
FORMALIZED SOFTWARE D E V E L O P M E N T  IN AN 

INDUSTRIAL E N V I R O N M E N T  

Otthein Herzog 

IBM Germany, Dept. 3100 

P.O.Box 80 0880 

D-7000 STUTTGART, F. R. G. 

ABSTRACT 

tn the IBM Boeblingen Laboratory some software was experimentally developed 

in the framework of a "traditional" life-cycle model where  precise semantics 

were  introduced very  early in the development process through the use of a 

formal specification method. 

As a typical example for these ongoing efforts, the development of a 

medium-size software product is presented where  a first informal global data 

flow specification was descr ibed using simple graphical conventions. The result 

of this development step was refined and formalized using the formal 

specification technique proposed in [JON80].The specification and design 

language SLAN-4 [BEI83] was used to document this specification. The 

exper iences  are outlined which were  gained by this development approach. 



386 

i .  T h e  S o f t w a r e  L i f e  C y c l e  - a S p e c i f i c a t i o n  i n  i t s e l f  

There  is a wide ly  a c c e p t e d  sof tware l ife-cycle the s teps of which may  b e  cal led 

differently but  which usually are  es tab l i shed  in the following way: 

1. Requi rements  collection: evolving a functional concept .  

2. Specification: desc r ib ing  an appropr ia t e  g lobal  sys tem archi tecture.  

3. High Level  Design: s t ructure  the system. 

4. Low Level  Design: get t ing the algorithms straight. 

5. implementation: coding.  

6. Test: p rob ing  functions and quality. 

7. Maintenance: maintaining p r o p e r  functioning. 

Obviously ,  this is a specification of a sof tware d e v e l o p m e n t  p r o c e s s  which can 

b e  implemen ted  in many different ways  - and there  are  many  methods  and tools 

stating exact ly  this fact. H o w e v e r  there  does  not s e e m  to b e  a coheren t  me thod  

yet  which has b e e n  wide ly  a c c e p t e d  since different me thods  are  normal ly  u sed  

in the different d e v e l o p m e n t  phases ,  and in addition, most  of the methods  

a p p e a r  to b e  a imed  at specia l ized  d e v e l o p m e n t  a reas  such as certain types  of 

applications or  of system or ien ted  software,  e. g. t e l ep rocess ing  protocols .  

Before p r o c e e d i n g  to the app roach  taken in the expe r imen t  some observa t ions  

about  implementat ions of this deve lopmen t  p r o c e s s  in genera l  a re  worthwhile  

to b e  mentioned:  



O 

® 

387 

D o c u m e n t s  

The outcome of each deve lopment  step should be  a document  or even  a 

collection of documents  which serves  external  or internal purposes ,  e. g. 

m a functional descript ion of a p roposed  software system to be  used  in 

negotiations with future users, 

• a functional system decomposi t ion to be used  by  the designers ,  

[] a system specification to be  used  by  des igners  as input to base the high 

level des ign  on, by  test des igners  to plan the test phases  or by  technical 

wri ters  to develop  the documentat ion,  

• the p rograms  themselves.  

The collection of the documents  writ ten dur ing  deve lopment  constitutes 

what is called software. 

F o r m a l i s m  

It is commonly accep ted  that the ve ry  first concept  of a software system is 

convenient ly  desc r ibed  in an informal way. But in genera l  the managers ,  

des igners ,  analysts and  p r o g r a m m e r s  got used  to work with documents  

writ ten in natural language,  mostly English, which is in addit ion a fore ign 

language  for many people  in the p rogramming  community.  

As a common practice, these informal documents  are augmen ted  by flow 

charts, data flow diagrams,  data definitions, and p rog ramming  language  

control constructs (pseudocode)  to descr ibe  additional details. 

In this way  there  is an increasing formalism in the documents  resulting from 

the deve lopment  steps, but a complete  formal descr ipt ion can be  

acco/npl ished only at the coding level. There  are  some consequences  of this 

approach:  the documents  

• tend to be  ve ry  long, 

[] are  ambiguous,  inconsistent and incomplete,  

• cannot be  ref ined without implicit assumptions and interpretations. 



388 

O Val idat ion and Veri f icat ion 

There  is no quest ion that each  subsequen t  d e v e l o p m e n t  s tep has to b e  an 

implementat ion of the p r e c e d i n g  phase .  But g iven  the restrict ion that the 

ear ly  d e v e l o p m e n t  s teps a re  not d o c u m e n t e d  in a formal way  it is not 

poss ib le  to effect ively use  au tomated  verification in these  phases .  

Inspect ions and walkthrus a re  u s e d  instead facing all the limitations of the 

human mind confronted  with la rge  vo lumes  of documentat ion.  

This basical ly  leads  to the high specification and des ign  e r ro r  rate of up to 

60% [MEN82] which is u n c o v e r e d  dur ing  the regu la r  use  of software.  

Although up to 50% of the d e v e l o p m e n t  costs a re  usually spent  in the test 

phase  these  specification and des ign  e r ro r s  a re  d e t e c t e d  v e r y  late in the 

p r o c e s s  and thus are  v e r y  costly to cor rec t  s ince it might even  b e  n e c e s s a r y  

to b a c k  up  severa l  d e v e l o p m e n t  s teps  to effect ively cor rec t  this type  of 

e r r o r s .  

Taking all these  observa t ions  into considera t ion the formalization of the ear ly  

d e v e l o p m e n t  s teps  should b e  at least a partial solution to this p rob lem.  It should 

improve  the ear ly  e r ro r  de tec t ion  and should  he lp  to avoid  ear ly  er rors .  

Which a re  the p rope r t i e s  of methods  to satisfy these  s t rong requ i rements?  They 

0 

0 

0 

0 

® 

@ bui ld  a b r i d g e  of unders tand ing  

des igners ,  and implementors .  

enforce  a coherent ,  p r ec i s e  and minimal descr ip t ion  of a sys tem's  behav iour  

which  is comple te  in r e spec t  t ° its pu rpose ,  

a re  interface or iented,  

d e s c r i b e  the essentials of the p r o b l e m  solution, not implementat ion details, 

offer non-p rocedura l  descr ip t ion  e lements  which usually l ead  to conciser  

sys tem descr ip t ions  than algorithmic ones,  

s t ress  the descr ip t ion  of sys tem in t e rdependenc ie s ,  

b e t w e e n  the users ,  r equ i r emen t  planners ,  



389 

The following objectives refine some of these properties:  "Good" specification 

and design methods 

• add discipline to the specification and design process,  

• separate "WHAT" from "HOW", 

• rigorize the system interface definitions, 

• encourage levels of abstraction, 

• promote hierarchical architectures, 

• support  maintainability of documents, 

• are independent  of hardware. 

In addition it is necessary to support such a method by  a language which can be  

implemented in an environment providing the necessary  tool support. The 

items mentioned in [MAR83] give an impression of the important issues: 

® The specification language must be  rigorously defined. 

• There has to be  an interactive graphics facility. 

• A mathematical basis allows for checking the logic structure. 

• Rigorous refinement steps must be  possible. 

• Ultimately, code must be  generated from the specification. 

• The definition levels must be  integrated: One language has to cover  all 

development  phases to ease the maintenance of front-end documents. 

• Integrated top-down and bottom-up specification must be  possible. 

• An evolving library of reusable parts must be  available. 

• Integrated checking must guarantee interface consistency. 

• Documents are easy to change, also by persons which did not create them. 

• All elements of a system should be  traceable. 



390 

2. An experimen~ to formalize early development  phases 

In the IBM Boeblingen laboratory  the specification and des ign  language  SLAN-4 

has b e e n  d e v e l o p e d  [BEI83] which satisfies almost all the requi rements  against 

such a language.  It p rovides  constructs for the a lgebra ic  specification and  

implements  also essential parts of the Vienna Definition Method 

('VDM")[BJO78]. Some exper iments  were  conduc ted  to use this method  and this 

l anguage  to de te rmine  the effects of the formalization of ear ly  deve lopment  

phases.  

A medium-size  software produc t  including an interactive user  interface was 

specif ied using a combination of a simple graphical  notation for the global data 

flow and  SLAN-4 for the formal specification of the operat ions to be  pe r fo rmed  

by  the individual modules.  This formal specification was e x p r e s s e d  using 

SLAN-4 syntax with pre-  and post-condit ions for each of the operations.  

The Software System 
The sys tem addres ses  a ne tworking  environment ,  res ides  on a host machine and 

allows a ne twork  administrator to 

@ maintain a data base  on ne twork  resources  ( reposi tory of the ha rdware  and 

software configuration), 

• repor t  on the s tored information, 

• re t r ieve  and send  data from and to nodes,  

• get  status information from the nodes,  and 

@ send  messages  to the nodes.  

It offers the user  an interactive front-end with gu idance  to the main system 

functions through a small number  of selection menus.  



39t 

The total size of the system is 17,300 lines of an IBM internal ve ry  high-level  

l anguage  code, not including 4,000 lines of HELP text, which is available on-line 

dur ing  a session. 

Specification and Design 
The deve lopment  was done  top-down with v e r y  few iterations and include~i a 

mixed des ign strategy: 

I. The global flow was des igned  using an outside-in method  starting from the 

functional descript ion of the user  interface. 

. The functional specification resul ted in a hierarchical  decomposi t ion of the 

sys tem including the panels  r equ i red  for the user  interaction within the 

individual functions. Again, the user  interface de t e rmined  he re  essential 

parts  of the specification. 

For the functional specification itself, the global data state and the data 

interfaces for each module  were  specified. Then the elaborat ion of the pre- 

and post-conditions al lowed the deve lopers  to check the completeness  and 

consistency of the interfaces. 

The specification phase was comple ted  after a thorough inspection of the 

specification document  which was ve ry  effective because  of the unambiguous  

descr ipt ion of the system. 

. For the low level des ign step, the data object declarat ions were  car r ied  over  

to the design/ implementat ion language  and the algori thms were  deve loped  

using well-known sequencing  control s tructures to implement  the specified 

functions. 

The final layout of the selection menus  and the data en t ry  panels  was def ined 

in such a way that a pro to type  of the system was the outcome of the low level 

design.  This step was also concluded by  a des ign  inspection. 



392 

I m p l e m e n t a t i o n  and Test 

. A v e r y  high level  implementat ion language  was used, to direct ly  implement  

the design.  This language  offered v e r y  h igh  level  data types,  such as sets, 

bags ,  lists and  arrays.  

The deve lopmen t  team was thus able to also use the data types  se lec ted  

dur ing  the specification phase in the low level des ign  and also in the 

implementat ion phase.  

2. After the code  inspections the test of the sys tem was car r ied  out in different 

steps: 

a. Each d e v e l o p e r  pe r fo rmed  a structural unit test taking the internal  

structure of the code into account. 

b. Then the code  was t ransfer red  to a test team which subsequent ly  d id  a 

function test against the specification. The next  test phase  was a 

component  test against the user  documentat ion to assure  the p rope r  

cooperat ion among the different  functional components .  Finally a sys tem 

test was pe r fo rmed  vary ing  ha rdw are  and  software configurations. 

The test pe r iod  lasted four months. The e r ro rs  found were  formally 

r epo r t ed  and  the valid e r rors  were  co r rec t ed  in all affected documents  

including the specification, since this document  was supposed  to be  the 

descr ipt ion of the system for the maintenance  team. 



393 

Evaluation of  the exper iment  

The following points resul ted from the methods  and the l anguages  used:  

• The method  was appl icable  to a software sys tem without heavy  external  

interfaces.  

Q Module  interfaces could b e  explicitly documented .  

• Abstract  data types  w e r e  successfully used.  

• Each module  could b e  d e s c r i b e d  in a non-procedura l  w a y  independen t ly  

f rom the final implementation. 

• The p rec i se  module  semantics and the comple te  interface descr ip t ion  led  to 

v e r y  stable interfaces b e t w e e n  the individual modules  which w e r e  in most 

cases  only changed  b y  n e w  requi rements .  

• Dur ing four months of function, componen t  and sys tem testing, 5.84 val id 

p r o g r a m  e r ro r s  w e r e  found pe r  1000 lines of code .  This compare s  to 20 to 

40 e r ro r s  usually found dur ing such a test cycle  for software of comparab l e  

complexity.  The main reasons  for this result  w e r e  the ear ly  formalization 

which h e l p e d  to a v o i d  e r ro r s  and to r e d u c e  the e r r o r  p ropaga t ion  through 

the subsequen t  deve lopmen t  s teps and the availabilty of the same high level  

data types  in the specification, des ign  and implementat ion languages .  This 

avo ided  e r ro r s  in t roduced  b y  implementat ions of abstract  data types .  

However ,  an analysis of the e r ro r s  found s h o w e d  the interest ing result  that 

an in tegra ted  formalized descr ip t ion of the global  data flow would  have 

avo ided  some er rors  which w e r e  found dur ing the test cycle.  

• There  was also a cons iderab le  posi t ive effect on productivi ty.  

• Although the method  and the l anguage  was  n e w  to the majori ty  of the 

d e v e l o p m e n t  team, the ear ly  deve lopmen t  phases  d id  not n e e d  more  time 

than "conventional" specification and des ign  methods .  

• The specification was invariant against small r equ i remen t  changes.  During 

the deve lopmen t  a cons iderab le  change  in the r equ i remen t s  for the use r  

interface could  b e  easi ly incorpora ted  in the exist ing specification 

document .  



394 

3. R e f e r e n c e s  

[BEI83] Fo Beichter at aI.: SLAN-4: A Language for the Specification and the 

Design of Large Software Systems.- 

IBM Journal of Res. and Dev. Vol 27(6), Nov. !983, p. 558 - 576 

[BEI84] F. Beichter at al.: SLAN-4: A Software Specification and Design 

Language.~ 

IEEE Trans. Software Eng. Vol. SE-10(2), March 1984, p. 155 - t62 

[B J078] D. Bjorner, C. B. Jones (Eds.): The Vienna Development 

Method: The Meta-Language.- 

Springer (1978) 

[COT84] I. D. Cottam: The Rigorous Development of a System Version Control 

Program.- 

IEEE Trans. Software Eng. Vol. SE-10(2), March 1984, p. 143 - 154 

UON801 C.B. JONES: Software Development - A Rigorous Approach.- 

Prentice Hall (1980) 

[MAR83] j. Martin: Fourth Generation Languages, Vol. 1.- 

Savant Research Studies (t983) 

[MEN82] K. S. Mendis: Quantifying Software Quality.- Quality Progress, pp. 

18-22, May 1982. 

[PEP84] P. Pepper  (Ed.): Program Transformation and Programming 

Environments. 

Report on a Workshop directed by F. L. Bauer und H. Remus.- 

Springer (1984) 


