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ABSTRACT

We present a method and a tool for generating test sets from algebraic data type
gpecifications. We give formal definitions of the basic concepts required in our approach
of functional testing. Then we discuss the problem of testing algebraic data types imple-
mentations, This allows the introduction of additional hypotheses and thus the description
of an effective method for generating test sets. The method can be improved by using
PROLOG. Indeed, it turns out that PROLOG is a very well suited tool for generating test
sets in this context. Applicability of the method iz discussed and a complete example is

given.

INTRODUCTION

Functional or "black-box” testing has been recognized for a long time as an important
aspect of software validation [Howd 80], [ABC 82]. It is especially important for large-
sized, long-lived systems for which successive versions have to be delivered. In this case,
non-regression testing may be long, difficult and expensive. It should depend only on the
functional specifications of the system [Paul 83].

However, most of the studies on test data generation have focused on program dependent
testing [Haml 75, [Clar 78], since it was possible to use the properties of a formal object:
the program. Of course such an approach is necessary but not sufficient [Gour 83]. The
emergence of formal specification methods makes it possible to found functional testing
on a rigorous basis. In this paper we present a method and a tool for generating test sets
from algebraic data type specifications. We consider hierarchical, positive conditional
specifications with preconditions. More precisely, we study how to test an
implementation of a data type against a property (an axiom) which is required by the
specification. The formal specification iz used as a guideline to produce relevant test
data.

As asserted in [BA 82), it is especially dangerous, when studying testing and correctness
to use informal definitions, even if they seem obvious. For instance, it is shown in [BA 82]
that two different, but rather similar, formal definitions of what an “adequate test set” is,
lead to very dissimilar issues.

The first part of this paper is therefore devoted to formal definitions of several concepts:
first we give the fundamental properties of what we call a collection of test sets; then we
state the hypotheses which are assumed during the testing process and ensure the
acceptability of the considered collections of test sets. This notion of acceptability is
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defined and discussed with respect to the classical properties required for test selection
criteria [GG 75]: reliability, validity and lack of bias.

In the second part, we show Lthal using algebraic data types allows the introduction of
further hypotheses and enables the test sels generation.

The third part describes how to improve this method using PROLOG. 1t turns out that
PROLOG is a very well suited tool for generating test sets in this context. In particular it
automatically provides partitions of the domains of the variables. Of course, the use of
PROLOG somewhat lmits the kinds of specificalions and properties which can be
considered. However these limitations could be alleviated by extensions of PROLOG (e.g.
[Komo 80], [Nais 82], [BJI 84], [GM 84], [Frib 84], etc.)

1. BASIC NOTIONS IN TESTING THEORY

It is now widely recognized that a sound theory of tesling must focus not only on the

question “What is a test?". Goodenough and Gerhart [GG 75] took a decisive step

forward by enlarging this question to "What is a test criterion?'. A criterion makes it
possible to decide whether a given set of data can be validly considered as a test. [Boug

82] suggests one more step: one globally considers the whole tesiing process, or at least

a model of it. Indeed, the properties of test data are not independent from the method

used to perform testing and to handle results.

1.1. DEFINITIONS

The Testing Process Diagram (fig. 1) is an attempt to model the sequence of
operations that take place between the problem definition ("Does this system validate
this property? ") and the conclusion ("Yes, as far as I can assure it or "No, definitely

not”).

concrete Z-algebra Test Set
tevel + Application {
Axioms

{success,failure]

|

Formaijzation Selection
abstract Testing Construction Collection of
level Context 7 Test Sets

fig. ! Testing Process Diagram

Here we consider an implemeniation to be a I-algebra (i.e. a set of operations on
some sets of values) and we want to test whether this algebra satisfies a set of axioms.
However, the definitions we give are general.

The problem to be solved is formally stated as a Testing Context . It is mainly made
up of the property 4 to be tested (the axioms) and previcus knowledge about the
system under test (the given algebra). The idea of testing a pariially defined/known
object has recently been intrcduced by De Millo et al. [BDLS 80], [Budd 81], [Howd 82].
We think it is quite fundamental. One never knows the object under test perfectly. One
only knows that it satisfies some properties H, which come from the context or {rom
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previous tests or proofs.

In the case of a program, one knows the semantics of its elementary components, but
not its behavior over its whole domain. In the case of a Z-algebra, one knows the
behavior of lower-level {ype operations (Integer, Boolean...), perhaps some axioms
which are a priori satisfied by this algebra {using some previous validation results),
but certainly not the whole functional behavior of the algebra. Hopefully the algebra
presently under test salisfles properties H.

Once a testing context C has been stated, the next step in the testing process is to
build a eollection of test sets from C Such a collection is a family of test sets (Tn)
indexed by positive integers. We require this family to be asymptotically reliable: it
means that if T, is successful then Tn' is successful. This new notion is introduced to
express the idea that increasing the size of a test set increases the quality of testing.
In fact, here the classical concept of test selection criterion is replaced by the notion
of collection: the (T,) are all the test sets possibly selected by the given criterion. We
will later show that the qualities of a criterion can be expressed as constraints on the
sequence (T_).

In this paper, testing is trying to answer a finite number of elementary questions of
the form (at least in the case of an equational specification)

"Does the Z-algebra X satisfy equation t=t" ?"
The straightforward way to do this is to consider all the possible instantiations of the
variables occurring in the equation and to compute both sides of the equation in X
Each T, is a subset of the possible instantiations of the equation. We shall note
T, = {t,=t"3.
The last step to perform in the testing process is to select a fest set T, and to
compute it in the Z-algebra. If all the equations t,=t"; are satisfied then the result of
the testing process is "success”; if not, it is "“failure’ and one can conclude that the Z-
algebra, i.e. the data type implementation, is faulty.
The criterion for choosing n is of course strongly related to cost/quality
requirements.

1.2. FUNDAMENTAL PROPERTIES OF A COLLECTION OF TEST SETS

The significance of the testing process conclusion is highly related to the quality of
the test sets collection. Goodenough and Gerharti required reliability and validity for
test selection criteria, leading to ideality. They proved that the success of the
application of a test set selected by an ideal criterion implies correctness. Here we
follow a similar approach.

Reliability is a consistency requirement. A collection of test sets is said to be reliable
if a test set of higher index is “better' than a test set of lower index whatever
potential E-algebra is considered. This can be formally written as follows

VneN, (HUT, )T,

This requirement is slightly weaker than Goodenough and Gerhart’s and, is called
asymplotic reliability. Ii captures the fact that testing is fundamentally an
ineremental process.

Validity means that any incorrect behavior will be revealed by some test data in some
T, Le
(Hu (uIl T4
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If testing iz successful using all tesl sets T then the algebra fulfills the required
properties. A collection which satisfies this properiy is sald io be asymptotically
valid.

One more property is required for test sets collections. It is the lack of bias. Any
correct algebra should pass any test set T, Itis precisely the converse of validity:

YneN (HU4 T,

If a test using the test set Tp selected from the collection (Tn) fails then the algebra
does not satisty the axioms. It turns out that most "natural” test selection criteria
satisfy this property (for instance, see Goodenough and Gerhart's criteria). A similar
property is considered in [Gour 83].

A (asymptotically) reliable, (asymptotically) valid and unbiased collection of test sets
is said to be acceptable. These three properties ensure that the higher the index of
the selected test set, the better the conclusion of the testing process. The existence
of an acceptable collection of test sels is strongly related to the properties of Aand H
(see [Boug 82] and [Boug 83] for details). An interesting feature of algebraic data
iype specifications is that they do not involve any existential quantifiers. This ensures
the existence of such a collection under standard extira hypothesés to be listed below.

1.3. REGULARITY AND UNIFORMITY HYPOTHESES

The problem of testing axioms for a I-algebra is thus reduced to seeking an
acceplable collection of test sets for a testing context It is only possible if some
powerful assumptions on the Z-algebra are available. Such assumptions are left
implicit in most testing methods. For notational convenience, let us assume hereafter
that we are testing an axiom of the form t{(x)=t'(x). Thus, in the following, test sets T

are sets of instantiations of this equation.

1.3.1. Regularity hypotheses

Let us assume it is possible, in some way, to associate a level of complexity with
each element of £-algebra carriers. The regularity hypothesis states that the axiom
under test behaves regularly with respect to this measure. If it holds for any object
of complexity less than k (k being a parameter), then it helds for any object.

¥x (complexity(x)=k => t{x)=t'(x)) =>¥x (L(x)=t'(x))

Typically, complexity will be the lemgth of a representative Z~term denoting an
object. In the case of program testing, it corresponds to the computation
complexity. Thus regularity hypotheses reflect path analysis testing stralegies
[Howd 76], [WHH 80].

1.3.2. Uniformity hypolheses

If no complexity measure is available , we are faced with the well-known problem of
partitioning variable domains in such a way that the axiom under test "behaves
uniformly"” on these subdomains. Formally speaking, it means that the following
uniformity hypothesis is satisfied for each subdomain

Ix ()=t () => ¥x (L=)=t'"(x))

It is modelled by introducing a mew constant c of suitable type, a meta-constant.



265

The value of such a constant is intuitively a random value of the subdomain. The
hypothesis can thus be expressed as well by

(t{e)=t'(e)) => ¥x ({x)=t'(x))

This typically leads to random testing sirategies and subdomain testing strategies
[wC 80, [zw 81].

2. APPLICATION OF THE THEORY TO ALGEBRAIC DATA TYPE SPECIFICATION TESTING

We now focus on the specific kind of testing we are dealing with: testing a data type
implementation against an algebraic data type specification.

2.1. THE PROBLEM

Algebraic specifications of data types are widely recognized as a useful formal
specification method. See for instance [BH B5]. A specification is given by
a many-soried signature I, i.e. alist of functional symbols on a set of sorts S, and
a set of Z-axioms E.
The problem is: are the axioms of F satisfied by a given Z-algebra X.

specif queue-of-int =
enrich bool, int by

sort queue;
operalions
emptyq: -> queue
append : queue * int -> gueue
remove | queue -> queue
first queue -> int
isempty : queue -> bool
variables
Q.Q": queue
I int
precondition
pre(first,Q) = (isempty(Q)=false)
axioms

Al: isempty{emptyg)=true

AR: isempty(append(Q,1})=false

A3: remove{emptyq)=emptyq

A4: isemnpty(Q)=true => remove{append(Q,1))=emptyq

A5: isempty(Q)=false => remove(append(Q,I))=append(remove({Q).I}
AB: isempty(Q)=true => first(append(Q,1))=I

AY: isempty(Q) = false => first{append(Q,1)) = first(Q)

fig.2 Specification of Queue of Integers

Usually, one deals with hierarchical abstract data types [GH 78], [Bido 81], [BDPP 83].
A sort of interest s, is distinguished in S, and I is accordingly split into signature I

standing for interest) and Sp {p standing for primitive). Z, contains operations where
at least one input or output variable is of sort s,.
Hierarchical algebraic data types induce in a natural way a similar structure into the
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testing process: lower level modules are first tested against their specification, then
higher level ones. Of course, the testing of higher level modules can use the fact that
lower level modules were successfully tested.

We consider only a restricted class of algebraic specifications characterized as follows:
hierarchical specifications;
a predefined booclean specification with two censtants, true and false;
preconditions on operators and conditionsal equations, with a restricted form.
Premises ol preconditions and conditional equations are restricted to be boolean
equalions, i.e. equations of the form t=true or t=false where t is a term of boolean
sort. The reasons for this restriction appear in part 3. An example of such a
specification is given on figure 2.
Conditional axioms such as A8 or A7 of figure 2 are valid for an algebra X if for any
instantiation of § and I which satisfies the preconditions and premises, both sides of
the conclusion equation yield the same value in X.

2.2. BASIC HYPOTHESES FOR TEST SETS GENERATION

The basic assumption for test construction in such a {framework is the Correlation
principle
“There exists a narrow correlation between specification structure and
implementation structure.”
This is a postulate. It may definitely not be the case for our specific algebra X. In fact,
because of the increasing use of construction methods guided by specifications [B2G3
84], using top-down, bottom-up, stepwise refinement, this principle is more and more
valid as time goss. This principle is closed to the so-called competent programmer
hypothesis [Budd 81]. It is more or less assumed by most of testing methodologies.

This principle is used to derive the following three hypotheses.

Finitely generated and non-irivial algebras

The first hypothesis restricts the considered algebras to be finitely generated with
respect to hierarchy [WPP 83], [SW 83]. It means that any element of X can be
denoted abstractly by application of operations of 21. {the operations of interest) to
elements of lower sort. In the queue example of figure 2, any queue element of X can
be then obtained as a sequence of remove and append operations on emptyq. This
hypothesis states that the specification under test covers all parts of X, Any element
of X can thus be denoted as a forma! term of the specification.

It is necessary to avoid trivial algebras, i.e. algebras where any property is satisfied.
We assume therefore that the implementation of predefined booleans satisfies the

properiy true#false.

Uniformity hypotheses for lower sorls

The specification under test is hierarchical. At testing time, lower level modules
already exist (or can be simulated) and have been successiully tested againgt their
specification. Tf the specification is hierarchically consistent then the correctness of
lower types is preserved. One is therefore entitled to set uniformity hypotheses about
lower level domains. For instance in the queue specification (see figure 2) the values
of integer operands are not significant.
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Regularity hypothesis for the sort of interest

The sort of interest is the actual subject of the testing process. Because algebras are
finitely generated, the computational complexity of objects is directly connected to
the syntactical complexity of their denotation. A possible complexity measure of an
element z of X is then the length of the smallest I,-term denoting =. Having in mind
such a complexily measure, a regularity hypothesis directly arises. If the
implementation works in all simpler cases, it will do so in more complex cases. The
distinction between "simpler” and "more complex” cases is stated by choosing a
complexity level k. We call k the level of the test set.

2.3. TEST SETS GENERATION ALGORITHM FOR EQUATIONAL SPECIFICATIONS

Consider an equational axiom of the form

txp, o x)=U(E, LX)
both sides being terms of the sort of interest. Under the three hypotheses above, we
can describe an acceptable collection of test sets (T,). Test set T, is the finite set
iti=t’i§ of all the closed instantiations of the axiom under test obtained as follows.

Instanciation algorithm (equational case)
fori=1tomdo
if x, is a variable of the sort of interest
then instantiate it by all the terms of size less than k
which contain no variable of the sort of interest
done

for each of the resulting instanciated equations do
for each variable y do
instantiale y by a new meta-constant ¢, one for each uniformity
subdomain of the sort of ¥
done
done

Runming test set T, simply consists of checking the validity of all its totally
instantiated equations {,=t’; on the Z-algebra under test X. Because no variables are
left, this is simply done by computing each side of the equation and checking that
both yield the same value. When computing, random values of the corresponding
subdomain are substituted for meta-constants.

Consider the case where a set of constructors (see section 3.2) is given together with
the specification of the iype of interest. Hypotheses can then be strengthemed by
assuming that X is actually finitely generated with respect to those comstructors.
Instantiation may thus be limited to those terms of size less than k which are
combinations of constructors. The number of generated instantiations is then
considerably decreased. This corresponds precisely to optimizing a test set by
discarding redundant tests. This optimization is usually left implicit in iesting
methodologies.

Our specifications generally contain conditional axioms (see fig. 2). I may then
happen that no term of size less than level k validates the premise of some axiom. It
would thus be declared valid because it is vacuously satisfled for all those terms.
Some check must therefore be added to ensure that all axioms have actually be
tested (premises are satisfled in enough representative cases). However, another
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more efficient approach is to selectively generate terms that validate some premise.
This is the subject of the next section.

3. TEST SETS GENERATION FOR CONDITIONAL AXIOMS

3.1. Use of PROLOG to satisly relations

A PROLOG program is made up of Horn clauses. A Horn clause is a conditional formula
made of a head part and a body part; the head part is a relation P over terms, and the
body part is a list of conditions under which the head part is true.

A PROLOG interpreter uses automatic deduction methods (resolution) to compute the
terms which satisiy a relation characterized by the clauses of the program.

When a relation P(X) is written in PROLOG, then given the geal: ?-P(X), the interpreter
instantiates X with the terms satisfying P.

Exampie:
What are the values of X such that X>2?
Bodleans are defined by true and false.
Integers are built on 0 and suee, with in addition an operator le: int * int > bool,
defined in PROLOG by:
1e{0,X,true).
le(suce(X),0,false).
le(suce(X),suce(Y),B):- le(X,Y,B).
Given the goal
?- le(X,suce(suce(D)),false).
the interpreter provides the general solution:
X = suce{succ(suec(Y))),
where Y takes any value.

Theoretically, the resolution strategy underlying PROLOG provides all the solutions for
a goal [Clar 77].

A solution computed by the PROLOG interpreter is either a fully instantiated term or
a term containing variables; in the latter case, the computed term embodies a whole
class of solutions, since any instantiation of the computed term is a particular
solution of the goal. This PROLOG computation feature is used hereafter.

One advantage of PROLOG in our framework is the handling of conditional axioms.
However some limitations, due 1o the fact that equalily is not handled, still exist. But
some propositions are presently being submitted to alleviate this restriction [DJ
84],[GM 84],[Frib 84].

3.2. Converting a specification into PROLOG

A specification which satisfies the syntacticel restrictions we have introduced on
algebraic specifications in part 2.1 can generally be translated into PROLOG, (a similar
translation is developed in [HS 85]).
Axioms are viewed as definitions of function symbols. Syntactically, a function symbol
i is defined by a set of axioms of the form:

(a(u)=true) & (b(u’)=false) => f(v)=g(w), *
where { and g are function symbols; u, v, v, w are vectors of terms, and a, b are
symbols of boolean functions; a{u)=true and b(u’)=false are the constraint equations.

Axioms are thus implicitly oriented. The symbol f appearing in the axiom above is said
1o be specified. A function symbol specified by no axiom of the specification is called a
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basic symbol or constructor. In this paper, we assurne that there is no equation
between constructors.

Axioms are translated into Horn clauses. The first step is to modify the signature. All
the function symbols of arity n specified by axioms in the original specification are
replaced in the new specification by relation symbols of arity n+!. For instance, the
operator remove(q) (see fig. 2) becomes the relation remove(Q1,Q2). The only
remnaining terms in the translation are those formed with constructors and variables
only. For instance, the constructors of the gueue type are empiyq and append.
Terms like emptyq and append(Q,]) are preserved.

In a second step, axioms are turned into Horn clauses. For simplicity, consider an
axiom such as (*), where u, w', v are made of constructors and variables only. It
becomes:

1(v,Z) :- a{u,true), b{u’,false), R(X,7),
where X is the set of variables appearing in v, and R(X,Z) expresses in a relation form
the functional equation: Z=g(w). Intuitively speaking, 7 is no more than an

intermediate result.
When u, u’, or v contain derived operators, there is a preliminary transformation in

order to reduce this case to the previous one.

The last step is to plug possible preconditions on f into the Horn clause. If there is
pre(f,x) = p(x) in the original specification, then the final clause is

f(v,z) :-a{u,true), b{u’,false), p(v,irue), R(L 7).
An example is given in figure 3.

C1l: isempty(emptyqtrue).

C2: isempty{append(Q,I).false).

C3: remove{emptyq,emptyq).

C4: remove(append(Q,]), emptyq).-isempty(Q,true).

C5: remove(append(Q.1),append(Q.1)):- isempty(Q,false),remove(Q,Q").

C6: first(append(Q,1),1):- isempty(append(Q.]).false), isempty(Q.true).

C7: first(append(Q.1).J):- isempty(append(Q.1) false),isempty{Q.false), first(Q.4).

Jfig.3 Translation of the queue specification into PROLOG

3.3. Constraint-driven generation of terms

Generally speaking, each clause C derived from the specification is of the form:
£(1,0):- A(I), R(L,0), where A{l) expresses the preconditions and the premises of the
original axiom. Terms satisfying A(I) are precisely those needed at the end of section
2.3 to test this original axiom in a non-trivial way. These terms are obtained by
submitting the goal ?- A(I) to PROLOG.

Consider for instance clause C5 in fig.3 . In the queue example, the relevant terms are
obtained by submitting ?- isempty(Q,false). This yields the general answer

Q = append(Q’,1).

This example is a simple one. Let us consider a more interesting example - insertion
nto a sorted list -, which is completely given in appendix.
Consider the clause C6 in this new example.



270

C8: insert{ap{LX),Y,aplap(l.X},Y}}:- sorted(ap{l.X),true),le(X,Y, true).

The constraints here are : sorted(ap(l,X),true) and le(X,Y,true),
where le ( < ) is described by:

1e(0,X true).

le{suce(X),0,false).

le(suce(X), succ(Y),B):-1e(X,Y,B).
and sorted is described by:

sorted(el,true).

sorted{ap(el,X),true).

sorted{ap(ap(L.X),Y),B):- le(X,Y,true),sorted (ap(L,X},B).

 sorted{ap(ap(L.X),Y).false):- le(X,Y false].

The constraint on C6 is solved with the goal

?-sorted{ap(L,X},true} le(X,Y true). I we limit L to lists of length 1,
L=ap(ell}, the goal becomes

?- sorted(ap(ap(el,l),X).true) le(X,Y true). We obtain the answers:

I=0,X=0,Y=_

I=0,X =succ(0), Y = suce(..);

= suce(f), X = suce(0), Y = suce{..);

ete ...

These answers correspond to the triples <IX,Y> of terms of the form:

< suce™(0) , succ™(0), suce™..) >, with0=m=<n

A standard PROLOG interpreter, using a depth-first strategy, will go into an infinite
branch. It will generaie a collection of solutions with increasing complexity, satisfying
the goal. Unfortunately some branches might be ignored. If we stop execution aiter a
finite number of steps, we do not have all the terms { such that complexity(t)=<k.

To get an acceptable test sets collection, all branches must be explored. This requires
active control of the search strategy . This control is provided in PROLOG exiensions
such as MU-PROLOG and METALOG [Nais 82] [DL 84]. It is then possible to get all the
terms of length less than some bound k.

PROLOG may provide terms with variables. These terms correspond to a class of
solutions. Thus PROLOG automatically provides some uniformity hypotheses. Variables
correspond to meta-constants (see section 2.3) .

Specification Axiom under test
[
Set of glauses Constraint
(goal A(D))
)

level of the test ———> PROLOG

Set of instantiations
satisfying constraint

Test set of level n <
E-algebra

{failure,success]

fig.4 Diagram of lest sels generation



271

The method is summarized in figure 4. For each clause we generate terms satisfying
the constraints of the clause: PROLOG will generate all of them, provided we can
control the exploration of infinite branches. We take this set of terms as a domain on
which we make regularity hypotheses. PROLOG helps us to partition it into uniformity
sub-domains, from which we exiract test data through the use of meta-constants.
Thus, the definition domain has been partitionned into regularity and uniformity sub-
domains. The generated test sets collection is "acceptable” according to the theory
described in section 1.3, provided the search strategy is complete.

CONCLUSION

The idea of using PROLOG, or some extension of PROLOG, to generate test sets seems
promising. In this paper we suggest a method which is based on the theory of testing
presented in section 1. This methed is applicable provided the hypotheses of section 1
are satisfied; the specifications can be iranslated into PROLOG; and it is possible to
control the search strategy in the PROLOG interpreter. Algebraic specifications are
especially well suited to such an application since it is possible to define some’
restrictions on them, such as those presented in section 2, 5o that the two first
requirements of the method are satisfied.

This paper applies the method to positive conditional algebraic specifications using
search strategy control provided by METALOG. The method was applied to test real
time software such as alternating bit protocol implementations and telephone
switching modules. PROLOG provides a partition into uniformity domains. METALOG
is very convenient for defining general search strategies which correspond to
regularity hypotheses: when working with a new specification it is only necessary to
define the complexity of the test data for the sort of interest.

However, to be generally applicable, this method must be improved in two directions.
First the cost in time and space of PROLOG implementations must be decreased. The
main limitations experienced using the examples were those of the computation time
and memory overflows,

Second the class of considered specifications must be enlarged as far as possible in
order to avoid rewriting the specifications for generaling test sets. There is an
inherent limitation to the method since the tested properties must ensure the
existence of an acceptable test sels collection. Such is not the case if there is an
existential quantifier in the property. However it would be possible to consider full
positive conditional axioms if equality were handled by PROLOG. We are working on
such a PROLOG with equality, which extends the class of specifications under
consideration and allows equations between constructors.
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APPENDIX

EXAMPLE: SORTED LISTS

The sort of interest is the sort sorted-list.
The lower sorts are the integer and boolean sorts.

Specification of the type list of integer, with the operation sort:

specif sorted-list =
enrich bool, int by

sort list;
operafions
el: -> list /* empty-list constructor */
ap: list *int -> list /* append constructor */
sorted :  list -> bool
insert : list *int -> list /* defined for a sorted list */
variables
L :list;
X, Y :int;
precondifions

/* The operation insert is used to insert an integer in a sorted list and to get as a
result a sorted list. */

pre(insert,1,X) = (sorted(L) = true)

arioms

Al: sorted(el)=true

A2: sorted(ap(el,X))=true

A3: 1e(XY)=true => sorted(ap(ap(L.X),Y))=sorted(ap(L.X))

Ad: le(X.Y)=false => sorted(ap(ap(L,X),Y))=false

A5: insert(el,X)=ap(el X)

AB: le(X,Y)=true => insert(ap(L,X),Y)=ap{ap(LX),Y)

A7: le(X,Y)=false => insert(ap(L,X),Y)=ap(insert(L,Y),X)

Specification of the integer type:

specif integer =
enrich bool by
sort int;
operations

0: -> int /* construclor */
suce : int ->int /* consiructor */
le: int *int -> bool

variables
XY :int;
arioms
A8:1e(0,X) = true
A9: le(suce(X),0) = false
A10: le(suce(X),suce(Y)) = le(XY)
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Transiation of the specification of the integer type into PROLOG:

C8: le{0,X,true).
C9: le(suce(X),0,talse).
C10: le{suce(X),suce(Y),B):- 1e(X,Y,B).

Translation of the specification of the sorted-ist type into PROLOG:

C1: sarted{el,true).

C2: sorted{ap{elX}, true).

C3: sorted(ap(ap(L,X},Y),BY- le{X,Y,true), sorted(ap(L,X),B).

C4: sorted(ap(ap(L,X), 7). false):- le(X,Y, false).

C5: insert(el,X,ap(el,X}):- sorted(el,true).

C6: insert(ap(L.X},Y,ap{ap(L.X),Y)):- sorted(ap{LX),true),le(X,Y,true).

C7: insert({ap(L,X),Y,ap{Z,X)):- sorted{ap(L.X},true),le(XY false)},insert(L,Y,Z}.

Instantiation sets generated for sorted:

We suppose that integer and boolean sorts are tested.

# For Al, the instantiation sets generated are empty for any n because there is no
variable in this axiom: I, = §§, Vn

Thus an acceptable test sets collection is: T = {(sorted(el}=true), Vn

* For A2, there is no constraint on X. We make a uniformity hypothesis on integer and
obtain the instantiation sets:

L= f<metaint>}, Vn

T, = {(sorted(ap(elX))=true}, X € L  {, Vn

* Fgr A3, the instantiation seis are made of tuples <L, X,Y>. There is a constraint on
XY: 1e(X,Y,true), solved in PROLOG with the goal ?-le (X, ¥, frue).
PROLOG answers:
X, =0,Y, =
X, = suce(0), Y, = suce();
X = suce®(0), Y, = suce™_);
As there is no constraint on the variable L of iist sort, we make a uniformity
hypothesis and substitute a meta-constant for the variable of this sort. Thus we
deduce for a level n the instantiation set:
L= {<metalist,,0,meta-int >,
<metalist, succ(0),succ{metaint,>,
<meta-list,,succ™}{0),succ™ (metarint )>}
T, = {(sorted{ap(ap(l,X),Y))=sorted{ap(LX))), <LXY> €I}

* For A4, the instantiation sets are obtained in a similar way and we gel for a level n:
L= {<metalist, succ(meta-int,),0>,
<metalist, succ{succ(meta-int,)), suce(0)>,

<metalist succ®(metarint,), succ™{0)>]
T, = {(sorted(ap(ap(L.X),Y))=false), <LXY> €1}
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Instantiation sets generated for insert:

* For A5, as the only variable in the axiom is X, we obtain:
I, = {<metaint>}, Vn ‘
T, = {(insert(elX)=ap(el X)), X € I}, Vn

* For AB, an instantiation sei is made of tuples: <LX)Y> with the constraint
le(X,Y,true) on X and Y, and with the constraint sorted(ap(LX),true) on L and X.
These constraints are solved with the goal: ?- sorted(ap(L,X), true),le (XY, true).
PROLOG answers:

L=el,X=0,Y=_,

L = el, X = succ(0); Y = succ(_);

These answers are infinite and L is always equal to el: we are in an infinite branch. With
a standard PROLOG interpreter, we obtain the following instantiation set for level n:
I, = {<el,0,meta-int >,
<el,succ(0), suce(metaint,)>,

<el,succ™(0), succ™(metaint )>}
T, = {(insert(ap(LX),Y) = ap(ap(LX).Y)), <LXY> € I}

* For A7, the instantiation sets are obtained in a similar way with the goal:
?- sorted(op(L,X),true ),le(X, Y, false ).
We obtain the following instantiation set for level n:
I, = {<el,succ(meta-int,),0>,
<el,succ(succ(meta-int,)),succ(0)>,

<el, succ®(meta-int ), succ®1{0)>]
T, = {(insert(ap(L.X),Y) = ap(insert(L,Y),X)}, <LXY> € I}



