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A B ~ C T  

We present a method and a tool for generating test sets from algebraic data type 
specifications. We give formal definitions of the basic concepts required in our approach 
of functional testing. Then we discuss the problem of testing algebraic data types imple- 
mentations. This allows the introduction of additional hypotheses and thus the description 
of an effective method for generating test sets. The method can be improved by using 
PROLOG. Indeed, it turns out that PROLOG is a very well suited tool for generating test 
sets in this context. Applicability of the method is discussed and a complete example is 
given. 

INTRODUCTION 

Functional or "black-box" testing has been recognized for a long t ime as an impor tant  
aspect of software validation [Howd 80], [ABC 88]. It is especially important for large- 
sized, long-lived systems for which successive versions have to be delivered. In this case, 
non-regression testing may be long, difficult and expensive. It should depend only on the 
functional specifications of the system [Paul 83]. 

However, most of the studies on test data generation have focused on program dependent 
testing [Harnl 75], [Clar 76], since it was possible to use the properties of a formal object: 
the program. Of course such an approach is necessary but not sufficient [Gout 83]. The 
emergence of formal specification methods makes it possible to found functional testing 
on a rigorous basis. In this paper we present a method and a tool for generating test sets 
from algebraic data type specifications. We consider hierarchical, positive conditional 
specifications with preconditions. More precisely, we study how to test an 
implementation of a data type against a property (an axiom) which is required by the 
specification. The formal specification is used as a guideline to produce relevant test 
data. 

As asser ted  in [BA 82], i t  is especially dangerous, when studying test ing and cor rec tness  
to use informal definitions, even if they seem obvious. For instance, it is shown in [BA 82] 
tha t  two different, but  ra ther  similar, formal definitions of what an "adequate tes t  set" is, 
lead to very dissimilar issues. 

The first  par t  of this paper  is therefore  devoted to formal definitions of several  concepts:  
first we give the fundamental  proper t ies  of what we call a col lect ion of t e s t  sets; then  we 
state the hypotheses which are  assumed during the test ing process and ensure the 
acceptabi l i ty  of the considered collections of tes t  sets. This notion of acceptabil i ty is 
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defined and discussed with r e spec t  to the classical  p rope r t i e s  requi red  for t e s t  select ion 
c r i t e r i a  [GG 75]: rel iabil i ty,  validity and lack of bias. 
in the  second par t ,  we show tha t  usin~ a lgebraic  da ta  types  allows the  in t roduct ion of 
further hypotheses and enables the test sets generation, 
The third part describes how to ~Jnprove this method using PROLOG. It turns out that 
PROLOG is a very well suited tool for generating test sets in this context. In particular it 
automatically provides partitions of the domains of the variables. Of course, the use of 
PROLOG somewhat limits the kinds of specifications and properties which can be 
considered. However these limitations could be alleviated by extensions of PROLOG (e.g. 
[Komo 80], [Nais 82], [DJ 84], [GM 84], [Frib 843, etc.) 

L BASIC NOTIONS IN TESTING THEORY 

It is now widely recognized that a sound theory of testing must focus not only on the 
question 'q%qqat is a test?", Goodenough and Gerhart [GG 75] took a decisive step 
forward by enlarging this question to '~Vhat is a test criterion?". A criterion makes it 
possible to decide whether a given set of data can be validly considered as a test, [Bou~ ' 
82] suggests one more step: one globally considers the whole testing process, or at ].east 
a model of it. Indeed, the properties of test data are not independent from the method 
used to perform testing and to handle results. 

I.L DEFINITIONS 

The Test ing Process  Diagram (fig. 1) is an a t t e m p t  to model  the  sequence of 
opera t ions  tha t  t ake  p lace  between the  p rob lem definit ion ("Does this  sys tem validate 
this  proper ty?")  and the conclusion ('~/es, as far as I can assure  it" or "No, definitely 
not' 9. 

concrete 
ZeveZ 

E-algebra Test Set 
+ ~ Application J 

Axioms 
Isuccess ,faf lurel  

I 
Formalization Selec t ion  

; I 
abs~rsc~ Testing Cons t ruc t ion  ......... ~ Collection of 
revel Context Test Sets 

fig. I Testing Process Di.~jram 

Here we cons ider  an hnplementa t ion  to be a E-algebra (i.e. a se t  of opera t ions  on 
some se ts  of values) and we want to t e s t  whether  this a lgebra  satisfies a set  of axioms. 
However, the  definitions we give are  general .  
The p rob lem to be solved is formally s t a t e d  as a Test ing Context  C. It is mainly made 
up of the  p rope r ty  A to be t e s t ed  (the axioms) and previous knowledge about  the  
sys tem under  t es t  (the given algebra).  The idea of test ing a par t ia l ly  def ined/known 
objec t  has recen t ly  been  in t roduced by De Mfllo eL al. [BDLS 80], [Budd 81], [Howd 82]. 
We think it is quite fundamental. One never knows the object under test perfectly. One 
only knows that it satisfies some properties H, which come from the context or from 
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previous tests  or proofs. 
In the case of a program, one knows the semantics of its e lementary components,  bu t  
no t  its behavior over its whole domain. In the case of a E-algebra, one knows the 
behavior of lower-level type operations (Integer, Boolean...), perhaps some axioms 
which are a priori satisfied by this algebra (using some previous validation results), 
bu t  certainly not the whole functional behavior of the algebra. Hopefully the algebra 
present ly  under  tes t  satisfies properties H. 

Once a testing context  C has been stated, the next  step in the testing process is to 
build a c611ecUon of tes t  sets  from C. Such a collection is a family of tes t  sets (Tn) 
indexed by positive integers. We require this family to be a s y l n p ~ c a l l y  reliable: it  
means  tha t  if Tn+ I is successful then Tnis successful. This new notion is introduced to 

express the idea that  increasing the size of a test  set increases the quality of testing. 
In fact, here  the classical concept of test  selection criterion is replaced by the notion 
of collection: the (Tn) are all the tes t  sets possibly selected by the given criterion. We 

will later  show that  the qualities of a cri terion can be expressed as constraints  on the 
sequence (Tn). 

In  this paper, testing is trying to answer a finite number  of e lementary  questions of 
the form (at least  in the case of an equational specification) 

"Does the ~.-algebra X satisfy equation t=t" ?" 
The straightforward way to do this is to consider all the possible instant iat ions of the 
variables occurring in the equation and to compute both sides of the equation in X. 
Each T n is a subset  of the possible instant iat ions of the equation. We shall note 

The last step to perform in the testing process is to select a test set ~ and to 

compute it in the ~-algebra. If all the equations ti=t' i are satisfied then the result of 

the testing process is "success"; if not, it is "failure" and one can conclude that the ~- 
algebra, i.e. the data type implementation, is faulty. 
The criterion for choosing n is of course strongly related to cost/quaiity 
requirements. 

1.2. FUNDAMENTAL PROPERTIES OF A COLLECTION OF TEST 

The significance of the testing process conclusion is highly related to the quality of 
the test sets collection. Goodenough and Gerhart required reliability and validity for 
test selection criteria, leading to ideality, They proved that the success of the 
application of a test set selected by an ideal criterion implies correctness. Here we 
follow a similar approach. 

Reliability is a consistency requirement. A collection of test sets is said to be reliable 
if a test set of higher index is '~better" than a test set of lower index whatever 
potential ~-algebra is considered. This can be formally written as follows 

vn  ~ 1% (H u %+~) t- T~ 

This requi rement  is slightly weaker than Goodenough and Cerhart 's  and, is called 
asymptot ic  reliability. It  captures the fact tha t  testing is fundamental iy  an 
incrementa l  process. 

Validity means  that  any incorrect  behavior will be revealed by some tes t  data in some 
T n, Le. 

(HU ( u  %)) I -A 
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If test ing is successful using all tes t  sets T n then the algebra fulfills the required 
properties.  A collection which satisfies this property is said to be asymptot ical ly  
valid. 

One more proper ty  is required for test  seLs collections. It is the lack of bias. Any 
correct  algebra should pass any tes t  set  T n. It is precisely the converse of validity: 

YI~ E N, (H u A) I- T n 

If a tes t  using the tes t  set  Tp selected from the collection (Tn) fails then  the algebra 
does not  satisfy the axioms. It tu rns  out tha t  most "natural" tes t  selection cri ter ia  
satisfy this proper ty  (for instance, see Goodenough and Gerhart 's  criteria). A similar 
proper ty  is considered in [Gout 83]. 

A (asymptotically) reliable, (asymptotically) valid and unbiased collection of tes t  sets 
is said to be acceptable. ]~nese three properties ensure that  the higher the index of 
the selected tes t  set, the be t te r  the conclusion of the test ing process. The existence 
of an acceptable collection of tes t  sets is strongly related to the propert ies of A and H 
(see [Bong 82] and [Boug 83] for details). An interest ing feature of algebraic data  
type specifications is tha t  they do not  involve any existential quantifiers. This ensures 
the existence of such a collection under  s tandard  extra  hypothes~s to be listed below. 

1.~ REGULARITY AND UNIFORMITY HYPOTHESES 

The problem of testing axioms for a E-algebra is thus reduced to seeking an 
acceptable collection of tes t  sets for a testing context, It is only possible if some 
powerful assumptions on the E-algebra are available. Such assumptions are left 
implicit  in mos t  test ing methods. For notat ional  convenience, let us assume hereafter  
tha t  we are test ing an axiom of the form t(x)=t'(x). Thus, in the following, tes t  sets T n 

are sets of ins tant ia t ions  of this equation. 

1.3.1. Regularity hypotheses 

Let us assume it is possible, in some way, to associate a level of complexity with 
each e lement  of Y.-algebra carriers.  The regular i ty  hypothesis  s ta tes  tha t  the axiom 
under  tes t  behaves regularly with respect  to this measure.  If it  holds for any object 
of complexity less than  k (k being a parameter) ,  then  it holds for any object. 

Yx (complexity(x)<-k => t(x)=t'(x)) => Vx (t(x)=t'(x)) 

Typically, complexity will be the length of a representat ive E- term denoting an 
object. In the case of program testing, it corresponds to the computat ion 
complexity. Thus regular i ty  hypotheses reflect path analysis testing strategies 
[Howd 76], [WHH 80]. 

1.3.2. Uniformity hypotheses 

If no complexity measure is available , we are faced with the well-known problem of 
part i t ioning variable domains in such a way that  the axiom under  tes t  "behaves 
uniformly" on these subdomains.  Formally speaking, it  means that  the following 
. n i f o r m i t y  hypothesis  is satisfied for each subdomain 

j x  (t(x)=t'(x)) => Vx (t(x)=t'(x)) 

It is modelled by introducing a new constant  c of suitable type, a recta-constant .  
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The value of such a constant  is intuitively a random value of the subdomain. The 
hypothesis can thus be expressed as well by 

(t(c)=t'(c)) => Yx (t(x)=t'(x)) 

T]ds typically leads to random testing strategies and subdomain testing strategies 
[WC 80]. [ZW 8i] .  

APPLICATION OF THE THEORY TO hLGEBRhIC DATA TYPE SPECIFICATION TESTING 

We now focus on the specific kind of testing we are dealing with: testing a data type 
implementa t ion against an algebraic data type specification. 

2.1. THE PROBLEM 

Algebraic specifications of data types are widely recognized as a useful formal 
specification method. See for instance [BH 85]. A specification is given by 

a many-sorted signature Z, i.e. a list of functional symbols on a set  of sorts 5', and 
a set of Z-axioms E. 

The problem is: are the axioms of E satisfied by a given Z-algebra X. 

speeif queue-of-int = 
enr/zh bool, int by 
sort queue; 
oper~.ions 

emptyq : -> queue 
append : queue * int -> queue 
remove : queue -> queue 
first : queue -> int 
isempty : queue -> bool 

v ~ b l s s  
Q,Q'; queue 
]; int 

precondiHon 
pre(first,q) = (isempty(q)=false) 

ax/oms 
AI: isempty(emptyq)=true 
A2: isempty(append(Q,I)) =false 
AS: remove (emptyq) = emptyq 
A4: isempty(Q)=true => remove(append(Q,i))=emptyq 
AS: isempty(Q)=false => remove(append(Q,I))=append(remove(Q),I) 
A6: isempty(Q)=true => first(append(Q,I))=I 
A7: isempty(Q) = false => first(append(Q,I)) = first(Q) 

.fig.2,5~ec~,flc~ion o.f ~eue e I I~tegers 

Usually, one deals with hierarchical  abs t rac t  data types [GH 78], [Dido 81], [BDPP 88]. 
A sort of in te res t  s i is distinguished in S, and Z is accordingly split into s ignature Z i (i 
standing for interest) and Zp (p standing for primitive). Z i contains operations where 

at least one input or output variable is of sort s i. 

Hierarchical algebraic data types induce in a natural way a similar structure into the 
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testing process: lower level modules are first tested against their specification, then 
higher level ones. Of course, the testing of higher level modules can use the fact that 
lower level modules were successfully tested. 

We consider only a res t r ic ted  class of algebraic specifications characterized as follows: 
hierarchical  specifications; 
a predefined boolean specification with two constants,  t r ue  and false; 
precondit ions on operators and conditional equations, with a res t r ic ted form. 

Premises of precondit ions and conditional equations are res t r ic ted to be boolean 
equations, i.e. equations of the form t = t r u e  or t=false  where t is a t e rm of boolean 
sort. The reasons for this res t r ic t ion appear  in par t  3. An example of such a 
specification is given On figure 2. 
Conditional axioms such as A6 or A7 of figure 2 are valid for an algebra X if for any 
ins tant ia t ion of Q and t which satisfies the precondit ions and premises, both sides of 
the conclusion equation yield the same value in X. 

2.2. BASIC HYPOTHESES FOR TEST SETS GENERA'flON 

The basic assumption for test construction in such a framework is the Correlation 
principle  

"There exists a narrow correlat ion between specification s t ruc ture  and 
implementation structure." 

This is a postulate. It may definitely not be the case for our specific algebra X. In fact, 
because of the increasil~g use of construction methods guided by specifications [B2G3 
84], using top-down, bottom-up, stepwise refinement, this principle is more and more 
valid as time goes. This principle is closed to the so-called competent programmer 
hypothesis [Budd 8]]. It is more or less assumed by most of testing methodologies. 

This principle is used to derive the follo~4nlg three hypotheses. 

Finitely generated and non-trivial algebras 

The first hypothesis restricts the considered algebras to be finitely generated with 
respect to ]~derarchy [WPP 83], [SW 83]. It means that any element of X can be 
denoted abstractly by application of operations of Z i (the operations of interest) to 

elements of lower sort, In the queue example of figure 2, any queue element of X can 
be then obtained as a sequence of remove and append operations on emptyq. This 
hypothesis states that the specification under test covers all parts of X. Any element 
Of Xean thus be denoted as a formal term of the specification. 

It is necessary to avoid trivial algebras, i.e. algebras where any property is satisfied. 
We assume therefore that the implementation of predefined booleans satisfies the 

property true~ false. 

Uniformity hypotheses for lower sorts 

The specification under test is hierarchical. At testing time, lower level modules 
already exist (or can be simulated) and have been successfully tested against their 
specification. If the specification is hierarchically consistent then the correctness of 
lower types is preserved. One is therefore entitled to set uniformity hypotheses about 
lower level domains. For instance in the queue specification (see figure 2) the values 
of integer operands are not significant. 
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Regulari ty hypothesis  for the sort of in t e re s t  

The sort  of in teres t  is the actual subject  of the testing process. Because algebras are 
finitely generated,  the computat ional  complexity of objects is directly connected to 
the syntact ical  complexity of their denotation. A possible complexity measure  of an 
e lement  z of X is then  the length of the smallest  Ei-term denoting x. Having in mind 
such a complexity measure,  a regulari ty hypothesis directly arises. If the 
implementa t ion  works in all simpler cases, it will do so in more complex cases. The 
dist inct ion between "simpler" and "more complex" cases is s ta ted by choosing a 
complexity level k. We call k the level of the tes t  set. 

2.3. TEST SETS GENEP~TION AIf~RITI-IM FOR EQUATIONAL SPECIFICATIONS 

Consider an equational axiom of the form 
t(x,  . . . . .  xm)=t'(x . . . . .  x=) 

both sides being te rms  of the sort  of interest .  Under the three hypotheses above, we 
can describe an acceptable collection of tes t  sets (Tn). Test set  T k is the finite set 
~ti=t'i] of all the closed instantiat ions of the axiom under  tes t  obtained as follows. 

Instanciation algorithm (equational case) 
f o r i =  1 t o m d o  

if x i is a variable of the sort  of in teres t  

then ins tant ia te  it by all the te rms  of size tess than  k 
which contain no variable of the sort of in teres t  

done 

for each of the result ing instanciated equations do 
for each variable y do 

ins tant ia te  y by a new meta -cons tan t  c, one for each uniformity 
subdomain of the sort  of y 

done 
done 

Ruzming tes t  set  T k simply consists of checking the validity of all its totally 
ins tant ia ted  equations t i=t '  ~ on the E-algebra under  tes t  X. Because no variables are 
left, this is simply done by computing each side of the equation and checking that  
both yield the same value. When computing, random values of the corresponding 
subdomain are subs t i tu ted  for meta-constants .  

Consider the case where a set  of c o n s t x u ~  (see section 3.2) is given together with 
the specification of the type of interest. Hypotheses can then be strengthened by 
assuming that X is actually finitely generated with respect to those constructors. 
Instantiation may thus be limited to those terms of size less than k which are 
combinations of constructors. The number of generated instantiations is then 
considerably decreased. This corresponds precisely to optimizing a test set by 
discarding redundant tests. This optimization is usually left implicit in testi~g 
methodologies. 

Our specifications generally contain conditional axioms (see fig. 2). It may then 
happen tha t  no t e rm  of size less than level k validates the premise of some axiom. It 
would thus be declared valid because it is vacuously satisfied for all those terms. 
Some check m u s t  therefore be added to ensure tha t  all axioms have actually be 
tes ted (premises are satisfied in enough representat ive cases). However, another  
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more efficient approach is to selectively generate terms that validate some premise. 
This is the subject of the next section. 

3. TEST SETS GENERATION FOR CONDITIONAL AXIOMS 

3.1. Use at PROLOG to  satisfy re la t ions  

A PROLOG program is made up of Horn clauses. A Horn clause is a conditional formula 
made of a head par t  and a body part; the head par t  is a relat ion P over terms, and the 
body par t  is a list of conditions under  which the head par t  is true. 
A PROLOG in te rpre te r  uses automatic deduction methods (resolution) to compute the 
te rms  which satisfy a relat ion characterized by the clauses of the program. 
When a re la t ion P(X) is wri t ten in PROLOG, then given the goal: ?-P(X), the in te rpre te r  
ins tant ia tes  X with the te rms satisfying P. 

Example: 
What are the values of X such that  }(>2? 
Booleans are defined by t rue  and false. 
Integers  are built  on 0 and succ, with in addition an operator le: hat * int  - >  bool, 
defined in  PROLOG by: 

te(0,X, true).  
le(succ(X),0,false). 
le(suce(X),succ (Y),B):- Ie(X,Y,B). 

Given the goal 
?- le(X, succ(succ(0)),false). 

the in t e rp re t e r  provides the general  solution: 
x = succ(succ(suec(Y))), 

where Y takes any value. 

Theoretically, the resolution s trategy underlying PROLOG provides all the solutions for 
a goal [Clar 77]. 
A solution computed by the PROLOG in te rp re te r  is ei ther  a fully hastantiated t e rm  or 
a t e rm  containing variables; in the la t ter  case, the computed t e rm  embodies a whole 
class of solutions, since any ins tant ia t ion of the computed t e r m  is a part icular  
solution of the goal. This PROLOG computat ion feature is used hereafter.  
One advantage of PROLOG in our framework is the handling of conditional axioms. 
However some limitations, due to the fact tha t  equality is not  handled, still exist. But 
some propositions are present ly  being submit ted  to alleviate this res t r ic t ion [DJ 
84],[GM 84],[Frib 84]. 

3.2. Convert ing a spvc~ca t ion  in to  PROLOG 

A specification which satisfies the syntact ical  restr ic t ions we have introduced on 
algebraic specifications in par t  2.1 can generally be t ransla ted into PROLOG, (a similar 
t rans la t ion is developed in [HS 85]). 
Axioms are viewed as definitions of function symbols. Syntactically, a function symbol 
f is defined by a set  of axioms of the form : 

( a ( u ) = t ~ e )  a ( b ( u ' ) = ~ )  => f(v)=g(~), (*) 
where f and g are function symbols; u, u', v, w are vectors of terms,  and a, b are 
symbols of boolean functions; a(u)=true and b(u')=false are the cons t r a in t  equations. 

Axioms are thus implicitly oriented. The symbol f appearing ha the axiom above is said 
to be specified. A function symbol specified by no axiom of the specification is called a 
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basic  symbol  or cons t ruc to r .  In this paper ,  we assume tha t  there  is no equation 
be tween cons t ruc tors .  

Axioms are  t r ans la ted  into Horn clauses.  The first  s tep is to modify the  signature.  All 
the  funct ion symbols of ar i ty  n specified by axioms in the original specif icat ion are  
r ep laced  in the  new specif icat ion by  relat ion symbols of ar i ty  n+ l .  For instance,  the 
operator remove(q) (see fig. 2) becomes  the r e l a t ion  remove(Q1,Q2). The only 
remaining t e r m s  in the  t rans la t ion  are those formed with cons t ruc to r s  and var iables  
only. For  instance,  the cons t ruc tors  of the queue type  are  emptyq  and append.  
Terms hke emptyq  and append(Q,I) are preserved.  

In a second step, ax ioms are  tu rned  into Horn clauses.  For  simplicity,  consider  an 
axiom such as (*), where u, u' ,  v are made of cons t ruc to rs  and variables only. It 
becomes:  

I(v,Z) : - a (u . t rue ) .  b(u ' . fa lse) .  R(X,Z). 
where X is the set of variables appearing in v, and R(X,Z) expresses in a relation form 
the functional equation: Z=g(w). Intuitively speaking, Z is no more than an 
intermediate result. 
When u, u', or v contain derived operators, there is a preliminary transformation in 
order to reduce this case to the previous one. 

The las t  s t ep  is to plug possible precondi t ions  on f into the  Horn clause. If the re  is 
pre(f,x) = p(x) in the original specification, then  the final clause is 

f(v,z) : -a (u ,  t rue) ,  b(u ' , fa lse) ,  p(v, t rue) ,  R(X:Z). 
An example  is given in figure 3. 

CI: isempty(ernptyq, true). 
Ca: isempty(append(Q I),false). 
C8: remove(emptyq,emptyq). 
C4: remove(append(O,I),emptyq):-isempty(Q,true). 
C5: remove(append(Q,I),append(O',I)):- isempty(Q,false),rernove(Q,Q'). 
C6: first(append(Q,l),l):- isempty(append(Q,l),false)gsempty(Q,true). 
C7: first(append(QJ),J):- isempty(append(Q,l),false),isernpty(Q,false),first(QoJ). 

f i g .3  Translo2ion of  the queue spec i f i ca t ion  into  PROLOG 

3.3. Constraint-driven generation of t e r m s  

General ly speaking, each clause C derived from the specif icat ion is of the form: 
f(I ,O):-A(I),  R(I,O), where A(I) expresses  the precondi t ions  and the  p remises  of the  
original axiom. Terms satisfying A(I) are  prec ise ly  those needed  at  the  end of sect ion 
a.3 to t e s t  this original axiom in a non-trivial  way. These t e rms  are  obtained by 
submit t ing  the goal ?-A(I) to PROLOG. 
Consider for ins tance  clause C5 in fig.3. In the queue example,  the  re levant  t e rms  are  
obta ined by submit t ing 7- isempty(Q,false).  This yields the  genera l  answer 
Q = append(Q',I).  

This example  is a s imple one. Let us consider  a more  in teres t ing example - i n s e r t i o n  
i~to  a sor ted  l is t  -, which is complete ly  given in appendix. 
Consider the  clause C6 in this  new example.  
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C6: insert(ap(L,X),Y, ap(ap(L,kg,Y)):- sorted(ap(L,X),true),le(X,Y, true). 
The cons t ra in ts  here  a re  : sorted(ap(L,X),true) and le(X,Y, true),  
where le ( ~ ) is descr ibed  by: 

le(O,X, t rue) .  
le(succ(X),O,false), 
te(suce(X),succ(Y),B) :-Ie(X,Y,B). 

and so r ted  is desc r ibed  by: 
sor ted(e l , t rue) .  
sor ted(ap(el ,X), t rue) .  
sorted(ap(ap(L,X),Y),B) :- le(X,Y, true),sorted(ap(L,X),B). 
sorted(ap(ap(L,X),Y),false) :- le(X,Y, false). 

The cons t ra in t  on C6 is solved with the goal 
?-sorted(ap(L,X),true),le(X,Y,true).  If we l imit  L to l is ts  of length 

L=ap(el, I), t he  goal  becomes  
?- sorted(ap(ap(el,I),X),true),le(X,Y, t rue) .  We obtain the  answers: 
I = O , X = O , Y = _ ;  
I = 0, X = suet(0) ,  Y = succ(_);  
I = succ(0), X = succ(0), Y = succ(--); 
ere  ..o 

These answers cor respond  to the t r iples  <I,X,Y> of t e rms  of the form: 
< suecm(O) , succn(O), succn(__) >, with O -< m ~ n 

A s t anda rd  PROLOG in t e rp re t e r ,  using a depth-f i rs t  s t ra tegy,  wilt go into an infinite 
branch.  I t  will genera te  a col lect ion of solutions With increasing complexity,  satisfying 
the goal. Unfor tunate ly  some b ranches  might  be ignored. If we stop execut ion af te r  a 
finite n u m b e r  of s teps,  we do not  have all  the  t e rms  t such t ha t  complexity(t)-<-k. 
To ge t  an accep tab le  t e s t  sets  collection, all b ranches  mus t  be explored.  This requires  
active cont ro l  of t he  sea rch  s t r a t egy  . This control  is provided in PROLOG extensions 
such as hCJ-PROLOG and METALOG [Nais 83] [DL 84]. tt  is then  possible  to ge t  all the  
t e rms  of length  less t han  some bound k. 
PROLOG may  provide t e r m s  with variables.  These t e rms  cor respond  to a class of 
solutions. Thus PROLOG automat ica l ly  provides some uniformity h}qootheses. Variables 
correspond to recta-constants (see section 2.3) . 

Specif icat ion ] Axiom under  t e s t  - -  

[ Set of clauses I~-'~ Constraint 
. . . .  ~ .  (goal A(I)) 

level of the  t e s t  ----> PROLOG 

1 
Set  of ins tant ia t ions  
satisfying cons t ra in t  

Test se t  of level n < 

[-~--aigebra 1 
$ 

tfailure,success~ 

fig.4 I~gram of test sets generation 
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The method is summarized in figure 4. For each clause we generate  te rms satisfying 
the constraints  of the clause: PROLOG will generate all of them, provided we can 
control the exploration of infinite branchem We take this set of te rms as a domain on 
which we make regular i ty  hypotheses. PROLOG helps us to par t i t ion i t  into uniformity 
sub-domains, ~rom which we extract  tes t  data through the use of meta-constants .  
Thus, the definition domain has been par t i t ionned into regulari ty and uniformity sub- 
domains. The genera ted  test  sets collection is "acceptable" according to the theory 
described in section 1.3, provided the search strategy is complete. 

CONCLUSION 

The idea of using PROLOG, or some extension of PROLOG, to generate  tes t  sets seems 
promising. In this paper we suggest a method which is based on the theory of testing 
presented in section 1. This method is applicable provided the hypotheses of section 1 
are satisfied; the specifications can  be t ranslated into PROLOG; and it  is possible to 
control the search strategy in the PROLOG interpreter .  Algebraic specifications are 
especially well suited to such an application since it is possible to define some' 
restr ic t ions on them, such as those presented in section 2, ~o that  the two first 
requi rements  of the method are satisfied. 
This paper  applies the method to positive conditional algebraic specifications using 
search s trategy control provided by METALOG. The method was applied to tes t  real- 
t ime software such as al ternating bit  protocol implementat ions and telephone 
switching modules. PROLOG provides a part i t ion into uniformity domains. METALOG 
is very convenient  for defining general  search strategies which correspond to 
regulari ty hypotheses: when working with a new specification it is only necessary to 
define the complexity of the tes t  data for the sort of interest .  
However, to be generally applicable, this method m u s t  be improved in two directions. 
First  the cost in t ime and space of PROLOG implementat ions mus t  be decreased. The 
main  limitations experienced using the examples were those of the computat ion t ime 
and memory overflows. 
Second the class of considered specifications mus t  be enlarged as far as possible in 
order to avoid rewriting the specifications for generating tes t  sets. There is an 
inl lerent  l imitation to the method since the tested properties must  ensure the 
existence of an acceptable tes t  sets collection. Such is not  the case if there is an 
existential  quantifier in the property. However it would be possible to consider full 
positive conditional axioms if equality were handled by PROLOG. We are working on 
such a PROLOG with equality, which extends the class of specifications under  
considerat ion and allows equations between constructors.  
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APPENDIX 

EXAMPLE: SORTED LISTS 

The sor t  of i n t e r e s t  is t he  so r t  so r ted-hs t .  
The lower sor t s  a re  the  i n t ege r  and boo lean  sorts .  

Spec i f i ca t ion  of  t h e  type  l i s t  of i n t e g e r ,  w i th  t h e  o p e r a t i o n  sort: 

spee i f sor t ed - l i s t  = 
enr ich  boot, int by 
sort list; 
operations 

el : -> l is t  /*  empty - l i s t  constructor  */  
ap : l is t  * in t  -> l is t  /*  append  constructor  */  
s o r t e d  : l i s t  -> boo] 
i n se r t  : l is t  * in t  -> l is t  /*  def ined for a s o r t e d  l ist  * /  

variables 
L : list; 
X, Y : int;  

~ r e c o n ~ s  
/ *  The o p e r a t i o n  i n s e r t  is u sed  to i n s e r t  an  i n t ege r  in a s o r t e d  l ist  and to ge t  as a 
r e s u l t  a s o r t e d  list. * /  

p re ( inse r t ,  L,X) = (sorted(L) = t rue )  
az iorns  

AI: s o r t e d ( e l ) = t r u e  
A2: s o r t e d ( a p  (el,X)) = t r u e  
A3: te(X,Y)=true => sorted(ap(ap(L,X),Y))=sorted(ap(L,X)) 
A4: le(X,Y)=false => sorted(ap(ap(L,X),Y))=false 
A5: inser t(el ,X) =ap(et,X) 
A6: le(X,Y)=true => insert(ap(L,X),Y)=ap(ap(L,X),Y) 
A7: le(X,Y)=false => insert(ap(L,X),Y)=ap(insert(L,Y),X) 

Spec i f i ca t ion  of  t h e  i n t e g e r  type:  

spec i f  i n t e g e r  = 
enr ich  boot  by 
sort Jut; 
operaAions 

0 : -> int /*  cons truc tor  */ 
s u c c :  int  -> in t  / *  constructor  */  
le : in t  * in t  -> bool  

v a r / ~ / e s  
X,Y : int;  

ax~orns 
A8: le(0,X) = t r u e  
A9: le(succ(X),0) = false 
AI0: le(succ(X),succ(Y)) = Ie(X,Y) 
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Translation o~ the specification of the  in teger  type into PROLOG: 

C8: le(O,X,true). 
C9: le(succ(X),O,fa!se). 
C iO: le(suce(X),suec(Y),B):- le(X,Y,B). 

Translation of the specification of the sorted-list type into PROLOG: 

CI: sorted(el,true). 
C2: sorted(ap(el,X), true). 
C3: sorted(ap(ap(L,X),Y),B):- le(X,Y, true), sorbed(ap(L,X),B). 
C4: sorted(ap(ap(L,X),Y),false):- !e(X,Y, false). 
C5: insert(el,X, ap(el, X)):- sorted(el,true). 
C6: insert(ap(a,x),Y, ap(ap(L,X),Y)):- sorted(ap(a,x),true),le(X,Y, true). 
C7: insert(ap(L,X),Y, ap(Z,X)):- sorted(ap(L,X),true),le(X,Y, false),insert(L,Y,Z). 

Ins~nt ia t ion  sets  generated for sorted: 

We suppose that integer and boolean sorts are tested. 
* For Ai, the instantiation sets generated are empty, for any n because there is no 

variable in this axiom: ~ = ~t, Vn 
Thus an acceptable test  sets collection is: T n = t(sorted(el)=true)l,  Vn 

* For A2, there  is no constraint  on X. We make a uniformity hypothesis on integer and 
obtain the instantiation sets: 

I a = f<meta- int>t ,  Vn 
T = t(sorted(ap(el,X))=true), X e In t, Vn 

* For A3, the instantiation sets are made of tuples <L,X,Y>. There is a constraint  on 
X,Y: le(X,Y;true), solved in PROLOG with the goal ?4e(X, Y, true). 
PROLOG answers: 

X 1 = O, YI = --; 
X s = suee(0)~ Ys =succ(_); 

. . .  

xn+1 = sue~(°) , Y~+I = suee=( -): 
As there is no constraint on the variable L of list sort, we make a uniformity 
hypothesis and substitute a recta-constant for the variable of this sort. Thus we 

deduce for a level n the instantiation set: 
I= = { <meta-listl,O, me+aCmtl>, 

<melm-lista, succ(0), succ(meta-intz>, 

< meta-lis~, su c ca-' (0), suc am'~ (meta-int~) > ] 

T n = t(sorted(ap(ap(L,X),Y))=sorted(ap(L,X))), <L,X,Y> e I~ 

* For A4, the instantiation sets are obtained in a similar way and we get for a level n: 

I n = I<meta-listrSUCc(meta-intl) ,0>, 
<metaqis t~succ(succ(meta- inta)) ,  succ(O)>. 

< recta-listen, succU(meta-int.),  succ"-l(O)> ~ 
T n = I(sorted(ap(ap(L,X),Y))=false), <L,X,Y> e !,, I 
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I n s t a n t i a t i o n  s e t s  g e n e r a t e d  for insert: 

* F o r  A5, as  t h e  only v a r i a b l e  in  t h e  ax iom is X, we ob ta in :  
I~ = [ < m e t a - m t > ~ ,  Vn 

T n = t ( inse r t (e l ,X)=ap(e l ,X) ) ,  X E I n ~, Vn 

* Fo r  A6, a n  i n s t a n t i a t i o n  s e t  is m a d e  of t up l e s :  <L,X,Y> w i t h  t h e  c o n s t r a i n t  
te(X,Y, t rue)  o n  X a n d  Y, a n d  wi th  t h e  c o n s t r a i n t  so r t ed ( ap (L ,X) , t r ue )  o n  L a n d  X. 
These  c o n s t r a i n t s  a r e  so lved  wi th  t h e  goal: ?- sorted(ap(L,X),true),le(X,Y, true). 
PROLOG answers :  

L = el, X = 0, Y = _ ;  
L = el, X = succ(0) ;  Y = s u e c ( _ ) ;  

These  a n s w e r s  a re  in f in i t e  a n d  L is always equa l  to  el: we a r e  in  a n  in f in i te  b r a n c h .  With 
a s t a n d a r d  PROLOG i n t e r p r e t e r ,  we o b t a i n  t h e  followin~ i n s t a n t i a t i o n  s e t  fo r  leve l  n: 

I a = ~<cl,O, m e t a - i n t l >  , 

<el,succ(O), succ(meta-int~)>, 
. = o  

<el, succ~l(o), succn-t(meta-'mt.)> l 
T n = [ ( inser t (ap(L,X) ,Y)  = ap(ap(L,X),Y)),  <L,X,Y> < I n 

* Fo r  A7, t h e  i n s t a n t i a t i o n  s e t s  a re  o b t a i n e d  in a s imi l a r  way wi th  t h e  goal: 
?- sorted(ap(L,X),tr~¢ ),le()(, Y, false). 

We o b t a i n  t h e  Iollov~Lr~ i n s t a n t i a t i o n  s e t  for level  n: 
I l = I <el ,  s u c c ( m e t a - i n t l ) . O > ,  

<el, succfsuec(meta-int2)).suec(O) >. 

< el, suee~(meta'int~),suee~-~(o)> 
T~ = ~(insert(ap(L,X),~ = ap(insert(n,¥),X)), <L,X,Y> c ~ 


