayfield Road,

Edinburgh, EH9 3JZ, U.K.

2Authors' address: Aalborg University Centre, Institute of Electronic

Systems, Strandvejen 19, 4, DK-9000 Aalborg, Denmark

The basic constituent of a relational semantics is a de-

ductive system (in the style of [Plotkin 81]) consisting of

a finite number of axioms and rules of inference, from which

formulae denoting valid state transitions may be proved.

Formulae in such systems are expressions y[p]y', where ¥ and

y' are expressions denoting initial and final (or terminal)

states respectively, and p is a construct in the programming

language under consideration. Axioms and rules of inference

are constructed from such formulae together with predicates

on states. We shall neither allow quantification nor circular

definition of states, and it is from this restriction the

operational nature of the relational semantics originates.

Relational semantics in the present setting has been used

for several example languages in e.g. [Greif/Meyer 81] and

[H. Nielson 84]. It seems that most of the language specifi-

cation ideas of Plotkin ([Plotkin 8i]) are more or less di-

rectly transferable to the domain of relational semantics

(at least for languages not involving parallellism).

The traditional approach to semantics-directed compiler

generation has been to provide a universal compiler, as in

e.g. [Mosses 79], [Jones/Schmidt 80], [Jones/Christiansen 81],

[Mosses 80] and [Sethi 83] for variants of denotational seman-

tics ([Stoy 77] and [Gordon 79]). This approach is also appli-

cable in our case, noting that a relational semantics is es-

sentially just a collection of first-order sentences in Horn

form ([Kowalski 74]). Thus a compiler for Prolog may be con-

sidered a universal compiler for relational semantics. This

approach, however, has the major drawback that implementation

considerations are moved from the domain of language speci-

fications to the (considerably more general) domain of (pure)

Prolog programs.

On the other hand works on (non-automated) semantics-di-

rected compiler development usually takes a transformational

approach ([Milne/Strachey 76], [Ganzinger 80] and [Wand 82]),

that is, compilers are developed through a series of transfor-

mations on denotational language definitions involving quite

complex correctness proofs. In this paper we apply a similar,

but automated, transformational approach for relational se-

mantics.

We shall be concerned mainly with ~'ordinary" (determinis-

tic) programming languages and the control flow aspects of

their implementation.

Three major problems concerning compiler generation are

identified. First, the problem of deriving a machine state

uniform to all types of program fragments, such that all non-

elementary computations can be viewed as a sequential compo-

sition of other computations, as defined by the proof rules.

This problem is solved by the generation of a stack semantics.

Next, the problem of collecting rules defining the meaning

of identical language constructs, and, if possible, replacing

non-deterministic branches by deterministic ones. To this

end the stack semantics is transformed into a "language

scheme", much like a recursive program scheme (cf.o [De

Bakker/De Roever 72]).

Finally, the problem of detecting recursion in language

schemes, such that language scheme rules may be used as sche-

mes for use in code generation. This, however, requires that

"definition by syntactical equivalence" is used only to a li-

mited extent.

The approach taken throughout the paper is basically opera-

tional - systems are given operational semantics, which are

then proven congruent using mainly (numerical) induction.

In section 2 relational semantics is more precisely defined

- we shall, due to the subject of this paper, be rather

thorough on this point. In sections 3-8 the various trans-

formations on semantics are presented and proved to be cor-

rect. As most proofs are entirely routine, they have just

been very briefly outlined. Finally, in section 9, some direc-

tions for future work are briefly discussed.

2. Relational semantics

The relational semantic metalanguage used in this paper

is much like the operational semantics of Plotkin ([Plotkin 81])

with the major difference that all transitions are directly

from initial to terminal states.

A language definition will consist of three parts: A defi-

nition of the language syntax, a definition of the semantic

data types used (e.g. stores, environments), and a finite

set of rules, comprising a formal calculus, from which va-

lid state transitions may be deduced.

Programs are considered as abstract trees A(Pl,...,pn),

n~o, where pl,...tPn are programs and A is an operation sym-

bol. To each operation symbol is associated an arity and a

sort in the sense of e.g. [ADJ 78], reflecting the fact that

programs may be composed of phrases of different semantic

significance (e.g. commands, expressions). The set of sorts

(which we assume to be finite) is denoted by S, the set of

operation symbols by H and the set of programs by P. The set

Z is indexed by S~xS (arity and sort), and the set P is indexed

by S.

As we are concerned mainly with control flow aspects of

compiler generation, we regard states and operations on sta-
!

tes as primitive. We shall simply associate sets D s and D s

to each sort s6S, namely the initial and terminal states of

the sort s, letting D = U (DsUD~).
s£S

E.g. for expressions without sideeffects, the initial state

might be a mapping of identifiers to values, and the terminal

state a value alone. Furthermore, for the purpose of typing,

a unique set of (meta-~ variable symbols is associated to each

program sort and state set. Throughout the paper symbols

~'~I"'" are used as program and ~'~1'''" as state variables.

Expressions over programs and states are constructed using

variables together with elements of sets ~,~ and ~ of opera-

tion symbols to which an arity and a sort is associated much

as for programs above. Operation symbols ~6~ and ~6¢ denotes

functions ~: pn Dm p and ~: pn Dm D respectively and an
P P P P

operation symbol ~6H denotes a predicate ~: pn D m ~p ~pT, where

T = {tt,ff} is the set of thruthvalues. Here ~ denotes the
P

partial function space constructor and X n and n-ary cartesian

product XslX...XXsn for sorts Sl,...,Sn6S. Thus, if Vl,...,~n

and al,...,o m are program and state variables of appropriate

sorts and ~6Y is a corresponding operation symbol, then

~(Vl ,~n) (o1,...,Om) is an expression of the sort deter-

mined by ~. Notice that, as operation symbols A6X may be viewed

as denoting functions A: pn pp, Z~. Intuitively, an operation

symbol ~6(~-I) could denote e.g. a retrieval of a procedure

from a state given an identifier, or the construction of a

closure from a function and the values of its free variables

stored in some state component. The operation mapping ope-

rations in ~,¢ and K into their denotations is called an in-

terpretation of Y,¢ and ~. The operations in ~,~ and ~ will

show up in a slightly modified form as primitive instructions

in the target programs - thus the compiler generator is actual-

ly relative to an interpretation, much like the approach used

in [Jones/Christiansen 81].

Now, given a set V of program variables, we may define sets

~(V), ~(V) and ~(V) of "partially evaluated" operations invol-

ving only free program variables in V. Thus, given a valuation

(an assignment of values to variables) of the variables in V,

an operation ~6~(V) may be regarded as denoting a function

~: Dn~ P under this valuation. We shall ambiguously abbreviate
P

Y(¢), ¢(~) and K(~) by ~, ¢ and ~ respectively - this notation

will be used throughout the remainder of the paper.

Definition I: A formula is an expression e1[e2]e3 such that

for some s6S, el,e 2 and e 3 are expressions over D s, Ps and

D' respectively, a
s

The meaning of a formula e1[e2]e 3 (relative to some in-

terpretation and valuation) should be fairly obvious:

Starting in the state denoted by el, by executing the program

denoted by e 2 we may end up in the state denoted by e 3 - pro-

vided these programs and states are defined. Thus, if

e1[e2]e 3 is actually provable in some calculus ~ and - given

an interpretation/valuation - p is the program denoted by e2,

d and d' are the states denoted by e I and e 3 respectively

(assuming they are defined), the pair <d,d'> is an element

of the transition relation assigned to p by D.

In the definition of proof rules below, we shall distinguish

between occurrences of state variable symbols as either de-

fining or applied. Intuitively an occurrence of a variable

is defining whenever it is the first occurrence of that par-

ticular variable to be instantiated during the proof process

(or program execution). The main restriction - and the res-

triction on which the operational nature of our semantics

depends - is that every applied occurrence of a variable

symbol should be preceded by a defining. Thus we do not

allow variables to be circularly defined.

Definition 2: A consequent over program variables V, defi-

ned state variables X and applied state variables X' is a

formula:

~[A(~I 9n)]#(~ 1 ,am), n~o, m~o, where

V = {v I ~n }, ~i#gj when i%j, X={a}, X'~a I am},

~£~(V) and A6Z. o

Definition 3: An antecedent over program variables V, defined

state variables X and applied state variables X' is either

a test formula:

~(~I ~n), n~o, where

~6H(V), X=~ and X'={al,...,J n} or a (transition-) formula:

~(~I an)[~(~ ~)]a, n~o, m~o, where

~6~(V),~6~(V),X={~} and X'={~ I ~n,q~,...,o~}. m

Definition 4: A proof rule is an expression:

FI~''''Fn , n>o,

where F is a consequent over program variables V, defined

state variables X and applied state variables X', and for

all i,1~i~n, F i is an antecedent over program variables V,

defined state variables X i and applied state variables X~.l

It is required first, that X'cXUXIU...UX n and

, _ _ are X~EXUXIU...UXi_ I 1<i<n, and secondly, that X,Xl,...,X n

mutually disjoint, o

If, in definition 4, n=o, the rule is called an axiom, other-

wise it is an inference rule. The second restriction is mere-

ly a convenience introduced to avoid implicit testing of

variables.

Intuitively a proof rule describes a way to compute a ter-

minal state from an initial state on a certain program con-

struct. This computation may involve computations of other

initial and terminal states using other programs or it may

involve tests on programs or states. Notice that - as opposed

to e.g. denotational semantics - meaning need not be given to

programs in terms of their immediate constituents (in case of

e.g. loops it cannot). Notice also that according to defini-

tion 4 it should be possible to "execute" all antecedents in

the order they are written. This need not necessarily be the

case. One might employ data dependencies among antecedents

to detect sequencing constraints and then use these as the

point of departure for compiler generation.

Example 1: Consider a small programming language with

={Oo}, Cmd={Ide: =} S={Exp,Cmd}, Ze,Exp={Ide}, ZExpExp,Exp ~ ZExp,

ZCmdCmd,Cmd={Seq}, ZExpCmd,Cmd={WhileDo} and VExp={e,el,...},

Vcmd={C,Cl }. Let D_Exp=D_cmd-=D'cma~=Store, D~xp=Va!ue ,

Xstore={O,~1 }, ~alue={~,v1 } and operations in ~,

and H be as obvious from the rules:

XI: ~[Ide] valide(O)

X2: ~[el]v 1, ~[e2]~ 2

~[Op(el,e2)]f(v1,u 2)

where f is an operation corresponding to Op

X3. ~ ~[e]v

~[Ide:=(e)]updateide(a,~)

X4: ~[cl]o~[c2]a"

o[Seq(c I,c 2)]o"

X5: o[e]~,Isff(~)

~[WhileDo(e,c)]o

X6: o[e]v,Istt(v),o[c]o',o'[WhileDo(e,c)]o"

o[WhileDo(e,c)]~"

A formula F is said to be provable in (the deductive system

of) a language definition D(written ~-DF) if and only if

there exists a proof tree for F in D, proof trees being de-

fined inductively as follows:

First, if F is an instance of an axiom A in D (that is, the

value of A under some interpretation and valuation) or it is

the value tt, then F is a proof tree for F in 9 (of height o).

Next, if F' , F~ F~ are instances of formulae F, F I F n

respectively (that is, they are instances under identical in-

terpretations/valuations) and TI,...,T n are proof trees for

F{, F~ respectively in D, then, provided F I ,F n is an

F
inference rule in 9, T I, T n is a proof tree for F' in D

F
(of height max(height(T1),...,height(Tn))+1). We shall denote

by Tr(D) the set of provable transition formulae in 9.

This semantics of language definitions is basically non-

operational, due to its inherent non-determinacy. In the fol-

lowing sections the semantics is made gradually more opera-

tional through various transformations on language definitions

to the point where they may be represented as target programs

on a fixed, abstract machine.

3. Stack semantics

The first step towards compiler generation consists of

making the storage of state values implicit in language de-

finitions explicit by computing them on a stack. Through this,

the types of initial and terminal states are made uniform to

all program sorts and thus in the stack semantics all programs

and operations ~6¢ may be viewed as transformers of a state

of a single type.

we shall need the following operations on stacks:

- nil denotes the empty stack (occasionally we shall use

nil with a subscript to indicate the type of the stack)

- d:~ denotes ~ with d added on top

- poPk(~) denotes ~ with the top k elements removed

- toPk(~) denotes the k'th element of ~ from top

- !El denotes the height of

- ~i§~2 denotes the concatenation of ~I and ~2

- pos(d,$) denotes the least k s.t. toPk(~)=d, if such a

k exists.

In expressions all applied occurrences of state variables are

replaced by references to positions on a stack. To this end

a stack environment u:X~pN, where X is the set of state va-

riables and N the set of natural numbers, is used.

Let () denote the everywhere undefined function, [a~b]f

the function mapping a to b and elsewhere behaving like f,

and next(f), where the range of f is N, the function la.f(a)+1°

Let r = FI'''''Fn be a proof rule. Then the stack environ-

F o

ments env(Fi),o<,i~n, are defined as (assuming X i is the set

of defined variables for F.):
l

- Let Xo={a}. Then env(Fo)=[o~1] ().

- If Xi={o},1<i<n , then env(Fi)=[o~1]next(env(Fi_1)).

- If Xi=¢,1<i<n, then env(Fi)=env(Fi_1)°

Now, let e be an expression, u a stack environment s.t. u(a)

is defined for all free occurrences of state variables o in

e, and ~ a variable over the set E=D ~ of stacks. Then

stack(e,u,~) is the expression e with all free occurrences

of state variables a replaced by the expression toPi(~) ,

where i=u(~).

10

Definition 5: Let r = FI~''''Fn, n~o, be a proof rule, and

F o

for all i,o~i~n, k i be the number of transition formulae

among F1,...,Fi, {(o,~1,..o} a fixed set of variable symbols

over Z. Then the stack rule generated b~y r is a rule
A A

= FI'''''Fn, where

A
e ~ ~ if F O = eo[e O] o' then F O

(o[eo]stack(eo'env(Fn)'~k :P°Pk +I (~k)'
n n n

if F., 1<i<n, is a test formula e., then
l 1
^
Fi = stack(ei'env(Fi) '(k.)' and

1

" then if F i, 1~i~n, is a transition formula ei[e]e i,

Fi^ = ~i[stack(ei'next(env(Fi-1))'~i)]~ki' where

^ = stack ,env(Fi_1),~ki_1):~ki_1 D e i (e i

Actually, if, in definition 5, e =6 and ~ is a variable over,
o ^

say D s, an antecedent toPl((o)£D s should be added to r in

order to prevent type conflicts otherwise trapped in the

language definition. We shall, however, assume this change

to be made implicitly to all stack rules.

Example 2: Consider rule X2 of ex.1. The stack rule genera-

ted by X2 is:

toPl(~o):~o[el]~1,toP2((1):(l[e2](2

~o[Op(el,e 2)]f(top 2(~2),tOp I(~2)) :pop 3(~2)

If D is a language definition, then Stack(D) denotes the

language definition consisting of all stack rules generated

by rules in D.

11

It is easily verified that Stack(~) is actually well-de-

fined - i.e. that, according to definitions 2,3 and 4, the

stack rule generated from a proof rule is itself defined and

a proof rule.

Inspecting definition 5, we see that a stack rule
A A

= FI'''''Fn has the following properties:
A
F
o

A
-- F O has the form ~o[A(,41 Vl)]~o(~m),

where m is the number of transition formulae among

A A
F I,...,F n, and

A
-- Fi,1<i<n, has either the form ~i(~j)[~i(~i(~j))]~j+1

or the form ~i(~j), where j is the number of transition

A A
formulae among FI~.o°,Fi_ I.

A language definition in which all proof rules possess these

properties is said to be in stack form.

4. Language schemes

In the stack semantics we may distinguish three kinds of

"actions": Transformations of states defined by programs (Y) r

primitive state transformations (¢) and primitive tests (~) -

and operations on actions corresponding to sequencing and

non-deterministic branching, the latter originating from the

possibility of existence of different rules on identical

language constructs. In language schemes the set of rules in

the stack semantics defining the meaning of a particular lan-

guage construct A(~I,...,~ n) gives rise to a single production

rule A(91 ,~n)~h, where h is an action to be more formally

defined below, called a right hand side of the language scheme

considered.

Language schemes are semantic descriptions on much the same

level of abstraction as the store semantics of [Milne/Strachey

76]. In store semantics meaning is given to programs in terms

12

of command continuations alone, in analogy to the uniform

type of transition relations obtained here by the stack se-

mantics. In fact language schemes adds nothing new to the

stack semantics in terms of meaning - it is merely introdu-

ced as a convenience for the subsequent generation of code

schemes.

Now define the set H of actions by the grammar:

h ::= h-hlhUhlv~h,hl~

::= ~I~l~lerrorI~

where error and s are fixed symbols, h6H, ~6~(V), ~6¢(V) and

~6~(V) for some set V of program variables. An action of the

form ~ is called atomic, and an atomic action not in ~(V)

(for any V) is called non-predicate.

Intuitively • denotes sequencing, U denotes non-deterministic

and ~ denotes deterministic branching, error denotes an error

(in-)action and c denotes the empty action. We shall assume

• to have the strongest binding Dower and otherwise employ

parentheses to disambiguate.

The semantics of language schemes is given operationally

in the style of [Plotkin 81] relative to a set D of states

and an interpretation ~ of ~, • and H (both D and obtained

from the corresponding stack semantics - we therefore only

have to consider operations in Y, ¢ and r[on single states).

Letting L denote the set of language schemes, we define

the transition system TI=<FI,~I >, where y6FI=DXH+D is the

set of configurations, and ~I~LX((FI-D)xFI) is the transition

relation defined by the deductive system 41 below•

We use the notation l~y~y' for an element (l,(y,¥')) of

~i and letting =i denote the reflexive and transitive closure

of ~i"

Also we shall use the notation ~ and p as abbreviations of

sequences Vl,...,Vn and pl,...,pm, and, where n=m, all ~i'

l~i~n, distinct and Pi an instance of ~i' h[p/~] as an abbre-

viation of the expression obtained by (simultaneous) substi-

tution of the variable ~i by Pi in h.

Now 41 consists of rules:

13

:

PHI 1 :

PL I :

PSI11 :

PSI2 ! :

ib<~,C>~l ~,

i)<~,¢>~i¢(~)~ if ¢£~,

I~<~ ,~>~I ~

l)<o,~>~!<q,~(a)>, if ~6Y-P,

1)<o,p>~l<O,h[p/~]>, if p6P, p=A(p)

(A (V) ~h) 61o

!

i~ <~ ,h l>~l<O I ,h I>
CPI 1 :

iP<o,h 1"h2>~l<a',h~,'h2>

CP21: 1)<g, h1>~ij '

l~<o,h 1"h2>~l<o',h2>

BRII: 1)<O r hiUh2>~l <~ ,hl >

BR21: l) <~ ,hiUh2>~l<a ,h2 >

TSTI 1 :
i)<~ ,~h I ,h2>~l <~ ,h I

, if ~£ff,
>

(a) if ~6H. TST21 :
1)<o, ~h I ,h2>~ l<o ,h2>

and

The behaviour of T 1 is defined to be a mapping BTI: L~H~2 DxD

such that for all 16L, h6H, d,d'6D, <d,d'>£ BTi(1) (h) if and

only if ~ll~<d,h>~id'. Of course we are particularly inte-

rested in the behaviour of T 1 on actions p6P - that is, pro-

grams without free program variables. This explains why no

rules are present for actions of the form ~£V. Notice also

that no rules are present for error-actions as should be

expected.

Our definition of behaviour leads us to define an equiva-

lence relation ~ such that for all h1,h26H , high 2 if and

14

only if for all 16L BTI(1) (hl)=BTI(1) (h2) - i.e. if they be-

have the same, independently of the particular language

scheme.

It is easy to see that s is in fact a congruence rela-

tion. First it is useful to state (letting • denote rela-

tional composition):

Lemma I: For all 16L, h1,h26H:

BT I(I) (h 1"h 2) = BTI(1) (h 1)0BTl(1) (h 2) .

Proof: Immediate from the definition of BT 1 and A 1.

' h2-h 2 Lemma 2: For all hl,hl,h2,h½6H and ~6K, if hl~h 4 and = ' then:

a) hl-h 2 ~ h~.h 2',

bl hiUh 2 h Uh ,

C) ~'hl,h 2 ~ z~h~,h~.

Proof: a) from lemma I, b) from BRI

TST21 .

l' BR21' c) from TSTI l,

Thus the set H/~ of actions modulo behavioural equivalence

is actually well-defined with operations • and U defined by

[hl].[h2]=D[h1"h2] and [hl]U[h2]=D[hiUh2], where [h] denotes

the equivalence class of ~ containing h.

P~position I: The structure <H/m,',U,[e],[error]> has the

properties:

a) <H/~,',[e]> is a monoid,

b) <H/m,U,[error]> is a commutative monoid, and

c) The operation • distributes over U.

Proof: By lemma I and A I. o

15

Now consider a language definition ~ in stack form. Let

Rules(D,A) denote the set of rules in D defining the program

operator A6Z. The language scheme corresponding to D is ge-

nerated quite easily using the mappings A and R of antece-

dents and rules in definitions in stack form into actions

defined by:

and, if r = FI 'Fn, where F has the form ~[A(~)]~(~'), then:
F

R(r)=A(F I)-....A(F n)-~.

If Rules(D,A)={rl,...,rm} then the language scheme generated

from D contains the production:

~ R(r I)U...UR(r m), if m>1
A (~) ~

~error, if m=o

where A(~) is the program structure assumed common to all con-

sequents of rules rl,...,r m.

Exam~!e_3: Consider a language with sorts Exp, Cmd, opera-

tions Zs,Cmd={Skip},ZCmdCmd,Cmd={Seq} and ZExpCmd,Cmd={WhileDo}.

DExp=DCmd=D = Let D denote a primitive set of states and let Exp

D~md =D-

The rules are:

X31 :

X32:

X33:

o[Skip]~

~[Cl]J',~'[c2]o"

~'"'["Seq(cl,c2)]~,,

~,,,[e]o',isTrue(a',),~'[Seq(c,WhileDo(e,c)!]~"

~[WhileDo(e,c)]~"

X34: ~ [e]o, ,isFalse (c ~)

[WhileDo (e,c)]~'

16

This definition is obviously in stack form. Letting i denote

the identity on D the following language scheme is obtained:

Skip ~ I,

Seq(cl,c2)~I'c1"I'c2"I,

WhileDo(e,c)~i-e-isTrue-I-Seq(c,WhileDo(e,c))-I U

I.e-isFalse-I

Notice that as IEe almost all occurrences of I in this lan-

guage scheme may be deleted, o

Theorem I, (Correctness of language scheme generation):

Let ~ be an arbitrary language definition in stack form, and

1 the language scheme generated from 0. Then for all p6P

and d,d'6D, ~d[p]d' if and only if <d,d'>6BTl(1) (p).

Proof: ~ is proved by induction in the height of proof trees,

and ~ by induction in the length n of the derivation

l~<d,p>~d'. []

5. Simple language scheme@

Language schemes may be implemented in a variety of ways -

e.g. using some kind of backtracking evaluation strategy.

This, however, will obviously couse correctness problems due

to non-determinism, so to ensure correctness we have somehow

to restrict the class of language definitions considered.

We shall choose to consider only a (natural, we think)

class of language schemes for which all non-deterministic

branches may be replaced by deterministic ones, using the

simple transformation algorithm presented below.

First, notice that in any production A(~)~h in a language

scheme 16L generated from an arbitrary language definition

in stack form, h will have the form h=hiU...Uh n, n~1, where

each h i , 1~i~n, is a product (~i,1"...'~i,mi) of atomic ac-

tions. If in a language scheme 16L all right hand sides have

the above form, then 1 is said to be normal, and a language

17

scheme in which no right hand side contains non-deterministic

branches - i.e. actions are generated by the grammar:

h ::= h-hl~h,hI~

::= ¢l~lerrorIe

- is called simple. We shall use the notations Hs, L s and T s

when we restrict H, L and T 1 to simple language schemes.

In order to generate simple language schemes we must have

some means of looking into the internal structure of predi-

cates ~£H(V) - we shall simply assume a negation sign ~ to

be available in constructing predicates, so that if

~6~(V), then "~6~(V).

Consider a normal language scheme 16L. The simple language

scheme !'6L generated by 1 is - if it is defined - obtained
s

from 1 by applying the (partial) mapping H defined below to

all right hand sides of !.

The mapping H is defined inductively by:

a) If h is a non-predicate atomic action ~, then H(h)=~.

b) If h=hiU...Uh n, n~1, and there exists a non-predicate

h I '6H such that h =~-h~ atomic action ~ and ',...,h n i ~'

l!i!n, then H(h)=~-H(h~U...Uh~) .

c) If h=hIU...Uh n, n~1, and there exists ~6H(V) and

h~,...,h n'6H such that either h.=~-h~l 1 or h.='l~-h!l l'

1<i<n, then H(h)=~H(U{hlIhi=~-h~,1<i<n})~

~(U{h[lhi=~'h!'1~i<n})'l -- --

The notation U{hl,...,h n} is defined by: If n~1, then

U{hl,...,hn}=hiU...Uh n and, for n=o, U@=error.

Intuitively a simple language scheme may be generated from

a language definition ~ if and only if, for any two rules

of ~ defining identical language constructs, all computations

of those rules are identical up to a point where one rule

contains a test and the other contains either the same or

the negation of this test°

IB

Example_4: Consider the production for WhileDo of ex.3. The

production of the corresponding simple language scheme is:

WhileDo (e,c)~I" e.isTrue~I- Seq (c,WhileDo (e,c)) - I, I

assuming isFalse= "lisTrue.

6. Expansion trees

Compilers are generated using productions as schemes for

use in code generation, mapping operations on actions into

operations on code. First, however, recursion must be eli-

minated - to which end the class of language schemes consi-

dered has to be somewhat restricted. Recursion is detected

through the repeated replacement of actions of the form

A(p) by h[p/~], where A(~)~h is a production in the simple

language scheme considered, until all such actions have been

expanded once.

Now, the set E of expansion trees is defined inductively

by:

- .s,-error,-~,.~ are expansion trees for all ~6¢(V),

~6~ (v).

If e,e1,e26E then T A(~) 1/~e el/~e: - e
e ' 2'

are expansion trees for all A(p)6P(V), z£~(V).

Let E be the obvious mapping from H s into E (with E(~)=-9

for all 96Y(V)), and E' the (almost) equally as obvious

mapping representing expansion trees as simple actions -

note only that E'([- A(p)) = E'(e). Of course for all

h6H s, h=E' (E(h)).

Definition 6: Let 16L and e6E. If there exists a leaf of
s

e labelled A(p), A(p)6P(V), then, if A(~)~h is a production

in 1 and the path from root to leaf contains no other node

labelled A(p), the tree obtained from e by replacing this

T A (~1
leaf by the tree E([~/~]) is called an expansion of e.

19

P{2position 2: For all e~e'6E such that e' is an expansion

of e, E'(e) s E'(e').

Proof: The result follows from the definition of E', if we

can prove A(p) ~ h[p/~]. But this is easy from rules PSI11

and PSI21 in A I. D

Initially productions A(~)~h, are represented as expansion

trees E- ~h~ (~! The expansion tree ~enerated from the production

A(~)~h, if it exists, is obtained from this initial tree by

applying to it a sequence of expansions until the point where

no more expansions can be made.

To ensure that expansion trees in fact do exist, we shall

enforce the following expandability condition on all simple

language schemes considered:

At no point in the expansion process of any production in 1

shall a leaf A(p), such that the path from root to leaf con-

tains another node labelled A(p'), A(p),A(p')6P(V) be expanded.

As all language schemes contains only a finite number of

productions, and thus only a finite number of operations A6I,

it is clear that the expandability condition is actually

sufficient to ensure termination, and furthermore it follows

directly from proposition 2 that, for any expandable production

A(~)~h, h~E'(e), where e is the (well-defined) expansion tree

generated from A(~)~h.

~!~_~: The expansion tree generated from the WhileDo

production of ex. 4. is:

A WhileDo (e, c)

~ ~ i s 4Tr~e

c WhileDo (e,c)

omitting most of the I's. As an example of a nonexpandable

language scheme consider:

20

WhileDo(e,c)~e.isTrue~RepeatUntil(c,Not(e)),I

RepeatUntil(c,e)~c.WhileDo(Not(e),c). o

For all expandable l£L we let Forest(l) denote the set of
s

all expansion trees generated from productions in i.

It is convenient to represent such forests as mappings

F(1) 6F = P~ ExW, where W=V~fP is the set of valuations, such
P

that if e is an expansion tree generated from a production

A(~)~h in l, then for all p of the form A(p), F(1)(p) = <e,w>,

where for any vi,Pi in v,p, w(~i)=P i.

7. Compiler generation

Now compilers are generated using the expansion trees as

schemes for code generation. Before delving into the compiler

generation algorithm, however, a question arises concerning

the handling of free program variables in operations ~,~

and ~. As we would like to replace operations ~,~ and ~ con-

taining free program variables by "equivalent" operations on

label values in the target language, we must require these

operations to handle program values in a disciplined way. This

is done easily (and - we believe - in accordance with intuition)

for operations in ~6Y(V)-P(V) and ~6~(V) by simply not allowing

them to contain free program variables whatsoever. The ques-

tion for operations ~6¢(V) is more difficult, as they are the

operations actually binding and manipulating programs in the

state. Intuitively we shall require from all operations ~6¢(V)

that they do not construct, test or dismantle programs in any

way - i.e. they are only able to store them.

To formalize this, notice first that for any state d'6D

reachable from an initial state d6D (that is, ~-A l~<d,p>~
1

<d',h> for some 16L s, p6P and h£H s) it will be the case that

d'=~1(...(~n(d))...) for some n>_o and ~1 #n6¢. Further-

more, it is clear that any reachable state d6D may be written

d=~1(...(~n(~))...) for some constant symbol ~ over D,n>_o

and ~I '~n 6~"

21

Now consider an expression #i(.°.(~n(6))...) with n~o and

V the set of (program) variables free in #1,...,~n,~. Let w

denote an arbitrary valuation. Then for any operation

~65-P such that P=~(~l (''" (~n (~))" "') is defined it should

be the case that p=w(~) for some v6V. If this condition is

satisfied by all interpretations it seems reasonable to

assume, that corresponding operations ~i,%1,I..., #l,n,61 on

label values in fact do exist such that - for any "label valua-

tion" Wl:V~ f Labels such that Wl(~) is defined if and only if

w(~) is defined - ~i(~1,I (... (~l,n(~l))...))=Wl(~) if and only

if ~(~I ('''(~n (~))'''))=w(~)" Let ~', ~' denote the sets of

such "label operations" corresponding to P-P,~.

Target programs 16I are defined by:

,::=l;ll~l,licall iI~jexec ~Ireturnierror,

where ~6H, ~6¢', ~6~' and 161abels. The structuring of target

programs present here is easily eliminated using associative-

ness and replacing target programs in branches by labels.

This, however, is quite inessential to the present treatment

and will thus be omitted.

Target programs are interpreted relative to an environment

binding labels to programs and a stack of programs remaining

to be executed (a control stack). Let Tt=<~t,~t>, where:

Y6Ft=DxC+D

c6C=I*

~t~Ux((DxI~)xF t)

u6U=labels~fI

(configurations),

controls),

(the transition relation), and

environments).

The transition relation is

NIL t :

CALLt:

PHI t :

defined by At:

u)<c,nilc>~tc

u)<J,call l:c>=t<~,u(1):c>

u)<o1~:c>~t<~(o),c>

22

EXECt:

RET t :

CP t :

TST t :

u~ <~ , exec ~:c>~t<o ,u (~(~)) :c>

u~<a, return: c>~t<~, c >

u)<o, (c I~c 2) :c>~t<o,c I:c2:c>

u)<o, (w*c I,c 2) :c>~t<o,c':c>, where, if ~(~)=tt then

c'=c I and if ~(o)=ff then c'=c 2.

As before the behaviour of T t is a mapping BTt:U*I~2DxD such

that for all u£U,16I and d,d'6D, <d,d'>6 BTt(u) (I) if and

only if ~-A u~<d'l :nilc>~d'
t

The compiler generator is a mapping cg:F* P*I taking a
P

forest of expansion trees in F, a source program and yielding

a target program (and with it an environment u6U). It is de-

fined using the mapping C:FxExW~I by cg(f) (p)=C(f,f(p)~1,f(p)~2).

The mapping C is defined by cases on the tree e£E, and noting,

that the only target programs to be bound in the environment

are those obtained from trees representing programs p6P, we

set labels=P.

Now the mapping C is defined by (for simplicity describing

the elaboration of environments u6U through side effects):

C(f,'e,w) = return,

C(f,-error,w) = error,

C(f,.~,w) = ~', where ~'=~[w] - i.e.

with all free variables ~ in % replaced by w(~).

This case gives for all such ~ rise to the bindings

u(w(~))=cg(f) (w(~)) in u,

C(f,.~,w) = exec ~, if ~6~-P,

C(f,-~,w) = cg(f) (w(~)),

C(f,-A(p),w) = call A(p) [w],

C(f'tA(iPlw) = call A(p)[w], if there is a

leaf labelled A(p) in e. This case gives rise to

the binding u(A(p)[w]) = C(f,e,w) in u,

23

C(f, A(w) = C(f,e,w), if no leaf in e is labelled A(p)~

C(f,e1~2,w) = C(f,el,w) ; C(f,e2,w) ,

C(f,el/~e~,W) = ~C(f,el,w), C(f,e2,w), if ~6K.

It is easily seen, that for any expandable, simple language

scheme I£L and program p6P, cg(F(1)) (p) is in fact well-de-
s

fined. This follows from the fact that each expansion tree

generated contains only a finite number of variables v, and

that for all p,F(1) (p)$2 is a subprogram of p.

~!~_~: Consider the expansion tree for WhileDo of ex. 5.

Let e be an expression and c a command, and let le'Ic denote

the translations in I of e and c. Then the translation of a

program WhileDo(e,c) is the program:

call WhileDo(e,c),

where the label WhileDo(e,c) is bound to:

l ;isTrue~Ic; call WhileDo(e,c),I
e

in the environment, a

8. The correctness proof

The correctness of cg - i.e. that for all expandable 16L
s

and programs p6P, BTI(1) (p)=BTt(u) (cg(F(i)) (p)) , where u is

the environment generated by cg(F(1))(p) - we should like to

provide a generalization of cg: a function mapping configura-

tions in T 1 into configurations in T t and then prove induc-

tively that derivations in T 1 and T t corresponds under this

mapping. Intuitively speaking, this is - in the terms of

e.g. [Morris 73] - a proof that the relational diagram:

24

['i G r t

r I G r I

commutes - that is, that ~{0G=@0~, where G is the mapping

mentioned above and o denotes relational composition° How-

ever, G does not exist - except for configurations in r 1

which are in either DxP or D. Therefore we introduce an in-

termediate transition system T giving semantics for expan-
e

sion trees, and prove instead commutativeness of the diagram:

F 1 G 1

e

FI-" Ol

Ae

v

F
e

G t F t

Gt "r t

Inasmuch as I) @l is surjective, 2) G 1 and G t acts as the

identity on D, and 3) for configurations in F 1 of the form

<d,p> we can find an "expansion mapping" $e:Fl~re such that

d=Gl(Ge(<d,p>))~1 and P=Gl(Ge(<d,p>))42, commutativeness of

this diagram implies commutativeness of:

DxP G e F G t F t

1 ~ t

D
which is clearly what we are aiming at.

25

9. Conclusion and directions for future work

We have been looking at relational semantics of program-

ming languages, given in the structural operational style

of [Plotkin 81]. We have presented and outlined a proof of

the correctness of an algorithm for the generation of compi-

lers from such semantics into a simple, somewhat structured

target language, provided:

I) the language specified can be seen to be determinis-

tic, and

2) the specification satisfies some technical constraints

of expandabi!ity and discip!inedness of primitive ope-

rations.

The target language is easily linearized and extended to cover

a wider range of control flow instructions (mainly conditional

and unconditional jumps).

Like [Jones/Christiansen 81] the compiler generator works

relative to an interpretation of data operations. In order to

obtain a runnable system such an interpretation and an imp-

le/nentation of it in terms of a compiler should be provided-

not a difficult task as in an essentially operational seman-

tics states should be finite.

Much work remains to be done with respect to the practical

applicability of the present approach. First, it should be

tried out on a language of realistic complexity in order to

assess the descriptive power of the metalanguage and the

efficiency of the system. Secondly, efficiency should be im-

proved.

We see mainly two sources of inefficiency. First, the

control flow implementation should be optimized by detecting

irreversible ("single-threaded", [Stoy 77]) state components.

Some progress on this point have recently been made in the

framework of denotational semantics ([Schmidt 85]).

Secondly, methods for distinguishing between compile time

and run time should be investigated. This distinction could

either be explicit as e.g. Plotkin's ([Plotkin 81]) proposal

for specifying context-sensitive constraints or through the

introduction of a dual type system as in [Nielson/Nielson 85],

26

or it could be implicit by somehow splitting states into com-

pile- and run-time dependent parts - e.g. through some kind

of data flow analysis. One might suspect that, due to the

more rigid semantic metalanguage used (all states finite

and all computations expressed in terms of transitions), pro-

blems in this direction might be more easily approached in

the framework proposed here.

Acknowledgements

This work grew out of a thesis prepared for the degree

of MSc at the Univeristy Centre of Aalborg, Denmark. Thanks

are due to our advisor, Dr. F. Nielson, for many insightful

comments and discussions during the preparation of our the-

sis.

27

References

[ADJ 78]

[Bj~rner 77]

[De Bakker/
De Roever 72]

[Ganzinger 80]

[Gordon 79]

[Greif/Meyer 81]

[Hoare/Lauer 73]

J.A. Goguen, J.W. Thatcher, E.G. Wagner:

An Initial Algebra Approach to the Speci-

fication, Correctness, and Implementation

of Abstract Data Types. In: Current Trends

in Programming Methodology, Vol. IV, R.T.

Yeh (editor), Prentice-Hall 1978.

D. Bj~rner: Formal Development of Interpre-

ters and Compilers, DtH ID673, 1977.

J.W. De Bakker, W.P. De Roever: A Calcu-

lus for Recursive Program Schemes° In:

Automata, Languages, Programming, Nivat

(editor), North-Holland, Amsterdam 1972.

H. Ganzinger: Transforming Denotational

Semantics into practical Attribute Gram-

mars. In: Semantics-Directed Compiler Ge-

neration, LNCS 94, N.D. Jones (editor),

1980.

M.J.C. Gordon: The Denotational Descrip-

tion of Programming Languages - An Intro-

duction, Springer-Verlag 1979.

I.Greif, A.R. Meyer: Specifying the Se-

mantics of while Programs: A Tutorial and

Critique of a Paper by Hoare and Lauer,

ACM Transactions on Programming Languages

and Systems, Vol. 3, No. 4, Oct. 1981.

C.A.R. Hoare, P.E. Lauer: Consistent and

Complementary Formal Theories of the Se-

mantics of Programming Languages, Acta

Informatica 3, 1974.

28

[Jensen/Dam 85] Fo Jensen, M. Dam: Automatisk generering

af overs~ttere udfra operationelt seman-

tiske definitioner af programmeringssprog,

M.Sc. Thesis (in danish), Aalborg Univer-

sity Centre, 1985.

[Jones/Chris-
tiansen 81] N.D. Jones, H. Christiansen: Control Flow

Treatment in a Simple Semantics-Directed

Compiler Generator, DAIMI PB-137, sept.

1981.

[Jones/Schmidt 80] N.D. Jones, D.A. Schmidt: Compiler Gene-

ration from Denotational Semantics. In:

Semantics-Directed Compiler Generation,

LNCS 94, N.D. Jones (editor), 1980.

[Kowalski 74] R. Kowalski: Predicate Logic as Program-

ming Language. In: Information Processing

74, North-Holland 1974.

[Milne/Strachey 76] R. Milne, C. Strachey: A Theory of Pro-

gramming Language Semantics, Chapman and

Hall, 1976.

[Morris 73] F.L. Morris: Advice on Structuring Compi-

lers and Proving Them Correct, Proc. 2nd

ACM Symp. on Principles of Prog. Lan., 1973.

[Mosses 79] P. Mosses: SIS-Semantics Implementation

System, Reference Manual and User's Guide,

DAIMI MD-30, 1979.

[Mosses 80] P. Mosses: A Constructive Approach to Com-

piler Correctness. In: Semantics-Directed

Compiler Generation, LNCS 94, N.D. Jones

(editor), 1980.

[Nielson 84] H.R. Nielson: Hoare Logic's for Run-time

Analysis of Programs, Ph.D. Thesis, Uni-

versity of Edinburgh, oct. 1984.

29

[Nielson/
Nielson 85]

[Plotkin 81]

[Schmidt 85]

[Sethi 83]

[Stoy 77]

[Wand 82]

F. Nielson, H.R. Nielson: Pragmatic Aspects

of Two-Level Denotational Meta-Languages,

AUC R-85-13°

G.D. Plotkin: A Structural Approach to

Operational Semantics, DAIMI FN-19, sept.

1981.

D.A. Schmidt: Detecting Global Variables

in Denotational Specifications, ACM Trans-

actions on Programming Languages and Sys-

tems, Vol. 7, No. 2, april 1985.

R. Sethi: Control-Flow Aspects of Seman-

tics-Directed Compiling, ACM Transactions

on Programming Languages and Systems,

Vol. 5, No. 4, oct. 1983.

J.E. Stoy: Denotational Semantics: The

Scott-Strachey Approach to Programming Lan-

guage Theory, MIT Press, 1977.

M. Wand: Deriving Target Code as a Repre-

sentation of Continuation Semantics, ACM

Transactions on Programming Languages and

Systems, Voi. 4, No. 3, july 1982.

