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To show that a computer graphics system functions properly it is necessary to 

prove that the images it produces are correct. Most graphical devices are unable 

to exactly represent an image, or even just a straight line. Thus each device must 

display an approximation to the ideal. This paper presents a formal specification 

of the properties any reasonable approximation to a straight line should have. 

Bresenham's algorithm is shown to satisfy this specification and extensions to the 

specification are discussed. 

1 Introduction 

Formal specification is a useful tool in many areas of computer science since 

it allows the aims of a computer system to be clearly and unambiguously expressed, 

and statements concerning the system to be formally proven [17 ]. Formal 

specification of computer graphics systems is in its infancy. Research in this 

field has been pioneered by Carson [7]t Gnatz [1%], and Mallgren [19]. Formal 

specification is of great potential help in computer graphics. 

Graphical data is usually in the form of images composed of various drawing 

primitives such as points, lines, and text. Most graphical devices are unable to 

represent drawing primitives exactly and thus must produce an approximation to the 

ideal. This makes the use of conventional program verification tools, such as a 

test driver, very difficult. Graphical Kernel System (G~S) is the new draft 

international standard for two-dimensional interactive computer graphics [13 ]. 

Designing test suites for GKS implementations is certainly not straightforward [5], 

and work on formal specification of GKS is underway [8,21]. 

A formal description of the approximation to an image that a given computer 

graphics device should display will be useful in proving that the various devices 

in a computer graphics system function correctly. The idea of specifying what 

comprises a valid approximation to some ideal picture on a given graphics device 

has been deliberately ignored in previous research in the formal specification of 

graphics area. Mallgren [19] says, "the display system is assumed to provide a 

recognizable approximation to this representative picture," while Carson [7 ] 
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admits, "of course., someone must eventually describe how a line should look but we 

could treat this as a binding issue, not a specification issue. ~' However, it seems 

meaningless to maintain that a graphics program is functioning correctly unless it 

produces recognizable output. Carson [7] notes the following: 

"At one e~treme, nothing at all is said about the actual effects on a display 
surface when an output primitive is drawn. This would enable any vendor to 
claim that almost any implementation conformed to the standard, since it would 
be impossible to test implementations. At the other extreme, the . ~. 
specification could completely describe the effects of output primitives in 
terms of parameters such as addressability, color, hardware, text fonts, etc. 
that apply to typical display devices. Unfortunately, any parameter set 
considered by the specifiers placed unfair restrictions on manufacturers of 
certain classes of display devices. Furthermore, fixed parameters would 
inhibit the degree of technological flexibility available to implementors." 

Thus, it is necessary to devise a specification that will permit the display of any 

one of a range of approximations to a picture so allowing ~ reasonable output, 

but on q~y reasonable output. 

Section 2 of this paper discusses graphics devices and their capabilities, and 

section 3 describes lines and their attributes. In section 4 a formal 

specification of thin solid lines is given, while section 5 describes various line 

drawing algorithms, and section 6 is a proof that Bresenham's line drawing 

algorithm satisfies the specification. Section 7 suggests some extensions to the 

specification, and a discussion of ideas for further research and conclusions 

follow in sections 8 and 9. Appendix A shows a sample line plotted by various line 

drawing algorithms. A thick line specification can be found in an extended version 

of this paper [20]. 

2 C~aphics Device~ 

The two major graphical display device types are the vector device and the 

raster device [ii]. A picture on a vector device is composed of straight line 

segments, while on a raster device the picture is made up of picture elements, or 

pixels, at fixed positions. Vector drawing displays and Den plotters are examples 

of vector devices. Raster devices include raster displays, laser printers and 

electrostatic plotters [29]. The graphics device model used is that of a raster 

device since drawing lines on vector devices is simpler. 

A graphics device displays images in a number of colours. It may be capable of 

depicting thousands of colours, a range from black to white, or possibly just two 

colours (binary). For simplicity the model of a raster device is limited to two 

colours: a background co!our (OFF) and a foreground colour (ON). The display 

surface is composed of pixeis, each one unit square with its centre having integer 

coordinates. Each pixel on the screen of the device may be either ON or OFF, a~id 

the pi~els approximating the line are those to which the foreground colour is 

assigned. 
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3 Lines 

A straight line to be displayed on a graphical device usually has a number of 

associated parameters. It must have a start point, an end point, a width, a 

linetype, and a colour. The line can be any length, have any slope, be thick or 

thin, and solid or broken. Since the pixels of the raster device lie in a grid 

formation, the device must produce an approximation to the line to be displayed. 

Thus, the representation of a line on a raster device is non-trivial. The 

following specification is for thin solid lines having integral endpoints. 

& straight Solid Thin Lines with Integral Endpoints on a T~K~olour 

Raster Devlue 

What properties should the approximation to a line on a raster device have? As 

stated earlier, the properties given should be specific enough to allow only 

reasonable approximations but general enough to allow any reasonable approximation. 

Thus it is inappropriate to specify an exact algorithm since a range of 

approximations is permitted. Neither is it appropriate for the representation to 

be entirely implementation dependent as the role of the specification is to limit 

the i~91ementor. 

4.1 Propertles 

The following are sowe intuitive ideas concerning the approximation to a 

straight line on a raster device: 

i. If a pixel is ON it must be "close" to the line. 
(i.e., No pi~Is that are very far from the line should be ON.) 

2. If a pi~el is "very close" to the line it must be ON. 
(i.e., No pixels very close to the line should be OFF. ) 

3. If two pix~is are adjacent, on the same side of the line and the 
further of the two from the line is ON then the closer of the two 
to the line must also be ON. 

4. The pixels which are ON form a connected region with no holes or bends. 

4.2 Notation 

The notation used is adapted from the Vienna Development Method (VDM) [18]. 

%. 2.1 Data Types and Institutes 

A data type is defined in one of three ways. It may be a basic data type a, 

a composite data type, or a data type having multiple components. A basic data 

type is defined as follows: 
Data--tyi~ = English description of the data type 

A composite data type is a collection of another data type. For ew~mnle: 
Data-type a = set of Data-type~ 
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If the data type has multiple components it is defined as follows: 
Data--type~ : .~ 

PARTI : Data--typel 

PART z ~ Data-type a 

PAR~ n : Data-2cype n 

A data type name is made up of the underscore {-), alphabetic, and numeric 

characters. The name normally begins with a capital, with the remainder being 

lower case. special names using bold letters and special symbols may be used for 

the basic data types (e.g. R* = reals > 0). The components of a data type are 

given names in upper case, possibly with a subscript. If there are any special 

restrictions to a data type these are expressed using the requize keyword. For 
example: 

Data-type~ : set of Data-t~e~ [ require set of Data-type i ~ {} ] 

4.2.2 Function Definitions 

A function is defined as follows: 
Function : Data~type~ × Data--type a x ~ .. x Data--type n ~ Data-type 

Function( dis d z, .... d n ) ~ mathematical function description 

The name of the function is the word preceding the colon (:). The function name 

usually starts with a letter but may begin with a greek character. The input data 

type is described as the Cartesian product followed by the type of the function. 

The function is then described in postfix format, using instances of the input data 

types. Infix format is used for some two-parameter functions. The only unusual 

constructs used in the function descriptions are the require and where keywords; 

require is used to restrict the input to a function, similar to restricting a data 

type as described above, and where is used to allow an abbreviation to be used in 

the function description. For ewample. 
Setfunc : set of R ~ R [ require set of R ~ {} ] 
Setfunc( elements ) e °.. N ... 

where N = Max( ( elements ] ) 

4.3 Speuific.ation 

The above mentioned concepts are now formalized. 

4.3.1 Data 

& ~ne on ~he screen ~h ~n~egrGT. e1~2po~nl;~: 
Line :: [ require P~ ~ Pz ] 

P~ : Pix81 
Pz : Pixel 

A ~W~ze~ on ~he screen: 
Pixel : -. 

x:zx 
Y:zy 

Z x : integral x-range of screen c Z 
Zy : integral y-range of screen c Z 
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The se~ of p~zeDs ~urned on ~hen appr~l~mu~ng a D$ne: 
Pi~el-set : set of Pixel 

& ~ne c Rz= 

Realline :: [ require P~ ~ Pz ] 
Px : Point 

Pz : Point 

A po~n~ E Rz: 
P o i n t  : :  

X : R 

Y : R 

R : reals 

R* : reals > 0 
R z : Cartesian plane 

Z : integers 
B : Booleans 

Note that Pixel is treated as a subset of Point. Thus any function accepting a 

Point as a parameter will also accept a Pixel (but not vice versa). 

4.3.2 Ma~-Functions 

Make-functions are used to form instances of a multiple component data type. A 

compound type written in the form ( x, y ) is always assumed to be of type Point 

(or Pi~el). To form an instance of any other compound data type a make-function is 

used. Assume wehave a type as follows: 

Data--type :: 
Di : Typei 
Dz : Typez 

D n : Type n 

Then to form an instance of this data type the following function would be used: 
ink--Data--type : Type~ × Type z × ... x Type n ~ Data--type 

ink--Data-type( d~, d z ..... d n ) _~ • d ¢ Data--type. 

(D~(d) = d~ ^ Dz(d) = d z ^ ... ^ Dn(d) = d, ) 

4.3.3 Point OperatioDS 

a d d $ ~ t o n :  
+p : Point × Point ~ Point 

P~ +p Pz ~ ( X ( p ~ )  + X ( p z ) ,  Y(p~)  + Y(Pz)  ) 

Sub~racl;~on: 
--p : Point x Point -> Point 

Pl -p Pz -~ (X(p~) - X(pz), Y(p~) - Y(Pz) ) 

• p : R x Point @ Point 
c "p p-~ ( C • X(p), c • Y(p) ) 

xp : Point x Point @ Point 

p , .  xp  Pz ~ ( x ( p , )  • X ( p z ) ,  Y(p, .)  • Y(Pz)  ) 



134 

D~uSs~a~n: 
/p ~" Point × Point -> Point 

P~ /p Pz ~ (X(p~) / X(pz), Y(p~) / ~(p~) ) 

Less 'F/1Gn ~ 

• p : Point × Point ~ B 

Less Th~n OF E~au~ ~o: 
: Point x Point 9 B 

Summn~n: 

n 
iE~ : Point x Point x ... x Point 9 Point 

n n n 

~ . 3 . ~  L i n e  Operation 

=i : Rea!line x Realline + B 

(P~(l~) = Pz(l~) ^ Pz(l~) = P~(I z) ) 

4.3.5 Function Specification 

Is ~e Gppro~#~ ~o #he g~uen ~&me ua~&d Grid ~&~h&n u ~o&erGnoe of 87 
Validapprox : Pixel-set × Line x R ~ ~ B 
Validapprox( pixset~ line, 8 ) 

( ~ pix ~ pixset. Withintol( pix, line, ~ ) ) 
~ a p~Te~ Ss ON ~ ~s "c~ose" ~o ,.he ~$ne 

^ ( ~ pix ~ Pixel. ( Nearline( pix, line ) ~ pix ~ pixset ) ) 
$~ a p~Te~ ~S "uer~ neur" ~he L~ne $~ ~s ON 

^ Closrptson( p/xset, line ) 
un~ p~.a~e~, c~,oseF ~o #he 7,~ne ~;hun o p~e~. ~hGf, ~.s ON SS ON 

^ Validpic( pixset ) 
~he p~TeD formation &e uaD~d 

Is the p~e~ ~¢th~n the g~ven ~o~erQn~e o~ the ~ne? 
Withinto! : Pixel × Line x R x ~ B 
Withintol( pix, line, 6 ) -~ 3 p ~ Point. 

( Onlineseg( p, line ) ^ Maxdist( pix, p ) < 6 ) 

Zs the po~n~ on ~he &&he sesment? 
Onlineseg : Point × Line ~ B 
Onlineseg( p, line ) e 3 8 ~ [0,I]. ( p = P~(line) +p ( 8 *p A( line ) ) ) 

~at ~s ~he d£fferemce between ~e end~o£nts of *..he &~ne? 
A : Line 9 Point 
A( line ) ~ Pz(line) -p P~(line) 

kThu~ Ss t h e  n~,m._~m hor~,zontamT, oF uer~4~ca~, d~.sf;once be l ;~een 1;he t~x~ po~,nf, s?  
Maxdist : Point × Point -> R* 
Ma~dist( p~, Pz ) e Max( { IX(p~) - X(pz)l, IY(p~) - Y(Pz)I } ) 
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b~a¢ ~s  ~he ~ u m  oF t h e  s e e ?  
Max : sot:: o f  R ~ R [ r G c ~ i z ' e  ~=,% o f  R ~ [}  ] 
Max( e ) ~ • a ~ s .  ( v b  c s .  ( a ; ~ b  ) ) 

I s  1;he pf~Te?, u e r v  c?.ose f;o l~he T,~ne? 
Nearline : Pixel × Line • B 

Nearline( pix, line ) ~ Endpt( pix, line ) v Linethru( pix, line ) 

Ee #,he pf,,Tel, an endpof ,  n#, o f  1;he ?,f.ne7 
Endpt : Pixel x Line ~ B 
Endpt( [:)ix, line ) e pix = P~(line) v pix = Pz(line) 

Does #,he 1,1,he t e n  Ff, gh l ;  1;hrough #,he p~Te~,? 
Linethru : Pixel x Line ~ B 
Linethru( pix, line ) ~ 3 p~, Pz E Point. 

( Onlineseg( pi, line ) a Onlineseg( Pa, line ) 
^ -Adjcorn( Pz, Pz, pix ) ^ 

^ ( ( Onreallineseg( px, Leftbord( pix ) ) 
^ Onreallineseg( Pz, Rightbord( pix ) ) ) 

v ( Onreallineeeg( Pz, Botbord( pix ) ) 
^ Onreallineseg( Pz, Topbord( pix ) ) ) ) 

ATe #,he ~ point,s QdJo~en1~ cornels O.f #.he p~ze~? 
Adjcorn : Point x Point x Pixel 9 B 
Adjcorn( pa, Pz, pix ) ~ p~ ~ Pz ^ let rline = mk--Realline( Pz, Pz ) in 

( rline "i Leftbord( pix ) v rline "i Rightbord( pix ) 
v rline =i Botbord( pix ) v rline "1 Topbord( pix ) ) 

1Mla#, lr, e ~ e  l, ef#. bor'd~r" o f  #.he pf4~e~? 
Leftbord : Pixel ~ Realline 

Leftbord( pix ) ~ mk--Realline( pix +p (-1/2,-1/2), pix +p (-1/2,1/2) ) 

Wha~ ~s ~he r~gh#, border of ~he p~ce~? 
Rightbord : Pixel 9 Realline 
Rightbord( pix ) -~ mk--Realline( pix +p ( I/2,-1/2 ), pix +i) ( 1/2,1/2 ) ) 

Wha~ ~s *,he boglxx, b o r d e r  of ghe p~4ee~? 
Botbord : Pixel 9 Realline 
Botbord( pix ) -~ mk--Realline( pix +p (-1/2,-1/2), pix +p (1/2,-1/2)) 

Wha~ ~s ~he %op b o r d e r  o~ ~he pt~e~? 
Topbord : Pixel ~ Realline 
Topbord( pix ) -~ mk--Realline( pix +p ( -1/2,1/2 ), pix +p ( 1/2, 1/2 ) ) 

Is #,he po~n~ on #,he g~uen rea~, l,~ne segment,? 
Onreallineseg : Point x Realline 9 B 

Onreallineseg( p, rline ) e ] 6 e [0,i]. p = Pz(rline) +p ( 6 .I) dr( rline ) ) 

I~la'~ l~q #,he d'~,f lFerence bel;4~een #.he endpo~ ,n~ , s  o~F #.he ]re~l, 1,~,ne? 
d r : Realline ~ Point 
~r( rline ) -~ Pz(rline) -p Px(rline) 

R r e  GL~, p ~ - e L e  c?,oser  t;o 1;he ?,~,ne 1;ban on ON p~.Tel, ON? 
Closrptson : Pixel--set x Line ~ B 
Closrptson( pixset, line ) -~ V pixx, pix z ~ Pixel. 

( ( Adjacent( pixx, pix z ) ^ "Oppsides( pixx, piXz, line ) 
^ Closrl( pixx, pixz, line ) ^ pix z ~ pixset ) W pix~ ( pixset ) 

AFe 1;he ~ p1~'el, s ~l,]ocen1~? 
Adjacent : Pixel × Pixel ~ B 
Adjacent( pixy, pix z ) _~ ( Mindist( pixy, pix z ) = 0 ) 
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~ a ~  "~s t h e  m~.n~m'~ horSmon~;a~ o r  ueF1;'~aL d~,sl;ance ~ ;~e~en  ~he I ; ~  pof.,n'~s~' 
Mindist : Point × Point ~ R* 

Mindist( pA~ Pz ) ~- M/n( { iX(p.) - X(pz)I, IY(pa) - Y(pz)i } ) 

What; f.s tqle w W . n ~  o f  "l;he se'~? 
M_in .~ s e t  o f  R - ~ R  [ z e q u i z e  s e t  o f  R ~  { }  ] 
Min( s ) ~ - ~ a e s. ( V b e s. ( a ~ b ) ) 

Are ~4%e p~-~-eLs o n  oppos$~e s~des of "the LSne? 

Oppsides : Pixel × Pixel × Line 9 B 

oppsides( pix z, pix z, lane ) e pix x ~ pix z ^ 3 p E Point. 
( Inlineseg( p, ink-Line( pix 1, pix z ) ) ^ Online( p, line ) ) 

I s  1;he po~nl~ a r~n-endpo~,nl ;  o l  = 1;he L~,n~ segmenl~? 
Inlineseg : Point × Lane ~ B 
Inlineseg( p, line ) e 3 6 E (0,I). ( p = Px(line) +p ( 6 "p ~( line ) ) ) 

Zs the po&n~ on ~he ~ne? 
Online : Point × Line -> B 
Online( p, line ) e 3 6 ~ R. ( p = Px(line) +p ( 6 -p ~( line ) ) ) 

Zs Che f&rs¢ p ' ~ L  closer ~,o Che L~.ne Chun Che second? 

Closrl : Pixel x Pixel × Line 9 B 

Closrl( pixy, pix a, line ) -~ 3 5 E R*. 
( Withintol( pix~ line, ~ )^ -Withintol( pix z, line, ~ ) ) 

Is ~he p&ze~ forma~,~n ~aL~d? 
Validpic : Pixel--set ~ B 
Validpic( pix~et ) -~ Validrows( pixset ) ^ Validcols( pixset ) 

Are ~;he FO~S of 1;he d~sp~ unL~,d? (~.e. Do onLg ro~s ~n a continuous r,,nge 

con~n ON p~'e~,s and ~8 each of ~;hese ro~s ~L~d?) 

Validrows .~ Pixel--set 9 B 

Validrows( pixset ) e ~ yx, Yz ~ Zy. ( yx ~< Yz ^ 
¥ y E ( Zy - [ y~ ..... Ya } ). ( ¥ x e Z x. (x,y) ~ pixset ) 

^ ~ Y ~ ( Yx ..... Yz ]" Validrow( pixset, y ) ) 

Is ~h~s ro~ of ~he d~sp~ag pa~$d? (~.e. Does ~h~s ro~ ha~e on~g one con~&nuous 

range of p~zeLs ON?) 
Va!idrow : Pixel-set × Zy • B 

Validrow( On, y ) ~- ] x~, x z E Z~. ( xz ~ x z ^ 
X E ( Z x - ( X z ..... X z } ). (X,y) ~ pixset ^ 
X ~ { X z ..... X z }. (X,y) E pixset ) 

Are ~;he co~mns of 1;he d~spSGg uaLSd? (~.e. DO on~,w columns ~n a conl;$nuous runge 

con~;~n ON p~TeLe and be euch of ~;hese c o ~  u(z?,~d?) 

Validcols : Pixel-set ~ B 
Validcols( pixset ) e 3 x~, x z £ Zx. ( x~ ~ x z ^ 

V x £ ( Zx - { x~ ..... xz ] ). ( ¥ Y ~ Zy. (x,y) ~ pixset ) 
^ V X ~ { x~ ..... X a }. Validcol( pixset, x ) ) 

~s ~h~,s co~,umn of ~4~e d~sp~,~2 ua~,$~? (~.e. Does ~h~s co~,umn haue onLg one 

continuous range of p~ze~s ON?) 
validcol ~' Pixel-set × Z~ ~ B 
Validcol( pixset, x ) e 3 yx, Yz ~ Zy. ( yx ~ Yz ^ 

y E ( Zy - ( yx ..... Yz } ). (x,y) ~ pixset ^ 

V y E [ yz ..... Yz }. (x,y)E pisser ) 
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5 Thin Line Drawing Algorithms 

If the specification is reasonable any of the common line drawing algorithms 

will satisfy it. Also, it should be easily extendable. A s ~  of line drawing 

algorithm references has been compiled by Earnshaw [9]. Sproull also discusses 

line drawing algorithms [27]. An outline of a variety of thin line drawing 

algorithms follows. Each of these algorithms satisfies the above specification. 

The pixel set for each algorithm and the appropriate tolerance are given. 

5.1 Bresenham's, Simple Digital Differential Analysis (DDA), and Chain 

Code Algorithms 

For any given line these three algorithms produce the same approKimation by 

sampling the line once per row or column and turning on the closest pixel to the 

sampled point. Whether the line is sampled by row or by column is based on the 

slope of the line and selected so that the maximum number of points will be 

sampled. The Simple DDA algorithm [23], is the most straightforward. Bresenham's 

algorithm [4] is optimized to use only integer arithmetic, and the Chain Code 

algorithm [26] stores the resulting line as a series of integers modulo 7, 

representing the eight different directions one can proceed to an adjacent pixel. 

The line is related to the pixel set by. 

pix ~ pixset 
B n ~ [0 ..... N}. ( pix = Pa(line) +9 Roundp( n/N ,p A( line ) ) ) 
where N = Maxdist(P1(line), Pz(line) ) 

Roundp : Point 9 Pixel 
Roundp( p )e ( Round(X(p) ), Round(Y(p) ) ) 

Round : R ~ Z 
Round( r ) ~- L i E Z. ( r - 1/2 < i ~ r + 1/2 ) 

These algorithms always turn on pixels which the line at least touches, and 

thus have a tolerance of 1/2. 

5.2 

samples the line more frequently. 

times the line is sampled. 

abbreviations are used: 

dx for X(d( line )), and 

dy for Y(~( line )). 

The length of the line is usually approximated by: 

Max( { l~xl, i~yl } )+ 1/2 • Min( { l~xl, Idyl } ) 

since g( ~2 + d~ ) is expensive to compute. Also, for efficiency reasons, the 

number of steps is chosen to be a power of two. Thus the number of sampled points 

is 2 n + 1, where n is the smallest n such that 2 n • Max( ( l~xl, Idyl } ) + 1/2 • 

Sy~etric DD~ Algorithm 

The Syntax%tic DDA algorithm [23] is similar to the Simple DDA algorithm, but 

The length of the line determines the number of 

To make the notation simpler the following 
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Min( { n~xJ, }Ayl } ). The Symmetric DDA algorithm gives a more equal density to 

approximations to lines of different slopes than the Simple DDA. 

The line is related to the pixel set by: 

pix ~ pixset W 
3 n ~ [0 ..... N}. ( pix = P1(line) +p Boundp( n/N -p ~( line ) ) ) 
wh~re N = Minvalidn( line ) 

Minvalidn ." Line-> N 
Minvalidn( line ) e n E 7. ( Validn( n, line ) ^ 

V m E N. ( Validn( m, line ) ~ n ~ m ) ) 

Validn = R x Line 9 B 
validn( n, line ) ~ B k ~ N. ( n = 2 k ) ^ n > 

Maxdist(Px(line), Pz(line) ) + 1/2 • Mindist(P1(line), Pz(line) ) 

The symmetric DDA algorithm always turns on pixels touched by the line and thus 

has a tolerance of 1/2. 

5.3 All Pix~Is Touched Algorithm 

It is easy, theoretically, to imagine a line drawing algorithm which samples 

the line "everywhere" thus turning on all pi~els touched by the line. Of course, 

this could only be implemented approximately and would be inefficient. 

The line is related to the pixel set by: 

pix c piKset 
3 p ~ Point. ( Onlineseg( p, line ) ^ pix = Roundp( p ) ) 

This algorithm also has a tolerance of 1/2. 

5.4 BEO~' Chain Cede Klgoritlm 

The Chain Code algorithm presented by Brons [6] produces a line similar, but 

not identical to the Chain Code algorithm discussed earlier. The chain code is 

produced in a recursive manner, giving successive approximations to the line until 

the '~est" approw_imation is achieved. 

It has not been possible to find a simple non-recursive description of this 

algorithm! Brons' Chain code algorithm is often identical to the standard Chain 

Code Algorithm. However, in cases with I ~x I = n, and ~ Ay I = i, it gives 

approximations with a tolerance approaching i. 

5.5 Binary Rate Mnl%iplier (BRM) Algorithm 

The BRM Algorithm [22] was once a popular line drawing algorithm due to its 

speed. However, it tends to produce rather inaccurate approximations and, with the 

advent of more accurate quick algorithms, it is rarely used. It is based on binary 

arithmetic. Both I~xl and IAyl are expressed in binary notation using n bits. The 

point (x~,ya) is turned on and a binary clock then counts from 0 to 2 n - i. At 

each stage, x is incremented if and only if the bit changing from 0 to i in the 

counter is i in the binary representation of m~l. The same applies to y. 
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The line is related to the pixel set by:  

p i x  ¢ p i~ . s e t  
3 d E {0 ..... 2 n - i}. pix = P~(line) +p 

n 
Sign9 ( line )xpi=~ ( Roundp( d / 2 n+~-i "p c i ) ) 

where n = Minvalidn( line ), 
v i ¢ [1 ..... n}. c i e {(o,o),(o,i),(i,o),(1,1)}. 

n 
( I ~( line ) I =i=E~ 2 i-~ "p ci ) 

Validn • N x Line 9 B 
Validn( n, line ) e 2 n ~ Maxdist(P~(line), Pz(line) ) 

Signp : Line 9 Point 
Signp( line )-~ ( Sign( X(d( line )), Sign( Y(d( line )7 ) 

Sign : Z ~ Z 
Sign( a ) ~ if a = lai them 1 else -1 

The BR24 algorithm can be very inaccurate, especially for lines with l~xl equal 

to the reflection of ]~yl, in binary notation. The tolerance for this algorithm is 

approximately 2. 

see appendix A for a sample line and the approximations produced by these line 

drawing algorithms. 

6 Proof for Bresenham's Algorithm 

Throughout this sectio n the following abbreviations are used: 
PI for PI( line ) 
X I for X(Pi(line)) 
Yi for Y(Pi(line)) 

for ~( line ) 
~x for X(~( line )) 
Ay for Y(~( line )) 
R for Round 
Rp for Roundp 

6.1 V pix c pixset. Withint01( pix, line, 1/2 ) 

9ix E pixset W pix - PI +p Rg( n/N *p d ). 

Now, p = Pi +p ( n/N .p d ) is on the line segment, since 0 ~ n/N ~ i. And, either 

~x/N, or ~y/N is an integer, as N = l~xl or Idyl. Thus, Maxdist( pix, p )= 

IR(X(p) )- X(p)i or IR(Y(p) )- Y(P)I, and so Maxdist( pix, p )~ 1/2, and the 

ON pixel is within 1/2 of the line as desired. 

6.2 V ~ e PixY1. ( Nearline( pix, line ) W pix e pixset ) 

Nearline( pix, line )W Endpt( pix, line )v Linethru( pix, line). 

Now if the pixel is an endpoint of the line, it will be ON (cases n = 0 and n = N). 

If the line runs right through the pix~l, there are two cases: 
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Case i: If N = l~xl then the line runs through the pixel in a horizontal 

direction, and we have that the point (X(pix), Y(pix) + 8 ), for 8 e (-1/2,1/2)~ 

is on the line. Since N = Idxl this column will be sampled, and this pixel will be. 

turned ON since R(Y(pix) + 6) = Y(pix) + R( 8 ) = Y(pix). 

Case 2: On the other hand, if N = i~yl then the line runs through the pixel in a 

vertical direction, and the point (X(pix) + 8, Y(pix) ), for 6 E (-1/2,1/2), is 

on the line. This row will be sampled, and since R(X(pix) + 8 ) = X(pix), 

this pixel will be turned ON. 

6.3 Closrptson( pixset, line ) 

Closrptson( pi~set~ line ) ~ ~ pix z, pix z e Pixel. 

( Adjacent( pixx~ pix z ) ^ -Oppsides( pixy, pix z, line ) ^ 

Closrl( pix i, pix z, line ) ^ pix z c pixset ^ pixz ~ pixset ). 

Case i: N = i~xl, pix z and pix z are horizontally adjacent 

Without loss of generality, assume ~x is positive. Then since pix z is ON, X(pix z ) 

= X x + n and Y(pix z) = Yz + R( n-ay/~x ). And thus, X(pixx) = X z + n + 1 and 

Y(pixz) = Y~ + R( n.dy/dx ). Now, pix~ and pix z are on the same side of the line, 

and pix z is closer to the line than pix z. So, the line must cross the line x = 

X(pix~) between Y(pixz) and y(pixz) - 1/2, or Y(pixz) and Y(pixz) - I/2. Thus 

R((n+l)-ay/~J~) = R( n'~y/Ax ) and thus pixl will be ON. Thus it is true that no 

such pix I and pix z exist, and the above is satisfied. 

Case 2~ N = i~xl, pix~ and pix z are vertically adjacent 

Since pix z is ON, it is within 1/2 of the line. However, pix z is closer to the 

line so the points must be on opposite sides of the line, so again the above is 

satisfied. 

Case 3: N = ldyl~ pix± and pix z are horizontally adjacent 

Similar to case 2. 

Case 4: N = ~y~, pix~ and pix z are vertically adjacent 

similar to case i. 

6.4 validpic( pixy% ) 

Validpic( pixset ) ~ Validrows( pixset ) ^ Validcols( pixset ). Bresenham's 

algorithm only turns on pixels in rows and columns between Pz and Pz, and it turns 

on at least one pixel in each of these, due to the choice of N. Thus, it is 

necessaz- I only to check that each of these rows and columns is valid. 

Case I: N = l~xl 

Only one pixel will be turned on in each column, so the columns are valid. Assume 

we have an invalid row~ is. two pixels in a row are ON, but one in between them is 
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off. So 3 n,m E N. Px = Px +p Rp( n/Idxl "p Aline ), and Pz = Px +p Rp( (n+m)/l~l 

• p Aline ). Since p~ and Pz are in the same row R( n • Ay/Idx~ ) = R( (n+m) 

Ay/IAxl ), and thus R((n+i) ' Ay/i~i ), for i e {0 ..... m} = R( n • dy/16xl ). So 

all pixels in the row between pl and Pz will be ON, and the row must be valid. 

Case 2: N = IAyl 

The argument is the same as in Case l, with the roles of the rows and columns 

reversed. 

Thus Bresenham's algorithm satisfies the thin solid line specification. 

7 Extensions to the Specification 

7.1 Vector Devices 

Although the drawing primitive on a vector device is a line, a vector device is 

still not able to reproduce all lines exactly. The limitation is the addressing 

resolution of the device. Thus, if the pixel size is set equal to the resolution 

of the vector device the model presented will also be appropriate for vector 

devices. There may be some parts of the specification that are redundant for a 

vector device. For example, closrptson should always be true. But the 

specification will still suffice. 

7.2 Lines with Non-Integral Endpoints 

The specification can easily be changed to allow for lines with non-integral 

endpoints by using Realline everywhere instead of Line. It might be desirable to 

impose an additional condition on Validapprox to ensure that the pixels containing 

the endpoints are turned on under certain conditions, but this is probably 

unnecessary. 

7.3 Thic~ Lines 

It is quite easy to extend the thin solid line specification to one for solid 

lines of thickness "t." One question that arises is how the endpoints of the thick 

line should be treated, as both round-end and square-end models for thick lines 

exist. Another requirement that should be added to the specification is that any 

pixel entirely covered by the thick line should be on. 

A specification including these extensions is included in the extended version 

of this paper [20]. 

8 Ideas for Further Research 

S.l Related Research 

Although none of the recent formal specification of computer graphics systems 

research has discussed the properties of the approximation to a line on a graphics 
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device, work was carried out in the 1960's and 1970's concerning the representation 

of solid thin lines on raster or incremental plotter devices [1,2,12,25]. The 

model used to describe a line is to number the eight pixels adjacent to a given 

pi~el from 0 to 7 in a counter-clockwise direction starting with the pixel on the 

right° An a~roxi~ation to a thin line, called the chain code, is then given by a 

sequence of numbers indicating the direction to proceed from each piKel of the 

a~groximation. 

Freeman [lZ ] notes 
All chains of straight lines must possess the following three 

specific properties: 
I. the code is made up of at most 2 elements differing by 1 modulo 8 
2. one of the two elements always appears singly 
3. the occurrences of the singly occuring element are as uniformly 

spaced as possible 

Rosenfeld [25] proves that the above is satisfied if and only if the chain code 

has the chord property. That is, if and only if for every point, p, of a line 

segment between two pi~is which are ON, there is an ON pixel, pix, such that 

Max~ist( Pe pix ) ~ I. No extensions are given for thick lines. 

While thls area has been ignored for some time, raster displays and operations 

on them are again being researched° Guibas and Stolfi [15] explain that it has 

been believed that "the graphics programmer should be spared the pain" of dealing 

with raster images, but it is now being realized that raster images "should be 

given full citizenship in the world of computer science." They discuss a 

function, LINE[ p~, Pz, w ]~ which draws a line of thickness w from Px to Pz, but 

note that, "the exact definition of this shape, particularly at the two endpogmts, 

is ... application-dependent." 

8.2 Alternate Approachem 

The work presented is all based on the model introduced in Section 2. If a 

different model to that of the square pi~el is used new insight into the properties 

of output primitives on graphics devices might be obtained. One idea is to look at 

different tesselations of the Cartesian plane. What would the specification look 

like if hexagonal pixels, for example, were used? The concepts of rows, columns 

and adjacent pills would need to be examined. 

Another approach might involve the splitting of the specification into two 

parts~ the local and global properties of the line. Local and global properties 

are discussed by Guibas and Stolfi [15]. A local property is one that can be 

checked for each pixel or small piece of the approximation. Such as: 

~f a pixel is ON it is "close" %0 the line. 

On the other hands a global property is one requiring the entire approximation to 

be considered as a whole. For example: 

The line "looks °' straight. 
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Examining the specification in this way may present new ideas. 

The choice of distance function can also influence the specification. Although 

the maximum horizontal or vertical distance between two points conforms to the 

square pixel model, the Euclidean distance function is introduced when thick lines 

are discussed [20]. A different choice of distance function may simplify the 

specification or suggest a new model. 

8.3 Further P~ertiea of Solid Straight Lines 

There are many additional ~roperties of a solid straight line that could 

supplement or replace some of those given in the specification. It is desirable to 

come up with a simple specification and, at the same time, keep it both specific 

and general enough to encompass all reasonable approximations. One property the 

approximation should have is that the line "looks straight." This idea is 

incorporated in the Validpic portion of the specification. F~wever, perhaps a 

better formulation of this notion can be given. For example, for a device with a 

very high precision, it may not be necessary to require that there are no "holes" 

in the approximation, as a small hole w o u l d  b e  undetectable. 

Other properties which are desirable in line drawing algorithms are: 

i. A line produced has constant density. 
2. All lines produced have the same density. 
3. The line from pl to Pz is identical to the line from Pz to PI. 

However, these properties are not possessed by some of the commonly used 

algorithms. A line produced by the BP~ algorithm may not be of constant density. 

For Bresenham's algorithm, the density of the line depends on its slope [11], and, 

unless the algorithm is adjusted slightly [3], lines drawn in opposite directions 

may differ. It may be desirable to try to incorporate relaxations of these 

conditions into the specification. For example: 

i. A line produced has "nearly" co1~stant density. 
2. All lines produced have "approximately" the same density. 
3. The line from Pi to Pz is "close to" the line from Pa to Pi. 

s.4 Further Extensions to f~e Specification 

It would be interesting to give a specification for dashed lines. Dashed lines 

are usually defined as sections of ink and space [28]. one approach would be to 

split the line up into a collection of short lines, each specified as a solid line. 

However, as the point within the ink-space pattern to start with may be 

implementation dependent, this becomes quite complicated. 

Another extension would include the specification of grey-scale lines on a 

grey-scale or multicolour device. In a grey-scale algorithm [24], each pixel is 

set to an al~propriate shade depending on the portion of it covered by the line. 

Anti-aliasing [16] is even more complicated as a filtering pattern is used, along 
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with a selection of colours, to smooth the edges of the line preventing them from 

appearing to be jagged. 

Once the specification of a line on a graphics device is complete there are 

many other drawing primitives to consider, including marker, filled area, and text. 

And since a picture is rarely composed of a single primitive it is necessary to 

look at all the primitives within a picture, and decide how to deal with those that 

overlap, especially on a device with many colours. This problem is discussed by 

Carson [7], Flume and Fournier [i0], and Mallgren [19]. These so called combining 

functions should be specified in a formal description of the properties of a 

graphics device, thus giving an allowable range for the appearance of the final 

picture, as well as for each primitive within the picture. 

Another area for research is the formal specification of the behaviour of 

graphics input devices. 

9 Conclusions 

When a new graphics device is produced, it is necessary to be certain that it 

functions correctly. Although the formal specification presented here is only the 

tip of the iceberg with regards to the specification of a complete graphics device, 

it is encouraging that such specifications can be produced, and actually used to 

prove that algorithms for drawing graphical primitives produce reasonable results. 
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Appendix A - Sample Li,e 

The following diagrams show how the various thin line drawing algorithms 

discussed in section 5 approximate the line from (0,0) to (21,i0). This line was 

chosen as it illustrates the differences between the line drawing algorithms. 

The l i n e  t o  be  a p p r o x i m a t e d ,  r u n n i n g  f rom ( 0 , 0 )  t o  ( Z l , I O ) .  
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The shaded pixels indicate the approximation produced by Bresenham's, the Simple 
DDA, and Chain Code algorithms. 

to 

/ 

0 

The Symmetric DDA turns on all the pixels turned on by the Simple DDA algorithm, 

and some additional oneS. 

t~ b 

A 

0 
The All Pixels Touched algorithm turns on all the pi~els turned on by the Symmetric 
DD& algorithm, and more. 

t~ 

k 

Q 

Brons' Chain Code algorithm is identical to the Chain Code algorithm except in 
column 20. 
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A 

o 

The BRM algorithm is quite inaccurate when approximating this line, since in binary 
form dx is the reflection of ~y° 
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