BISIMULATIONS AND ABSTRACTION HOMOMORPHISMS

Ilaria Castellani’
Computer Science Department

University of Edinburgh

Absgtract

in this paper we show that the notion of bisimulation for a class of labelled transition
systems (the class of nondeterministic processes} may be restated as one of "reducibility
to a same system” via a simple reduction relation. The reduction relation is proven to
enjoy some desirable properties, notably a Church-Rosser property. We also show that,
when restricted to finite nondeterministic processes, the relation yields unique minimal
forms for processes and can be characterised algebraically by a set of reduction rules.

1. Introduction

Labelled transition systems [K,P] are generally recognised as an appropriate model for
nondeterministic computations. The motivation for studying such computations stems from
the increasing interest in concurrent programming.

When modelling communication belween concurrenlt programs, some basic difficuliies have
to be faced. A concurrent program is inherently part of a larger environmeni, with which
it interacts in fhe course of its computation. Therefore a simple input-output function is
not an adequate model for such a program. The model should retain some information
about the internal states of a program, soc as to be able to express the program's
behaviour in any interacting environment. Also, nondeterminacy arises when abstracting
from such parameters as the relative speeds of concurrent programs: as a consequence,
we need to regard any single concurrent program as being itself nondeterministic.

The question is then to find a model for nondelerministic programs that somehow
accounts for intermediate states. On the other hand, only those intermediate states
should be considered which are relevant to the “interactive” (or eziernal) behaviour of
the program. Now one can think of various criteria for selecting such significant states.

In this respect labelled transition systems provide a very flexible model: by varying the
definition of the transition relation one obtains a whole range of different descriptions,
going from a full account of the structure of a program to some more interesting
"abstract” descriptions. However, even these abstract descriptions still need to be factored
by equivalence relations (for a. review see [B] or [DeN]).

A natural notion of equivalence, bisimulalion equivalence, has been recentily proposed by
D. Park [Pa] for transilion systems: informally speaking, two systems are said to
bistmulate each other if a full correspondence can be esiablished belween their sets of

‘Supported by e scholarship from the Consiglio Nazionale delle Ricerche (Italy)

224

states in such a way that from any two corresponding states the two (sub)systems will
still bisirnulate each other.

In this paper we show that the notion of bisimulation for a class of labelled transition
systiems (the class of nondeterministic processes) may be restated as one of "reducibility
to a same system"” via a simple reduction relation. The reduction relation is proven to
enjoy some desirable properties, notably a Church-Rosser property. We also show that,
when restricted teo finite nondeterministic processes, the relation yields unique minimal
forms for processes and can be characterised algebraically by a set of reduction rules.

The paper is organised as follows. In section 2 we present our computational model, the
class of nondeterministic processes. In section 3 we argue that this basic model is not
abstract enough, particularly when systems are allowed unobservable transitions as well as
observable ones. We therefore introduce abstraction homomorphisms [CFM] as a means of
simplifying the-structure of a process by merging together some of its states: the result
is a process with a simpler description, but "abstractly equivalent” to the original one. We
can then infer a reduction relation between processes from the existence of abstraction
homormorphisms between them. We prove some significant properties of this relation, such
as invariance in contexts and the announced Church-Rosser properiy. Based on the
reduction relation, we define an absiraction equivalence relation on processes: two
processes are equivalent iff they are both reducible to a same (simpler) process.

In sections 4 and 5 we study the relationship belween our notions of reduction and
abstraction and the notion of bisimulaiion between transition systems. The criterion we
use for identifying states of a process via abstraction homomorphisms is similar to the
one underlying the definition of bisimulation: we show in fact that any abstraction
homomorphism is a single-valued bisimulation. We finally prove that the abstraction
equivalence is substitutive in contexts and that it coincides with the largest (substitutive)
bisimulation. Our eguivalence can then be regarded as a simple alternative formulation
for bisimulation eqguivalence.

In section 6 we consider a small language for defining finife nondeterministic processes:
essentially a subset of R. Milner's CCS (Calculus of Comrmunicating Systems) [M1]. We find
that our resulls combine neaily with some established facts about the language. On this
language our equivalence is just Milner's observational congruence, for which a complete
finite axiomatisation has been given in [HM]. So, on the one hand, we get a ready-made
algebraic characterisation for the absiraction equivalence; on the other hand, our
characterisation proves helpful in working out a complete system of reduction rules for
that language. We conclude by proposing a denotational tree-model for the language,
which is isomorphic to the term-model in [HM].

Most of the results will be stated withoul proof. For the proofs we refer to the complete
version of the paper [C].

2. Nondeterministic Systems

In this section we introduce our basic computational model, the class of nondeterministic
systems. Nondeterministic systems are essentially labelled transition systems with an

initial state.

225

Let A be a set of elementary ecctions or transitions, containing a distinguished symbol *
which denotes a hidden or unobservable transition. We will use u, v... to range over A4,
and a, b... to range over A - {7].

Definition 2.1: A nondeterministic system (NDS) over A is a triple S = (Quir}, a4, —>),
where Quir] is the set of states of 3, r¢gQ is the initial state (or root) of S, and
—> ¢ [{Quir]) » A x (Quir})] is the transition relation on S.

We will use q, q' to range over Quir}, and write q#>q' for (q, . g’)€ —> . We interpret
q#—>q' as: S may eveolve from state q to state g’ via a transition pu.

We will also make use of the transitive and reflexive closure —> of —> , which we call

—>

the derivation relation on S. For an NDS S = (Quir], A, —>), we will use Q . ro s

instead of Q, r, —> whenever an explicit reference to S is required.

According to our definition, an NDS 8 is a machine starting in some definite state and
evolving through successive states by means of elementary transitions. On the other hand,
each state of S may be thought of as the initial state of some NDS: then we might regard
S as giving rise to new systems, rather than going through successive states.

In fact, if we consider the class § of all NDS's, we may notice that S itself can be
described as a transition system (although not an NDS, since S is obviously not rooted).
Let ———); be the associated derivation relation: we say that 8' is a derivative of S
whenever S ——->; S'. Now it is easy to see that, for any S€ S, a one-to-one correspondence
can be established between the states and the derivatives of S. We shall denote by Sq the
derivative corresponding to the state q and by 9 the state corresponding to the
derivative S'.

In the following we will often avail of this correspondence between states and
(sub)systems.

We assume the class S to be closed w.r.t. some simple operators: a nullary operator NIL,
a set of unary operators u. {one for each pu€A), and a binary operator +. The intended
meaning of these operators is the following: NIL represents termination, + is a free-choice
operator, and the u's provide a simple form of sequentialisation, called prefizxing by the
action u.

The transition retation of a compound NDS may be inferred from those of the components
by means of the rules:

i) uS £> g

ii) § £> 38 implies S+ 5" £5 5§ ,8" + 8§ £ &

The operators will be given a precise definition for a subclass of S, the class of

nondeterministic processes that we will introduce in the next section.

2.1 Nondeterministic processes

As they are, NDS's have an isomorphic representation as (rooted) lobelled directed graphs,
whose nodes and arcs represent respectively the states and the transitions of a system.
On the other hand, any NDS may be unfolded into an acyclic graph. We shall here
concentrate on a class of acyclic NDS's that we call nondeterministic processes (NDP's).

226

Basically, NDP's are NDS's whose derivation relation —>"is a partial ordering. Each state
of a process is assigned a label, that represents the sequence of observable actions
leading from the root to that state. To make such a labelling consistent, we only allow
two paths to join in the graph if they correspond to the same observable derivation
sequence. The labelling is subject to the following furiher resiriction: for any label o,
there are at most finitely many states labelled by o. As it will be made clear
subsequently, this amounts to impose a general image-finiteness condition on the
systems.

In the formal definition, we will use the following notation: A" is the set of finite
sequences over A, with the usual prefix-ordering, and wilh empty sequence & . For
simplicity the siring <> will be denoted by u. The covering relation —<C associated to a
partial ordering < is given by: x—Cy iff x<y and 7 z such that x<z<y. Also, we make the
following convention: T acts as the identity over A" and will thus be replaced by & when

occurring in strings.

Definition 2.1.1: A nondeterministic process (NDP) over A is a triple P = (Quir}, <. 1)
where:

(Quir}, <) is & rooted poset: Vq, 1 < g

1: QU {r} —> A" is a monotonic labelling function, satisfying:

r) = ¢
q—cq' implies 1(q')=l(q).u, ue A’
voea, fq | lg) = o} is finite

Note that an NDP is very nearly a labelled iree: it only differs from a labelled tree in that
it might have some confluent paths. The reason we do not directly adopt labelled trees as
a model is purely technical (the proof that the model is closed w.r.t. reductions would be
rather tricky). However we intend that trees are our real object of interest: in particular,

our examples will always be chosen from trees.

As pointed out already, we label nodes with sequences of actions, rather than labelling
arcs with single actions: this minor variation w.r.t. the standard notation (see e.g. Milner's

synchronisation trees) will make it easier to compare different states of a process.

It is easy to see that any NDP P is also an NDS, with —)F given by —C. More precisely,
for any pu€A, the relation -“——>P will be given by { (q,q9') | 9—<Cq' and 1(q') = lq).x }.

Note that, because of our convention that 7 = &, a 7-transition will be represented in an
NDP by the repetition of the same label on the two > related nodes. More generally, the
label of a node will now represent the sequence of observable actions leading to it. For

example:

the tree T will be in our notation:

ab a

227

In what follows, nondeterministic processes will always be considered up to isocmorphism.
Formally, an isomorphism between iwo NDP's: P, = (Qlufrll,gl, 1), p, = (Qauirai.sz, 12) is &
one-to-one correspondence: ¢ : Qluirl} —> QEU{r2} s.t.

) 1,(8(a)) = L(a)

i) #(q)5,8(q") iff q<.q
The operators NIL, p. and + can be formally defined on NDP's. Let Tx denote the NDP
(QIUfTJ: Sy 11). Then we have the following :

Definition 2.1.2: (Operators on NDP's)

NIL = ({r i(rN[L,rML)}, i(rmL,e)i) is the NDP with just a root Taw and an

NIL; ’

emply set of subsequent states
uP, is the NDP P = (Quir}, <, 1), where r does not occur in Qlu{rli, and:

q = Quir}

< =<V i(r.g) | qeq}

e, if q=r
i{q) =
u.ll(q) otherwise

P+ P, is the NDP P = (Quir}, £, 1) . where r does not occur in Q,uQ,, and:

Q

Qv q, (disjoint union)
< = <0, U £Q, U Hra) | acQ}
P=1rQ, vt v i &)}

Let P ¢ & denote the class of all NDP's: in what follows our treatment of nondeterministic
systems will be confined to P.

3. Abstraction Homomorphisms

The NDP-model, though providing a helpful conceptual simplification, does not appear yet
abstract enough. It still allows, e.g., for structural redundancies such as:

£

/N

Moreover we want to be able, in most cases, to ignore wnobservable transitions. Such
transitions, being internal to a system, should only be detectable indirectly, on account of
their capacily of affecting the observable behaviour of the system.

We will therefore introduce a simplification operation on processes, which we call
abstraction homomorphism. Essentially an abstraction homomorphism will transform a
process in a structurally simpler (but semantically equivalent) process by merging
together some of ils states.

228

The criterion for identifying states is that they be equivalent in some recursive sense:
informally speaking, iwo states will be equivalent iff they have eguivalent histories
{derivation sequences) and equivalent fufures or potentials (sets of subsequent states).
Formally:

Definition 8.1: Given two NDP's P = (Quir}, <. L), P, = (Quir,} <, 1)
r —> r
Q, — Q,

a function h: is an abstraction homomorphism (a.h.) from P1 to Pz iff:

i) L(h(q)) = 1,(a)
i) succz(h(q)) = h(succl(q))

where succ(q) = { q' | 9<q'] is the set of successors of q, inclusive of g.
Exzamples
e
1)
a} q'
7
al q” ai b{q) = hig")

From this example we can see why succ(q) must include q itself: q" is a proper successor
of q', whereas h(q"”) would not be a proper successor of h(q').

g, €
2)
ar’q e £
—
a al h(q)

Note that the set of predecessors of g is not preserved by the homomorphism.

g b3
3) -
a a a
a ab a ab
g P>
4) -
a £ £
a b a b
Countereramples

£

e "]

a a

5)

This example shows that a process of the form P can only be transformed into a process
of the same form. This point will subsequently be made more precise.

229

a q s exh(q)

b a b

This is not an a.h. because it would increase the set of successors of q.

Abstraction homomorphisms induce the following reduction relation 2% on processes:
Definition 3.2 : P ¥ P'iff 3 ah. h: P—> P"

Since the identity function is an a.h. and the composition of two a.h.''s is again an ah.,
the relation 25 satisties the following:

Property 1: 225 is reflexive and transitive.
Also, it can easily be shown that:
Property 2: £8% s preserved by the operators u. and +.

We turn now to what is perhaps the most interesting feature of our reduction relation,
namely its confluent behaviour. Confluence of a.h.'s can be proved by standard algebraic

techniques, once the notion of congruence associaled to an a.h. is formalised.

Definition 3.3: Given an NDP P = (Quir}, £, 1), we say that en equivalence relation ~ on Q
is a congruence on P iff, whenever q ~ q':

i) i{q) = I(q") (labels are preserved)

ii) g < p implies I p' ~p st. q < p'
(successors are preserved)

iii) g < p < q implies q~p~¢q

(entisymmetlry of < is preserved)

It can be shown [C] that there is a one-to-one correspondence between congruences and
abstraction homomorphisms on a NDP P: any congruence on P is the kernel ~n of some
a.h. h on P, and any a.h. on P is the natural mapping h_ associated to some congruence

~ on P. Then the following fact is {(almost) standard:
Theorem 3.1 : {Confluence of abstraction homomorphisms)

1If P, P:’ P2 are NDP's, and h1 P —— P1 y h2 P —> P2 are a.h.'s, then 3 NDP Ps’ 3 a.h's

hzs : ‘E’1 - Pa , haa : P2 —> P3 s.t. the following diagram commutes:

P
b, b,
P P,
- ”
b, a Bas
P

230

Hint for proof: for the complete proof we refer to [C]. We will just mention here that, if

~, and ~, are the kernels of hx and h2 , then the a.h. hi h13 = hz hgs is the natural

mapping associated to the congruence ~y = [~ U,]’ a]

Corollary 3.1: (225 is Church-Rosser)

It P, P, P, are NDP's, and P, gbs. p b, P,
then 3 NDP P, st. P, abs, Pse"—s P,

3.1 Abstraction equivalence

The relation -8B, gives us a criterion to regard two processes as "abstractly the same".
However, being essentially a simplification, 2% is not symmetric and therefore does not,
for example, relate the two processes:

€ €
a a b a b b

or the processes:
€ £
a £ e
>

a

a

Based on —-a}-’-g), we will then define on NDP's a more general relation ~ b’ of reducibilily to

a same process:

Definition 3.1.1 : ~ = _ 25 gbs.
abs def

We can immediately prove a few properties for ~_ .

Property 1: ~ abs is an eguivalence.

Proof: Transitivity follows from the fact that 2b%, is Church-Rosser, which can be restated
as: [EBB y&Pn.]'. b3, gbs ul

Property 2: ™ abs is preserved by the operators u. and +.

Proof: Consequence of 5 and -*¥»! invariance in p. and + contexts. o

To sum up, we have now a substitufive equivalence ~ for NDP's that can be split, when
required, in two reduction halves. The equivalence -~ will be called absiraction
equivalence. In the coming section we will study how abstraction equivalence relates to
bisimulation equivalence, a notion introduced by D. Park [Pa] for general transition

systems.

231

4. Bisimulation relations

A natural method for comparing different systems is to check to which extent they can
behave like each olher, according to some definition of behaviour.

Now, what is to be taken as the behaviour of a system need not be known a priori. One
can always, in fact, having fixed a criterion for deriving subsystems, let the behaviour of
a system be recursively defined in terms of the behaviours of its subsystems.

Based on such an implicit notion of behaviour, one gets an (equally implicit) notion of
equivalence of behaviour, or bisimulaiion, between systems: two systems are said to
bisimulate each other iff any subsystem of either of the two, selected with some criterion,
recursively bisimulates a subsystem of the other, selected with the same criterion.

For an NDS S, the tiransition relation provides an obvious criterion for deriving a
subsystem S 8' is a u-subsystem of S iff S¥5% for some u. However, if we are to
abstract from internal transitions, a weaker criterion will be needed. To this purpose the

following weak transition relations %> are introduced:

k] m

9_,_@ — _Le,i_)i_) n, m},O
n

Iy = I n>0

S is called a g-derivative of S iff S&>%'. We can then formally define bisimulations on
NDS's as follows:

Definition 4.1: A (weak) bisimulation relation is a relation Rc(S xS) such that RcF(R),
where (S,,8)) € F(R) iff ¥ p € A

i) 81 Ls S’1 implies 3 S'2 s.t. Sz e S’a , S’1 R S:e
ii) S2 Ly S:'e implies 3 S'1 st 8, L S’1 » 8| R S‘2

Now we know that F has a mazimal fized-point (which is also its maximal postfixed-point)

given by v {R}. We will denote this largest bisimulation by <z>, and, since <=> turns

RCF(R)
out to be an equivalence, refer to it as the bisimulalion equivalence.

Unfortunately, <x> is not preserved by all the operators. Precisely, <x> is not preserved
by the operator +, as shown by the example:

£ (4 &
<> NIL , but /\ <g>]
£ 14 a a

On the other hand the relation <mx>", obtained by closing <m> w.r.t. the operator +:
o~ + H . o~
S, <m>" 8, HfV 8: 8 + 8 <r>S8 + 8§,

can be shown to be a substitutive equivalence, and in fact to be the largest such

equivalence contained in <x>. {For more details on <x> and <z>" we refer to [M2]).

To conclude, <m>" seems a convenient restriction on <m> to adopt when modelling NDS's.
We will see in the next section that <x>" coincides, on NDP's, with our abstraction

. ~
equivalence ~_

232

5. Relating Bisimulations to Abstraction Homomorphisms

Looking back at out relations b3 and ~obe WE notice that they rely on a notion of
equivalence of states which, like bisimulations, is recursive. Moreover, the recursion
builds up on the basis of a similarity requirement (equality of labels) thai reminds of the
criterion (equality of observaeble derivation sequences) used in bisimulations to derive
"bisimilar” subsystems. All this indicates there might be a close analogy between
abstraction equivalence and bisimulation equivalence.

In fact, since we know that ™ bs is substitutive, we shall try to relate it with the
substitutive bisimulation equivalence <m>. To this purpose, we will need a direct

(recursive) definition for <m>*.

Note that <x>" only differs from <x> in that it takes into account the preemptive
capacilies a system can develop when placed in a sum-context. Such preemptive
capacities depend on the system having some silently reachable state where, informally
speaking, sorne of the "alternatives” offered by the sum-contexi are no more available.
This suggests that we should adopt, when looking for a direct definition of <x>%, the more

restrictive transition relations H=>:
n m
ey = T £y Ty n,m>0
n
In particular, we will have = = T n>0. Note on the other hand that, for ac4, it will
be: Bp = B,

However, <x>' is restrictive with respect to <x> only as far as the first &> derivation
steps are concerned: at further sieps <z>" behaves like <&>, as it can be seen from the

example:
€ <>t €
a <p> a
a ab
a

So, if we are to recursively define <x>" in terms of the transitions H=, we will have to
somehow counteract the strengthening effect of the #&>'s at steps other than the first.

To this end, for any relation R¢ (S x §), a relation Ra ("almost” R) is introduced: (Sl, Sz)
€ R iff (Sx'sz) € R, or (TSI,Se) € R, or (Sx’TSa) € R
Then we can define a-bisimulstion (“almost” bisimulation) relations on NDS's as follows:

Definition 5.1: A (weak) a-bisimulation relation is a relation Rg (Sx S) such that RCF,(R).
where (8,,5,) € FRYUIV pe A

i) s, = 5! implies 3§, st S, > 5, S\ R S,

i) S2 =5 S, implies I8, st S, [S, 8 Ra s,

Again, F has a mazimal (post)fized-point which is an equivalence, and which we will
a
denote by <x>". The equivalence <x>" has been proven to coincide with <mz>*. Both the

233

definition of <a>® and the proof that <m>® = <x>* are due to M. Hennessy.

It can be easily shown that, if R is an a-bisimulation, then R'l is an ordinary bisirnulation.

In particular, for the maximal a-bisimulation <x>®, it is the case that <z>: = <m>.
Now, it can be proved that:
Theorem 5.1: ®5 is an a-bisimulation.
The proof relies on the two following lemma’'s:
Lemma 5.1: If Pllb%P2 then:
P #=>P! implies 3 P, s.t. P H>P, where
either P 5P, or P\ 25P,.

Lemma 5.2: If Pi—ﬂ’%"l’2 then:

P #=>P. implies 3 P s. t. P H=>P' where
either P, 225P’ or P'l—"i‘%fp*z.

Note that in lemma’s 5.1 and 5.2 we do not need consider the case ’rP‘1 by, P'Z. The

reason this case does not arise is that a.h.'s are single-valued relations.

Corollary 5.1: 25 ¢ <m>*®

Proof: <x>® is the maximal a-bisimulation 5]
Moreover, we have the following characterisation for a.h.'s:

Terminology: For any NDP P, let S, = S, = {(P'| P —> " P} . We say that a bisimulation
{a-bisimulation) relation R is between P and P, iff (Px’ Pe) € R and RC (Splx SPE).

Theorem 5.2: An abstraction homomorphism from P1 to P2 is a single-valued relation
which is both a bisimulation and an a-bisimulation between Pland Pz‘

We now come to our main result, concerning the relationship between the abstraction
equivalence ~ s and the substitutive bisimulation equivalence <x>% . It turns out that
these two equivalences coincide:

Theorem 5.3: ~ = <a>°
abs

Proof of ¢: From corollary 5.1 we can infer that ~ = [bz, 8bs, 1) ¢ <m>® |, since <m>°

bs
is symmetrically and transitively closed.

Proof of 2: Suppose P, <>t P, . We want to show that 3 P, st. P, -2bs, P, &bs. P, .
Let R be an a-bisimulation between Pl and Pz. Then R can be written as:
R = (P P) URE[(5,- P)) x (S, - P,)]

Now congider:

R = (P, P) URI (S, = P) = (S, - P)]

234

It is easy to see that R' is both a bisimulation and an a-bisirnulation between P and P,
However R' will not, in general, be single-valued. Let then ~ be the equivalence induced
by R' on the states of P,

Q. ~ 4,
PZ PZ
i 3P € sp} s.t. both (P, P) and (P, P}) € R' .

It can be shown that ~ is a congruence on P2 and therefore 3 PS s.t. h P2—>P3 is an
ah. So P, %5 Pp_

Also, by theorem 5.2, h can be regarded as a bisirnulation R" between Pz and P, .Consider
now the composition R"R"”: this is by construction a single-valued relation contained in
(S, = SP) and containing (Pi. P3). Moreover R"R" is a bisimulation and an a-bisimulation,
because both R' and R" are. So, by theorem 5.2 again, P1 abs, P,

Summing up, we have P, abs, P, &bs P, . o

In view of the last theorem, ~abs COD be regarded as an alternative definition for <x>® =
<m>*. In the next section, we will see how this new characterisation can be used to derive

a set of reduction rules for <x>" on finite processes.

6. A language for finite processes

In this section, we study the subclass of finite NDP's, and show how it can be used to
model terms of a simple language L.

The language is essentially a subset of R. Milner's CCS (Calculus of Comrmunicating
Systems{M1]). In [HM] a set of axioms is presented for L that exactly characterises the
equivalence <x>" (and therefore ~abs) on the corresponding iransition systems. We show
here that the reduction 2 iiself can be characterised algebraically, by a set of
reduction rules. These rules yield normal forms which coincide with the ones suggested in
[HM].

Finally, we establish a notion of minimality for NDP's and use it to define a denotational
model for L, a class of NDP's that we call Representation Trees. The model is shown to be

isomorphic with Hennessy and Milner's term-model.

We shall now introduce the language L. Following the approach of [HM], we define L as the
term algebra T over the signature:

L= Avu§NIL +}

If we assume the operators in £ to denote the corresponding operators on NDP's (A will
denote the set of unary operators p.), we can use finite NDP's to model terms in Tz. For
a term t, we will use Pt for the corresponding NDP.

We shall point out, however, that the denotations for terms of Tz in P will always be frees,

i.e. NDP's P = {Quir},<, 1) obeying the further constraint:
confluence-freeness: 3 q" s.t. g<q" and q'<qg”

implies q<q' or q'<q

235

Consider now the set of axioms:

E

c

Ei., x +x' =x'" + x
- sum-laws E2. x + (x' + x") = (x + x) + x“

E3. x + NIL = x

E4. p1x = ux
~ T~laws E5. 71X + X = 7X

E6. p(x + 7y) + py = p (x + 1Y)

- absorption law E7. x +x=x

Let =° be the equality generated by E_. It has been proved [HM] that E_ is a sound and

complete axiomatisation for Milner’'s observational congruence =° [M1] , namely that:

_c . s ~C
t =° t iff P & P,

The relation x~° is defined as the closure w.r.t. sum-contexts of the relation (Milner's

observational equivalence)

v = MN_FYPxP)

where (P x P) is the universal relation on NDP's and F is the function on relations

introduced in section 4.

For image-finite systerns', the relations & and ~° have been shown [HM] to coincide with
the relations <m> and <x>" introduced in the previous sections. In particular, we can

assume =° to be defined as <x>° on finite NDP's. Combining these facts together, we have
that:

t ="t iff P~ P

So =% is an algebraic analogue for ™ bs’ Note on the other hand that, although each axiom
of F_ could be viewed as a reduction rule (when applied from left to right), the
corresponding reduction relation would not characterise 2% Consider for example the
terms t = aNIL+7{aNIL+bNIL}, t' = 7(aNIL+bNIL}). Then the transformation: ¢t —> t' would

not be allowed, whereas we have Pt Aabs, Pt’ .

However, using the axiomatisation Ec as reference, we are able to derive a new systemn of

. . . ab
reduction rules, which characterises 225

We first need to define the relations £ on terms of TS: ¥ ou € A", £ is the least

relation satisfying the rules:
i) ut £t

i) t £ t' jmplies t + t" £> ¢, t7 + ¢ H> ¢

‘Our restriction on the labelling for NDP's corresponds to the generul image-finiteness condition: ¥Yq,¥Yu, fq' | q’éq’{ is finite

236

The weak relations %> are derived from the #->'s just as in section 4.

Let now —>° be the reduction relation generated by the following set of reduction rules
R, {(where €—> stands for (—> ﬂ—->“‘)):

R

&

Ri. x + x' &> x'+ x
- sumlaws R2. {x + x') + x* > x + {x' + x")

R3. x + NIL. —> x
- 1st 7-law R4. prx —> ux

- generalised R5. x + ux' —> x , whenever x % x'
absorption law

Then it can be proved [C] that:

Theorem 6.1: t —>°t' iff P =285 p.

Corollary 6.1: Rc is a rewriting system for the equational theory E .

We can make use of our new axiomatisation for =° to characterise normal forms for
terms in T, We say that a term is in mormal form if no proper reduction (R3, R4 or R5)
can be applied to it. It can be shown that:

Theorem 6.2: A term t = Zi wlt is a normal form iff (Hennessy-Milner characterisation}):

i) no t is of the form 7t
i) each t is a normal form

B
iii) fori #j . t e t; v t; s.t. ,thj = t}

Corresponding to normal forms, we have a notion of minimality for processes. We say

that a process P is irreducible or minimal iff P 2bs, o implies P = P’. Then the following

is trivial:

Theorem 6.3: For any finite NDP P, 3 | minimal NDP P’ s.t. P ~ bs P,

Proof: for uniqueness, use 2bs, 1y Church-Rosser property]
A

We shall denote by P the unique minimal process corresponding to the NDP P.

A A
Corollary 6.2: P ~ P iff P =P m]

As we mentioned earlier, the denotation Pt of a term t is always a free. However its
A

"abstract” denotation Pt might not be a tree. We shall now propose a iree-model for terms

of T}:, which is isomorphic to the term-model Tz/:c,

Note first that any NDP which is not a tree has a wunigue unwinding into a tree. The tree-
unwinding of an NDP P (which is not defined formally here) will be denoted by U(P).

237

Let now RT (representation frees) be the class: RT = { U(P) | P is a minimal NDP }.The
denctation Tt of a term te€ Tz in RT is defined by: T{ = U(Pt) .

It can be shown that:

Theorem 6.4: t =°1t' iff T, =T,

We shall finally argue that our model RT is isomorphic to the term-model TB/=° :
RT is a I-algebra satisfying the axioms F_(by theorem 6.4), with the operators defined by:

A
pU(P) = U(uP)
U(Pl) + U(Pz) = U(P1 + Pa)

Therefore, since T):/=c is the initial X-algebra satisfying the axioms E'c, we know that:
3! T-homomorphism ¥ : Tz/=c -—> RT

A
It is easily seen that ¥ is given by: ¥([t]) = U(Pt) = T, Also, by theorem 6.4 again, ¥ is a
bijection between Tz and RT.

Conclusion

We have proposed an alternative definition for the (substitutive) bisimmulation equivalence
<x>" for a class of transition systems. Note that the ordinary bisimulation equivalence
could be characterised just as easily, by slightly changing the definition of
homormmorphism: in fact it would be enough to drop the requirement that proper states
should be preserved. Also, wusing our definition, we have been able to derive a
denotational model for the language L, which is isomorphic to Hennessy and Milner’s term

model for the same language.

Our approach is intended to extend to richer languages, for programs which are both
nondeterministic end concurrent {(meaning that the actusl concurrency is not interpreted
nondeterministically). Some simple results have already been reached in that direction.

Acknowledgements

The definition of abstraction homomorphism and the idea of using it to characterise
Milner's notions of observational equivalence and congruence stems from a joint work with
U. Montanari at Pisa University. I would like to thank him for inspiration and for
subsequent discussions. I would also like to thank my supervisor M. Hennessy for the
substantial help he gave me all along, and R. Milner for helpful suggestions. Many thanks
to my ccolleagues Francis Wai and Tatsuya Hagino for helping me with the wordprocessing
of the paper.

References

[BR]

{c]
[CFM]

[DeN]

[HM]

[X]

1]

[M2]

[Pa]

[P]

238

LNCS stands for Lecture Notes in Computer Science, Springer-Verlag

S. Brookes, C. Rounds (1983}, "Behavioural Equivalence Relations induced
by Program Logies”, in Proc. ICALP '83, LNCS 154.

Full version of this paper. Contact the author.

1. Castellani, P. Franceschi, U. Montanari (1982), “Labelled Event
Structures: A Model for Observable Concurrency”, in: D. Bjorner
(ed.):Proc. IFIP TCR Working Conference on Formal Description of
Programming Concepts II, Garmisch, June 1982: North-Holland Publ.
Company 1983

R. De Nicola (1984), "Behavioural Equivalences for Transition Systems",
Internal Report I.LE.I., Pisa, Italy.

M. Hennessy, R. Milner (1983), "Algebraic laws for Nondeterminism and
Concurrency” , Technical Report: CSR-133-83 , University of Edinburgh.

R. Keller (1978), "Formal verification of Parallel Programs"”,
Communications of the ACM n. 19, Vol. 7.

R. Milner (1980), A Calculus of Communicating Systems, LNCS 82.

R. Milner (1982), "Calculi for Synchrony and Asynchrony”, J. Theoretical
Ceomputer Science, Vol. 25.

D. Park (1981), "Concurrency and Automata on Infinite Sequences”, in
LNCS 104.

G. Plotkin (1981), "A Structured Approach to Operational Semantics”,
DAIMI FN~19, Computer Science Dept, Aarhus University.

