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Abstract 
An approach for synthesizing data type implementations based on the theory of term 

rewriting systems is presented. A specification is assumed to be given as a system of 
equations; an implementation is derived from the specification as another system of equations. 
The proof based approach used for the synthesis consists of reversing the process of proving 
theorems (i.e. searching for appropriate theorems rather than proving the given ones). New 
tools and concepts to embody this reverse process are developed. In particular, the concept of 
expansion, which is a reverse of rewriting (or reduction), is defined and analyzed. The 
proposed system consists of a collection of inference rules - instantiation, simplification, 
expansion and hypothesis tesing, and two strategies for searching for theorems depending 
upon whether the theorem being looked for is in the equational theory or in the inductive 
theory of the specification. 

1. Introduction 

In this paper we develop a formal system for automatically synthesizing implementations 
of abstract data types from their algebraic specifications. In our approach, the implemented 
data type (i.e., the data type which is being synthesized) and the representing data types 
(i.e., the data types used to represent the implemented type) are specified as algebraic axioms. 
In addition, a mapping, called the abstraction function, that relates the values of 
representing data types to the values of the implemented data type is also specified. The 
output of the synthesis procedure consists of implementations for the operations of the 
implemented data type in terms of the operations of the representing data types. Thus, the 
operations of the representing types are used as primitive functions in the implementation 
being synthesized. This approach to synthesis can be applied hierarchically to as many levels 
of abstraction as necessary until we obtain an implementation in terms of the operations of 
data types, such as arrays, that are directly supported by a programming language system. 

Our approach is based on the theory of term rewriting systems developed recently in the 
context of reasoning and proving theorem automatically about algebraic structures and data 
types from their specifications [KnB70], [HuH80], [MusS0b], ~dsi82]. Systems built using 
rewrite rule based approach for abstract data types such as AFFIRM [Mus80a], OBJ [GOT79], 
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and other systems for manipulating general term rewriting systems such as REVE [Les83] and 
FORMEL [HuHS0], have provided encouraging signs for using the approach for theorem 
proving applications. In our work on generating implementations from specifications, we use 
many of the same tools and concepts used in theorem proving. Since we view theory-based 
synthesis as reversing the process of proving theorems (i.e., searching for appropriate 
theorems rather than proving known ones), we develop new tools and concepts to embody 
this reverse process. Our system consists of a set of inference rides, and strategies for 
using the ~nference rules to synthesize implementations. Our experience in working out many 
examples ]by hand have suggested that program transformation, optimization and synthesis 
based on rewrite-rule-based theorem proving is highly promising. 

A m~jor advantage of using term rewriting theory is that we can address all issues 
related to data type synthesis within a uniform framework. We are able to provide formal 
justification of the soundness of the rules of inference of our system since the consistency of 
data type specifications can be characterized using term rewriting concepts. We characterize 
the condRions under which a strategy would successfully synthesize implementations. We 
present two strategies - one that synthesizes implementations in the equational theory, and 
another that operates in the inductive theory of the specification. Both the strategies require 
that the data type specifications be organized as canonical term rewriting systems. This 
requirement in turn means that there exists a well-founded ordering on terms (as in [I)er82]) 
that can be used to guarantee the uniform termination property of the specification term 
rewriting system. Although the strategies work for any such ordering it is assumed that one 
such ordering is available. The use of such an ordering assures the termination of the 
programs synthesized. 

The equational strategy is completely automatic in the sense that it does not need any 
human intervention for it to suceesfully synthesize an implementation. It is guaranteed to 
synthesize an implementation provided there exists an implementation (in the equational 
theory) the termination of which can be demonstrated using the termination ordering being 
employed by the strategy. The equational strategy may not terminate unless such an 
implementation exists. The inductive strategy is only semi-automatic since it needs prompts 
from the user at strategic points. Furthermore, the strategy is not complete for the inductive 
theory in the sense it is not guaranteed to produce an implementation even if one exists in 
the inductive theory. 

The ]rest of the introduction contains an overview of related works in the area. In the 
next section, we illustrate our approach on a small example. Section 3 gives the reader a 
backgrourhd in the use of algebraic techniques for specifying and implementing data types. 
Section 4 describes our synthesis system: Section 4.1 presents the rules of inference of our 
system, their justification along with their theoretical basis. A detailed discussion of the 
strategies for putting various rules of inferences together is given in Section 4.2. This is 
followed by a section that illustrates the approach in detail on a couple of examples. (For 
lack of space we present only simple examples in the paper. For more detailed examples see 
[KaS84].) 
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1.1. Related Work 

Burstall and Darlington [BuD77] and Manna and Waldinger ~VfaW80] proposed a set of 
general purpose transformations for refining programs from their high level specifications. 
Feather [Fen82] has extended Burstall and Darlington's approach in his ZAP system by 
providing the ability for a user to specify metaprograms to direct the transformation process. 
Manna and Waldin~er have adopted strategies based on theorem proving methods in the first 
order predicate calculus in their DEADLAUS [MaW80] system. Our method is related to that 
of Burstall and Darlington. The algebraic specification language is similar to the recursive 
equational language used by Burstall and Darlington for specifying the behavior of functions 
in their program transformation work. 

Our system offers several advantages over the one proposed by Darlington (([BUD77], 
[Dar82]) all of which arise as result of the use of the term rewriting framework. The inference 
mechanisms of our system subsume all the machinery developed by Darlington and Burstall; 
in this sense, we not only provide a theoretical basis for their approach but also extend it. 
(Kott [Kot82] has also independently provided theoretical justification for their method by 
giving conditions under which f old/unfold can be applied.} Our system operates in a richer 
theory (the inductive theory ) of the specification. This enables us to derive a richer class of 
implementations. Our approach also appears more promising in developing intelligent 
strategies for synthesis. This is primarily because our framework is conducive to adapting 
theorem proving strategies (such as the inference mechanism based on the Knuth-Bendix 
completion procedure [KnB70], [Mus80b], [HUH80], [Lan81]) for synthesis. 

2. I l lus t ra t ion of  the Approach 

Before getting into the details of our approach, we will illustrate some of our ideas 
informally on an example. A function union is defined on the data type multiset,  which is 
constructed using two constructors - a constant function nullset that creates an empty 
multiset and a binary function insert: int X multlset --* multlset that inserts an element 
into a multiset. The function union, which returns the union of two multisets, has the 
following primitive recursive definition expressed as a set of rewrite rules: 

(T1) unlon(nullset,  s2) --~ s2 
(T2) unlon(insert(ei ,  s l ) ,  s2) --, insert(el ,  unlon(s l ,  s2)) 

The data type mult lset  is to be implemented using another data type, sequence, whose 
values are constructed using the constant function [ ], and a binary constructor + : int  X 
sequence--* sequence. The abstraction function h specifying how sequences represent 
multisets is also given as rewrite rules: 

(H1) h ([ ]) --, nuilset 
(n2)  h (e -t- v) --* insert(e, h (v)) 

This example is interesting because (1) a mult iset  can be constructed in more than one way 
using its constructors, and (2) several different sequences may represent the same multiset. 
Using the abstraction function h, the implementation of union denoted as UNION,  can be 
derived as follows. First, we introduce the rewrite rule that completely characterizes 
U N I O N  in terms of union and h. This rewrite rule is called the specification rule of 
UNION.  {Note that for U N I O N  to be correctly implementing union the latter has to be a 
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homomorphic image of the former.) 

($1) h (UNIONCvl ,  v2)) --* unlon(h (vl), h (v2)) 
The objective is to derive an implementation for U N I O N  independent of union and h. 
This is done by deriving enough rules of the form h ( U N I O N ( t l ,  t2)) ~ h (t3) so that we 
can derive the implementation of U N I O N  (as a total function on sequence ) by dropping h 
from both sides. Rules (H1) and (H2) defining h suggest that we can instantiate the right 
hand side of rule (S1) - by first instantiating v l  to be [ ], and then to be insert(el Jr v l ) .  
(Our strategy will discover these instaatiations automatically such that they completely cover 
the domain of the function being implemented.) 

h (UNION([  ], v2)) -4 unlon(h ([ ]), h (v2)) Instantiate ($1) 
h (UNION([  ], v2)) -4 h (v2) Simplify using (H1), (T1) 

By dropping h on both sides, we get 

(I1) U N I O N ( I ] ,  v2) -* v2 

Similarly, by instantiating v l  to be e l  -t- v l  in rule (S1) as suggested by rule (H2) of h, we 
have 

h (UNION(e l  + v l ,  v2)) 
--, union(h (e l  -1- v l ) ,  h (v2)) Instantiation of ($1) 
-* inser t (e l ,  union(h (v l ) ,  h (v2))) Simplify using (He), (7"2) 

Now, we want to bring symbol h on the right hand side to its outer most level. This can be 
done by applying some of our rewrite rules in the reverse direction (called expansion later in 
the paper, which is similar to but, more general than, Burstall and Darlington's fold 
mechanism). In order to use rule (H2) for h in the reverse direction, we must first use rule 
($1) in the reverse direction. These two expansion steps will result in the following rewrite 
rules. 

h (UNION(e l  q- v l ,  v2)) -4 inser t (e l ,  h ( U N I O N ( v l ,  v2))) 
--, h (el  + UNION(v1 ,  v2)) 

Dropping h on both sides, we have 

(I2) U N I O N ( e l  + v l ,  v2) --, e l  + U N I O N ( v l ,  v2) 

(I1) and (I2) constitute an implementation for U N I O N  because the two rewrite rules define 
U N I O N  as a total function on sequence. Note that in this example the correspondence 
between union and U N I O N  is very obvious because of the close correspondence between the 
constructors ([ ], -t-) of sequence and the constructors (nullset, insert} of multiset (except 
for the relation on the constructors of mnltiset ). The examples in Section 6 will demonstrate 
that the method can synthesize more interesting implementations. 

The mechanisms used above are all embodied in our system as inference rules that act 
on a set of rewrite rules to produce a new rewrite rule. The theoretical justification (given 
later) for each of the inference rules is that it always produces rewrite rules consistent with 
the original set of rewrite rules. Specifically, the h dropping mechanism can be justified by 
the hypothesis checking inference rule which uses the Knuth-Bendix completion procedure; 
we need to have a criterion for h dropping especially when h is a many-to-one function. 
According to this rule of inference, if the new rule being hypothesized does not result in any 
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contradiction along with the existing rewrite rules, then the hypothesized rule can be added 
to the system. 

We organize the rewrite rules in our specification into several groups based on the role 
they play during the synthesis of an implementation. The specification rules (such as SI) 
that specify the new function(s) to be implemented are grouped into the specification set. 
The rules that are used for expansion, such as (S1), (HI), and (H2), are grouped as the 
expansion set. The rulesthat  are used for simplifying terms form the reduction set. The 
criteria that determine membership of a rewrite rule in these groups will be given later. 

Although the transformation process at least for this simple example is similar to that of 
BurstaU and Darlington [BuD77], there are several fundamental differences. We deduce the 
instantiations of the rules automatically from the left hand sides of the rules defining h. The 
inference rule in our system that does the instantiation uses the notion of derived pairs 
[GKM82]. Note that there are several possible sets of instantiations that completely span the 
domain. Our synthesis strategy enumerates all possible sets of instantiations systematically 
attempting to find implementation for each of  them until it finds one. For instance, in the 
above example another set of instantiations possible for the arguments of UNION is {(vl ,  [ 
]), (v l ,  e + v2)}. In this case, our system may derive the following pair of rewrite rules: 

UNION(v l ,  [ ]) --* UNION(v l ,  UNION([ ], [])) 
UNION(v1,  e + v2) --, UNION(v l ,  INSERT(e ,  v2)) 

Our strategy would discard this implementation because the first rewrite rule cannot be 
ordered under any well-founded ordering. 

There are four inference mechanisms being used in our approach: 

(1) Instantiation of variables in the rewrite rules specifying the function to be implemented. 
(The instantiation is not arbitrary, but is directed by the definitions of other functions.) 

(2) ~implif ication of a term to its irreducible form (a term is said to be irreducible if it 
cannot be further simplified.) 

(3) Expansion to introduce recursion or other helping functions in the implementation. 

(4) The KnuthoBendix completion procedure for checking whether new hypotheses being 
made are indeed consistent with the existing definitions. 

3. Abs t rac t  Data  Types 

3.1. Specification 

Abstract data types are specified using the algebraic technique developed by Guttag 
[GuH78] and the ADJ group [GTWS.]. Our presentation of the specification is patterned after 
Guttag et. al. Specifically, abstract data types are defined one by one in a hierarchical way 
assuming other data types to be specified elsewhere. We use the initial algebra semantics 
[GTWS.] for our data type specifications. The data type sequence is specified in the figure 
below. (The data type item is assumed to be specified elsewhere.) 

The operations of a data type are grouped into two classes: (i) generators, which 
generate all the values of the data type, and (ii) defined functions, which are defined on 
the values of the data type constructed by the generators. These classes are explicitly 



193 

identified in the specification along with the domain and range of every operation. 

The construction of values of a data type in terms of its generators is not necessarily 
unique. The generators - nullset  and Inser t  - of the data type mul t l se t  we saw in section 2 
can be used in more than one way to construct the same multiset. For instance, 
Insert( insert(nullset ,1) ,2)  and Inser t ( inser t (nul lse t ,2) , l )  both construct the same 
multiset {1, 2}. This equivalence relation is characterized by the equations relating the 
generators. We refer to the terms like Inser t ( inser t (nul lset ,  2), 1) constructed solely using 
the generators as generator terms. Generator terms that do not contain any variables are 
referred to as generator constants. 

We require that the specification of every data type involved in the synthesis be 
complete and consistent. By completeness ([Gull78], [Kap80].), we mean that the equations 
in the specification are such that every defined function is defined for every generator 
constant of the data type. That is, every term that applies a defined function to generator 
constants, such as unlon(insert(nullset ,  1), nuliset), can be shown to be equivalent to a 
generator constant (or the distinguished element e r ror )  of the range type of the function. 
Consistency ensures that every function of the data type forms a well-defined function. One 
way to guarantee the completeness and consistency of a specification is to ensure that it can 

be organJized as a term rewriting system that is well-spanned [Sri82] and canonical 2 

D a t a  T y p e  Sequence 

Generator8 
[] • -* sequenee 
-t- : i t em X s e q u e n c e  --* s e q u e n c e  

Defined Functions 
first : s e q u e n c e  --, i t e m  t.3 { E r r o r  } 
rest  : sequence -* s e q u e n c e  U {Error}  
r o t a t e  : s e q u e n c e  --, s e q u e n c e  

Azioms 
(1) first([ ]) ~ E r r o r  
(2)  f irst(e  -b v)  - -  e 

(3) rest([  ]) ~-~ E r r o r  
(4) rest(e  + v)  ---- v 

(7)  r o t a t e ( [  ]) ~ [ ]  
(8)  r o t a t e ( e  -t- [ ]) ---- e -I- [ ] 
(9)  r o t a t e ( e l  + (e2  -t- v ) )  _---- e2  -t- r o t a t e ( e l  -t- v )  

F i g u r e  1. A l g e b r a i c  Spec i f i ca t ion  o f  D a t a  T y p e  S e q u e n c e  

~A term rewriting system i~ camonicaJ if every sequence of rewrites emaaxtinK form a term ~ terminates with the ~ame term fl; f l  is 
~aid to be the normal form of ~ .  
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/HullS0/. We briefy describe the two properties below. 

A term rewriting system is well-spanned if it can be structured such that every term of 
the form F(g), where F is a defined function and g is a generator constant, is an instance Of 
the left hand side of an equation in the specification. A canonical term rewriting system for a 
given set of equational axioms can be derived using the Knuth-Bendix completion procedure 
/HullS0/. It is assumed that the equational axioms specifying the data types can be oriented 
and made into rewrite rules using some termination ordering [Der82]. For instance, all the 
axioms in the specifications of sequence and queue can be oriented as rewrite rules from left 
to right using a recursive path ordering [Der82] in which the defined operation symbols are 
assigned more weight than the generators. In case any of the operations have the associative 
and/or commutative property or any other property which needs special handling, then 
appropriate termination ordering [DHJ83] incorporating such properties must be used. The 
Knuth-Bendix completion procedure or its generalization developed by Peterson and Stickel 
[PeS81] or Lankford and Ballantyne /LAB77/ to deal with special properties such as 
associativity, commutativity is then applied to rules to obtain a canonical term rewriting 
system which gives the decision procedures for the equational theories of these data types. 
For instance, the specifications of sequence and queue are canonical because the Knuth- 
Bendix completion procedure when run on them does not generate any new rewrite rules. 

The equational theory of a data type specified by equational axioms are all equational 
formulas that can be derived using the axioms of equality - reflexivity, symmetry, transitivity, 
substitution property and replacement. When a set of equations E can be organized into a 
canonical term rewriting system R ,  the equational theory of E contains formulas a = / 3  
such that a and /3 have the same normal form. The inductive theory, which contains the 
equational theory, is the set of all equational formulas that can be derived using the rules of 
equality and the following principle of induction. In the following, a generator-constant 
substitution is a substitution in which variables are substituted by generator constants. 

V generatOrueOnstant substitution a, a(a) = a(b ), E equational theory 
am_. b E inductive theory 

equational theory of 
types sequence and 
of append is in the 
effective. Generally 
powerful enough. 

For example, consider the function f defined on natural numbers (with generators 0 and S) 
by the rewrite rules: f(0) ~ 0 and f(S(x)) --* f(x). The equation f(x) ~--- 0 is not in the 

natural numbers with f but is in the inductive theory. For the data 
queue  for example, the equational formula expressing the associativity 
inductive theory. It should be noted that this inference rule is not 
weaker forms of this inference rule are used which are practically 

The equations in the inductive theory are not theorems in the logical sense because they 
do not hold good in all the models of the specification. They do hold good in the initial 
algebra model of the specification. They are useful for our purpose because we use the initial 
algebra semantics for data types. The inductive theory is the basis for our method since the 
programs synthesized by our inference rules lie in the inductive theory of the specification. 

Henceforth, we will assume that the specifications of all data types being used in the 
synthesis procedure are well-spanned and each specification has a canonical term rewriting 
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system associated with it (modulo an equivalence relation specified by special properties such 
as associativity, commutativity, etc.). 

3.2. Specifying the Desired Implementation 

Implementing a data type consists of choosing a representation for the data type, and 
implementing every operation of the data type in terms of the operations of the 
representation type. The implementation for the operations can, in general, be expressed in 
an arbitrary language. In the present work we express the implementation in a language 
identical to the one used to express the specification. That  is, an implementation for an 
operation is expressed as a set of well-formed rewrite rules that defines the operation as a 
function on the chosen representation type. 

In order to synthesize interesting implementations for a data type D, we require the user 
to furnish information about how the values of the representing type(s) R are used to 
represent the values of D. This information is specified by the user as an abstraction function 
h from R to D again as a set of rewrite rules. In general, not all the values of R may be 
used to represent the values of D; the subset of values of R that are used is specified by an 
invariant predicate. In this paper we will assume that the set of values of R used for 
representing D is identical to the domain of the abstraction function h .  Some of the issues 
concerning data type synthesis in the presence of nontrivial invariants are discussed in [Sri82]. 

The abstraction mapping can be complex and may use additional auxiliary functions on 
D and/or R which are specified using the operations of D and R again as rewrite rules such 
that they are completely defined. Further, we will assume that these rewrite rules for h and 
auxiliary functions also satisfy the completeness and consistency conditions stated earlier. 
Our experience suggests that the more complex the abstraction funcion is, the more difficult 
it is to generate implementations for the operations of D. The rewrite rules (HI) through 
(H2) of t]he example in section 2 specify the abstraction function for an implementation of 
mult iset .  Specified below is another abstraction function for representing queues in terms of 
sequences. The empty queue is represented by the empty sequence. A nonempty queue is 
represented by a sequence whose elements are identical to the ones in the queue, but are 
arranged in the reverse order. The motivation for such a scheme is that  the reading and 
deletion of elements from a queue can be performed efficiently. The specification of h uses 
an auxiliary function add at_head on queues. This function adds an element at the front 
end of a queue. 

(H1) h ([ ]) -4 nullq 
(H2) h (e -[- v) -4 add_at_head(h (e), h (v)) 

(H3) add_at_head(e, nullq) -* enqueue(e, nullq~ 
(H4) add_at_head(el, enqueue(e2, q)) -~ enqueue~e2, add_at_head(el, q)) 

An implementation F for an operation f of D is then completely characterized by the 
following homomorphism property: 

(*) h (F(xl, ..., xn)) --, f(h (xl), ..., h (xn)) 
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The mapping h is assumed to behave like an identity function on values of data types other 
than R .  This is natural because we generate implementations for data types one at a time 
and in a hierarchical way. For each f ,  the above rewrite rule that specifies the implementing 
function F is said to be the specification rule of F. 

4. Proof  Based Approach for Synthesis 

Our approach to synthesis is proof based because (1) we employ concepts used in 
theorem proving based on term rewriting systems, and (2) an implementation is derived as a 
theorem of the specification. The goal of our synthesis task, however, is fundamentally 
different from that of theorem proving. In theorem proving the goal is to establish that a 
given property is a theorem of a set of axioms (specification). In synthesis we have to search 
for a rewrite rule of an appropriate form that is known to be a theorem of the specification. 
The rewrite rules we are looking for are to constitute an implementation. Note that our 
characterization of the synthesis task is different from that of Waldinger [MAW80]. In 
[MaW80] a program is derived as a proof of a theorem which is an input/output specification 
of the program. Our approach is better suited for taking advantage of theorem proving ideas 
based on term rewriting systems. 

In our approach, synthesis is performed with help of a system of inference rules. Every 
inference rule acts on a set of rewrite rules R and produces a new rewrite rule that is 
guaranteed to be consistent (i.e., a theorem in the inductive theory) with R .  The set R 
initially consists of 

(1) the specification of all data types, 

{2) the specification of the abstraction function h,  and 

{3) the specification rule for the implementing functions. 

Note that (1) and (2) form a well-formed system of rewrite rules. When (3) is added the set 
R remains canonical but is no longer well-spanned. This is because the functions (F)  
implementing the operations ( f )  are not yet defined on all values of the representation type. 
The synthesis process consists of repeatedly invoking appropriate inference rules on R so as 
to make it well-spanned. An implementation for an operation f of a data type is synthesized 
by deriving a well-span~ed set of rewrite rules that implements f as a function on the 
representation type. The implementation is guaranteed to be correct since every rewrite rule, 
being derived by one or more application of an inference rule, is consistent with the 
specification rule of f .  We first present the inference rules of the system, and then describe 
the strategies for invoking the inference rules. 

4.1. Inference Rules 

In the following we state the inference rules of our system. Every inference rule has the 
e 

general form l ' C 2 " ' " C n  where e n are a set of conditions, and a--+/~ is a new - - )  ,~ ) ¢ I ,  " " )  

rewrite rule. The inference rule is to be read as "if the conditions el, ..., c a hold good for a 
rewriting system S, then the rewrite rule a --* j3 may be added to S." The soundness of the 
inference rules is guaranteed by ensuring that the new rule a -*/3 is in the inductive theory 
of data types and the functions under consideration. In every inference rule it is also assumed 
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that the new re~rite rule a --* 8 is added to S only if it preserves the uniform termination 
property of S. This can be ensured by checking that under the termination ordering > being 
used a > 8. (In all our examples given later we use the recursiv~ path ordering defined by 
Dershowitz [Der82].) 

Instantiation 

<% 6> is a derived pair of the f irst rewrite rule on the second 

A derived pair [GKM82] <% 6> of a I -*/31 on a2 -* 82 obtained by superposing [KnB70] 81 
on a 2 is defined as follows: consider a nonvariable subterm t of 81 which unifies with a2; let 
be the most general unifier of t and a 2. Then "t = ~(al), and 6 ---- ~(/311), where /~H is 
obtained by replacing t in /~1 by 82. For instance, in the case of the union example of 
section 2, the derived pair of rewrite rule (S1) on rewrite rule (H1) produces the rewrite rule 
h (UNION([ ], ~ ) )  -~ unlon(h ([ ]), h (~)) .  

Derived pairs are a generalization of reduction applied on rules except that derived pairs 
are constructed using unification instead of matching. Derived pair generation is similar to 
narrowing ~aB79]. Clearly, the new rewrite rule derived by this inference rule is in the 
equational theory of S; An advantage of using the derived pair mechanism rather than 
arbitrary instantiation (like done in [BUD77] [Fea82]) to instantiate rewrite rules is that it is 
possible to generate a well*spanned set of instantiations automatically. This is done (as will 
be explained more clearly in section 4.2) by computing derived pairs between a specification 
rule and every other possible rewrite rule. The fact that each of the functions in the 
specification are completely specified ensures that the function being implemented will also be 
defined completely when all the derived pairs are computed. 

Simplification 

Let/~-,* "7 stand for fl simplifies to ,~ (i.e., q is the normal form of 8) using rewrite rules in S. 

Or--+.  I 

The justification of this rule of inference is obvious from the definition of reduction; the new 
rule in this case is also in the equational theory and preserves the termination ordering. The 
new rewrite rule obtained using this inference rule is put in to the same set of rewrite rules 
from where a -+ 8 comes. 

Expansion 

We say ~/ezpands to 6 in S(written ~ 6 )  using a rewrite rule a --* 8 E S if the following 
conditions bold: 

(1) There exists a subterm t of 7 such that t is unifiable s with ]~. 

Slf any ©,f the functions eatisfy apecial properties auclt u mmociativity sad commut~ivity then it is aeceelzxy to use unillcztion algo- 
rithms under equxtional theories [StiS1]. 
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(2) ~ ----- a(ffz) , where "h is obtained by replacing t in '7 by a.  

The rule is 
--+ ~ e s ,  /3~,ffi8 with ~ being the ,mff !er ~sed for expansion 

0~ ¢,) --* 6 

Expanding a term "7 using a rewrite rule a ~ ~ is roughly equivalent to reducing '7 using the 
rule/~ ~ a. The difference lies in the fact that  expansion uses unification (~/with fl) whereas 
reduction uses matching (~/with/~). Note that  whenever/~ (~ffi ~f, ~f necessarily reduces to a(/~) 
for some substitution a. The new rewrite rule obtained from the expansion rule of inference 
is also in the equational theory as the following diagram illustrates. 

/ , , ,  
= ~(~) 

The difference between expansion and folding [BuD77] is that  the former uses unification 
while the latter uses matching. To see the advantage of expansion over folding it would be 
instructive to consider the purpose an expansion/folding inference is serving in the synthesis 
process: To obtain an arbitrary term ~f that is reducible to a given term fl using the rewrite 
rules in the S. Folding (used repeatedly) is adequate for the purpose only if every rewrite 
rule lhs--,rhs in S is variable preserving (i.e., is such that every variable in ihs also appears 
in rhs ). However, if S has non-variable-preserving rewrite rules then folding alone is not 
sufficient, and we need expansion as illustrated by the following example. Let us suppose we 
wish to obtain from cons(x,  nil) the term Reml( Inse r ta l l (cons(x ,  nil))) using the following 
set of rewrite rules. The following sequence of expansion steps achieves the desired result 
while no sequence folds does. Specifically, the last step in the sequence (in which rewrite rule 
(4) is used) cannot be performed if folding were being used. 

(1) Reml(cons (x ,  nil)) - ,  nil 
(2) Reml(eons (x ,  cons(y,  L))) -* cons(x, Reml(cons(y, L))) 
(3) Insertall(nil) --* nil 
(4) Inse r ta l l (cons(x ,  L)) --* cons(x,  cons ( l ,  Inser ta l l (L)) )  

cons(x, nil) ~:=~ Reml(cons (x ,  cons(x*,  Inser ta l l (n | l ) ) ) )  
(~= Reml ( In se r  ta l l (cons(x,  nil)) 

Note that  every expansion step can in general be replaced by an arbitrary substitution 
for the variables followed by a folding. Mixing substitutions and folding, however, 
complicates the strategy for invocation of the inference rules since there are potenially infinite 
substitutions possible. The use of unification in expansion determines the productive 
substitutions automatically. 

Further, while expanding a term /~ (with the hope of determining a term 6 that  is 
reducible to fl) it is necessary to consider for unification only those variables that  are newly 
introduced during expansion, but not the ones in/~. New variables are introduced whenever a 
term is expanded using a rewrite rule that  is not variable-preserving. We refer to such 
variables as f ree variables. For instance, the asterisked variables in the expansion sequence 
shown above are free variables. It can be shown that  every term 6 reducible to fl is an 
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instance of some term 6" (for some substitution of the free variables in $*) that is obtained 
after performing a finite number of expansions on ft. Intutively, the free variables are place- 
holders for an abitrary term. In our synthesis strategy the binding of the free variables is 
delayed uutil a decision is either automatically made by the unification performed during an 
expansion step (as in the above example), or expanding the term any further makes it bigger 
than a term even if the free variable is replaced by a least term in the ordering on the terms 
being used. 

Hypothesis Testing 

{~ ~ ~}US is-KB-completable 

where is-KB-completable is a predicate that  acts on a rewriting system S. 

The above predicate, which is a partial function, characterizes the outcome of running 
the Indictive Knuth-Bendix completion proecedure (/HullS0/) on S which is a semidecision 
procedure for checking the confluence (i.e., consistency [KaM82]) of S. The predicate 
is-KB-completable returns true if the inductive Knuth-Bendix completion procedure 
terminatet successfully; otherwise, it is undefined if the completion procedure does not 
terminate; in the other two cases, the preducate is false. This rule is powerful as it provides 
a way to check whether a hypothesis made based on derivations, or by generalizing a 
definition of a function on a class of examples (this technique is further discussed in the next 
section, and illustrated by the examples in section 5.) is indeed consistent with the rest of the 
specification. The new rewrite rule derived using this inference rule is in the inductive theory 
of the data types being considered. 

The above inference rule is more powerful and provides a more effective way of 
introducing new definitions into the system than the redefinitio n mechanism /BUD77/ of 
Burstall and Darlington. In the redifinition mechanism, to hypothesize a new definition for a 
function one adds it to the system, and one tries to generate the rewrite rules constituting the 
existing definition for the function using fold/unfold transformations. This, however, is only 
a sufficient condition for the new definition to be consistent. For instance, one might have to 
introduce definitions besides the one being hypothesized in order to obtain the original 
definition. The inductive KB-completion procedure does this automatically in a significant 
number of cases. Also, inductive KB-completion procedure uses only reductions (not 
expansions}, and hence is more effective. 

The h -dropping Rule 

This inference rule can be used to obtain a new rewrite rule a --~ fl from a rewrite rule of 
the form h (a) ~ h (~). It is not always sound to drop h ,  since h may be many-to-one and 
dropping it may cause inconsistencies. It  would be sound to drop the symbol provided a --,/~ 
does not introduce any inconsistency, i.e., does not introduce any relationships among values 
that are distinct in the system. This condition is usually satisfied when a involves a function 
which is unimplemented in the system. 

h (~0 -" h (~) E S , a --./~ U S is-KB-completabls 
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The new rule derived this way is also in the inductive theory of data types being considered. 

4.2. Strategies for  Synthesis 

A common mode in which the inference rules of our system is used to synthesize an 
implementation is to set up a foal that specifies the approximate form a program to be 
synthesized is supposed to take, and then make a judicious selection of the inference rules 
that achieves the goal. A synthesis stratefy is a procedure which determines a sequence of 
invocations of the inference rules that will generate a new rewrite rule satisfying the desired 
goal. For instance, the goal in synthesizing an implementation for an operation f of a data 
type is to derive a well-spanned set of rewrite rules of the form F(gl ) ~ t i ,  where g is a 
generator term and t is an arbitrary term that does not involve any operations of the type 
being implemented. Each of these rewrite rules is derived by deriving theorems of the form 
h(F(gi))--.h (t  i ), and then dropping the symbol h on either side using the h-dropping 
inference rule. 

In the following we present two general strategies for using the inference rules of our 
system to derive theorems of the form h (F(gi))-*h (t~.). The two strategies differ in the 
theory to which the new rewrite rules being derived belong. The first one derives rewrite 
rules in the equational theory, while the second can also derive rewrite rules in the inductive 
theory. 

Different rewrite rules in the specification play different roles during the synthesis 
process. Based on their role we have categorized the rewrite rules into the following groups. 
This categorization facilitates our synthesis strategies greatly. 

(1) Rules specifying the functions to be synthesized form the specification set. 

(2) Rules used for expanding terms form the ezpansion-set. 

(3) Rules that are used only for simplification and/or computing derived pairs form the 
reduction -set. 

In the case of data type synthesis, the specification set initially consists of the rewrite 
rules expressing the homomorphism property between the abstract operations and their 
implementing function. For example, in the informal derivation shown in section 2, the 
specification set initially consists of only the rewrite rule ($1). The rewrite rules that go into 
the expansion set will, in general, depend on the desired form of the new rewrite rule to be 
derived. In addition to the specification rule and the rules specifying the abstraction function 
and its auxiliary functions, the expansion set includes the rules determined as follows. 
Suppose F is the set of function symbols that are permitted to appear on the right hand side 
of the rewrite rule to be derived. (This information has to be furnished by the user, in 
general.) Let us suppose that we have a esea relationship defined on the function symbols 
that holds if the definition of a function uses another function. Let F* be the reflexive, 
transitive closure of uses applied to F. The expansion set will include the rewrite rules that 
define the functions in F*. The reduction set will normally include the entire system. 

4.2.1. Equat ional  S t ra tegy  

The equational strategy is based on the property that a rewrite rule lhs--*rhs in an 
implementation is in the equational theory of R if lhs and rh8 have the same normal form 
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in R. Thus, if lhs of the desired rewrite rule can be determined somehow, then rhs has to 
be a term that has the same normal form as lhs. The lhs's of the rewrite rules are fixed 
based on the requirement that they have to be of the form h (F(gi)) such that {g~ } forms a 
well-spanned set of generator terms. 

This strategy synthesizes an implementation by repeatedly performing the following 
steps in sequence: The Instantiation Step, the Simplification Step, and the Expansion Step. 
Every iteration of the loop generates at most one rewrite rule lhs i--*rhs i which is inserted 
into the set I (initially empty). The loop is terminated when a well-spanned set of rewrite 
rules are collected in I. The instantiation step consists of setting up lhsi. The instantiation 
step is perfomed in such a way that every possible well-spanned set of lhs i is generated after 
a finite number of iterations. The simplification step consists of simplifying the right hand 
side of the rewrite rule obtained in the first step to its normal form. The expansion step 
consists of repeatedly expanding the right hand side of the rewrite rule obtained in the 
simplification step. The rewrite rule returned by the expansion step is inserted into I. The 
expansion step, which is guaranteed to terminate (see below), may not yield an appropriate 
rhs i for the lhs i set up in the instantiation step. In such a case nothing is inserted into I 
during that iteration. 

The instantiation step essentially consists of invoking the Instantiation-inference rule 
between ~, rewrite rule in the specification set and a rewrite rule outside the specification set. 
Although the exact rewrite rules which participate in the instantiation step are left 
unspecified, we assume that all the rewrite rules in the specifictaion set are treated /airly. 
This essentially means no rewrite rule in the specification set is ignored infinitely often. In 
other words the instantiation step has to ensure that the Instantiation-inference rule is 
invoked on every rewrite rule in the specification set and every other possible rewrite rules in 
the system after a finite number of iterations. This ensures every possible well-spanned set is 
generated after finite number of execution of the instaniation step. To see this is why, note 
that the specification set initially consists of the rewrite rule h(F(x))--* /(h(z)). 
Computing derived pairs between this rewrite rule and every other possible rule generates the 
first well-spanned set. Each of the resulting rewrite rule (after simplification) is inserted into 
the specification set. Computation of derived pairs using each of these rules will generate the 
next well-spanned set, and so on. 

repeat 

{1) Apply lnstantiation-inference between a rewrite rule in the specification set, and any 
other rewrite rule in the program. 

(2) Repeatedly apply Simplification-inference to the new rewrite rule generated in step 1 
until it is no longer applicable. Let the resulting rewrite rule be a--* 8. Add the 
simplifed rewrite rule to the specification set. 

(3) Carry out the Expansion step (described below) on a- - , /~  to obtain the rewrite rule 
a--*-/. 

(4) Replace any free variable in "t by an appropriate least element, and insert into the 
output set I .  

unti l  a well-spanned set of rewrite rules is obtained in I 
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The Expansion Step 

The expansion step takes a rewrite rule a ~ #, and produces another rewrite rule a ~ "t 
using the E:tpansion-inference rule repeatedly. The rewrite rules used for the expansion of fl 
are picked from the expansion set. At each step there can be several different rewrite rules 
may be used for expanding. We assume that  the algorithm uses a "dove tailing" technique in 
which all possible expansions are considered one step at a time. Also while checking if a < / ~  
below we assume that  a free variable in/~ are treated as a least element in the ordering. It  is 
important to note that  the expansion step is guaranteed to terminate assuming there is a 
termination ordering on the terms. This is because the right hand side of a rewrite rule is 
expanded only as long as it is less than its left hand side. 

whi le  /~ < a and/~ is not of the desired form do 
(1) Apply Ezpansion-inference rule between a --* fl and a rule from the 
expansion set to obtain a new rewrite rule a --, 7. 

(2) Replace ~q by 7. 

endwhile  

The equational strategy will find an implementation as long there is an implementation 
{lhs i --, rhsl} in the equational theory such that lhs i > rhs~.. This is because the 
instantiation step is guranteed to generate the desired lh8 i . For such an lhs i repeated 
expansion is guaranteed to find an rhs i as long there is one that  is less than (in the ordering 
> )  lhs i . If there is no such implementation then the strategy may not terminate. In such a 
case the user would have to interrupt the strategy himself. 

4.2.2. S t r a t e g i e s  f o r  t he  I n d u c t i v e  T h e o r y  

When the equational strategy is unsuccessful, we end up in a partial implementation 
that  defines the function being implemented on a subset of the domain values. Even when 
successful one might wish to derive a better implementation that  is not in the equational 
theory. Under such circumstances we switch over to an inductive strategy. The KB- 
Completion inference rule is the one that  gives our system the ability to derive rewrite rules 
in the inductive theory. Inference by KB-completion, unlike the rest of the inferences, does 
not derive a new rewrite rule by directly modifying an existing rewrite rule in the program. 
The  Kt~eompletion rule only gives a condition under which a candidate rewrite rule 
hypothesized to be consistent with the program can be added to the program. Thus, 
developing inductive strategies involves finding ways to systematically hypothesize candidate 
rewrite rules. The h-dropping inference rule provides one way of generating a candidate 
rewrite rule: a ~ fl is obtained from an existing rule of the form h (a) --* h (/~). 

Another inductive strategy tha t  is more generally applicable uses the technique of 
generalization. This strategy is related to the technique of synthesis by example [Sum75]. 
This strategy is based on the following fact: If a --, fl is a rewrite rule in the inductive theory 
then every ground instance of it is in the equational theory. We pick an instance of one of 
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the rewrite rules that  belongs to the partial implementation derived by the equational 
strategy. ']'he rewrite rule so chosen is then "massaged" by applying a few expansion steps 
until the rewrite rule obtained appears to be an instance of the desired rewrite rule. The 
"massaged" rewrite rule is then generalized by replacing selected constants on either side of 
the rewrite rule by appropriate variables. The generalized rule is used as the candidate rule. 
Steps (3) and (4) need some human intervention in this strategy. In step (3) the user has to 
check if the rewrite rule derived has the suitable form; if not, the expansion step has to be 
continued further. In step (4) the user has to help the synthesis process in deciding which 
terms to generalize. 

(1) Pick a rewrite rule a --* fl (from a partial implementation derived by other means) 
that  defines the function being synthesized on a subset of the domain values. 

(2) Simplify ~ to its irreducible form (say ~/). 

(3) Apply the expansion step (described above) starting with the rewrite rule c~ ~ % 
Let tile outcome of this step be a --* ~f. 

(4) Generalize: The candidate rewrite rule is a I --* ~f 1 such that  a(C~l)~--a and 
a(~il) = ~i, where a is an appropriate substitution. 

5. Examples 

In the following we present two examples. The first is a data type synthesis example; 
the second one is a short example presented mainly to illustrate the advantage of expansion 
over folding. To keep the presentation simple, we have not shown all the steps of the 
strategy, but only the interesting ones. 

Example 1: Synthesis of  Queue in terms of  Sequence 

We synthesize an implementation for queue (specified in section 2) using sequence  as 
the representation type. The representation scheme used is the same as the one described in 
section 4. Here we show a complete derivation of two different implementations for the 
operation enqueue  only. Derivation of the first implementation uses the equational strategy 
while the second employs the inductive strategy. Implementations for the remaining 
operations of queue can also be derived similarly. 

For the derivation of the first implementation of E N Q U E U E ,  we categorize the rewrite 
rules of the various specifications as follows. Note that the goal here is to derive rewrite rules 
of the form h (ENQUEUE{g)}  --+ h {t), where g is a generator term of type sequence,  and t 
is an abitrary term. The specification set will initially consists of the homomorphism rewrite 
rule spec[[ying E N Q U E U E .  We first wish to synthesize a recursive implementation that  
does not vise any defined function symbols besides E N Q U E U E .  Hence the expansion set will 
consist of only the rewrite rules defining the abstraction function and the functions it is 
dependent, on. The reduction set will include all the rewrite rules in the specification. 

Derivatkm of  a Recurslve Implementation 
Expansion Set 
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(H1) h ([ ]) --* nullq 
(H2) h (e -}- v) --+ add_at_head(h (e), h (v)) 

(H3) add_at_head(e, nullq) --* enqueue(e, nuilq) 
(H4) add_st._head(el, enqueue(e2, q)) -~ enqueue(e2, add_at_head(el, q)) 

($1) h (ENQUEUE(e ,  v)) --* enqueue(h (e), h (v)) 

Specification Set 

($1) h (ENQUEUE(e, v)) --* enqueue(h (e), h (v)) 

Reduction Set ---- Ezpansion Set U Specification Set 

h (ENQUEUE(e ,  [ ])) 
--* enqueue(h (e), h ([ ])) 
-4 enqueue(h (e), nullq) 

add_at_head(h (e), nuilq) 
-4 add_at_head(h (e), h ([ ])) 
- .  h(e + [ ] )  

Derived pair of (S1) on (t11) 
Simplify using (HI) 
Ezpansion using (H3) 

Ezpansion using (H1) 
Ezpansion using (H~) 

(I1) ENQUEUE(e ,  []) --* e -t- [] h.dropping 

h (ENQUEUE(e ,  e l  + v l ) )  
--* enqueue(h (e), h (el  -]- v l ) )  
--, enqueue(h (e), add_at_head(h (el),  h (vl)))  
--* add_at_head(h (el),  enqueue(h (e), h (vl)))  
-* add_at_head(h (el),  h (ENQUEUE(e,  vl)))  
--, h (el  + ENQUEUE(e ,  v l ) )  

Derived pair of (81) on (H2) 
Simplify usino (H2) 
Ezpansion using (H4) 
Ezpansion using (St) 
Ezpansion using (H~) 

(I2) ENQUEUE(e ,  e l  + v l )  --, e l  + ENQUEUE(e ,  v l )  h -dropping 

Rewrite rules (I1) and (I2) form a well-formed implementation for ENQUEUE.  

Derivation of a Nonrecursive Implementat ion 

The second implementation of E N Q U E U E  is intended to be a nonrecursive 
implementation in terms of only the operations of sequence. Hence, the expansion set in this 
case will only include the rewrite rules in the specification of sequence. (Below, we only 
show the part of the expansion set that is used in the derivation.) The specification set 
consists of the rewrite rules (I1) and (I2), above, snce the nonrecursive implementation is 
derived from the recursive implementation. The reduction set consists of the rewrite rules in 
the specification of sequence. We employ the inductive strategy by picking the rewrite rule 
(I1) from the specifictaion set. 

Specification Set 
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(I1) ENQUEUE(e,  []) -4 e + [] 
(I2) ENQUEUE(e,  el  -4- vI)  -* e l  ÷ ENQUEUE(e, v l )  

Ezpansion ,Set 

(7) rotate([ ]) ~--~ [] 
(8) rotate(e -I- [ ]) ~-~ e -t- [ ] 
(9) ro ta te(e l  "t" (e2 "t- v)) ~ e2 -I- ro ta te(e l  -t- v) 

Reduction Set ~ Ezpansion Set U Specification Set 

(I1) ENQUEUE(e,  [ ]) - ,  e -I- [ ] Pick {11] 
ENQUEUE(e,  [ ]) -~ rotate(e -t- [ ]) Ezpansion using (8] 

(G) ENQUEUE(e, s) --, rotate(e + s) Generalize [] to get a candidate rewrite rule 

(NR) ENQUEUE(e, s) -4 rotate(e + s) tbpothesia-Testino ssing (G] 
(NR) is the desired nonrecursive implementation. 

Example 2" Non-reeurslve Implementat ion 

The goal of the synthesis in this example is to convert a recursive implementation of a 
function Inser t - rest  into a non-recursive one. Reml and Insertall are two functions (for 
which efficiLent implementations are assumed to exist) on List with generators nll and cons. 
Reml removes the last element of a list, and Insertall inserts the atom 1 before every 
element in a list. Specifications for InsertaU (rules 4-5) and Remi (rules 1-3) are given 
below. We employ the inductive strategy to derive the new implementation. 

(1) Reml(nU) - ,  Er ror  
(2) Reml(cons(x, nil)) -4 nil 
(3) Reml(cons(x, cons(y, L))) -4 cons(x, Reml(eons(y, L))) 

(4) Insertall(nil) --~ rill 
(5) Insertall(eons(x, L)) --* cons(x, cons(l, Insertall(L))) 

Consider tile function Insert_rest  that inserts 1 before every element of a list except the first 
one. A recursive implementation for Insert_rest is: 

(6) Inser t res t (n i l )  -* Error  
(7) Insert_rest(cons(x, nil)) --* cons(x, nil) 
(8) Insert_rear, cons(x, cons(y, L))) --* cons(x, cons(l, Insert_rest(cons(y, L)))) 

We want t~ transform the above implementation of Insert_rest  into one that us~ Reml 
and Insertall. The method used is to "guess" an implementation for Insert  rest  by trying 
out Insert_rest  on a few concrete list objects. The concrete objects are determined by 
computing derived pairs. The guess is generated by generalizing, i.e., replacing 
subexpressiions by variables, in the rewrite rules derived with concrete instances. The 
Hypothesis-Testing inference rule is then used to confirm that our guess is a correct 
implementation. In this example the expansion set consists of rewrite rules (1) through (5) 
(which define the functions Reml and Insertall) and nothing else because the intent is to 



206 

synthesize an implementation for Inser t - res t  in terms Reml and Insertali. 

Insert_rest(cons(x, nil)) --* cons(x, nil) 
-* cons(x, Reml(cons(=, nil))) Derived Pair of (7) on (~) 
-~ Reml(Insertall(eons(x, nil))) Ezpansion using (~), (~), (5) 

(9) Insert_rest(cons(x, nil)) --, Reml(Insertall(eons(x, nil))) 

(10) Insert_rest(L) --* Reml(Insertali(L)) Hypothesis-Testing on the rule obtained by 
replacing cons(x, nil)by L in (9) 

Note that although this implementation involves pipelining of Reml and Insertall, it 
could be more efficient than the recursive implementation since Insertall and Reml are 
assumed to be primitive operations. 
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