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Abstract 

This paper generalizes the multidimensional searching scheme of Dobkin and Lipton [SIAM J. 

Comput. 5(2), pp. 181-186, 1976] for the case of arbitrary (as opposed to linear) real algebraic 

varieties. Let d, r be two positive constants and let PI,..., P,, be n rational r-variate polynomials of 

degree _< d. Our main result is an O(n 2~+*) data structure for computing the predicate [3i (1 _< i _< 

n) [ P#(x) = 0] in O(Iogn) time, for any x E E% The method is intimately based on a decomposition 

technique due to Collins [Proc. 2nd GI Conf. on Automata Theory and Formal Languages, pp. 

13.i-183, 1975]. The algorithm can be used to solve problems in computational geometry via a locus 

approach. We illustrate this point by deriving an o(n 2) algorithm for computing the time at which 

the convex hull of n (algebraically) moving points in E a reaches a steady state. 

1. Introducti[on 

Let F be a family of n hyperplanes in E*, with r taken as a constant. Dobkin and Lipton [DL] 

have shown how to represent F ,  using a polynomial amount of storage, so that whether a given point 

ties in any of l~he hyperplanes of F can be checked in O(logn) time. Our goal is to generalize the 

technique used to achieve this result for the case where F is a family of algebraic varieties. Put more 
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formally, let d,r be two positive constants and let F = {Pt , - - - ,Pn}  be a set of n polynomials of 

degree <_ d in r real variables with rational coefficients. We consider the problem of preprocessing F 

so that, for any x E E ' ,  the predicate [3i (1 < i < n) I Pi(x) = 0] can be evaluated efficiently. If 

the predicate is true, any one of the indices i for which/~(x) = 0 should be reported - -  note that 

requiring the report of all such indices might by itself rule out a fast response. If the predicate is 

false, the point x lies in an open, maximally connected region, over which the value of each Pi keeps 

a constant sign. Assuming that these regions have been labelled in preprocessing, retrieving the label 

corresponding to the region containing x will also be required. In this form, the problem is a direct 

generalization of the well-known planar point location problem. Previous work on point location with 

non-linear boundaries has been limited to the case r = 2, culminating in the optimal algorithms of 

Edelsbrunner, Guibas and Stolfi lEGS], and Cole [Co]. 

Our main result is a data structure for answering any such query in O(logn) time. The space 

and time necessary to construct the data structure are in O(n2"+*), i.e. polynomial in n. The main 

consequence of our result is to open the door to locus-based methods for solving previously untouchable 

problems of computational geometry: the locus approach for retrieval problems involves considering 

each query as a higher-dimensional point and partitioning the underlying space into regions providing 

the same answer - -  see [O] for a discussion of this approach. We illustrate this notion on a specific 

example by considering a problem posed by Atallah in [A]. Given n points in E 2, each moving as a 

fixed degree polynomial function of time, is it possible to compute in o(n 2) time the first instant at 

which the convex hull of the points will enter its final (steady) configuration? We use our generalized 

point location algorithm to solve this problem in the affirmative. 

In the next section (Section 2), we review the necessary algebraic tools and describe the point 

location algorithm in Section 3. As in Dobkin and Lipton's method, the search proceeds by iterated 

projections on canonical hyperplanes. The preproeessing is inspired by Collins' cylindrical algebraic 

decomposition [C], adding some refinements due to Schwartz and Sharir [SS]. Ultimately, the spirit of 

the method goes back to Tarski's fundamental work on the decidability of elementary algebra IT]. In 

the remainder of the paper (Sections 4-5), we present our solution to Atallah's problem and conclude 

with directions for further research. 
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2. T h e  A lgeb ra i c  M a c h i n e r y  

Most of the algebraic notions involved in this work can be found exposed in great detail in two 

milestone papers by Collins [C] and Schwartz and Sharir [SS]. We have tried to adhere to the termi- 

nology used in these papers as much as possible. The fundamental algebraic concepts can be found in 

van der Waerden's classic text [W]; for the specialized treatment of resultants and subresultants used 

in the paper the reader should turn to Brown and Traub [BT]. 

I) Collins' Decidability Theorem 

In 1948, Tarski proved that every statement in elementary algebra (i.e. in the elementary theory 

of real-closed fields) is decidable. The non-elementary procedure given by Tarski was subsequently 

(computationally) improved in a number of different ways by several researchers (e.g. Seidenberg, 

Cohen, Collins, Monk/Solovay, Ben-Or/Kozen/Reif). For the purpose of the present work, we shall 

use Collins' decision procedure as a guiding framework. Let a standard prenez formula be any logical 

sentence of the form (Qkx~)(Qk+lxk+l) . . .  (Qrxr )~ (z l , . . . ,  x,), where Qi is the universal or existen- 

tial quantifier and 5 ( x l , . . . ,  x,) is a quantifier-free formula made of boolean connectives, standard 

comparators, and polynomials with rational coefficients in the real variables z l , . . .  ,xr.  A logical 

sentence is called an atomic formula if it is free of quantifiers and logical connectives. 

T h e o r e m  1. (Collins [C]) Let & be an arbitrary standard prenex formula with r variables, c atomic 

formulas, m polynomials of degree < d, and no integral coefficient of length _> n. Whether ~ is true 

or false can be decided in cna(2d)2='+'m2"+e operations. 

I I )  The Cylindrical Algebraic Decomposition 

A Coll;ns decomposition of E" is a scheme for partitioning E '  in order to discriminate among the 

connected regions of E r induced by a real algebraic variety. Before reviewing the main components 

of Collins' technique, we need define the fundamental notion of cylindrical algebraic decomposition 

(c.a.d., for short). A c.a.d, of E" is a partitioning of E r defined recursively as follows. For r = 1, 

a c.a.d, is a finite set of disjoint open intervals, along with the algebraic numbers bounding them, 

whose union form E 1. For r > 1, a c.a.d. K is defined in terms of a c.a.d. K ~ of E "-I  and an 

r-variate polynomial P ( x l , . . . , x , - ~ , y )  with rational coefficients. Let K ~ = {e~,. . . ,ca}; for each 

ci 6 K ' ,  there exists vl such that for each x = (xl . . . .  , xr-1) 6 el, P(x ,y) ,  regarded as a polynomial 

in y, has vi real roots f/,l(x) < . . .  < fi,~,,(z), each of which is a continuous function in x over ci. 

If vi = 0, set ci, l = ci x E 1. If vi > 0, set ci,2j = {(z, fl,i(x)) [ x e ci} for 1 <_ j <_ vi, set 
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c¢,2j+t = {(x,y) [ x e  e l &  fi , i(x) < y < f i , j+l(x)} for 1 _< j < vi. Also, set ci,i = {(x,y) I x e  

cl & y < fi , l(x)} and cl,2~,,+l = {(x,y) I z e c l  & fi,~,,(x) < y}. Finally, K is defined as the set of 

cells { q , l , . - . ,  c1,2~,1+I,..., % , I , . . . ,  %,2~,,+1}- Informally, the cells can be formed by considering the 

cylinders based at each c E K t and chopping them off with the real hypersurfaee P ( x l , . . . ,  z¢- 1, Y) = O. 

P (resp. K ' )  is called the base polynomial (resp. cylindrical algebraic decomposition) of K. Since a 

c.a.d, is defined in terms of a unique base e.a.d, of lesser dimensio~a, by induction, K defines an induced 
l 

e.a.d for each E k (1 <_ k < r). Incidentally, one should note that each cell of K is "well-behaved, ~ in 

the sense that it is topologically equivalent to an open cell of dimension < r. 

To be of interest here, a cylindrical algebraic decomposition must provide a framework for dis- 

criminating among several algebraic .varieties. So, let F be a family of n functions of r variables. 

We say that a c.a.d. K i s  F.invariant if for each c E K and each f E F,  we have: f ( z )  = 0 for 

each x e c, f ( x )  < 0 for each x e c, or f ( x )  > 0 for each x e c. To prevent topological anomalies 

and thus facilitate the computation, we may enforce a cylindrical algebraic decomposition to be well- 

based, using a probabilistic procedure [SS]. K is said to he well-based if its base polynomial P(z ,  y), 

regarded as a polynomial in y, is not  identically zero for any given value of x in E r-1.  With these 

conditions, Schwartz and Sharir [SS] have shown that each root function fi.,i (defined over ci E K t) 

can be extended continuously over the closure of c,'. This implies that the closure of every cell in K 

is a union of cells. Informally, this fairly intuitive result prevents K from displaying any pathological 

configuration. In particular, this means that every line ( x l , . . . ,  xr-1) x E l intersects the algebraic 

variety P(x,  y) = 0 a finite number of times. These intersections will form the basis of the binary 

search underlying the point location algorithm to be presented in the next section. 

Following Collins' terminology, an algebraic sample of K is a set of points with algebraic co- 

ordinates, one in each cell of K (recall that a number is algebraic if it is a root of a polynomial). 

An algebraic sample is cylindrical (c.a.s) if 1) r = I, or 2) the set of r - 1 first coordinates of each 

point form a c.a.s of K I, the base c.a.d, of K.  If {ci,l,...,el,2v~+l} is the set of cells of K asso- 

ciated with the cell c; of K I, the sample points in each ci,j (1 < j _< 2vl + 1) all share the same 

r - 1 first coordinates. We conclude this string of definitions with a word on the representation of 

a c.a.d. The standard definition of a c.a.d. K = { d l , . . . , d v }  is a sequence of quantifier-free for- 

mulas {¢1(x), ,¢v(,r)} (x = (I~1, . ,xr)) ,  where ~/~i(.T) has only ~1, - ,~g, as free variables and 

di = {x • E" [ el(x) is true }. ~i(x) is called the defining formula of di. 
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I I I )  The Collins Construction 

Let d, r be two positive constants and let F = {PI , . . . ,  Pn} be a set of n polynomials of degree 

_< d in r real variables with rational coefficients. A Collins decomposition, K, is an F-invariant 

cyhndrical algebraic decomposition. The construction of K proceeds recursively. Sharir and Schwartz 

solve the problem by considering the product P = IIl<i<,Pi and using the well-known fact that P (as 

a polynomial in x,) has exactly dl - d2 distinct real roots, where dl is the degree of P and d2 is the 

degree of R, the gcd of P and its x,-derivative. It then suffices to find a c.a.d, of E ~-1 such that on 

each cell the degrees of both P and R remain constant. We follow the same strategy; however, because 

of its prohibitively high degree, we must avoid considering the product P in the actual construction 

of the cylindrical algebraic decomposition. Instead, although we will keep P as the base polynomial 

of the c.a.d., we will use the fact that P is a product of smaller-degree polynomials when carrying out 

the construction. Intuitively, it appears that taking all pair-products P /x  Py should be sufficient, for 

the number of distinct roots change either when two roots of Pi ~merge ~ into one or when a root of 

Pi ~merges ~ wiLth a root of P~-. In the present case, degeneracies among the coefficients (which are, 

we should recall, polynomials in r - 1 variables) necessitates a more careful treatment. 

To begin with, we recall basic facts from elimination theory. Let Q be an r-variate polynomial 

with rational coefficients. We regard Q(xl, . . . .  z,) = ~"]~0</<r Qi(xl . . . .  , x,-1)x~ as a polynomial in 

x, with coefficients in the ring of polynomials in r -  1 variables. Let deg(Q) = p be the degree of Q and 

ldd(Q) = Qp(xl, . . . ,  x , - l )  be the leading coefficient of Q. Following Tarski and Collins, we define the 

reductttm of Q, red(Q) = ~o_<i_<p-1 Qi(xl, . . .  ,x,-l)x~,. We also introduce red°(Q) = Q and for each 

k ~ O, red~+l(Q) = red(redk(Q)). Finally, let der(Q) denote the x,-derivative of Q. Let A(x) and 

B(x) be two polynomials in the real variable x with deg(A) = a, deg(B) = b. The Sylvester matriz 

of A and B is the (a + b) x (a + b) matrix M obtained by placing the coefficients of the polynomials 

zb- lA(x) , . . . ,  zA(z), A(x), z ' - I B ( x ) ,  . . . ,  zB(x), B(x) in consecutive rows of M, with the coefficients 

of z ~ appearing in column a + b - i. For 0 _< i <_ j _< rain(a, b), M~ is the matrix obtained by deleting 

the last j rows of A coefficients, the last j rows of B coefficients, and all the last 2j columns. We can 

then define psci(A, B) (the 3 ~a principal subresultant coefficient of A and B) as the determinant of 

My (see [C] for details). The unique factorization theorem for polynomials implies that A and B have 

exactly j common roots (i.e. j is the degree of gcd(A, B)) if and only if j is the least index for which 

psci(A, B) # 0. This result is at the basis of the recursive construction of an F-invariant c.a.d. 

Next, we define what arguments should be passed to the decomposition algorithm at the second 
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recursive call. To do so, we define the projection of F ,  denoted G, as the union of G~, Gs, G4, with G1 = 

{redk(P) ] P e F & k > 0 & deg(redk(P))  >_ 1}, G2 = {ldef(P) ] P e Gx}, Ga = {psctC(P, der(P))  I 

P e Gt  & 0 _< k < deg(der(P))},  G4 = {pset~(P, Q) ] P, Q e G 1 &: 0 _< k < min(deg(P),  deg(Q))}. 

The notion of projection generalizes Dobkin and Lipton's idea of pairing up hyperplanes: the pairing 

takes place in G4, while G2 and G~ account for the oeeasional losses of rank in each variety. The 

following result is proven in [C]: let K * be a G-invariant c.a.d, of E "-x and let ci be any cell of K~; 

the total  number of distinct roots of P I ( z l , . . . ,  z , ) , . . . ,  P n ( x l , . . . ,  z , ) ,  as polynomials in z , ,  remains 

constant as ( z l , . . . ,  x~-l) varies in ei. These roots form a well-ordered set of continuous functions over 

ei: f~ ,1 ( :~1 , - . . , x , -1 ) , . . . ,  fo,~(xx,.. .  ,:rr-1). As a result, for each c~ E K ~, the par t i t ion of cl x E 1 

induced by the hypersurfaees fi,a(z) = 0 , . . . ,  fO,~(x) = 0 (z E E "-1) defines an F-invariant  e.a.d, of 

E t . 

This provides a recursive scheme for computing an F-invariant c.a.d. K of E ' .  The algorithm 

takes F as input and recurses by calling itself with G, the projection of F ,  as argument. The output  of 

the algorithm will be a c.a.s, of F ,  {/~1,... ,  ~v}, where for each i = 1 . . . .  , v each coordinate of ~i E E" 

is represented by a quantifier-free defining formula. It turns out that  Collins' sophisticated method 

for computing a s tandard definition of K is not really necessary (although doable within the same 

asymptotic running time). Instead, we need an additional piece of information: a correspondence 

between sample points and their defining polynomials in F .  If r > 1, K has a base c.a.d. K t = 

{ca , . . . ,  ct, } (which is G-invariant).  Let {/~[, . . . , /~,} be the c.a.s, of K ' ,  computed reeursively. For 

each i = 1 . . . .  , It, let {illa . . . .  ,/~;,2v,+1 } be the points of the e.a.s, of K,  ordered in ascending mr-order, 

whose first r - 1 coordinates form the point /~. Each point ill,2/ (1 _< j <_ vl) lies on at least one 

algebraic variety of the form Pt(x) = 0. Let l~, /be any such value o f / a n d  let ~;,2j = (a l ,  . . .  , a , ) ;  we 

define m~,./ as the number of distinct roots of Q(y) that  are strictly smaller than  a , ,  where Q(y) = 

Pl,.i(al,... , a , - 1 ,  y) is regarded as a polynomial in y. As par t  of the output ,  we require the sequence 

{ (/~,1, mi,1) . . . .  , (lO,~, toO, ,) } for each i = 1 , . . . ,  It. This sequence will be necessary later  on in order 

to carry out the binary searches underlying the point location algorithm. 

The next step is to show how to derive these sequences from {/~,1,---,/~i,2,,~+1} (1 < i _< It). 

Recall tha t  the lat ter  sequences are provided directly by the Collins construction. Let ¢(x) be the 

quantifier-free defining formula for/~i,~i (1 _< j <_ v~). Trivially, we can test the predicate [3x E Er I 

¢(x) & (Pt(x) = 0)] for each ! = 1 , . . . ,  n, and pick as lid, say, the first value of I found to satisfy the 

predicate. To obtain r e ; j ,  it suffices to express with a prenex formula the fact, Fk, that  z is a root of 
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Q and Q(y) = Pt,,i ( a z , . . . ,  a , - t ,  y) has exactly k distinct roots strictly smaller than z. We can express 

l;  j Fk with the formula R~i ... . . . . .  ,,l,(z) = [(3yz . . . .  ,yk)(Vx) I ((Q(z)) 2 + (Q(y*)) 2 + . . .  + (Q(y~))2 = 

o) & (yl < . . .  < yk < z) & (Q(x) # 0 or z <_ x or (yl - z) ~ + - - -  + (yk - z) 2 = 0)]. The value of rnl,j 

is then given by the unique index k for which R~ ........ ,,k(z) is true, with fil,2i = (1~, z). In analyzing 

the complexity of the algorithm, we assume that only rational symbolic calculations are used during 

the course of the computation. We omit the proofs of the following complexity results, which can be 

found in [C]. Let d be the maximum degree of any polynomial in F in any variable and let I be an upper 

bound on the norm-length of any polynomial of F.  The norm-length of a polynomial is the number 

of bits needed to represent, the sum of the absolute values of its coefficients. As usual, we assume 

that r, d, and l are independent of n. The F-invariant c.a.d, produced by the Collins construction 

consists of O((2d)Zr+'n 2") = O(n 2r) cells. The total number of polynomials defined in the various 

projections introduced in the decomposition is bounded above by O((2d)Zrn 2"-') = O(n 2"-') and 

the degree of each polynomial is at most ~(2d) 2"-' = 0(1). The norm-length of each polynomial is 

< (2d)2"l = O(1). Consider now the c.a.s, of the decomposition. Each algebraic point is represented 

by its coordinates. We can represent an algebraic number in two ways, depending on the interpretation 

we give to it. Either it is a real root ~ of a polynomial A(x) with algebraic coefficients. We isolate the 

root by specifying an interval I with rational endpoints, so a is represented by the pair (A, I) .  The 

coefficients of A (if non-rational) are represented reeursively. In some cases, an algebraic number/~ 

will appear as an element of the algebraic number field Q(a) (recall that Q(tr) is the intersection of all 

the extension fields of Q which contain a,  or equivalently, the smallest subfield of ~ which contains Q 

and a).  In this case, we represent ~ as a rational polynomial B(a). The degree of any polynomial used 

in the definition of all the c.a.s.'s is dominated by (2d) 22~-~ = O(i)  and more interestingly, the norm- 

length of each polynomial is < l(2d)2"÷Sn 2"+' = O(n2"+~). Implementing the Collins construction 

proper requires O(la(2d)2~'+Sn2"+e) = O(n 2"+e) operations. Using Theorem 1 and the previous upper 

bounds, it is easy to see that this running time asymptotically dominates the overhead of computing 

the sequences of the form { (li,1, mi, l ) , . . . ,  (li,v,, mi,u~)}. 

3. The  Gene ra l i z ed  P o i n t  Loca t ion  A l g o r i t h m  

Most of the ingredients entering the composition of the algorithm have already been introduced. 

The data structure DS(F) is defined recursively as follows: it includes 1) DS(G), where G is the 

! C!  projection of F; 2) a c.a.s, of K; 3) a set of v one-word memory cells C z , . . .  , ~ (which we conveniently 
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associate with the ceils of K). Let C [ , . . .  ,C$ be the memory cells associated with DS(G) (in one- 

to-one correspondence with the cells of K # = {cz, . . .  ,cl,}). Each cell C~ (1 _< i _< p) stores a pointer 

to the sequence {li,1,... ,l/,v,} previously defined. Recall that the cell C~ is associated with 2v~ + 1 

cells of K (each projecting exactly on ci). Let Wi = ICY C ! x be the corresponding memory t / , 1 ' ' ' "  7 i ,2vi . .~IJ  

cells, in ascending xr-order. Consider the sequence Si = {li, l , . . .  ,ii,v~} as an ordered set of keys. The 

possible outcomes of a binary search in this set is a sequence of 2vl + 1 keys and open intervals, which 

we put in one-to-one correspondence with Wi. The data structure is now complete, so we can describe 

the algorithm. 

The input is a family of polynomials F,  assumed to be preprocessed as previously described. 

The generalized point location problem to be solved can be stated as follows: "given a query point 

q = (q l , . . . , q , )  E E r, compute the index i such that C[ corresponds to the unique cell of K that 

contains q? Note in passing the practical importance of having a c.a.s, of K. In most cases, indeed, 

the point location problem arises when one wishes to compute a function f from E r to some range 

(e.g. set of integers or reals). The c.a.d. K partitions ~" into regions on which f is invariant. The 

availability of a c.a.s, allows us to precompute the unique value of f over each such region, thus 

reducing the original problem of computing f(q) for arbitrary q E E" to a generalized point location 

problem. If r = 1, the algorithm is trivial, so assume that r > 1. Recursively, we assume that we 

have available the index of the cell C~ that contains (ql, . . .  ,q,-1).  Perform a binary search in Si 

with respect to z, ,  and report the element of Wi corresponding to the result of the search. Without 

concern for efficiency, we implement the generic comparison against ll,i as the two-fold question: 

1. Does Pt,.j(q) = 0? 

2. Is q, strictly larger or smaller than the (m~,i + 1)st real root of Pt,.~(ql . . . .  , q,-l ,  Y), regarded 

here as a polynomial in y? 

The latter question is answered by testing the predicate [iVy) 1 (Y > q,) or -,(P~'~'~...,q, . . . .  ~.;(y))]. 

For K to be well-based ensures consistency in the search process, i.e. the intersection of the line 

(ql , . . . ,q ,±l)  x E 1 and the variety /~,.i always consists of a discrete set of points. To analyze the 

complexity of the algorithm, we use the fact that each polynomial occurring in any projection has 

degree O(1), so from Theorem 1 it easily follows that any comparison can be decided in constant time. 

Since the total number of these polynomials is in O(n z'-I ), so is the length of any sequence over which 

a binary search is performed. As a result, each binary search requires O(2" log n) time. As mentioned 

earlier, the preprocessing costs are in O(n2"+e), both in time and space. We conclude with the main 
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Theorem % Let F = {P1, . . . ,  P,,} be a family of n fixed-degree r-variate polynomials with rational 

coefficients and let S = {x e E" [ lll<i<,,Pi(x) # 0}. In O(n 2,+e) time and space, it is possible to 

compute a set of algebraic points, one in each connected region of S, as well as set up a data structure 

for computing the predicate [3i (1 <_ i <_ n) ] Pi(q) = 0], for any q e E ' .  In O(2" logn) time, the 

algorithm will return an index i such that Pi(q) = 0 if such an index is to be found, otherwise it will 

return the algebraic point associated with the unique region of S that contains q. 

4. Appl ica t ions  to C o m p u t a t i o n a l  Geomet ry  

In [A], Atallah poses the following problem. Consider n points moving in the plane as a poly- 

nomial function of the time. What is the first time their convex hull enters a steady-state, i.e. a 

combinatorially invariant configuration? We will assume that the real roots of any univariate polyno- 

mial of fixed degree with real coefficients independent of n can be computed in constant time with any 

desired precision - -  note that this assumption does not in any way follow from Collins' theorem. The 

naive algorithm consists of computing the steady convex hull in O(n log n) time [A], and then retriev- 

ing the first time each point achieves its steady positioning with respect to each edge on the hull. The 

maximum of all these times provides the desired value. Can this quadratic algorithm be improved? 

We will show that it can - -  at least theoretically. More precisely, we will use the generalized point 

location algorithm of the previous section to produce an O(n 2-~) time algorithm, for a very small 

positive constant e. Let V = {Pl, . . .  ,P,} be a set of n > 2 points in the Euclidean plane, subject to 

algebraic motion. This assumes the existence of 2n univariate polynomials p~,p~,...,pr~, P~ of degree 

d with real coefficients, such that for each i (1 < i <_ n), p~(t) and p~(t) are respectively the x and 

y coordinates of Pi at time t _> 0. We assume that d as well as all the polynomials' coefficients are 

independent of n. Let Pi t , . . . ,P ik  be the points on the boundary of the convex hull of V at time t, 

given in clockwise order with il  < min(i2, . . . ,  i t)  (if Pi~,.. .  ,Plj, coincide, their indices appear in the 

order i i < . . .  < ii, ). Let H(t) be the (uniquely defined) sequence {ix,. . .  ,ik}. It is trivial to show 

that H(t)  converges as t grows to infinity. We define the threshold of H(+oo) as the smallest value of 

t > 0 such that [(Yt' > t)[ H(t) = H(t')]. 

Let p$(t) = ~o<j<aai , f l  j and p~(t) = ~o<j<_dbi,fl j for i = 1 , . . . , n .  Wlog, assume that 

H(+oo) = {1, . . . ,  m} (m _< n) and that all n points (al,o . . . .  , a~,a, hi ,o, . . . ,  bl,a) of ~2a+2 are pairwise 
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distinct. In O(nlogn)  time, compute H(+oo)  [A] and check all pairs (Pl,Pi+l) (1 _~ i _ m) in order 

ffi t to determine the largest to > _ 0 such that ,  for some i, we have p~(to) = Pi+l(o)  and p~(to) = pi+l(to), y • 

note that  we may have to = - c o .  Here (as in the following), index ari thmetic is taken mod m. 

Similarly, we ensure the convexity of the polygon {P l , . . .  ,P,~} by considering the function fi(q) = 

(p~(t) p~+l(t))qz + (p~+l(t) p~(t))qy ffi Y ' ffi E 2 - p i ( t ) P i + l ( t ) .  The point q (qz,qy) E _ - + P, (t)Pi+l(t) = 

lies to the right (resp. on, to the left) of the oriented line (Pl,PlPi+-"-"~) iff fi(q) < 0 (resp. fi(q) = O, 

fi(q) > 0). For each pl (1 < i < m) compute the largest real root of fi+l(pl) as a polynomial in t; 

discard every case where the polynomial is identically zero. Let t l  be the largest value thus obtained 

(or - c o  if there is none), and let tz = max(0, to, t l) .  Trivially, t2 can be computed in O(n) time, 

once H ( + ~ )  is available. All that  remains to be done is to compute the first instants at which each 

pj  (m < j < n) lies inside H(+co)  for good. To do so, we allow ourselves some preprocessing. Let 

q(t) = (qffi(t), %(t))  be a point in E 2, with qffi (t) = ~"~o_</_<,t ~ t J  and %(t)  = ~,o<_i<_a ~ ti" The point 

X = (q~ , . . . ,  q,~, q~ , . . . ,  q,~) belongs to E 2a+z and is independent of n. Let sign(A) = - 1  (resp. = 0,1) 

i f A  < 0 (resp. A = 0, > 0). We de f ine t (x  ) = [mint  ~ ~ [ t > t2 & (Vi;1 < i < m)(Vt' > t) 

sign(fi(q(t))) = sign(f~(q(t')))]. We next describe a fast algorithm for computing t(x) based on the 

generalized point location algorithm of the preceding section. 

For each i (1 < i < m), let F = {~ l (x , t ) ,  . . . , f f , ( x , t ) } ,  where ~ ( x , t )  denotes the ( 2 d +  3)- 

variate polynomial of degree 2d + 1, fi( Eo<_j<_a ~ d ,  Eo<_i<_aq~d). Let K be the F-invariant  e.a.d. 

of E za+3 provided by the procedure described in Section 2, and let K ~ = { e l , . . . ,  c~} be its base e.a.d. 

(i.e. the induced c.a.d, of Eza+2). Recall that  for each cl E K t the procedure provides us with a 

sequence of indices (possibly empty) Si = {/~,x . . . .  ,l~,~,,} with the following meaning: for any given 

X E ci the line X x E 1 provides an increasing sequence of real roots for the tmivariate polynomials 

~,.,  (X, t ) , . . . ,  ~z,,~, (X, t). The interpretat ion of this sequence is trivial: it  gives the indices of the lines 

passing through PiPi+l that  are intersected by the trajectory of X in chronological order (from t = - c o  

to t = + ~ ) .  If the sequence is empty, X never intersects such a line. Once K I has been preprocessed 

for point location, computing t (x)  is straightforward. Locate the cell cl tha t  contains X and check 

whether the sequence Si is empty. If yes, set t(x) = t2. If the sequence is not  empty, the trajectory 

of X intersects the line passing through Pl,..,Pt~.~+l at some time t and does not intersect any other 

such line subsequently. We obtain t by computing the largest real root of ~t~,~, (x , t )  as a polynomial 

in t (which must exist). Finally we set t(x) = max(t2, t). From Theorem 2, we immediately conclude. 

Lernrna  1. In O(m 2~+ ' )  t ime and space, it is possible to construct a data  structure so that  the 
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function t(X) can be evaluated at any point X E g 2a't'z in 0(4  ̀1 log m) time. 

We ar~; now ready to attack Atallah's problem. We use a batching strategy inspired by Yao's work 

on higher-dimensional MST [Y]. Partition the boundary of H(+oo) into p polygonal lines Hz . . . .  , Hp, 

each consisting of c~ edges; we set m = ~ ( p -  1)+r ,  so one of the polygonal lines will have r < ~ edges. 

Each Hi can be regarded as an unbounded convex polygon by stretching its end-edges to infinity. This 

allows us to apply Lemma 1 with respect to each point Pro+z,... ,pn and each po lygon/ /1 , . . . ,  Hp. 

The maximum of the set formed by t2 and the (n-  m)p values thus obtained is exactly the threshold of 

H(+oo). We easily see that the time complexity of the algorithm is in O(p(n -m)4~log~ +p~2~+' ) .  

Setting ~ = (n log n) 1/2"J+9, we conclude 

Theorem 3. In O(n2-Z/2"'+'(logn)X-t/2"'~+') = O(n 2-11~+~) time, it is possible to compute the 

threshold of n points moving according to a polynomial function of time of degree d. 

5. Coneluslons 

The main contribution of this work has been to show that Dobkin and Lipton's method [DL] for 

searching among hyperplanes can be generalized to handle arbitrary algebraic varieties. Our method 

is an adaptation of a quantifier-elimination procedure due to Collins [C]. This feature gives even more 

generality to our algorithm than mentioned earlier. Indeed, we do not have to limit ourselves to real 

algebraic varieties but may consider the more general problem of discriminating among semi-algebraic 

sets.  Recall that a set S _ E" is semi-algebraic if there exists a first-order sentence ~b(xz,..., z,) in the 

theory of real numbers, with xz, . . .  ,x,  as the only free variables of ~b, such that S = {z E E" ] ~i(x) 

is true }. The preprocessing involves eliminating each quantifier by" means of Collins projections 

(one projection per quantifier), and the point location takes place in the induced cylindrical algebraic 

decomposhion of E ' .  A similar technique was implicitly used in eliminating the time variable in the 

preprocessing of Section 4. 

Further work includes the (difficult) problem of drastically reducing the high space-complexity of 

the generalized point location algorithm. Even the case of hyperplanes is still open. Regarding the 

problem of' computing thresholds in steady-state computations, one will observe that our technique is 

general enough to be applied to other problems (e.g. closest/farthest pairs). An interesting question 

is to determine whether ad hoe treatment of these problems leads to more efllcient solutions and thus 

our technique is in a sense too general, or if Theorem 3 is essentially all we can hope for. For example, 
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a continuity argument easily shows that ensuring the local coherence of the steady-state Voronoi 

diagram is sufficient to compute its threshold (e.g. checking the non-zero length of its edges). It is 

then fairly simple to devise an O(n log n) algorithm for computing the steady-state Voronoi diagram 

of n moving points as well as its threshold. Note that the same argument can be made for convex 

hulls if all the points are guaranteed to lie on it. One essential feature of these easy cases is that the 

output involves all the input. Is this in general a necessary condition of efficiency? 

Acknowledgments :  Thanks to Janet Incerpi and Chee Yap for useful comments about this 

manuscript. 
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