FORMALIZED SOFTWARE DEVELOPMENT IN AN
INDUSTRIAL ENVIRONMENT

Otthein Herzog
IBM Germany, Dept. 3100
P.O.Box 80 0880
D-7000 STUTTGART,F.R. G.

ABSTRACT

In the IBM Boeblingen Laboratory some software was experimentally developed
in the framework of a “traditional” life-cycle model where precise semantics
were introduced very early in the development process through the use of a
formal specification method.

As a typical example for these ongoing efforts, the development of a
medium-size software product is presented where a first informal global data
flow specification was described using simple graphical conventions. The resulit
of this developmént step was refined and formalized using the formal
specification technique proposed in [JON80].The specification and design
language SLAN-4 [BEI83] was used to document this specification. The

experiences are outlined which were gained by this development approach.

388

1. The Software Life Cycle - a Specification in itself

There is a widely accepted software life-cycle the steps of which may be called

differently but which usually are established in the foliowing way:

1. Requirements collection: evolving a functional concept.

2. Specification: describing an appropriate global system architecture.
3. High Level Design: structure the system.

4. Low Level Design: getting the algorithms straight.

5. Implementation: coding.

8. Test: probing functions and quality.

7. Maintenance: maintaining proper functioning.

Obviously, this is a specification of a software development process which can
be implemented in many different ways - and there are many methods and tools
stating exactly this fact. However there does not seem to be a coherent method
yet which has been widely accepted since different methods are normally used
in the different development phases, and in addition, most of the methods
appear to be aimed at specialized development areas such as certain types of

applications or of system oriented software, e. ¢. teleprocessing protocols.

Before proceeding to the approach taken in the experiment some observations
about implementations of this development process in general are worthwhile

to be mentioned:

387

® Documents
The outcome of each development step should be a document or even a

collection of documents which serves external or internal purposes, e. g.

= a functional description of a proposed software system to be used in
negotiations with future users,

® a functional system decomposition to be used by the designers,

® a system specification to be used by designers as input to base the high
level design on, by test designers to plan the test phases or by technical
writers to develop the documentation,

= the programs themselves.

The collection of the documents written during development constitutes

what is called software.

@ Formalism

It is commonly accepted that the very first concept of a software system is
conveniently described in an informal way. But in general the managers,
designers, analysts and programmers got used to work with documents
written in natural language, mostly English, which is in addition a foreign
language for many people in the programming community.

As a common praétice, these informal documents are augmented by flow
charts, data flow diagrams, data definitions, and programming language
control constructs (pseudocode) to describe additional details.

In this way there is an increasing formalism in the documents resulting from
the development steps, but a complete formal description can be
accomplished only at the coding level. There are some consequences of this

approach: the documents

= tend to be very long,
® are ambiguous, inconsistent and incomplete,

® cannot be refined without implicit assumptions and interpretations.

388

@ Validation and Verification

There is no question that each subsequent development step has to be an
implementation of the preceding phase. But given the restriction that the
early development steps are not documented in a formal way it is not
possible to effectively use automated verification in these phases.
Inspections and walkthrus are used instead facing all the limitations of the

human mind confronted with large volumes of documentation.

This basically leads to the high specification and design error rate of up to
80% [MENS82] which is uncovered during the regular use of software.
Although up to 50% of the development costs are usually spent in the test
phase these specification and design errors are detected very late in the
process and thus are very costly to correct since it might even be necessary
to back up several development steps to effectively correct this type of

errorxs.

Taking all these observations into consideration the formalization of the early

development steps should be at least a partial solution to this problem. It should

improve the early error detection and should help to aveid early errors.

Which are the properties of methods to satisfy these strong requirements? They

enforce a coherent, precise and minimal description of a system’s behaviour
which is complete in respect to its purpose,

are interface oriented,

describe the essentials of the problem solution, not implementation details,
offer non-procedural description elements which usually lead to conciser
system descriptions than algorithmic ones,

stress the description of system interdependencies,

build a bridge of understanding between the users, requirement planners,

designers, and implementors.

389

The following objectives refine some of these properties: “Good” specification

and design methods

add discipline to the specification and design process,
separate "WHAT” from "HOW”,

rigorize the system interface definitions,

encourage levels of abstraction,

promote hierarchical architectures,

support maintainability of documents,

are independent of hardware.

In addition it is necessary to support such a method by a language which can be
implemented in an environment providing the necessary tool support. The

items mentioned in [MARS83] give an impression of the important issues:
® The specification language must be rigorously defined.

@ There has to be an interactive graphics facility.

® A mathematical basis allows for checking the logic structure.

® Rigorous refinement steps must be possible.

® Ultimately, code must be generated from the specification.

® The definition levels must be integrated: One language has to cover all

development phases to ease the maintenance of front-end documents.
® Integrated top-down and bottom-up specification must be possible.
@ An evolving library of reusable parts must be available.
® Integrated checking must guarantee interface consistency.
® Documents are easy to change, also by persons which did not create them.

® All elements of a system should be traceable.

390

2. An experiment fo formalize early development phases

In the IBM Boeblingen laboratory the specification and design language SLAN-4
has been developed [BEI83] which satisfies almost all the requirements against
such a language. It provides comstructs for the algebraic specification and
implements also essential parts of the Vienna Definition Method
("VDM™")[BJO18]. Some experiments were conducted to use this method and this
langnage to determine the effects of the formalization of early development

phases.

A medium-size software product including an interactive user interface was
specified using a combination of a simple graphical notation for the global data
flow and SLAN-4 for the formal specification of the operations to be performed
by the individual modules. This formal specification was expressed using

SLAN-4 syntax with pre- and post-conditions for each of the operations.

The Software System
The system addresses a networking environment, resides on a host machine and

aliows a network administrator to

@ maintain a data base on network resources (repository of the hardware and

software configuration),
@ report on the stored information,
® reirieve and send data from and to nodes,
@ get status information from the nodes, and
® send messages {o the nodes.

It offers the user an interactive front-end with guidance to the main system

functions through a small number of selection menus.

301

The total size of the system is 17,300 lines of an IBM internal very high-level
language code, not including 4,000 lines of HELP text, which is available on-line

during a session.

Specification and Design
The development was done top-down with very few iterations and included a

mixed design strategy:

1. The global flow was designed using an outside-in method starting from the

functional description of the user interface.

2. The functional specification resulted in a hierarchical decomposition of the
system including the panels required for the user interaction within the
individual functions. Again, the user interface determined here essential

parts of the specification.

For the functional specification itself, the global data state and the data
interfaces for each module were specified. Then the elaboration of the pre-
and post-conditions allowed the developers to check the completeness and
consistency of the interfaces.
The specification phase was completed after a thorough inspection of the
specification document which was very effective because of the unambiguous

description of the system.

3. For the low level design step, the data object declarations were carried over
to the design/implementation language and the algorithms were developed
using well-known sequencing control structures to implement the specified

functions.

The final layout of the selection menus and the data entry panels was defined
in such a way that a prototype of the system was the outcome of the low level

design. This step was also concluded by a design inspection.

392

Implementation and Test

1. A very high level implementation language was used to directly implement
the design. This language offered very high level data types, such as sets,

bags, lists and arrays.

The development team was thus able to also use the data types selected
during the specification phase in the low level design and also in the

implementation phase.

2. After the code inspections the test of the system was carried out in different

steps:

a. Each developer performed a structural unit test taking the internal
structure of the code into account.

b. Then the code was transferred to a test team which subsequently did a
function test against the specification. The next test phase was a
component test against the user documentation to assure the proper
cooperation among the different functional components. Finally a system
test was performed varying hardware and software configurations.

The test period lasted four months. The errors found were formally

reported and the valid errors were corrected in all affected documents

including the specification, since this document was supposed to be the

description of the system for the maintenance team.

383

Evaluation of the experiment

The following points resulted from the methods and the languages used:

The method was applicable to a software system without heavy external
interfaces.

Module interfaces could be explicitly documented.

Abstract data types were successfully used.

Each module could be described in a non-procedural way independently
from the final implementation.

The precise module semantics and the complete interface description led to
very stable interfaces between the individual modules which were in most
cases only changed by new requirements.

During four months of function, component and system testing, 5.84 valid
program errors were found per 1000 lines of code. This compares to 20 to
40 errors usually found during such a test cycle for software of comparable
complexity. The main reasons for this result were the early formalization
which helped to avoid-errors and to reduce the error propagation through
the subsequent development steps and the availabilty of the same high level
data types in the specification, design and implementation languages. This
avoided errors introduced by implementations of abstract data types.
However, an analysis of the errors found showed the interesting result that
an integrated formalized description of the global data flow would have
avoided some errors which were found during the test cycle.

There was also a considerable positive effect on productivity.

Although the method and the language was new to the majority of the
development team, the early development phases did not need more time
than “conventional” specification and design methods.

The specification was invariant against small requirement changes. During
the development a considerable change in the requirements for the user
interface could be easily incorporated in the existing specification

document.

304

3. References

[BEI83]

[BEI84]

[BJO78]

[COT84]

[JONS80]

[MARS83]

[MENS2]

[PEP84]

¥, Beichter at al.: SLAN-4: A Language for the Specification and the
Design of Large Software Systems.-
IBM Journal of Res. and Dev. Vol 27(6), Nov. 1983, p. 558 - 516

F. Beichter at al.: SLAN-4: A Software Specification and Design
Language.-
IEEE Trans. Software Eng. Vol. SE-10(2), March 1984, p. 155 - 162

D. Bjorner, C. B. Jones (Eds.): The Vienna Development
Method: The Meta-Language.-
Springer {1878)

1. D. Cottam: The Rigorous Development of a System Version Control
Program.-
IEEE Trans. Software Eng. Vol. SE-10(2), March 1984, p. 143 - 154

C. B. JONES: Software Development - A Rigorous Approach.-
Prentice Hall (1980)

1. Martin: Fourth Generation Languages, Vol. 1.-
Savant Research Studies (1983)

K. S. Mendis: Quantifying Software Quality.- Quality Progress, pp.
18-22, May 1982.

P. Pepper (Ed.): Program Transformation and Programming
Environments.

Report on a Workshop directed by F. L. Bauer und H. Remus.-
Springer {1984)

