
ON THE IMPLEMENTATION OF ABSTRACT DATA TYPES

BY PROGRAMMING LANGUAGE CONSTRUCTS

Axel Poign&

Dept. of Computing
Imperial College
London SW7 2BZ

Josef Voss

Abt. Informatik
Universitaet Dortmund
Postfach 500500
D-4600 Dortmund 50

ABSTRACT. Implementations of abstract data types are defined via an enrichment of the

target type. We suggest to use an extended typed ~-calculus for such an enrichment in

order to meet the conceptual requirement that an implementation has to bring us closer

to a (functional) program. Composability of implementations is investigated, the main

theorem being that composition of correct implementations is correct if terminating

programs are implemented by terminating programs. Moreover we provide syntactical cri-

teria to guarantee correctness of composition.

O. INTRODUCTION

The concept of abstract data types (ADTs) has pushed forward the investigations for a

systematic and formal software design. The given problem is made precise as a set of

data with operations on it. The way from the problem to a first exact description is

often difficult and beyond formal methods. But a lot of work has been spent on ADTs and

algebraic specifications and their relationship to programming languages in the last

years. On the one hand the theory is involved in structuring large ADTs resp. specifi-

cations (parameterization), on the other hand the stepwise refinement of non-algorithmic

specifications in direction of a higher order programming language (implementations) is

investigated.

This paper is about implementation. There are two points of view how to deal with this

subject: a purely semantical reasoning as in the embracing work of Lipeck [7], or a syn-

tax-oriented reasoning on specifications, especially algebraic ones with an initial al-

gebra semantics in mind. The latter approach is taken by several authors like Ehrig,

Kreowski, ADJ-group, Ehrich,Ganzinger,... Their recent work investigates convenient

correctness criteria, compatibility of parameterizations and implementations, and exten-

sions to wider classes of specification techniques.

We join the latter approach and consider yet another notion of implementation of alge-

braic specifications. There are two conceptual requirements we attach importance to:

I. An implementation of SPECO by SPECI has to bring us closer to a program for SPEC0.

2. There has to be a natural way to compose implementations syntactically such that the

correctness criteria are preserved.

It has been Ganzinger [6] who used the word tprogram' for certain enrichments that may

389

be used for implementations. They were characterized by some semantical conditions but

do not look like programs at all. We extend his approach and specify enrichments as

programs where new serts are introduced by domain equations, and new operators are

introduced as k-terms. In that, we restrict enrichments to special, often appearing pat-

terns like products, sums, tree etc. for sorts, and to operator definitions using case-

distinction and recursion.

In chapter 1 we introduce an extended typed k-calculus over a base specification to de-

note our programs. Several properties of the calculus are investigated which will be

used for our main theerem that composition of correct implementations is correct if ter-

minating programs are implemented by terminating programs. The termination condition

may be natural from a programmer's point of view but the difficulty of the proof seems

to be rather surprising. This may cast some light on the difficulty to find sufficient

but not constraining conditions to ensure correctness of composition of the more general

notion of implementation used in abstract data type theory.

We assume that the reader is familiar with abstract data type theory. For the introduc-

tion of signatures, terms etc. we informally use sorted sets M = (Mille I). A signature

is a pair (S,Z) with a set S of sorts and an S × S -sorted set ~ of operators. We use

o:w ÷ s to denote operators with arity w and coarity s. Variables are created from a

fixed countable set X by indexing, x:s is a variable of sort s~ If possible sort indices

are omitted. Tz(Y) denotes the S-sorted set of k-laaas with v ~ s Y being defined

as usual (Y is a S-sorted set of variables)~ Syntactical equality is denoted by ~. Sub-

stitution is defined as usual. A Z-gqu~on is a pair (t,t') with t,t' e Tz(Y) of the

same type. A spaci~c~ion is a tripel (S,Z,E) with a signature (S,Z) and a set E of

Z-equations. The congruence on T2(Y) generated by the equations E is denoted by =.

We use the following notation, similar to CLEAR [2]:

ZFOUR0 = sorts Z4
ops 0,1,2,3: ÷ Z4

+,-,*: Z4 Z4 + Z4
pred, suc: Z4+ Z4

eqns 0 * I = 0 0 + I = I 0 - I = 3 pred(0) = 3 suc(O) = I
0*2=0 0+2=2 0-2=2

@ O

i pred(3) = 2 suc(3> = 0
3*2=2 3+2=I 3-2=I
3"3=I 3+3=2 3-3=0

ZFOURI = enrich ZFOURO by sorts -
opns -
eqns (z * 2)* 2 = 0

(These specifications of ~/4 which will be used below, but do not constitute what we

consider to be a typical specification). Apart from the notation we will as well use

the nomenclature of [4].

390.

i. PROGRAMS OVER A SPECIFICATION

1.1 MOTIVATION

Enrichments of specifications occur if we construct complex specifications out of smaller

ones, or in implementations as studied by Ehrig et al. [3,4]: SPEC = (S,Z,E) is extended

to SPEC' = SPEC + (St,Z',E ') where the added part (S',Z',E ~) need not to be a specifica-

tion. The partition is used to structure the specification. Thus SPEC and SPEC' should

depend on each ether in an easy way. There are different notions to catch this semanti-

cally:

I. Consistency: No identifications of old constants: t,t'~ TZ(~) , t = t' --> t = t'
E+E' E "

2. C~pfagana~s: No new constants on old sorts: t g T~+Z~(~),s~S =>~t'~T (~): t =E+E ,t'-

3. P~sisga~cy: I. and 2. hold for terms with variables of S-sorts.

Consistency and completeness together guarantee the protection of the SPEC-part in the

enrichment. Persistency is stronger in that the introduction of so-called derivors is al-

lowe~on S-sorts only. To check wether one of the conditions holds is difficult, in ge-

neral undecidable.

One observes that over and over again the same constructs are used for enrichments. The

new sorts represent lists, trees etc, the added equations are (often primitive) recur-

sive schemes to define the new operators. The restriction to those standard constructs

yields a syntactical notion of enrichment which is transparent and of course not exactly

equivalent to the semantic ones above. The constructs to be permitted will be both, ex-

pressable in higher order programming languages and definable by algebraic specifications.

One can state that the operators to be defined are recursive programs in an applicative

language with recursive data Structures, which uses the given specification, resp. the

thereby defined ADT, as a kernel of basic data structures, and functional procedures on

them. For new operators a ~-notation will be introduced which underlines the affinity

to languages like LISP. The defining equations are replaced by rewrite rules of a typed

~-calculus.

We may lead a longer discussion about the definite choice of constructs to be used: What

is typical for higher order PL's and algebraic specifications? What constructs are at

least needed? Therefore the following choice is somewhat arbitrary. Some nice properties

to be proved below may justify it.

The language A contains the following elements:

I. Produc~: In higher PL's products appear as records or classes. In algebraic specifi-

cations we write

PROD = enrich SPEC by sorts prod-a-b

ops p: prod-a-b ÷
q: prod-a-b +

pair: _a _b + prod-a-b
eqns p(pair(x,y)) = x, q(pair(x,y)) = y

pair(p(z),q(z)) = z

391

2. S~ : Variant records in PASCAL and subclasses in SIMULA correspond to sums.In a

specification we write

SUM = enrich SPEC by sorts sum-a-b
ops inl: a + sum-a-b

inr: b + sum-a-b

Besides the embeddings we need a means to define functions on the sum by case distinc-

tion. In PASCAL we have the case statement. For specifications we use

SUMgh = enrich SUM by ops f: sum-a-b + c
eqns f(inl(x)) = g(xT, f(inr(y)) = h(y)

where we presume that a,b,~, g:a + £,h:b + c are in SPEC.

3•/~cu~i~ 7yp~s : In PASCAL we can describe recursive data structures using recursive

schemes of records and variant records• If a PL does not allow this a controlled use

of pointers can help. As a means for the description of recursive types we introduce

domain equations, for example

tree = I + (tree x entry x entry) expr = term x operator x term
term = identifier + expr

Again entry, operator and identifier are given sorts. Senseless schemes like

d = dx d are excluded•

4.1~c~sion : This is the essential construct which, in combination with the case distinc-

tion, allows to write npn-trivial programs, but brings along the problems of non-

termination. In specifications recursive schemes are those definition schemes which

for each new operator symbol o have one equation with O(Xo,...,Xn_ I) on the left

and an arbitrary right hand side. In our language we will use a fixpoint operator to

denote recursive operator definitions.

1.2 RECURSIVE TYPES OVER BASE SORTS

For the set S of a given specification (S,Z,E) we construct products, sums and recursive

types as congruence classes of sorts terms over S:

Let DTn(S) denote sort terms with type variables do,...,dn_ I constructed as the smallest

set such that
1. S ~ DTo(S) , 1 g DTo(S)

2 . DTn(S) ~ DTm(S) for n ~ m

3. d. a DTi(S) i ~ I
l

4. t,t' g DTn(S) => t + t', t x t' E DTn(S) .

Now take the recursive type scheme d o = to(do,...,dn_1)

dn_ I = tn_1(do,..,dn_ I)

with n variables and n equations. We introduce names for the n solutions of this scheme

by D~(to,...,tn_1), i g~:={O,...,n-1}. We get arbitrarily nested schemes if we regard

these solutions as new constants• Thus the defition of DTn(S) is completed by the line

5. to,...,tn_ I g DTn(S) => D~(to,..-,tn_ I) g DTo(S)

392

i) as the solution of the respective recursive scheme the To obtain the Dn(to,...,tn_ 1

type terms are to be factorized by the least equivalence relation ~ containing

• ÷ D~ -1 I. O~(to,...,tn_1) ~ ti[do +D~(to,...,tn_1) ,dn_ I (to,...,tn_1)] for is

2. t i~ t~, is2 => t o + t I ~ t' + tJ , t o x t I ~ t' x t~
-- 0 • 0

3. ti~ t ~, iSn => D~(to,...,tn_1) ~ D~(t~,.. t') for jsn
- "' n-1 -

In fact, we state that ~ is a congruence. Hence the operators _+-, _ x_ and D~(...)

are well defined on equivalence classes.

~t is reasonable to restrict our attention to accgpta~g typas, i.e. types whith non-

empty solution (d = d+ d is not useful). We define acceptable types to be those types

t such that t ** I with regard to (where -~is the refl.,trans.,substitutive & compa-

s ÷I for sa S tible closure of÷).

t + I or t' + I => t+t' ÷ I

t + 1 and t r + I --> tx t' ÷ I

D~(t o ,tn_ I) + ti[d i + D~(to,...tn_1),igB] •

Remarks: 1. The whole calculus in the rest of the paper is essentially the same if we

do not restrict to acceptable types, but the proof technique has to be extended

sometimes. For instance the following property will be used:

2. The maximal decomposition of an acceptable type into products is finite.

DamOn: Let ATn(S) ~DTn(S) denote the set of acceptable types with at most n vari-

ables.

The set of base ~p~ over S is given by BType(S) := ATo(S)/~

The set of (AXgAg~ order) types is defined to be the smallest set Type(S) with

1. BType(S) ~ Type(S)

2. t,t' s Type(S), t or t' ~ BType(S) => t + t', t xt, E Type(S)

3. t,t' s Type(S) => t ~ t' s Type(S).

1.3 THE PROGRAMMING LANGUAGE A

Compound operations will be denoted by A-terms. The set Type(S) is used to type the

terms where S is a given set of sorts. The set FV(t) of free variables of a A-term t

is defined simultaneously:

For a given signature (S,Z) and a set of variable names X we define the language Az(X),

or for short A, to be the smallest Type(S)-serted set with

1. xeX, ssType(S) => x:s SA
S

2. ~ s A 1

3. tig Asi i sn, ~:s ÷ s s
' o" ""Sn-1

=> O(to,...,tn_ I) g A s

4. inls,s~ s As÷s+s, , inrs,@ ~ As' +s+s'

FV(x:s) =={x:s}

FV(G(to, • " • ,tn_ I)

:= [J FV(ti) iEn-

FV(inls,s,) := FV(inrs,s!) :=

393

5. Ps,s' g Asxs'÷ s' qs,s te Asxs' ÷s'

6. t ieAsi , ie_2 => <to,t1> e As oxs I

7. t,t' g As, ,

=> case x:s.t, y:s'.t' esac e A
S + s t +s"

8. t e As, => kx:s.t e A s+s,

9- t e As+s" t' ~ As => (t t') C As,

10. Ys C A(s +s)÷s

FV(Ps,s,) := FV(qs,s,):= @

FV(<to,t ~) :: FV(t o) u FV(t I)

FV(case x:s.t,y:s'.t' esac)

:= FV(t)\{x:s}uFV(t')\{y:s'}

FV(Ix:s.t):= FV(t)\{x:s}

FV(t t'):= FV(t) u FV(t')

FV(Ys):=

Substitution is defined as usual in h-calculus. We consider terms modulo a-conversion

[I]. For convenience indices are omitted if the typing is obvious from the context. As

standardization we assume that ~ is the only term of type I.

£x~#~s: For better readability a more general notation is allowed in that we use many-

fold sums and products, more than one parameter for abstractions and case-statements,

omit brackets, and write t(t') instead of (t t~).

We define some 'functions' on non-empty lists and trees over a sort entry:

list = entry + (entry x list)
tree = entry + (entry x tree) + (tree x entry) + (tree x entry x tree)

Attaching to the left side of a list is given by

latt ~ ~e,l.inr <e,l>

For attaching to the right side we write a recursive program

ratt ~ Y(~f.ll,e.ease ee.inr<ee,inl(e)>, ee,ll.inr<ee,f<ll,e>> esac (i))

Other functions on lists and trees are

conc m Y(~f.~l,l'.case e.ratt(l,e), e,l".f(ratt(l,e),!") esac (I'))

inorder m Y(If.~b.case e.inl(e), e,b'.inr<e,f(b~)>, ~,e.ratt(f(b'),e),
bt,e,b".conc(f(b~),inr<e,f(b")>) esac (b))

If we add some syntactical sugar - for instance replacing fixpoint operators by recur-

sive procedures and using type declarations - we would get a more or less standard

procedural language. But for proof theoretic reasons we prefer the more clumsy A-notation.

1.4 REDUCTIONS ON A

We use a reduction system to define the operational semantics of our language. It should

be remarked that an equivalent algebraic semantics can be defined [8]. Hence all argu-

ments hold in a purely algebraic framework compatible with abstract data type theory.

But in proofs we heavily rely on operational properties.

We define a special notion of reduction denoted by YBDE. The equations E of the under-

lying specification (S,Z,E) are understood as rewriting rules from left to right. We

assume the following restrictions on E:

(El) (t,t t) e E => FV(t') cFV(t)

(E2) ~ is Church-Rosser(E trans.,refl.,substitutive & compatible closure of D.

394

(E3) (t,t') g E => x g FV(t) appears only once in t

(E4) (t,t') ~ E => t is not a variable.

In addition we require that TZ(~) s is non empty for all s s S.

D ~ o ~ : ÷ is the smallest (Type(S)-sorted) relation on A such that

E I. (t,t') a E, tiaAz(X)si,i~ ~ => t[xi:si + ti,is~] + t' [xi:si + ti,is£]

{ 2. (kx:s.t)t' + t[x:s+t']

I 3- case x:s.t,x':s'.t' esac (inl t") + t[x:s + t"]

B case x:s.t,x':s'.t' esac (inr t") + t[x':s'+t ~]

4. p <t,t'> + t q <t,t'> + t'

Y 5. (Yt) + t(Yt)

q ~ 6. kx:s.(tx) + t if x:s ~ FV(t) , ~x:1.(t~) + t

L 7. <pt,qt> + t

We use -~ to denote the reflexive, transitive and compatible (with the structure) closure

of +. If we refer to a specific subset of rules we index by +¥BE' +E' +6""

~p~: According to the generalized notations for terms we have generalized reductions.

For the constant T ~ in2<el,in4<inl(e3),e2,in1(e4)>> where el,...,e4 are given

constants of type entry, we reduce the term 'inorder(T)~

inorder(T) + (kf.kh.case...esac(b))(inorder)(T)

+ kb.case e.in1(e), e,b".in2<e,inorder(b")>, b'e.ratt(inorder(b'),e),
b',e,b".conc(inorder(b'),in2<e,inorder(b")> esac (b)(T)

-~ case...esac (in2<el,in4<in1(e3),e2,in1(e4)>>)

-~ in2<el,inorder(in4<in1(e3),e2,in1(e4)>)>

-~ in2<el,conc(inorder(in1(e3),in2<e2,inorder(in1(e4))>)>

~* in2<el,conc(in1(e3),in2<e2,inl(e4)>)>

-~ in2<el,in2<e3,in2<e2,inle4)>>>

l?.g~'~a.~ on the use of the equations E:

I. The essential use of the equations in the calculus is as 'stop-equations'. Besides

B-reductions E-reductions are able to eliminate Y's and thereby stop a recursive

calculation.

2. It is not realistic to require (E1)-(E4) to hold for all specifications. But we

can take the following point of view: The use as stop-equations is a kind of

error recovery. Like other authors we may distinguish a certain subset of E to

be allowed for this purpose. Only these special equations may be used outside

Tz(X) in that arbitrary terms (especially those with Y's) are substituted for

the variables. Then we require (EI)-(EA) only to hold for this subset.

As usual Church-Rosser property (CR), weakly Church-Rosser (WCR), finiteness of reduc-

tions are introduced. For illustration of such properties we use commuting diagram [1].

Unbroken lines stand for given reductions, dashed lines indicate when existence of

reductions is claimed.

395

1.5 PROPERTIES OF THE CALCULUS

In this section we consider severalproperties of reductions which will be useful in

proofs on composition of implementations. Because of lack of space only proof ideas can

be given. For full proofs the reader is refered to [9] (or to [8] for an extended version).

Terms of special interest are those which are equivalent to a Y-free term, especially

those of base types.

D~/in~on: t c Az(X) is called~i/ng :<=> ~t' E A Z (X): no Y occurs in t' & t = t'

Closed terms of base types are called ~a~a conzianls (BC).

(= is the symmetric closure of -~)

Next we distinguish a class of Y-free BCs of a very simple form.

IDa/in, on: BOs only built up by inl,inr, <_,2, @ and TZ(@) are called no~g forums (NF).

Faels: All base types have normal forms. Here we use that TZ(@) s is non empty, and the

restriction to acceptable sort terms.

It is undecidable wether a term is terminating or not.

Next we will state some properties of the calculus in general, and then some special

results about terminating BCs. It is essential for the proofs that there is no mixing-

up of types, especially that a function space is not a product or a sum, and that the

requirements (EI)-(E4) hold for equations. The proofs are restricted to terms of accep-

table types but the proofs can be extended (compare [8]).

1.1Propo~z~io~ B-reductions are finite. Y~E is CR.

For the first statement we adapt the proof of Gandy [5]. For the Church-Rosser

property use generalized (simultaneous) l-step-reductions -~ as in [I]. To avoid

difficulties with E-reductions we generalize E-redices to maximal connected Z-parts

of a term and regards+E-reductions as one step.

1.2 Propo~ilion: q-reductions can be shifted to the end: t~+yBnE t' => ~t":t-~y~Et~'~t'

Introduce a generalized l-step-reduction -Sq .Then check t -Snt' ÷yBE t" implies

t-~yBE t,,,-~_qt' by case distinction on the origin of the YSE-redex in t.

1.3 Proposition: t ~q t2.

Y~ i + z~
tl "'" +ysEt9 +nt4

By a more complex redex marking we can show I ~ ~ "

which yields the result by a diagram chase Y~E ~ ...~ VYBE

together with 1.1 and 1.2. ""'~Y~

(1.4 Proposilion: 8q is finite CR)

396

1.5 PrO#osiliOa: t terminating => ~t': t' Y-free and t-~y8 E t'.

We have a Y-free tn and reductions t ~ tO ~-tl -~ t2 ~- ... ~* tn. With 1.1

and 1.3 we stepwise construct shorter chains beginning at the right side. We do

not need q-reductions as they (by 1.3 at the end of a reduction) cannot eliminate

Y~S.

1.6PrOpos///o~: t terminating BC => ~t': t' in NF and t +~Y 8 E t'

Because of 1.5 it is sufficient to show that Y-free BOs are 8-reducable to a term

without Y, ,case,p,q. Now by a case distinction prove that a Y-free BC contains

a ~-redex as long as it contains a ~,case,p or q.

1.7 Propos/~/on: t terminating BC => St': t' in NF and t -~Y8 t" ~E t'.

We have to show that in the situation t +E ~ -~YB t2-~E t3 with t3 in NF,E-

reductions can be shifted to the right. If t3 is in normal form then we can assume

that Y -reductions are of such a form that they consist only of q~y and -~8

steps of maximal breadth. Such reductions treat syntactical equivalent subterms

of tl in the same way. Then the E- and the Y -reductions are exchangeable (-~E

may become a "~E -step).

(1.8 Proposilio~: t,t' in NF, t = t' => t =E tl)

1.4 is used for the proof of 1.9 which we do not need for the following. But 1.8 proves

that the enrichment of Tz(X) to At(X) is consistent. But there are new constants on

S-sorts (at least Y(Ix:s.x), hence the enrichment is not complete nor persistent.

2. IMPLEMENTATIONS

2.1 MOTIVATION AND DEFINITION

The notion of implementation makes the idea of stepwise refinement precise. Program

development is the construction of a hierarchy of specification levels with decreasing

abstractness. An implementation builds a bridge between two neighbouring levels with the

aim to come closer to a program. If we have two specifications SPEC0 and SPECI, an

implementation of SPECO by SPECI should preserve correctness of SPE60-programs. We

might call this idea 'relative programming'; the program is developed on the SPECO-level

but run on the SPECS-level. Implementations are given by SPEGS-data structures and SPEC1-

programs implementing SPEC0-sorts and SPECO-operators respectively. This proceeding seems

to capture the task of a programmer who has to write a program realizing a data type.

De/inilion: An imp~_~ni~lion of SPECO = (SO,ZO,EO) by SPECI =($I ,El ,ES) is given by a

pair of maps I = (Is: SO ÷ ATo(S]), It: ZO + AZI) s.t. I~(~) g Asox. ..xsn_1 +s

if o:so...Sn_ I ÷ s £ Z. We extend I Z to all terms in Tz(X) by

Iz(x:s) := X:Is(s) Iz(~(to,.--,tn_1)): = TZ(C) <It(to), I~(tn_1) >

where IS := ~° I S with the factorization ~: ATo(SI) + BType(S1).

397

Ex~pla: Assume that we have a standard specification of stacks and arrays [3,4]. Stacks

are implemented by arrays plus a pointer as follows

ARRAY impl STACK by

sorts stack = array× nat

ops push = ks:stack,n:nat.<add(p(s),suc(q(s)),n),suc(q(s))>
pop = ks:stack.<p~,pred(q(s))>

empty = <nil,O>
top = ks:stack, p(s)[q(s)]

(the notation hopefully is self-explaining. Sorts and operators which are implemen-

ted identically are omitted).

The given syntactical definition has to be completed by semantical constraints which

express the correctness of an implementation. We of course intend that the given example

is correct. The example illustrates two features of the notion of correctness to be

defined:

1. We allow manifold representation of data. An element of type stack may be represented

by different elements of type array× nat, especially by arrays which differ in com-

ponents above the pointer.

2. Not all elements of the implementing data type are used. In the example arrays with

non-trivial entries under inder 0 are not used to represent stacks.

D~/~n~on: I is called co~ct~ff

1. I is con~L~ :<=> Iz(t) = Iz(t') implies t =EO

2. I is t~ng:<=> Iz(t) is terminating for all

There is a close connection to the notion of correctness in the work of EKP [3], espe-

cially to their 'term version'. Consistency corresponds to their RI-correctness, and

preservation of termination to OP-completeness. EKP add the requirement that the SPEC1-

part remains unchanged in SORTIMPL. In our approach we have to examine what happens to

Tz-terms in A Z. Property 1.9 guarantees that there are no additional identifications

on Tz(~)-terms. On the other hand the only new terms on S-sorts that are not equivalent

to Tz(~)-terms are non-terminating ones. But those we regard as error-programs which

should not be used for implementations. In a more recent version [4] EKP restrict their

SORTIMPL to special patterns which describe exactly those types over S which can be

defined by recursive domain equation schemes in our approach. The equations EKP allow

in their OPIMPL specification to implement operators are much more general than our

recursive programs.

2.2 COMPOSABILITY

The most important property expected to hold for implementations is the composability

of the single steps to one large implementation which then yields a computable program

for every operator of the very first specification level.

We want to compose implementations II of SPECO by SPECI and I2 of SPECI by SPEC2.

t' for all t,t' s TZO(~)s,ssSO

te TZO(¢).

398

Syntactically we intend the following: A ZO-operator d:w +s has the SPEC1-implemen-

tation II (d). Now replace all Z1-symbols in II(a) by their SPEC2-implementations under

I2. We obtain a SPEC2-program which is the implementation of ~ in SPEC2.

For this purpose we have to extend I2 to all terms of AZI (X). The composition of this

extension with II then yields the implementation of SPECO by SPECI.

Let I = (Is,I Z) be an implementation of SPECO by SPECI. We extend I S in the obvious

way to IS: ATe(SO) + ATe(St). This defines a mapping IS: BType(SO) + BType(S1) (using

properties) which finally extends to I~:Type(SO) + Type(S1). congruence

~. (x) + A~2(x) by We extend I Z to I Z. AZI

l (xsl =x@l i (¢i
I~(<~(to,---,tn_ I)) := Iz(a)<I~(to), I~(tn_ I)>

I~(Ps,s,) := pi~(s),i~(s i) and similar for q, inl,inr

z~(xx:s.t) := xx:z~(s).l~(t)
and so on preserving the structure of programs.

Da/.inilion: For given implementations II of SPECO by SPEC1 and 12 of SPECI by SPEC2

the synlaclical compo~illon I2.II is defined by I2.IIs:= I2 S o II S and

12.11Z := 12Zo liE.

Fat/: 12.11 is an implementation of SPECO by SPEC2.

It should be noted that our notion of composition of implementations is different to

that of EKP [4] as there SPECO is implemented using SPECI as a hidden part of the

composed implementation while in our approach the intermediate specification disappears.

Questions: Is the composition of correct implementations correct again?

Do the consistency- and termination-conditions still hold if extended to all ter-

minating BCs?

The answers are in general negative. The following examples shows that the composition

is not necessary terminating:

The program p over stacks

p ~ Y(Xf. Xs.pop(push(empty,top(f(s)))))(empty)

is a constant of type stack and is equivalent to empty. But its implementation

I~(p) as a program over arrays with pointers is not terminating:

Iz(p) Z Y(Xf. Xs.<add(p<nil,O>,..>)(<nil,O>)
~+ pl ~ Y(Xf. Xs.<add(nil,suc(O),p(f(s))[q(f(s))]),O>)
~* <add(nil,suc(O),p(pl)[q(pl)]),O>

We never get rid of pl and the Y's in it.

But we can prove the following

2.1 Ma/n 7A~op~_~: If 11 and 12 are correct implementations and

then I2.II is correct.

12.11 is terminating

399

We outline the idea of the proof. We use = and -~ambiguously for reductions with

regard to E1 and E2-equations.

Let t,t I S~O(~) with I2.I1(t) = I2.I1(t') both terminating. As II is correct, It(t)

and I1(t') are terminating BCs. We have to show that they are equivalent in AzI(X).

Then the consistence of II yields t = t'. Therefore it is suffient to prove

Claim: If I2 is correct, t,t's A~ (X) are terminating BCs, I2(t) = I2(t T) both termina-

ting, then t ~ t t.

The proof of the claim takes several steps where we use the properties of the calculus

stated in chapter I. For convenience we use I instead of I2 (Remark: The claim states

that correctness extends to terminating programs which are implemented by a terminating

program with regard to an arbitrary correct implementation).

Step I: We can assume that all terms are ~g~-fo~ (wf) in that Y's only occur in the

form Y(t) (idea: replace all Y~s by YY ~ Y(~F.~f.f(F(f)))).

Step2: In terminating terms we can add arbitrary many Y-reductions:

t -~t' -~t"
~ t'" where t" is Y-free.

Step 3: Terminating computations with wf BCs have without restriction of generality the

following form: t ~ t' -~B t" -~ t" such that (i) t" is maximal B-reduced, and
E

t'" is in NF.

Step 4: We can synchronize the reduction of t and i(t) as follows:

t -~y t' -~8 t" -~ El t'"

l(t)-~y l(t') **~l(t") -~y~nE 2 t ~ with

I. t -~t" is given as in step 3, t"' is in NF.

2. There are no Y-reductions of those Y's inherited from t in l(t") -~t ~.

3. t" and l(t") have the following form

t" ~ / K l(t") z / K

KI ... Kn I(KI) ... l(Kn)
/\ /\ / \ / \

K11 ... Kit I Knl ... Knr n K11 ... K1r I Knl ... Knr n

where a) the Ki's only contain Z1-operators, K contains no Z1-operators (hence

only A-operators inl,inr,<_,_>), and the Kij have a A-operator in the

root.

b) The terms Kij are no more B-reducible (thus contain a Y)

c) Up to sort indices the terms K and Kij are the same in t" and l(t")

d) If we replace the subterms Kij of Ki by suitably typed variables, resul-

ting term being Ki(~), Ki(~) is El-reducible to a TZI(~) term.

Step 5: In the above situation the terms l(Ki(~)) terminate. The reason is that the

Y's in the Kij's inherited from t" need not to be reduced in l(t") -~t' and that

400

there ~re no B-redexes in the Kij's, hence the Kij's do not interfere with the

computations on the I(Ki)'s. Therefore we may replace the Kij's by arbitrary sub-

terms of appropiate sort.

Step 6: - The final argument:

We take the situation of the claim and construct for both s and t the synchronized

computations. We have

I(s") ~ Ks I(t") ~ Kt

/\ /\
I(Ksl) ... l(Ksn) l(Kt]) ... I(Ktn)

I(s") and I(t") are reducible to the same term, and Ks ~ Kt K: K (by step A,3a).

Hence
l(s) I(t)

/ K ~ for some ti in NF (use 1.6).
tl ... tn

Now replace, as sketnhed in step 5, the subtrees Ksij and Ktij by type matching

terms of TZ0(~) (which exists for any sort by general assumtion on SPEC, compare

sedtion I.A). We obtain terms ~ and ~ of the form

~ K ~ ~ K

s-Y ... s-~ ~ ... t~

where si,ti s TZO(~). As the Ki(x) terminate we have s ~ s and t = ~. To show

s ~ t we have to prove the equivalence of ~ and K~:

I(B-~) ~l(Ksi) = ti ~ l(Kti) ~ I(~). The consistency of I gives us ~i=Ki.

This completes the proof of the main theorem.

gx~#~: (Compare step 4) ZFOUR0 implements ZFOUH1 (cf. introduction). The constant

(Y(kx.3)(1)~2)~ 2 is reducible to 0 with regard to ZFOUR0 and ZFOUR1. But in

ZFOURI we need no Y-reduction, in ZFOUR0 at least one. Thus additional Y-reductions

may occur on the implementation level.

The result is not completely satisfactory so far. We would rather have a criterion that

can be checked for a single implementation, and which guarantees correctness of compo-

sition. The proof of 2.1 gives a hint: It is sufficient to require that if a term t does

not depend on one of its arguments x, then the implementation of t does not depend on

x as well.

De--on: t is called l-~p~a~Agve of t' iff there exists a t" such that t" ~ t'

and t =l(t").

An implementation is called strong iff for some 1-representative of t' E TZ0(~)

there exists a term t" with t =t" and FV(t") = ~ .

I?~: I is strong if SPECO has only equations with FV(t) = FV(t').

Pro#os~on: Strongness is preserved by composition.

401

2.2 7Agoa~w= If

We only have to show that

there exists a computation

t" ~ K

KI ... Kn

12 is strong and correct, and 11 is correct then I2.II is correct.

I2.II is terminating. Take a terminating BC te A n (X). Then

t-~t " -~ t'" such that t" is in NF,and t" has the form
El

with Ki(~) ** tie TZI (~)

and a computation 12(t) -~ 12(t") ~ K

I2(K1) ... I2(Kn)

I2(Ki(x)) is a I2-representative of ti. As I2 is strong I2(Ki) does not depend on its

subtrees. Again we replace the subtrees by terms from /~ TZI (~). Let the resul-

ting terms be t-T. As I2 is terminating I2(~) is terminating and equivalent to I2(Ki).

Then the whole term I2(t) is terminating.

£x~#~: The implementation of stacks by arrays is not strong as

t ~ pop(push(empty,n)) = empty does not depend on n. But its implementation

l(t) ~ <p<add(p<nil,O>,suc(q<nil,O>),n), <add(nil,suc(O),n),O>

depends on n. We can do better and change the implementation of pop to

pop ~ ls:stack.<add(p(s),q(s),O),pred(q(s))> ,

in that we erase the entry on the top and replace the pointer. Now the implementa-

tion is strong (assuming that all entries of the nil-array are O's).

/~_a~: Strongness rules out a phenomenon well known in programming: If boolean expres-

sions of a programming language are implemented evaluation strategies are used like

"To evaluate 'x and y', first evaluate x. If x evaluates to 'false' then 'x and y'

evaluates to false. If x evaluates to 'true' evaluate y". Different evaluation stra-

tegies of this kind yield different results with regard to non-termination. As eva-

luation strategies may be expressed by equations ("false and y = y") choosing diffe-

rent sets of equations to characterize the same (initial) algebra may change the

intensional character with regard to 'infinitary' or 'non-terminating' terms. Strong-

ness states that the intensional character of the equations is to be preserved to a

certain extend.

CONCLUDING REMARKS AND OUTLOOK

1. An implementation step makes a part of a specification more computable. A typical

situation is that SPECI is an enrichment of SPECO, and the enrichment is to be imple-

mented by programs. Considering parameterized data types may support an analysis of

such a situation.

2. Other programming language constructs may be added. In [8] we add a fixed boolean

sort and if-then-else-fi-constructs for any type with the restriction that anySPEC-term

of sort boolean is equivalent to 'true' or 'false'. We then obtain similar results

without any restrictions on the equations E of the base specification.

402

3.As already pointed out our notion of composition is different to that of EKP [4] which

to our opinion is somewhat counter intuitive. For instance there the identical implemen-

tation of SPEC0 by SPECO not always is a unit with regard to composition.

4. At a first sight there seems to be little connection to the work of Lipeck [7] but

in fact the extension of a data type by recursive data structures is 'conservative' in

terms of [7(4.12)] which guarantees compatibility of construction and realization steps

[7(4.11)]. Now the termination condition allows to reduce any terminating term to a

normal form or, with other words, we prove that the respective functor is conservative.

5. The observation of 4. may indicate a more methodological aspect: The syntax of an

implementation should be flexible to allow formalizations close to the given problem.

This freedon has the consequence that correctnesss proofs (that functors are conserva-

tive) are more complicated. The situation is well known from programming languages.

6. (Added when preparing this version) There seems to be a close connection to [10]

where recursive schemes are used as 'programs'. If we add (as in [8]) a fixed boolean

sort and if_then_else_fi-operators our notion of programs seem to cover that of [10]

(apart from the semantical side conditions). The in [10] indicated conditions for

correctness of compositions seems to be a semantic counterpart to strongness. The con-

nection needs further investigation.

REFERENCES

[I] Barendregt,H.: The Lambda Calculus, North-Holland 1981

[2] Burstall,R.M., Goguen,J.A.: Putting Theories Together to Make Specifications,
Proc. of 1977 IJCAI MIT Cambridge, 1977

[3] Ehrig,H., Kreowski,H.J., Padawitz,P.: Algebraic Implementation of Abstract Data
Types. Concept,Syntax,Semantics and Correctness, Proc. ICALP'80, LNCS 85, 1980

[4] Ehrig,H., Kreowski,H.J., Mahr,B., Padawitz,P.: Algebraic Implementation of Ab-
stract Data Types, TCS 20, 1982

[5] Gandy,R.0.: Proofs of Strong Normalisation, In: To H.B.Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism, Academic Press 1980

[6] Ganzinger,H.: Parameterized Specifications: Parameter Passing and Optimizing
Implementation, Bericht Nr. T~-I8110, TU Muenchen 1981

[7] Lipeck,U.: Ein algebraischer Kalkuel fuer einen strukturierten Entwurf von Daten-
abstraktionen, Dissertation, Ber. Nr.148, Abt. Informatik, Universit~et Dort-
mund, 1983

[8] Poign~,A., Voss,J.: Programs over Algebraic Specifications - On the Implementation
of Abstract Data Types, Ber. Nr. 171, Abt. Informatik, Uni Dortmund, 1983

[9] Voss,J.: Programme ueber algebraischen Spezifikationen - Zur Implementierung yon
Abstrakten Datentypen, Diplomarbeit,Abt. Informatik, Uni Dortmund, 1983

[10] Blum,E.K., Parisi-Presicce,F.: Implementation of Data Types by Algebraic Methods,
JCSS 27, 1983

