
& Formal Specification of Line Representations on Graphics Devices

Lynn S. Marshall

DeparTment of Computer Science

University of Manchester

Manchester, UK

1413 9 P L

To show that a computer graphics system functions properly it is necessary to

prove that the images it produces are correct. Most graphical devices are unable

to exactly represent an image, or even just a straight line. Thus each device must

display an approximation to the ideal. This paper presents a formal specification

of the properties any reasonable approximation to a straight line should have.

Bresenham's algorithm is shown to satisfy this specification and extensions to the

specification are discussed.

1 Introduction

Formal specification is a useful tool in many areas of computer science since

it allows the aims of a computer system to be clearly and unambiguously expressed,

and statements concerning the system to be formally proven [17]. Formal

specification of computer graphics systems is in its infancy. Research in this

field has been pioneered by Carson [7]t Gnatz [1%], and Mallgren [19]. Formal

specification is of great potential help in computer graphics.

Graphical data is usually in the form of images composed of various drawing

primitives such as points, lines, and text. Most graphical devices are unable to

represent drawing primitives exactly and thus must produce an approximation to the

ideal. This makes the use of conventional program verification tools, such as a

test driver, very difficult. Graphical Kernel System (G~S) is the new draft

international standard for two-dimensional interactive computer graphics [13].

Designing test suites for GKS implementations is certainly not straightforward [5],

and work on formal specification of GKS is underway [8,21].

A formal description of the approximation to an image that a given computer

graphics device should display will be useful in proving that the various devices

in a computer graphics system function correctly. The idea of specifying what

comprises a valid approximation to some ideal picture on a given graphics device

has been deliberately ignored in previous research in the formal specification of

graphics area. Mallgren [19] says, "the display system is assumed to provide a

recognizable approximation to this representative picture," while Carson [7]

130

admits, "of course., someone must eventually describe how a line should look but we

could treat this as a binding issue, not a specification issue. ~' However, it seems

meaningless to maintain that a graphics program is functioning correctly unless it

produces recognizable output. Carson [7] notes the following:

"At one e~treme, nothing at all is said about the actual effects on a display
surface when an output primitive is drawn. This would enable any vendor to
claim that almost any implementation conformed to the standard, since it would
be impossible to test implementations. At the other extreme, the . ~.
specification could completely describe the effects of output primitives in
terms of parameters such as addressability, color, hardware, text fonts, etc.
that apply to typical display devices. Unfortunately, any parameter set
considered by the specifiers placed unfair restrictions on manufacturers of
certain classes of display devices. Furthermore, fixed parameters would
inhibit the degree of technological flexibility available to implementors."

Thus, it is necessary to devise a specification that will permit the display of any

one of a range of approximations to a picture so allowing ~ reasonable output,

but on q~y reasonable output.

Section 2 of this paper discusses graphics devices and their capabilities, and

section 3 describes lines and their attributes. In section 4 a formal

specification of thin solid lines is given, while section 5 describes various line

drawing algorithms, and section 6 is a proof that Bresenham's line drawing

algorithm satisfies the specification. Section 7 suggests some extensions to the

specification, and a discussion of ideas for further research and conclusions

follow in sections 8 and 9. Appendix A shows a sample line plotted by various line

drawing algorithms. A thick line specification can be found in an extended version

of this paper [20].

2 C~aphics Device~

The two major graphical display device types are the vector device and the

raster device [ii]. A picture on a vector device is composed of straight line

segments, while on a raster device the picture is made up of picture elements, or

pixels, at fixed positions. Vector drawing displays and Den plotters are examples

of vector devices. Raster devices include raster displays, laser printers and

electrostatic plotters [29]. The graphics device model used is that of a raster

device since drawing lines on vector devices is simpler.

A graphics device displays images in a number of colours. It may be capable of

depicting thousands of colours, a range from black to white, or possibly just two

colours (binary). For simplicity the model of a raster device is limited to two

colours: a background co!our (OFF) and a foreground colour (ON). The display

surface is composed of pixeis, each one unit square with its centre having integer

coordinates. Each pixel on the screen of the device may be either ON or OFF, a~id

the pi~els approximating the line are those to which the foreground colour is

assigned.

131

3 Lines

A straight line to be displayed on a graphical device usually has a number of

associated parameters. It must have a start point, an end point, a width, a

linetype, and a colour. The line can be any length, have any slope, be thick or

thin, and solid or broken. Since the pixels of the raster device lie in a grid

formation, the device must produce an approximation to the line to be displayed.

Thus, the representation of a line on a raster device is non-trivial. The

following specification is for thin solid lines having integral endpoints.

& straight Solid Thin Lines with Integral Endpoints on a T~K~olour

Raster Devlue

What properties should the approximation to a line on a raster device have? As

stated earlier, the properties given should be specific enough to allow only

reasonable approximations but general enough to allow any reasonable approximation.

Thus it is inappropriate to specify an exact algorithm since a range of

approximations is permitted. Neither is it appropriate for the representation to

be entirely implementation dependent as the role of the specification is to limit

the i~91ementor.

4.1 Propertles

The following are sowe intuitive ideas concerning the approximation to a

straight line on a raster device:

i. If a pixel is ON it must be "close" to the line.
(i.e., No pi~Is that are very far from the line should be ON.)

2. If a pi~el is "very close" to the line it must be ON.
(i.e., No pixels very close to the line should be OFF.)

3. If two pix~is are adjacent, on the same side of the line and the
further of the two from the line is ON then the closer of the two
to the line must also be ON.

4. The pixels which are ON form a connected region with no holes or bends.

4.2 Notation

The notation used is adapted from the Vienna Development Method (VDM) [18].

%. 2.1 Data Types and Institutes

A data type is defined in one of three ways. It may be a basic data type a,

a composite data type, or a data type having multiple components. A basic data

type is defined as follows:
Data--tyi~ = English description of the data type

A composite data type is a collection of another data type. For ew~mnle:
Data-type a = set of Data-type~

132

If the data type has multiple components it is defined as follows:
Data--type~ : .~

PARTI : Data--typel

PART z ~ Data-type a

PAR~ n : Data-2cype n

A data type name is made up of the underscore {-), alphabetic, and numeric

characters. The name normally begins with a capital, with the remainder being

lower case. special names using bold letters and special symbols may be used for

the basic data types (e.g. R* = reals > 0). The components of a data type are

given names in upper case, possibly with a subscript. If there are any special

restrictions to a data type these are expressed using the requize keyword. For
example:

Data-type~ : set of Data-t~e~ [require set of Data-type i ~ {}]

4.2.2 Function Definitions

A function is defined as follows:
Function : Data~type~ × Data--type a x ~ .. x Data--type n ~ Data-type

Function(dis d z, d n) ~ mathematical function description

The name of the function is the word preceding the colon (:). The function name

usually starts with a letter but may begin with a greek character. The input data

type is described as the Cartesian product followed by the type of the function.

The function is then described in postfix format, using instances of the input data

types. Infix format is used for some two-parameter functions. The only unusual

constructs used in the function descriptions are the require and where keywords;

require is used to restrict the input to a function, similar to restricting a data

type as described above, and where is used to allow an abbreviation to be used in

the function description. For ewample.
Setfunc : set of R ~ R [require set of R ~ {}]
Setfunc(elements) e °.. N ...

where N = Max((elements])

4.3 Speuific.ation

The above mentioned concepts are now formalized.

4.3.1 Data

& ~ne on ~he screen ~h ~n~egrGT. e1~2po~nl;~:
Line :: [require P~ ~ Pz]

P~ : Pix81
Pz : Pixel

A ~W~ze~ on ~he screen:
Pixel : -.

x:zx
Y:zy

Z x : integral x-range of screen c Z
Zy : integral y-range of screen c Z

I33

The se~ of p~zeDs ~urned on ~hen appr~l~mu~ng a D$ne:
Pi~el-set : set of Pixel

& ~ne c Rz=

Realline :: [require P~ ~ Pz]
Px : Point

Pz : Point

A po~n~ E Rz:
P o i n t : :

X : R

Y : R

R : reals

R* : reals > 0
R z : Cartesian plane

Z : integers
B : Booleans

Note that Pixel is treated as a subset of Point. Thus any function accepting a

Point as a parameter will also accept a Pixel (but not vice versa).

4.3.2 Ma~-Functions

Make-functions are used to form instances of a multiple component data type. A

compound type written in the form (x, y) is always assumed to be of type Point

(or Pi~el). To form an instance of any other compound data type a make-function is

used. Assume wehave a type as follows:

Data--type ::
Di : Typei
Dz : Typez

D n : Type n

Then to form an instance of this data type the following function would be used:
ink--Data--type : Type~ × Type z × ... x Type n ~ Data--type

ink--Data-type(d~, d z d n) _~ • d ¢ Data--type.

(D~(d) = d~ ^ Dz(d) = d z ^ ... ^ Dn(d) = d,)

4.3.3 Point OperatioDS

a d d $ ~ t o n :
+p : Point × Point ~ Point

P~ +p Pz ~ (X (p ~) + X (p z) , Y(p~) + Y(Pz))

Sub~racl;~on:
--p : Point x Point -> Point

Pl -p Pz -~ (X(p~) - X(pz), Y(p~) - Y(Pz))

• p : R x Point @ Point
c "p p-~ (C • X(p), c • Y(p))

xp : Point x Point @ Point

p , . xp Pz ~ (x (p ,) • X (p z) , Y(p, .) • Y(Pz))

134

D~uSs~a~n:
/p ~" Point × Point -> Point

P~ /p Pz ~ (X(p~) / X(pz), Y(p~) / ~(p~))

Less 'F/1Gn ~

• p : Point × Point ~ B

Less Th~n OF E~au~ ~o:
: Point x Point 9 B

Summn~n:

n
iE~ : Point x Point x ... x Point 9 Point

n n n

~ . 3 . ~ L i n e Operation

=i : Rea!line x Realline + B

(P~(l~) = Pz(l~) ^ Pz(l~) = P~(I z))

4.3.5 Function Specification

Is ~e Gppro~#~ ~o #he g~uen ~&me ua~&d Grid ~&~h&n u ~o&erGnoe of 87
Validapprox : Pixel-set × Line x R ~ ~ B
Validapprox(pixset~ line, 8)

(~ pix ~ pixset. Withintol(pix, line, ~))
~ a p~Te~ Ss ON ~ ~s "c~ose" ~o ,.he ~$ne

^ (~ pix ~ Pixel. (Nearline(pix, line) ~ pix ~ pixset))
$~ a p~Te~ ~S "uer~ neur" ~he L~ne $~ ~s ON

^ Closrptson(p/xset, line)
un~ p~.a~e~, c~,oseF ~o #he 7,~ne ~;hun o p~e~. ~hGf, ~.s ON SS ON

^ Validpic(pixset)
~he p~TeD formation &e uaD~d

Is the p~e~ ~¢th~n the g~ven ~o~erQn~e o~ the ~ne?
Withinto! : Pixel × Line x R x ~ B
Withintol(pix, line, 6) -~ 3 p ~ Point.

(Onlineseg(p, line) ^ Maxdist(pix, p) < 6)

Zs the po~n~ on ~he &&he sesment?
Onlineseg : Point × Line ~ B
Onlineseg(p, line) e 3 8 ~ [0,I]. (p = P~(line) +p (8 *p A(line)))

~at ~s ~he d£fferemce between ~e end~o£nts of *..he &~ne?
A : Line 9 Point
A(line) ~ Pz(line) -p P~(line)

kThu~ Ss t h e n~,m._~m hor~,zontamT, oF uer~4~ca~, d~.sf;once be l ;~een 1;he t~x~ po~,nf, s?
Maxdist : Point × Point -> R*
Ma~dist(p~, Pz) e Max({ IX(p~) - X(pz)l, IY(p~) - Y(Pz)I })

135

b~a¢ ~s ~he ~ u m oF t h e s e e ?
Max : sot:: o f R ~ R [r G c ~ i z ' e ~=,% o f R ~ [}]
Max(e) ~ • a ~ s . (v b c s . (a ; ~ b))

I s 1;he pf~Te?, u e r v c?.ose f;o l~he T,~ne?
Nearline : Pixel × Line • B

Nearline(pix, line) ~ Endpt(pix, line) v Linethru(pix, line)

Ee #,he pf,,Tel, an endpof , n#, o f 1;he ?,f.ne7
Endpt : Pixel x Line ~ B
Endpt([:)ix, line) e pix = P~(line) v pix = Pz(line)

Does #,he 1,1,he t e n Ff, gh l ; 1;hrough #,he p~Te~,?
Linethru : Pixel x Line ~ B
Linethru(pix, line) ~ 3 p~, Pz E Point.

(Onlineseg(pi, line) a Onlineseg(Pa, line)
^ -Adjcorn(Pz, Pz, pix) ^

^ ((Onreallineseg(px, Leftbord(pix))
^ Onreallineseg(Pz, Rightbord(pix)))

v (Onreallineeeg(Pz, Botbord(pix))
^ Onreallineseg(Pz, Topbord(pix))))

ATe #,he ~ point,s QdJo~en1~ cornels O.f #.he p~ze~?
Adjcorn : Point x Point x Pixel 9 B
Adjcorn(pa, Pz, pix) ~ p~ ~ Pz ^ let rline = mk--Realline(Pz, Pz) in

(rline "i Leftbord(pix) v rline "i Rightbord(pix)
v rline =i Botbord(pix) v rline "1 Topbord(pix))

1Mla#, lr, e ~ e l, ef#. bor'd~r" o f #.he pf4~e~?
Leftbord : Pixel ~ Realline

Leftbord(pix) ~ mk--Realline(pix +p (-1/2,-1/2), pix +p (-1/2,1/2))

Wha~ ~s ~he r~gh#, border of ~he p~ce~?
Rightbord : Pixel 9 Realline
Rightbord(pix) -~ mk--Realline(pix +p (I/2,-1/2), pix +i) (1/2,1/2))

Wha~ ~s *,he boglxx, b o r d e r of ghe p~4ee~?
Botbord : Pixel 9 Realline
Botbord(pix) -~ mk--Realline(pix +p (-1/2,-1/2), pix +p (1/2,-1/2))

Wha~ ~s ~he %op b o r d e r o~ ~he pt~e~?
Topbord : Pixel ~ Realline
Topbord(pix) -~ mk--Realline(pix +p (-1/2,1/2), pix +p (1/2, 1/2))

Is #,he po~n~ on #,he g~uen rea~, l,~ne segment,?
Onreallineseg : Point x Realline 9 B

Onreallineseg(p, rline) e] 6 e [0,i]. p = Pz(rline) +p (6 .I) dr(rline))

I~la'~ l~q #,he d'~,f lFerence bel;4~een #.he endpo~ ,n~ , s o~F #.he]re~l, 1,~,ne?
d r : Realline ~ Point
~r(rline) -~ Pz(rline) -p Px(rline)

R r e GL~, p ~ - e L e c?,oser t;o 1;he ?,~,ne 1;ban on ON p~.Tel, ON?
Closrptson : Pixel--set x Line ~ B
Closrptson(pixset, line) -~ V pixx, pix z ~ Pixel.

((Adjacent(pixx, pix z) ^ "Oppsides(pixx, piXz, line)
^ Closrl(pixx, pixz, line) ^ pix z ~ pixset) W pix~ (pixset)

AFe 1;he ~ p1~'el, s ~l,]ocen1~?
Adjacent : Pixel × Pixel ~ B
Adjacent(pixy, pix z) _~ (Mindist(pixy, pix z) = 0)

136

~ a ~ "~s t h e m~.n~m'~ horSmon~;a~ o r ueF1;'~aL d~,sl;ance ~ ;~e~en ~he I ; ~ pof.,n'~s~'
Mindist : Point × Point ~ R*

Mindist(pA~ Pz) ~- M/n({ iX(p.) - X(pz)I, IY(pa) - Y(pz)i })

What; f.s tqle w W . n ~ o f "l;he se'~?
M_in .~ s e t o f R - ~ R [z e q u i z e s e t o f R ~ { }]
Min(s) ~ - ~ a e s. (V b e s. (a ~ b))

Are ~4%e p~-~-eLs o n oppos$~e s~des of "the LSne?

Oppsides : Pixel × Pixel × Line 9 B

oppsides(pix z, pix z, lane) e pix x ~ pix z ^ 3 p E Point.
(Inlineseg(p, ink-Line(pix 1, pix z)) ^ Online(p, line))

I s 1;he po~nl~ a r~n-endpo~,nl ; o l = 1;he L~,n~ segmenl~?
Inlineseg : Point × Lane ~ B
Inlineseg(p, line) e 3 6 E (0,I). (p = Px(line) +p (6 "p ~(line)))

Zs the po&n~ on ~he ~ne?
Online : Point × Line -> B
Online(p, line) e 3 6 ~ R. (p = Px(line) +p (6 -p ~(line)))

Zs Che f&rs¢ p ' ~ L closer ~,o Che L~.ne Chun Che second?

Closrl : Pixel x Pixel × Line 9 B

Closrl(pixy, pix a, line) -~ 3 5 E R*.
(Withintol(pix~ line, ~)^ -Withintol(pix z, line, ~))

Is ~he p&ze~ forma~,~n ~aL~d?
Validpic : Pixel--set ~ B
Validpic(pix~et) -~ Validrows(pixset) ^ Validcols(pixset)

Are ~;he FO~S of 1;he d~sp~ unL~,d? (~.e. Do onLg ro~s ~n a continuous r,,nge

con~n ON p~'e~,s and ~8 each of ~;hese ro~s ~L~d?)

Validrows .~ Pixel--set 9 B

Validrows(pixset) e ~ yx, Yz ~ Zy. (yx ~< Yz ^
¥ y E (Zy - [y~ Ya }). (¥ x e Z x. (x,y) ~ pixset)

^ ~ Y ~ (Yx Yz]" Validrow(pixset, y))

Is ~h~s ro~ of ~he d~sp~ag pa~$d? (~.e. Does ~h~s ro~ ha~e on~g one con~&nuous

range of p~zeLs ON?)
Va!idrow : Pixel-set × Zy • B

Validrow(On, y) ~-] x~, x z E Z~. (xz ~ x z ^
X E (Z x - (X z X z }). (X,y) ~ pixset ^
X ~ { X z X z }. (X,y) E pixset)

Are ~;he co~mns of 1;he d~spSGg uaLSd? (~.e. DO on~,w columns ~n a conl;$nuous runge

con~;~n ON p~TeLe and be euch of ~;hese c o ~ u(z?,~d?)

Validcols : Pixel-set ~ B
Validcols(pixset) e 3 x~, x z £ Zx. (x~ ~ x z ^

V x £ (Zx - { x~ xz]). (¥ Y ~ Zy. (x,y) ~ pixset)
^ V X ~ { x~ X a }. Validcol(pixset, x))

~s ~h~,s co~,umn of ~4~e d~sp~,~2 ua~,$~? (~.e. Does ~h~s co~,umn haue onLg one

continuous range of p~ze~s ON?)
validcol ~' Pixel-set × Z~ ~ B
Validcol(pixset, x) e 3 yx, Yz ~ Zy. (yx ~ Yz ^

y E (Zy - (yx Yz }). (x,y) ~ pixset ^

V y E [yz Yz }. (x,y)E pisser)

137

5 Thin Line Drawing Algorithms

If the specification is reasonable any of the common line drawing algorithms

will satisfy it. Also, it should be easily extendable. A s ~ of line drawing

algorithm references has been compiled by Earnshaw [9]. Sproull also discusses

line drawing algorithms [27]. An outline of a variety of thin line drawing

algorithms follows. Each of these algorithms satisfies the above specification.

The pixel set for each algorithm and the appropriate tolerance are given.

5.1 Bresenham's, Simple Digital Differential Analysis (DDA), and Chain

Code Algorithms

For any given line these three algorithms produce the same approKimation by

sampling the line once per row or column and turning on the closest pixel to the

sampled point. Whether the line is sampled by row or by column is based on the

slope of the line and selected so that the maximum number of points will be

sampled. The Simple DDA algorithm [23], is the most straightforward. Bresenham's

algorithm [4] is optimized to use only integer arithmetic, and the Chain Code

algorithm [26] stores the resulting line as a series of integers modulo 7,

representing the eight different directions one can proceed to an adjacent pixel.

The line is related to the pixel set by.

pix ~ pixset
B n ~ [0 N}. (pix = Pa(line) +9 Roundp(n/N ,p A(line)))
where N = Maxdist(P1(line), Pz(line))

Roundp : Point 9 Pixel
Roundp(p)e (Round(X(p)), Round(Y(p)))

Round : R ~ Z
Round(r) ~- L i E Z. (r - 1/2 < i ~ r + 1/2)

These algorithms always turn on pixels which the line at least touches, and

thus have a tolerance of 1/2.

5.2

samples the line more frequently.

times the line is sampled.

abbreviations are used:

dx for X(d(line)), and

dy for Y(~(line)).

The length of the line is usually approximated by:

Max({ l~xl, i~yl })+ 1/2 • Min({ l~xl, Idyl })

since g(~2 + d~) is expensive to compute. Also, for efficiency reasons, the

number of steps is chosen to be a power of two. Thus the number of sampled points

is 2 n + 1, where n is the smallest n such that 2 n • Max((l~xl, Idyl }) + 1/2 •

Sy~etric DD~ Algorithm

The Syntax%tic DDA algorithm [23] is similar to the Simple DDA algorithm, but

The length of the line determines the number of

To make the notation simpler the following

138

Min({ n~xJ, }Ayl }). The Symmetric DDA algorithm gives a more equal density to

approximations to lines of different slopes than the Simple DDA.

The line is related to the pixel set by:

pix ~ pixset W
3 n ~ [0 N}. (pix = P1(line) +p Boundp(n/N -p ~(line)))
wh~re N = Minvalidn(line)

Minvalidn ." Line-> N
Minvalidn(line) e n E 7. (Validn(n, line) ^

V m E N. (Validn(m, line) ~ n ~ m))

Validn = R x Line 9 B
validn(n, line) ~ B k ~ N. (n = 2 k) ^ n >

Maxdist(Px(line), Pz(line)) + 1/2 • Mindist(P1(line), Pz(line))

The symmetric DDA algorithm always turns on pixels touched by the line and thus

has a tolerance of 1/2.

5.3 All Pix~Is Touched Algorithm

It is easy, theoretically, to imagine a line drawing algorithm which samples

the line "everywhere" thus turning on all pi~els touched by the line. Of course,

this could only be implemented approximately and would be inefficient.

The line is related to the pixel set by:

pix c piKset
3 p ~ Point. (Onlineseg(p, line) ^ pix = Roundp(p))

This algorithm also has a tolerance of 1/2.

5.4 BEO~' Chain Cede Klgoritlm

The Chain Code algorithm presented by Brons [6] produces a line similar, but

not identical to the Chain Code algorithm discussed earlier. The chain code is

produced in a recursive manner, giving successive approximations to the line until

the '~est" approw_imation is achieved.

It has not been possible to find a simple non-recursive description of this

algorithm! Brons' Chain code algorithm is often identical to the standard Chain

Code Algorithm. However, in cases with I ~x I = n, and ~ Ay I = i, it gives

approximations with a tolerance approaching i.

5.5 Binary Rate Mnl%iplier (BRM) Algorithm

The BRM Algorithm [22] was once a popular line drawing algorithm due to its

speed. However, it tends to produce rather inaccurate approximations and, with the

advent of more accurate quick algorithms, it is rarely used. It is based on binary

arithmetic. Both I~xl and IAyl are expressed in binary notation using n bits. The

point (x~,ya) is turned on and a binary clock then counts from 0 to 2 n - i. At

each stage, x is incremented if and only if the bit changing from 0 to i in the

counter is i in the binary representation of m~l. The same applies to y.

139

The line is related to the pixel set by:

p i x ¢ p i~ . s e t
3 d E {0 2 n - i}. pix = P~(line) +p

n
Sign9 (line)xpi=~ (Roundp(d / 2 n+~-i "p c i))

where n = Minvalidn(line),
v i ¢ [1 n}. c i e {(o,o),(o,i),(i,o),(1,1)}.

n
(I ~(line) I =i=E~ 2 i-~ "p ci)

Validn • N x Line 9 B
Validn(n, line) e 2 n ~ Maxdist(P~(line), Pz(line))

Signp : Line 9 Point
Signp(line)-~ (Sign(X(d(line)), Sign(Y(d(line)7)

Sign : Z ~ Z
Sign(a) ~ if a = lai them 1 else -1

The BR24 algorithm can be very inaccurate, especially for lines with l~xl equal

to the reflection of]~yl, in binary notation. The tolerance for this algorithm is

approximately 2.

see appendix A for a sample line and the approximations produced by these line

drawing algorithms.

6 Proof for Bresenham's Algorithm

Throughout this sectio n the following abbreviations are used:
PI for PI(line)
X I for X(Pi(line))
Yi for Y(Pi(line))

for ~(line)
~x for X(~(line))
Ay for Y(~(line))
R for Round
Rp for Roundp

6.1 V pix c pixset. Withint01(pix, line, 1/2)

9ix E pixset W pix - PI +p Rg(n/N *p d).

Now, p = Pi +p (n/N .p d) is on the line segment, since 0 ~ n/N ~ i. And, either

~x/N, or ~y/N is an integer, as N = l~xl or Idyl. Thus, Maxdist(pix, p)=

IR(X(p))- X(p)i or IR(Y(p))- Y(P)I, and so Maxdist(pix, p)~ 1/2, and the

ON pixel is within 1/2 of the line as desired.

6.2 V ~ e PixY1. (Nearline(pix, line) W pix e pixset)

Nearline(pix, line)W Endpt(pix, line)v Linethru(pix, line).

Now if the pixel is an endpoint of the line, it will be ON (cases n = 0 and n = N).

If the line runs right through the pix~l, there are two cases:

140

Case i: If N = l~xl then the line runs through the pixel in a horizontal

direction, and we have that the point (X(pix), Y(pix) + 8), for 8 e (-1/2,1/2)~

is on the line. Since N = Idxl this column will be sampled, and this pixel will be.

turned ON since R(Y(pix) + 6) = Y(pix) + R(8) = Y(pix).

Case 2: On the other hand, if N = i~yl then the line runs through the pixel in a

vertical direction, and the point (X(pix) + 8, Y(pix)), for 6 E (-1/2,1/2), is

on the line. This row will be sampled, and since R(X(pix) + 8) = X(pix),

this pixel will be turned ON.

6.3 Closrptson(pixset, line)

Closrptson(pi~set~ line) ~ ~ pix z, pix z e Pixel.

(Adjacent(pixx~ pix z) ^ -Oppsides(pixy, pix z, line) ^

Closrl(pix i, pix z, line) ^ pix z c pixset ^ pixz ~ pixset).

Case i: N = i~xl, pix z and pix z are horizontally adjacent

Without loss of generality, assume ~x is positive. Then since pix z is ON, X(pix z)

= X x + n and Y(pix z) = Yz + R(n-ay/~x). And thus, X(pixx) = X z + n + 1 and

Y(pixz) = Y~ + R(n.dy/dx). Now, pix~ and pix z are on the same side of the line,

and pix z is closer to the line than pix z. So, the line must cross the line x =

X(pix~) between Y(pixz) and y(pixz) - 1/2, or Y(pixz) and Y(pixz) - I/2. Thus

R((n+l)-ay/~J~) = R(n'~y/Ax) and thus pixl will be ON. Thus it is true that no

such pix I and pix z exist, and the above is satisfied.

Case 2~ N = i~xl, pix~ and pix z are vertically adjacent

Since pix z is ON, it is within 1/2 of the line. However, pix z is closer to the

line so the points must be on opposite sides of the line, so again the above is

satisfied.

Case 3: N = ldyl~ pix± and pix z are horizontally adjacent

Similar to case 2.

Case 4: N = ~y~, pix~ and pix z are vertically adjacent

similar to case i.

6.4 validpic(pixy%)

Validpic(pixset) ~ Validrows(pixset) ^ Validcols(pixset). Bresenham's

algorithm only turns on pixels in rows and columns between Pz and Pz, and it turns

on at least one pixel in each of these, due to the choice of N. Thus, it is

necessaz- I only to check that each of these rows and columns is valid.

Case I: N = l~xl

Only one pixel will be turned on in each column, so the columns are valid. Assume

we have an invalid row~ is. two pixels in a row are ON, but one in between them is

141

off. So 3 n,m E N. Px = Px +p Rp(n/Idxl "p Aline), and Pz = Px +p Rp((n+m)/l~l

• p Aline). Since p~ and Pz are in the same row R(n • Ay/Idx~) = R((n+m)

Ay/IAxl), and thus R((n+i) ' Ay/i~i), for i e {0 m} = R(n • dy/16xl). So

all pixels in the row between pl and Pz will be ON, and the row must be valid.

Case 2: N = IAyl

The argument is the same as in Case l, with the roles of the rows and columns

reversed.

Thus Bresenham's algorithm satisfies the thin solid line specification.

7 Extensions to the Specification

7.1 Vector Devices

Although the drawing primitive on a vector device is a line, a vector device is

still not able to reproduce all lines exactly. The limitation is the addressing

resolution of the device. Thus, if the pixel size is set equal to the resolution

of the vector device the model presented will also be appropriate for vector

devices. There may be some parts of the specification that are redundant for a

vector device. For example, closrptson should always be true. But the

specification will still suffice.

7.2 Lines with Non-Integral Endpoints

The specification can easily be changed to allow for lines with non-integral

endpoints by using Realline everywhere instead of Line. It might be desirable to

impose an additional condition on Validapprox to ensure that the pixels containing

the endpoints are turned on under certain conditions, but this is probably

unnecessary.

7.3 Thic~ Lines

It is quite easy to extend the thin solid line specification to one for solid

lines of thickness "t." One question that arises is how the endpoints of the thick

line should be treated, as both round-end and square-end models for thick lines

exist. Another requirement that should be added to the specification is that any

pixel entirely covered by the thick line should be on.

A specification including these extensions is included in the extended version

of this paper [20].

8 Ideas for Further Research

S.l Related Research

Although none of the recent formal specification of computer graphics systems

research has discussed the properties of the approximation to a line on a graphics

142

device, work was carried out in the 1960's and 1970's concerning the representation

of solid thin lines on raster or incremental plotter devices [1,2,12,25]. The

model used to describe a line is to number the eight pixels adjacent to a given

pi~el from 0 to 7 in a counter-clockwise direction starting with the pixel on the

right° An a~roxi~ation to a thin line, called the chain code, is then given by a

sequence of numbers indicating the direction to proceed from each piKel of the

a~groximation.

Freeman [lZ] notes
All chains of straight lines must possess the following three

specific properties:
I. the code is made up of at most 2 elements differing by 1 modulo 8
2. one of the two elements always appears singly
3. the occurrences of the singly occuring element are as uniformly

spaced as possible

Rosenfeld [25] proves that the above is satisfied if and only if the chain code

has the chord property. That is, if and only if for every point, p, of a line

segment between two pi~is which are ON, there is an ON pixel, pix, such that

Max~ist(Pe pix) ~ I. No extensions are given for thick lines.

While thls area has been ignored for some time, raster displays and operations

on them are again being researched° Guibas and Stolfi [15] explain that it has

been believed that "the graphics programmer should be spared the pain" of dealing

with raster images, but it is now being realized that raster images "should be

given full citizenship in the world of computer science." They discuss a

function, LINE[p~, Pz, w]~ which draws a line of thickness w from Px to Pz, but

note that, "the exact definition of this shape, particularly at the two endpogmts,

is ... application-dependent."

8.2 Alternate Approachem

The work presented is all based on the model introduced in Section 2. If a

different model to that of the square pi~el is used new insight into the properties

of output primitives on graphics devices might be obtained. One idea is to look at

different tesselations of the Cartesian plane. What would the specification look

like if hexagonal pixels, for example, were used? The concepts of rows, columns

and adjacent pills would need to be examined.

Another approach might involve the splitting of the specification into two

parts~ the local and global properties of the line. Local and global properties

are discussed by Guibas and Stolfi [15]. A local property is one that can be

checked for each pixel or small piece of the approximation. Such as:

~f a pixel is ON it is "close" %0 the line.

On the other hands a global property is one requiring the entire approximation to

be considered as a whole. For example:

The line "looks °' straight.

143

Examining the specification in this way may present new ideas.

The choice of distance function can also influence the specification. Although

the maximum horizontal or vertical distance between two points conforms to the

square pixel model, the Euclidean distance function is introduced when thick lines

are discussed [20]. A different choice of distance function may simplify the

specification or suggest a new model.

8.3 Further P~ertiea of Solid Straight Lines

There are many additional ~roperties of a solid straight line that could

supplement or replace some of those given in the specification. It is desirable to

come up with a simple specification and, at the same time, keep it both specific

and general enough to encompass all reasonable approximations. One property the

approximation should have is that the line "looks straight." This idea is

incorporated in the Validpic portion of the specification. F~wever, perhaps a

better formulation of this notion can be given. For example, for a device with a

very high precision, it may not be necessary to require that there are no "holes"

in the approximation, as a small hole w o u l d b e undetectable.

Other properties which are desirable in line drawing algorithms are:

i. A line produced has constant density.
2. All lines produced have the same density.
3. The line from pl to Pz is identical to the line from Pz to PI.

However, these properties are not possessed by some of the commonly used

algorithms. A line produced by the BP~ algorithm may not be of constant density.

For Bresenham's algorithm, the density of the line depends on its slope [11], and,

unless the algorithm is adjusted slightly [3], lines drawn in opposite directions

may differ. It may be desirable to try to incorporate relaxations of these

conditions into the specification. For example:

i. A line produced has "nearly" co1~stant density.
2. All lines produced have "approximately" the same density.
3. The line from Pi to Pz is "close to" the line from Pa to Pi.

s.4 Further Extensions to f~e Specification

It would be interesting to give a specification for dashed lines. Dashed lines

are usually defined as sections of ink and space [28]. one approach would be to

split the line up into a collection of short lines, each specified as a solid line.

However, as the point within the ink-space pattern to start with may be

implementation dependent, this becomes quite complicated.

Another extension would include the specification of grey-scale lines on a

grey-scale or multicolour device. In a grey-scale algorithm [24], each pixel is

set to an al~propriate shade depending on the portion of it covered by the line.

Anti-aliasing [16] is even more complicated as a filtering pattern is used, along

144

with a selection of colours, to smooth the edges of the line preventing them from

appearing to be jagged.

Once the specification of a line on a graphics device is complete there are

many other drawing primitives to consider, including marker, filled area, and text.

And since a picture is rarely composed of a single primitive it is necessary to

look at all the primitives within a picture, and decide how to deal with those that

overlap, especially on a device with many colours. This problem is discussed by

Carson [7], Flume and Fournier [i0], and Mallgren [19]. These so called combining

functions should be specified in a formal description of the properties of a

graphics device, thus giving an allowable range for the appearance of the final

picture, as well as for each primitive within the picture.

Another area for research is the formal specification of the behaviour of

graphics input devices.

9 Conclusions

When a new graphics device is produced, it is necessary to be certain that it

functions correctly. Although the formal specification presented here is only the

tip of the iceberg with regards to the specification of a complete graphics device,

it is encouraging that such specifications can be produced, and actually used to

prove that algorithms for drawing graphical primitives produce reasonable results.

Acknowlegements

Many thanks to Professor Cliff Jones for his assistance and encouragement, and

to Steve Carson, David Duce, Elizabeth Fielding, and my colleagues at the

[Jniversity of Manchester for their valuable ideas and suggestions.

Appendix A - Sample Li,e

The following diagrams show how the various thin line drawing algorithms

discussed in section 5 approximate the line from (0,0) to (21,i0). This line was

chosen as it illustrates the differences between the line drawing algorithms.

The l i n e t o be a p p r o x i m a t e d , r u n n i n g f rom (0 , 0) t o (Z l , I O) .

145

The shaded pixels indicate the approximation produced by Bresenham's, the Simple
DDA, and Chain Code algorithms.

to

/

0

The Symmetric DDA turns on all the pixels turned on by the Simple DDA algorithm,

and some additional oneS.

t~ b

A

0
The All Pixels Touched algorithm turns on all the pi~els turned on by the Symmetric
DD& algorithm, and more.

t~

k

Q

Brons' Chain Code algorithm is identical to the Chain Code algorithm except in
column 20.

146

A

o

The BRM algorithm is quite inaccurate when approximating this line, since in binary
form dx is the reflection of ~y°

References

i. C. Arcelli and A° Massarotti, "Regular Arcs in Digital Contours0"
Computer Graphics and Image Processing Vol. 4 p~, 339-360 (1975).

2. G. Bongiovanni, F. Luccio, and A. Zorat, "The Discrete Equation of a
Straight Line," IEEE Transactions on Computers Vol. C-24(3)
DP. 310-313 (March 1975)~

3. J. Boothroyd and P. A. Ramilton, "Exactly Reversible Plotter Paths,"
Australian computer Journal Vol. 2(1) pp. 20-21 (1970).

4. J. E. Bresenham, "Algorithm for Computer Control of a Digital Plotter, '°
I~ S]6stems Journal Vol. %41) pp. 25-30 (1965)

5o K° W. Brodlie, M. C. Maguire, and G. E. Pfaff, °'A Practical Strategy
for Certifying ~ Implementations," in EUROGRAPHICS 82 International
Conference and Exhibition UMIST 8-10 $9~ t 1982, eds. D. S. Greenaway
and E. A. Warman, North-Holland (1982).

6. R. Brons, "Linguistic Methods for the Description of a Straight Line
on a Grid," ~ r a p h i c s and Image Processi__D, q Vol. 3 pp. 48-62
(1974) .

7. George S. Carson, "The Specification of Computer Graphics Systems,"
IEEE Computer Graphics and Applications Vol. 3(6) pp. 27-41 (1974).

8o D. Ao Duce, E. V. C. Fielding, and L. S. Marshall, Formal S pecifiation
and Graphics Software, Rutherford Appleton Laboratory Report
RAL-84-O68~ August !98%.

9. R. A. Earnshaw, Display Algorithms - History, Developments and
~lications, University Computing Service, University of Leeds.

IO. Eugene Flume and Alain Fournier, A Programmae for the Development of a
Mathematical T h e o r i S t _ S , Computer Systems Research
Group, Department of Computer Science, University of Toronto, Toronto,
Ontario (1984).

11. J. D. Foley and A. van Dam, Fundamentals of Interactive Computer
.Gr~, Addison-Wesley Publishing Company (1982).

12. Herbert Freeman, "Boundary Encoding and Processing," pp. 241-266 in
picture Pr~essing add Psychopictorics, eds. Bernice Sacks Lipkin and
Azriel Rosenfeld~ Academic Press, New York-London (1970).

13. ~@~9~lcal_~Kernel S/c@tem i(~s~ 7.2 Functional De scrl/~tion, Draft
International Standard [SO/DIS 7942 (November 14th, 1982).

14. R. Onatz, Ai~3roaching a Formal Framework for Graphics Software
Standards, Technical University of Munich.

15. Leo J. Guibas and Jorge S%olfi, "A Language for Bitmap Manipulation,"
ACM Transactions on G r ~ Vol. 1(3) pp. 191-214 (July 1982).

147

16. Satish Gupta and Robert F. Sproull, "Fil%ering Edges for Grey-Scale
Displays," ACM computer Graphics Vol. 15(3) pp. 1-5 (August 1981).

17. John Guttag and James J. Horning, Formal Specification as a Design
Tool, XEROX PARC Technical Report CSL-80-1, Palo Alto, CA (June 1982).

18. C. B° Jones, Software Develo~nt: A Ri orous roach, Prentice-Hall,
Englewood Cliffs, NJ (1980).

19. William R. Mallgren, Formal Specification of Interactive Graphics
P_rrrrrrrr2~rasa~n ~g~=~es, ACM Distinguished Dissertation 1982, MIT Press
(1983).

20. Lynn S. Marshall, A Form~l Specification of Line Representations on
Graphics Devices, University of Manchester Transfer Report, September
1984.

21. Lynn S. Marshall, GKS Workstations: Formal Specification and Proofs of
Correctness for Specific Devices, University of Manchester Transfer
Report, September 1984.

22. William M. Newman and Robert F. Sproull, Principles of Interactive
Computer~, McGraw Hill Kogakuska Limited (1973).

23. William M. Newman and Robert F. Sproull, P__rinciples of Interactive
Com ter Gra ics, Second Edition, McGraw Hill International Book
Company (198Z).

24. M. L. V. Pitteway and D. J. Watkinson, "Bresenham's Algorithm with Grey
Scale," Communications of the ACM Vol. 23(11) pp. 625-626 (1980).

25. Azriel Rosenfeld, "Digital Straight Line Segments," IEEE Transactions
on computers Vol. C-23(12) pp. 1264-1269 (December 1974).

26. Jerome Rothstein and Carl Weiman, "Parallel and Sequential
Specification of a Context Sensitive Language for Straight Lines on
Grids," ~ter Graphics and Image Processinq Vol. 5 pp. 106-124
(1976).

27. Robert F. Sproull, "Using Program Transformations to Derive Line
Drawing Algorithms," ~:M Transactions on Gra~tics Vol. 1(4)
pp. 259-273 (October 1982).

28. University of Manchester Computer Graphics Unit, Interactive Computer
Gr~ics Course Notes (March 198%).

29. John Warnock and Douglas K. Wyatt, "A Device Independent Graphics
Imaging Model for Use with Raster Devices," ACM COmputer Graphics
Vol. 16(3) pp. 313-319 (July 1982).

