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Abstract: We introduce the notion of generic examples as a uni t ing principle for various 
phenomena in computer science such as initial structures in the area of abstract data types 
and Armstrong relations in the area of data bases. Generic examples are also useful in 
defining the semantics of logig programming, in the formal theory of program testing and in 
complexity theory. We characterize initial structures in terms of their generic properties and 
give a syntactic characterization of first order theories admitting initial structtzres. The latter 
can be used to explain why Horn formulas have gained a predominant role in various areas 
of computer science. 

1. Introduct ion 

Verification by example has always been alternative to formal deduction. Historically, 

in mathematics, it usually also preceeded the development of formal deduction methods. 

The Babylonians "knew" that (x-y)2 = x2 + 2xy+~  but they did not have a notational system 

which allowed them carry out a formal, i.e. algebraic, proof. Instead they wrote 

(3 + 5)2 = 32 + 2x3x5 + 52, from which they immediately concluded all the other instances of 

the general formula. The choice of the particular instance x= 3,y= 5 is important here. It is 

clear why x= 1,y=2 would confuse the matter, and we informally describe an appropriate 

choice of an instance as the finding of a "generic" example. The art of finding "generic" 

examples has been pushed to the extreme in Euclidean plane geometry, where we convince 

ourselves of many theorems by just drawing one picture of a non-degenerate case. The 

generalization of this approach to other areas of reaoning is usually highly non-trivial. In 

algebraic geometry, for example, a satisfactory def'mition of"generic points" was only found 

in this century. 
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In computer science one is often concerned with the specification and analysis of 

algorithms and programs. Methods for formal specification and verification of programs 

have been developed intensively without leaving too much impact on the practical 

programmers. These methods are all very much in the spirit of formal deduction. The use 

of "generic" examples can be observed occasionally with various degrees of  explicitness. 

Strassen [Str74] and his school have used the generic points of algebraic geometry with 

considerable success to obtain lower bounds in algebraic complexity theory. Recent work in 

the mathematical foundation of program testing, as presented in the survey edited by B. 

Chandrasekaran and S. Radicchi [CR81], focus around various notions of "generic" input. 

In data base theory, W. Armstrong [Ar74] has introducted a kind of "generic" relation for 

functional dependencies and R. Fagin has investigated the possibilities of generalizing this 

for implicational dependencies [Fa82]. Last but not least there is M. Zloof's approach to 

data base query languages where queries are specified by giving "generic" examples, an 

approach he most recently generalized to operate more complex systems in office 

automation [Z182]. It is not surprising that specO~ation and verification by example is more 

appealing to the computer engineer than formal deduction. A look at Euclidean geomerxy 

can be revealing again: People involved in surveying and drawing plans have, in general, 

very little use for formal deductions Euclidean style, but are very much aware of the role of 

the "generic" non-generate configurations. 

The purpose of this paper is to introduce some variations of notions of "generici~' 

which arise in abstract specification of data structures, in relational data bases and in logic 

programming. What these three areas of computer science have in common, is the use of 

first order logic as its basic specification language. In each of these areas Horn formulas play 

an important role. In algebraic specification of abstract data structures one first used pure 

equational logic with the semantics of initial structures as a specification language (hence 

algebraic). Later one felt the need to extend this to conditional equation~ which are universal 

Horn formulas without relation symbols. In relational data bases various specification 

languages where introduced, such as the arrow notation between finite sets of attribute 

names, to express functional and multivalued dependencies. It was soon realized by R. 

Fagin, C. Beeri and others, that implicationai dependencies, which are Horn formulas 

without function symbols, could capture all the previously considered cases (cf. [Fa82]). In 

logic programming Horn formulas are used both as a specification and a programming 

language because, as R. Kowalski put it, the allow a proceduralinterpretation (cf. [Ko79]). 
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From a semantic point of view all these approaches can be described in a similar way: 

Instead of thinking of arbitrary models (=  algebraic structures, relations or first order 

structures resp.) one only considers a r e ~ . . e d  class of structures (=  initial structures, 

Armstrong relations, minimal Herbrand universes). These restricted classes have all in 

common some sort of genericity, 3+-generieity, which we shall describe below. Intuitively 

3 +-genericity captures rather well the notion of a generic example, here of a 3 +-generic 

structure satisfying the required specifications. 

Various attempts exist in the literature to explain why Horn formulas are the r/ght class 

of formulas to be used in the respective context. B. Mahr and J. Makowsky [MM83] prove 

that under certain assumptions for the semantics of algebraic specifications, conditional 

equations form the largest specification language satisfying these assumptions. L Makowsky 

and M. Vardi [MV84] characterize various classes of data base dependencies in terms of 

preservation properties under operations on relations which come from data manipulation. 

In logic programming,, it was shown by Tarnlund [Tam77] that Horn logic is enough to 

program every recursive function, a result, stated in slightly different form in a different 

context, proven already by S. Aanderaa and independently by F_. BSrger. For an excellent 

survey see [B584]. 

Our main result in this paper is a characterization of Horn formulas in terms of the 

existence of 3 +-generic structures. It simultaneously extends and unifies results of [MM83], 

[Ma84] and [VM84] and remedies objections raised to [MM83] by A. Tarlecki. It states that a 

first order theory T admits initial (=  3 + -generic) models iff there is a set of definable partial 

functions such that adding functions to the vocabulary of T gives us a theory T 1, which is 

equivalent to a universal Horn theory. Additionally, if Tie finite, this set of definable partial 

functions can be chosen to be finite, too. In other words, if we want to define a semantic 

over 3 + -generic structures only, we can, without loss of generality, conf'me our specification 

language to universal first order Horn formulas. Without loss of generality can mean two 

things: Given a specification which is not a set of universal Horn formulas, then either we 

can find an equivalent set of universal Horn formulas or we have chosen the basic 

vocabulary (set of basic symbols) wrongly, and then the theorem tells us that there is a 

unambiguous way to correct this. 

In detail the paper is organized as follows: 
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In section 2 we introduce the concepts of A-genericity and ]+-genericity and relate these 

definitions to initiality. We state the basic definability theorem for initial models; we 

characterize initial term models as A-generic models and initial models as ]+-generic 

pseudo-term models. 

In section 3 we characterize first order theories which admit initial term models as the 

universal Horn theories. This theorem was already proved in [MM83]. 

In section 4 we establish the intersection property of first order theories admitting 

]+-generic structures and review some classical model theoretic results on first order 

theories with the intersection property. From this we get that theories admitting 

]+-generic models can always be axiomatized by universal-existential sentences. We a~o 

state a theorem of M. Rabin [Ra60], which characterizes first order theories with the 

intersection property. 

In section 5 we state an analogue of Rabin's theorem to obtain our main result. We show 

that a first order theory admits initial models iff it is a partially functional V3-Horn theory. 

No proofs are presented in this extended abstract, since the editors of these proceedings put 

a severe space limit on the papers to be presented. We hope that the complete paper will 

appear soon elsewhere. 

In section 6 we state some conclusions. 

The reader familiar with the introduction to model theory by G. Kreisel and J.L. 

Krivine will realize how much, in spirit, this work is influenced by chapter 6 of [KK66]. I am 

indebted also to A. Tarlecki for his remarks in our correspondence concerning [MM83], to S. 

Shelah, who suggested theorem 2.10 and to B. Mahr for the discussions around [MM83]. 

2. Initial models and genericity 

In this section we deal with first order languages with equality. Vocab~.daries(= similarity 

types) are allowed to be many-sorted and may include/unction symbols, rel~ion symbols and 

constant symbo/~ Vocabularies are denoted by t,o. A rstnLcmre A is a collection of un~rses 

( =  sets) A 1 ..... A n, for each sort in t one, together with interpretations for all the fUnction, 

relation and constant symbols in t. t-tern~ ~om/c/omm/as and t-forum/as are defined as 

usual. If  TIS a set of ~--formulas, ~ is a t-formula and A is a t-structure we write A~Ti f the  

universal closure of all the formulas ~ in T are true in A. We write T ~  if in every 

r-structure A such that A~T we also have that A ~ .  We call sets of t-formulas thcor/~ 

and formulas without flee variables also t-sentences. We call t-structures also modets and 
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denote by Mod(T)the class of  t-structures A such that A~T.  

2.1. Defintions: 

(i) Let K be a class of  r-structures closed under isomorphisms and A E K. We say that k is 

initial in K (is an initial mode/for  K) if for every structure B E K there is a un/que 

homomorphism hB:k -, ]8. 

(ii) I f K  is of  the form Mo~T), where T is some first order theory, we also say that A is/n/t/a/ 

forT. 
(iii) A r-structure A is a term model (reachable model) if  for every a E k there is r- term t such 

that its interpretation k(O in k is the element a. 

Next we introduce the concept of  gener/c structures for first order theories and relate it 

to initial structures.x 

2.2. Definitions: Let K be a class of  r-structures closed under isomorphisms and AEK. 

Let ~: be a set of  first order sentences (i.e. formulas without free variables). 

(i) We say that k / s  generic in K for  z if  fo r  every ~ £ r. we have that k ~  iff  B ~  for every 

BEK. 

(ii) I f  Y. is the set of  atomic r-formulas we say A-generic instead of  generic for Y,. 

(iii) Let  3 + be the set of  ~--formulas of  the form 3xAn ~l with each ~t an atomic formula, 

x= (Xl,X 2 ..... xn); and 3 be the set of  ~,-formulas of  the form : lx~ x) with ~ quantifier free. 

(iv) I f  Y. is the set of 3 +-sentences we say 3 + -generic instead of  generic for Z. 

2.3. Remarks: 

(i) I f  r. 0 C Y. and A is ~:-generic then A is also r~-generic. 

(ii) I f  A is a A-generic term model then A is an initial term model. 

2.4. Theorem (3 +-genericity): 

Let K be a class of  r-structures closed under isomorphisms and A I be initial for K. Then AI 

is 3 +-generic. 

2.5. Corollary: Let K be a class of  r-structures closed under isomorphisms and AEK. 

Then A is an initial term model for K iff  A is A-generic. 
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2.6. Definitions: Let T be a set of r-sentences, let A be a r-structure and a£A be an 

element of  the universe of  A. 

(i) a is definable over A if there is a r-formula Va(X) with x the only free variable of  ~ such 

that A ~ a ( a )  and if A~q,a(b) for any bEA then Ama=b. We call ~a the def'ming formula of  

(ii) a is 3 + -definable (]-definable, atomically definable) over A if a is definable over A and the 

defining formula is an 3 +-formula O-formula, conjunction of  atomic formulas). 

(iii) a is definable over T if  there is a r-formula q~a(X) with x the only free variable of  qPa such 

that A ~ , a ( a )  and T~=VxVy(~a(X)Aq~a(v)=* x= y). 

(iv) a is 3 +-definable (3-definable, atomically defv2able) over T if a is definable over T and the 

defining formula is an 3 +-formula O-formula, conjunction of  atomic formulas). 

(v) We say that A~TIS a pseudo termmodelofTifevery element a E A is 3 + -definable. 

The following theorem shows that in an initial model of  a theory T is always a pseudo 

term model. 

2.7. Theorem (3 + -definability): Let T be a first order theory and let A I be an initial 

model of  T. Then every a £ A is definable over T by a 3 + - formula ¢Pa. In other words A I is a 

pseudo term model. 

We now are in a position to characterize initial models as pseudo term models which 

are 3 +-generic. 

2.8. Theorem: Let T be a first order theory and let A be a model of T. Then A is initial 

(for T) iff  A is a 3 +-generic pseudo-term model  

3. Characterizing first order theories which admit initial term models 

In this section we characterize first order theories which admit initial term models. 

Such a characterization was first given in [MM83], based on a theorem duo to Mal'c~v 

[Mal56]. In [Mal56] there is a minor mistake as pointed out by [3/1o59], which propagated 

inot [MM83] in as far as one had to assume that every first order theory admitting initial 
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/.3.1. Multiple physical clocks 

The objective is also to obtain a unique physical time frame within the 

system so that consistent schedules may be derived from a total 

chronological ordering of actions occurring in the system. When several 

clocks are used it is not enough for the clocks individually to run at 

approximately the same rate. They must be kept synchronized so that the 

relative drifting of any two clocks is kept smaller than a predictable 

constant. In [Lamport78j a solution to accomplish this is given. The 

system under consideration is modelled after a strongly connected graph ot 

processes with diameter d. Every process is provided with a clock and every 

t, a synchronization (sync) message is sent over every arc. A sync message 

contains a physical timestamp T. Upon receiving a sync message, if needed, 

a process should set forward its local clock to be later than the timestamp 

value contained in the incoming message. It is assumed that both a lower 

bound u and an upper bound u + z are known for interprocess message transit 

delays. Let k be the intrinsic accuracy of each clock (e.g. k < 10^-6) and 

e the allowed drifting of any two clocks. If e/(l-k) <= u and e << t then 

it is possible to compute the approximate value of e which is d(2kt + z). 

Depending on the requirements as regards clocks" relative drifting and 

the validity of the assumptions as regards transit delay boundaries, one 

may decide: 

* either to take the risk o~ missing some sync 

messages from time to time, because of some 

excessively large message transit delays, thus 

achieving what could be called probabilistic 

synchronization. 

* or not to take this risk. Then, if the upper 
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bound chosen for message transit delays has to 

be rather large~ one should evaluate the conse- 

quences as regards performance. The key parameter 

here is the ratio z/u. For example in Arpanet~ 

z and u are In the order o~ several hundreds of 

milliseconds. 

The use ot timestamps to obtain orderings o~ actions in 

system was suggested first in [Thomas76J. 

a distributed 

7.3.2. Multiple logical clocks 

A logical clock as described in [Lamport78] should be viewed as a 

function C which assigns a number to any action initiated locally. Such 

logical clocks may be implemented by counters. In a system where each 

producer owns a logical elock~ the problem is to guarantee that the system 

of clocks satisfies some condition F so that a particular ordering may be 

built on the set of actions initiated by producers. For example, using the 

irreflexive partial ordering introduced in section 3, condition F would be 

as follows: for any actions a (in i) and b (in j), if a -> b then C(i,a) < 

C(j,b). In order to meet condition F, the following rules must be obeyed 

by producers. 

Rule i: each producer i increments C(i) between any two successive 

actions. 

Rule 2: if action a is the sending of a message m by producer i, then 

the message m contains a timestamp T(m) = C(i,a). Upon receiving a 

message m, producer j sets C(j) greater than or equal to its present 

value and greater than T(m). 
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Any system o~ logical clocks satisfying condition F can be used to place a 

total ordering, denoted by <<, on any set of actions. It is only necessary 

to use any arbitrary total ordering < of the producers (e.g. by using their 

names). The ordering << is defined as follows: a << b if and only if 

either C(i,a) < C(j,b) or C(i,a) = C(j,b) and i < j. The synchronization 

mechanism defined by rules 1 and 2 and the total ordering << allow for the 

building of consistent schedules of actions. The ordering << is not unique 

and it may not be equivalent to a chronological ordering. This is why it 

may be necessary to implement such a system of logical clocks on a system 

of several physical clocks (see previous section). 

General comments 

Synchronization mechanisms built out o~ several physical or logical 

clocks have the common characteristic that they are not based on mutual 

exclusion. This may be particularly advantageous in distributed systems. 

7.3.3. Utilization of a circulating privilege 

Synchronization mechanisms may take advantage of the fact that 

producers are given unique and permanent names. This defines a total 

ordering on the set ot producers. Such an ordering may be used to view 

producers as being organized as on a chain or as on a loop. Each producer 

has a unique predecessor and a unique successor. Such a logical 

structuring does not imply any particular physical topology. 

Pair-wise shared variables: A synchronization mechanism based on the 

concept of a logical ring has been presented in [Dijkstra74]. Possession 

of a control privilege may be inferred by every producer from the 

observation of a variable shared with one of its two neighbours. 
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The next theorem, due to Rabin ~ab60],  characterizes theories with the Intersection 

Property. For this let ~x,y)  be a t ' ~ t  order formula with free variables x =  xl ,x  2 ..... x t and 

Y=Yl,Y2,...Yn and let k be a natural number. We denote by N(k,y,~x,y)) the first order 

formula which says that there are exactly k different n-tuples satisfying the formula ~(x,y). 

4.7. Theorem: (Rabin [Rab60]) A necessary and sufficient condition for a f'n~t order 

theory T to have the Intersection Property is that for every v3-sentence vx3y~(x,y) which is 

a consequence of T, there exist two sequences of  quantifier-free formulas 

ol(X,U),o2(x, tO.....oFfx, u ) arld 81(x,y,z),82(x,y,z),....,SF(x,y,z ) 

and a sequence of natural numbers kl, k 2 ..... k~ such that 

and for l < i < ~  

TI==V ~VUal(X,u)VVUa2(X,~V...VVUaF(x,U)) 

T~Vx(VUai(X, tt)~N(ki,Y3g~(x,Y) A Oi(x,Y,O)). 

In the next section we want to give a similar characterization for first order theories 

admitting initial models. Our next goal is to show the existence of  initial models for certain 

theories which have the Intersection Property and which are preserved under products. For 

this we need some more definitions. 

4.8. Definitions: Let T be a first order theory with the Intersection Property. A model 

A0 of  T is a core model if  there is no proper submodel Bc A  0 such that B~T.  I f  k is a model 

of  T and AoCA , A0~ Tis a core model we say that A 0 is a T-core of  A. 

4.9. Lemma: Let T be a first order theory with the Intersection Property. Then every 

model A of  Thas a T-core A 0. 

4.10. Proposition: Let T be a f£rst order theory with the Intersection Property. Then 

every core model of  Tis an 3-term model. 
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4.11. Definition: A first order theory T is pseudo algebraic if T is preserved under 

products, has the Intersection Property and if every core model of TIS a pseudo term model. 

4.12. Theorem: A pseudo algebraic first order theory Thas an initial model AI. 

A converse of theorem 4.12 will proved in the next section. 

5. Charcterizing first order  theories which admit  initial models  

The purpose of this section is to characterize f'h~t order theories which admit initial 

models. We fwst want to show that such a theory is equivalent to an v3-Horn theory. 

5 1  Theorem: Let Tbe a first order theory which admits initial models. Then: 

(i) Tis equivalent to an v3-Hom theory TV]H • 

(ii) If Tis finite, so is TV3 H . 

Next we want to state an analogue of Rabin's theorem (theorem 4.7) for theories which 

admit initial models. 

5,7,. Theorem: Let The a first order theory which admits initial models. Then for every 

v3-scntence vx3y~(xy) which is a consequence of T, there exist two sequences of  formulas 

.l(x,u),o~(x,u),...~,~,¢x,u) and el(x,y,2),e2(x,y,~,....,e~,(x,y,~, 

where oi are quantifier free formulas and 0i- are 3 +-formulas, such that 

Tlffi: V ~(WaTI(X,~V VUo2(X,U)V...V ¥ ~/L(X,~) 

and for l_<i_<~ 

T~ V :x(Vu¢i(x,~=~ 3! y( 32( q~ x,y ) A 0j(.r.,y,2))) 

5.3. Definition: We call a f'LrSt order theory which satisfies the conclusion of theorem 5.2 
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partiallyflznctionaL This is justified since theorem 5.2 says that every ¥'l-formula which is a 

consequence of Tcan be $kolemized with finitely many partial functions. 

5.4. Corollary: Let T be a first order theory which admits initial models. Then every 

3-term model A is a pseudo term model 

We need another well lmown result from model theory, see e.g. ([CK73D: 

5.5. Theorem: Let Tbe an v3-Horn theory. Then Tls preserved under products. 

Putting everything together we obtain: 

5.6. Theorem: (Main theorem) Let T be a ten'st order theory. 

equivalent: 

(i) T admits initial models; 

(ii) TIs equivalent to a partially functional v3-Horn theory. 

C~ii) Tls pseudo algebraic. 

The following are 

6. Conclusions 

We have given a characterization of universal Horn theories in terms of  the existence 

of initial, or equivalently, A-generic term models (theorem 3.9) and a characterization of 

partially functional v3-Horn theories in terms of the existence of initial, or equivalently 

3 +-generic pseudo term models (theorem 5.6). The latter essentially says that a first order 

theory which admits initial models which are not term models does so by oversight: The 

vocabulary (similarity type) was badly chosen, such as not to allow that all elements are 

denoted by some term. This can be almost remedied: Either by adding definable partial 

Skolem functions or by allowing pseudo terms, i.e. elements uniquely definable by 

3 +-formulas. 

The paper also sheds more light into the question why in [ADJ75] Initial structures 

were proposed as the framework for abstract data types. We have given in theorem 2.13 a 

characterization of initial structures as 3 +-generic pseudo term models. For somebody not 

familiar with category theory this may be more appealing since it relates directly to or 

concept of verification by example. However, this characterization has also its technical 
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merits for it provides the missing link between the category theoretic concept and the model 

theoretic tools needed to prove 5.9. 

Last but not least we have yet added another explanation as to why Horn formulas 

play such an important role in various branches of computer science. We have shown that 

universal Horn theories (partially functional v3-theories) are exactly the framework in 

which the notion of a generic example can be applied. This should prevent other researchers 

from trying to generalize Logic Programming or the semantics abstract data types to larger 

classes of first order formulas. If it has to be generalized then the direction chosen by R.M. 

Burstall and J.A. Goguen in [GB84] seems to be much more appropriate. 
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