
A Rewrite Rule Based Approach for Synthesizing Abstract Data Types

Deepak Kaput
Computer Science Branch

General Electric R ~ D Center, KWC~64,
Schenectady/, NY 1~845, U.S.A.

Mandayam Srlvas l
Department of Computer Science

State University of New York at Stony Brook
Stony Brook, NY 11794, U.S.A.

Abstract
An approach for synthesizing data type implementations based on the theory of term

rewriting systems is presented. A specification is assumed to be given as a system of
equations; an implementation is derived from the specification as another system of equations.
The proof based approach used for the synthesis consists of reversing the process of proving
theorems (i.e. searching for appropriate theorems rather than proving the given ones). New
tools and concepts to embody this reverse process are developed. In particular, the concept of
expansion, which is a reverse of rewriting (or reduction), is defined and analyzed. The
proposed system consists of a collection of inference rules - instantiation, simplification,
expansion and hypothesis tesing, and two strategies for searching for theorems depending
upon whether the theorem being looked for is in the equational theory or in the inductive
theory of the specification.

1. Introduction

In this paper we develop a formal system for automatically synthesizing implementations
of abstract data types from their algebraic specifications. In our approach, the implemented
data type (i.e., the data type which is being synthesized) and the representing data types
(i.e., the data types used to represent the implemented type) are specified as algebraic axioms.
In addition, a mapping, called the abstraction function, that relates the values of
representing data types to the values of the implemented data type is also specified. The
output of the synthesis procedure consists of implementations for the operations of the
implemented data type in terms of the operations of the representing data types. Thus, the
operations of the representing types are used as primitive functions in the implementation
being synthesized. This approach to synthesis can be applied hierarchically to as many levels
of abstraction as necessary until we obtain an implementation in terms of the operations of
data types, such as arrays, that are directly supported by a programming language system.

Our approach is based on the theory of term rewriting systems developed recently in the
context of reasoning and proving theorem automatically about algebraic structures and data
types from their specifications [KnB70], [HuH80], [MusS0b], ~dsi82]. Systems built using
rewrite rule based approach for abstract data types such as AFFIRM [Mus80a], OBJ [GOT79],

IReeearch supported im p~rt by the National Scleace Foundation under gr~ntl DCR-8401624 and DCR-8319966

189

and other systems for manipulating general term rewriting systems such as REVE [Les83] and
FORMEL [HuHS0], have provided encouraging signs for using the approach for theorem
proving applications. In our work on generating implementations from specifications, we use
many of the same tools and concepts used in theorem proving. Since we view theory-based
synthesis as reversing the process of proving theorems (i.e., searching for appropriate
theorems rather than proving known ones), we develop new tools and concepts to embody
this reverse process. Our system consists of a set of inference rides, and strategies for
using the ~nference rules to synthesize implementations. Our experience in working out many
examples]by hand have suggested that program transformation, optimization and synthesis
based on rewrite-rule-based theorem proving is highly promising.

A m~jor advantage of using term rewriting theory is that we can address all issues
related to data type synthesis within a uniform framework. We are able to provide formal
justification of the soundness of the rules of inference of our system since the consistency of
data type specifications can be characterized using term rewriting concepts. We characterize
the condRions under which a strategy would successfully synthesize implementations. We
present two strategies - one that synthesizes implementations in the equational theory, and
another that operates in the inductive theory of the specification. Both the strategies require
that the data type specifications be organized as canonical term rewriting systems. This
requirement in turn means that there exists a well-founded ordering on terms (as in [I)er82])
that can be used to guarantee the uniform termination property of the specification term
rewriting system. Although the strategies work for any such ordering it is assumed that one
such ordering is available. The use of such an ordering assures the termination of the
programs synthesized.

The equational strategy is completely automatic in the sense that it does not need any
human intervention for it to suceesfully synthesize an implementation. It is guaranteed to
synthesize an implementation provided there exists an implementation (in the equational
theory) the termination of which can be demonstrated using the termination ordering being
employed by the strategy. The equational strategy may not terminate unless such an
implementation exists. The inductive strategy is only semi-automatic since it needs prompts
from the user at strategic points. Furthermore, the strategy is not complete for the inductive
theory in the sense it is not guaranteed to produce an implementation even if one exists in
the inductive theory.

The]rest of the introduction contains an overview of related works in the area. In the
next section, we illustrate our approach on a small example. Section 3 gives the reader a
backgrourhd in the use of algebraic techniques for specifying and implementing data types.
Section 4 describes our synthesis system: Section 4.1 presents the rules of inference of our
system, their justification along with their theoretical basis. A detailed discussion of the
strategies for putting various rules of inferences together is given in Section 4.2. This is
followed by a section that illustrates the approach in detail on a couple of examples. (For
lack of space we present only simple examples in the paper. For more detailed examples see
[KaS84].)

190

1.1. Related Work

Burstall and Darlington [BuD77] and Manna and Waldinger ~VfaW80] proposed a set of
general purpose transformations for refining programs from their high level specifications.
Feather [Fen82] has extended Burstall and Darlington's approach in his ZAP system by
providing the ability for a user to specify metaprograms to direct the transformation process.
Manna and Waldin~er have adopted strategies based on theorem proving methods in the first
order predicate calculus in their DEADLAUS [MaW80] system. Our method is related to that
of Burstall and Darlington. The algebraic specification language is similar to the recursive
equational language used by Burstall and Darlington for specifying the behavior of functions
in their program transformation work.

Our system offers several advantages over the one proposed by Darlington (([BUD77],
[Dar82]) all of which arise as result of the use of the term rewriting framework. The inference
mechanisms of our system subsume all the machinery developed by Darlington and Burstall;
in this sense, we not only provide a theoretical basis for their approach but also extend it.
(Kott [Kot82] has also independently provided theoretical justification for their method by
giving conditions under which f old/unfold can be applied.} Our system operates in a richer
theory (the inductive theory) of the specification. This enables us to derive a richer class of
implementations. Our approach also appears more promising in developing intelligent
strategies for synthesis. This is primarily because our framework is conducive to adapting
theorem proving strategies (such as the inference mechanism based on the Knuth-Bendix
completion procedure [KnB70], [Mus80b], [HUH80], [Lan81]) for synthesis.

2. I l lus t ra t ion of the Approach

Before getting into the details of our approach, we will illustrate some of our ideas
informally on an example. A function union is defined on the data type multiset, which is
constructed using two constructors - a constant function nullset that creates an empty
multiset and a binary function insert: int X multlset --* multlset that inserts an element
into a multiset. The function union, which returns the union of two multisets, has the
following primitive recursive definition expressed as a set of rewrite rules:

(T1) unlon(nullset, s2) --~ s2
(T2) unlon(insert(ei , s l) , s2) --, insert(el , unlon(s l , s2))

The data type mult lset is to be implemented using another data type, sequence, whose
values are constructed using the constant function [], and a binary constructor + : int X
sequence--* sequence. The abstraction function h specifying how sequences represent
multisets is also given as rewrite rules:

(H1) h ([]) --, nuilset
(n2) h (e -t- v) --* insert(e, h (v))

This example is interesting because (1) a mult iset can be constructed in more than one way
using its constructors, and (2) several different sequences may represent the same multiset.
Using the abstraction function h, the implementation of union denoted as UNION, can be
derived as follows. First, we introduce the rewrite rule that completely characterizes
U N I O N in terms of union and h. This rewrite rule is called the specification rule of
UNION. {Note that for U N I O N to be correctly implementing union the latter has to be a

191

homomorphic image of the former.)

($1) h (UNIONCvl , v2)) --* unlon(h (vl), h (v2))
The objective is to derive an implementation for U N I O N independent of union and h.
This is done by deriving enough rules of the form h (U N I O N (t l , t2)) ~ h (t3) so that we
can derive the implementation of U N I O N (as a total function on sequence) by dropping h
from both sides. Rules (H1) and (H2) defining h suggest that we can instantiate the right
hand side of rule (S1) - by first instantiating v l to be [], and then to be insert(el Jr v l) .
(Our strategy will discover these instaatiations automatically such that they completely cover
the domain of the function being implemented.)

h (UNION([], v2)) -4 unlon(h ([]), h (v2)) Instantiate ($1)
h (UNION([], v2)) -4 h (v2) Simplify using (H1), (T1)

By dropping h on both sides, we get

(I1) U N I O N (I] , v2) -* v2

Similarly, by instantiating v l to be e l -t- v l in rule (S1) as suggested by rule (H2) of h, we
have

h (UNION(e l + v l , v2))
--, union(h (e l -1- v l) , h (v2)) Instantiation of ($1)
-* inser t (e l , union(h (v l) , h (v2))) Simplify using (He), (7"2)

Now, we want to bring symbol h on the right hand side to its outer most level. This can be
done by applying some of our rewrite rules in the reverse direction (called expansion later in
the paper, which is similar to but, more general than, Burstall and Darlington's fold
mechanism). In order to use rule (H2) for h in the reverse direction, we must first use rule
($1) in the reverse direction. These two expansion steps will result in the following rewrite
rules.

h (UNION(e l q- v l , v2)) -4 inser t (e l , h (U N I O N (v l , v2)))
--, h (el + UNION(v1 , v2))

Dropping h on both sides, we have

(I2) U N I O N (e l + v l , v2) --, e l + U N I O N (v l , v2)

(I1) and (I2) constitute an implementation for U N I O N because the two rewrite rules define
U N I O N as a total function on sequence. Note that in this example the correspondence
between union and U N I O N is very obvious because of the close correspondence between the
constructors ([], -t-) of sequence and the constructors (nullset, insert} of multiset (except
for the relation on the constructors of mnltiset). The examples in Section 6 will demonstrate
that the method can synthesize more interesting implementations.

The mechanisms used above are all embodied in our system as inference rules that act
on a set of rewrite rules to produce a new rewrite rule. The theoretical justification (given
later) for each of the inference rules is that it always produces rewrite rules consistent with
the original set of rewrite rules. Specifically, the h dropping mechanism can be justified by
the hypothesis checking inference rule which uses the Knuth-Bendix completion procedure;
we need to have a criterion for h dropping especially when h is a many-to-one function.
According to this rule of inference, if the new rule being hypothesized does not result in any

192

contradiction along with the existing rewrite rules, then the hypothesized rule can be added
to the system.

We organize the rewrite rules in our specification into several groups based on the role
they play during the synthesis of an implementation. The specification rules (such as SI)
that specify the new function(s) to be implemented are grouped into the specification set.
The rules that are used for expansion, such as (S1), (HI), and (H2), are grouped as the
expansion set. The rulesthat are used for simplifying terms form the reduction set. The
criteria that determine membership of a rewrite rule in these groups will be given later.

Although the transformation process at least for this simple example is similar to that of
BurstaU and Darlington [BuD77], there are several fundamental differences. We deduce the
instantiations of the rules automatically from the left hand sides of the rules defining h. The
inference rule in our system that does the instantiation uses the notion of derived pairs
[GKM82]. Note that there are several possible sets of instantiations that completely span the
domain. Our synthesis strategy enumerates all possible sets of instantiations systematically
attempting to find implementation for each of them until it finds one. For instance, in the
above example another set of instantiations possible for the arguments of UNION is {(vl , [
]), (v l , e + v2)}. In this case, our system may derive the following pair of rewrite rules:

UNION(v l , []) --* UNION(v l , UNION([], []))
UNION(v1, e + v2) --, UNION(v l , INSERT(e , v2))

Our strategy would discard this implementation because the first rewrite rule cannot be
ordered under any well-founded ordering.

There are four inference mechanisms being used in our approach:

(1) Instantiation of variables in the rewrite rules specifying the function to be implemented.
(The instantiation is not arbitrary, but is directed by the definitions of other functions.)

(2) ~implif ication of a term to its irreducible form (a term is said to be irreducible if it
cannot be further simplified.)

(3) Expansion to introduce recursion or other helping functions in the implementation.

(4) The KnuthoBendix completion procedure for checking whether new hypotheses being
made are indeed consistent with the existing definitions.

3. Abs t rac t Data Types

3.1. Specification

Abstract data types are specified using the algebraic technique developed by Guttag
[GuH78] and the ADJ group [GTWS.]. Our presentation of the specification is patterned after
Guttag et. al. Specifically, abstract data types are defined one by one in a hierarchical way
assuming other data types to be specified elsewhere. We use the initial algebra semantics
[GTWS.] for our data type specifications. The data type sequence is specified in the figure
below. (The data type item is assumed to be specified elsewhere.)

The operations of a data type are grouped into two classes: (i) generators, which
generate all the values of the data type, and (ii) defined functions, which are defined on
the values of the data type constructed by the generators. These classes are explicitly

193

identified in the specification along with the domain and range of every operation.

The construction of values of a data type in terms of its generators is not necessarily
unique. The generators - nullset and Inser t - of the data type mul t l se t we saw in section 2
can be used in more than one way to construct the same multiset. For instance,
Insert(insert(nullset ,1) ,2) and Inser t (inser t (nul lse t ,2) , l) both construct the same
multiset {1, 2}. This equivalence relation is characterized by the equations relating the
generators. We refer to the terms like Inser t (inser t (nul lset , 2), 1) constructed solely using
the generators as generator terms. Generator terms that do not contain any variables are
referred to as generator constants.

We require that the specification of every data type involved in the synthesis be
complete and consistent. By completeness ([Gull78], [Kap80].), we mean that the equations
in the specification are such that every defined function is defined for every generator
constant of the data type. That is, every term that applies a defined function to generator
constants, such as unlon(insert(nullset , 1), nuliset), can be shown to be equivalent to a
generator constant (or the distinguished element e r ror) of the range type of the function.
Consistency ensures that every function of the data type forms a well-defined function. One
way to guarantee the completeness and consistency of a specification is to ensure that it can

be organJized as a term rewriting system that is well-spanned [Sri82] and canonical 2

D a t a T y p e Sequence

Generator8
[] • -* sequenee
-t- : i t em X s e q u e n c e --* s e q u e n c e

Defined Functions
first : s e q u e n c e --, i t e m t.3 { E r r o r }
rest : sequence -* s e q u e n c e U {Error}
r o t a t e : s e q u e n c e --, s e q u e n c e

Azioms
(1) first([]) ~ E r r o r
(2) f irst(e -b v) - - e

(3) rest([]) ~-~ E r r o r
(4) rest(e + v) ---- v

(7) r o t a t e ([]) ~ []
(8) r o t a t e (e -t- []) ---- e -I- []
(9) r o t a t e (e l + (e2 -t- v)) _---- e2 -t- r o t a t e (e l -t- v)

F i g u r e 1. A l g e b r a i c Spec i f i ca t ion o f D a t a T y p e S e q u e n c e

~A term rewriting system i~ camonicaJ if every sequence of rewrites emaaxtinK form a term ~ terminates with the ~ame term fl; f l is
~aid to be the normal form of ~ .

194

/HullS0/. We briefy describe the two properties below.

A term rewriting system is well-spanned if it can be structured such that every term of
the form F(g), where F is a defined function and g is a generator constant, is an instance Of
the left hand side of an equation in the specification. A canonical term rewriting system for a
given set of equational axioms can be derived using the Knuth-Bendix completion procedure
/HullS0/. It is assumed that the equational axioms specifying the data types can be oriented
and made into rewrite rules using some termination ordering [Der82]. For instance, all the
axioms in the specifications of sequence and queue can be oriented as rewrite rules from left
to right using a recursive path ordering [Der82] in which the defined operation symbols are
assigned more weight than the generators. In case any of the operations have the associative
and/or commutative property or any other property which needs special handling, then
appropriate termination ordering [DHJ83] incorporating such properties must be used. The
Knuth-Bendix completion procedure or its generalization developed by Peterson and Stickel
[PeS81] or Lankford and Ballantyne /LAB77/ to deal with special properties such as
associativity, commutativity is then applied to rules to obtain a canonical term rewriting
system which gives the decision procedures for the equational theories of these data types.
For instance, the specifications of sequence and queue are canonical because the Knuth-
Bendix completion procedure when run on them does not generate any new rewrite rules.

The equational theory of a data type specified by equational axioms are all equational
formulas that can be derived using the axioms of equality - reflexivity, symmetry, transitivity,
substitution property and replacement. When a set of equations E can be organized into a
canonical term rewriting system R , the equational theory of E contains formulas a = / 3
such that a and /3 have the same normal form. The inductive theory, which contains the
equational theory, is the set of all equational formulas that can be derived using the rules of
equality and the following principle of induction. In the following, a generator-constant
substitution is a substitution in which variables are substituted by generator constants.

V generatOrueOnstant substitution a, a(a) = a(b), E equational theory
am_. b E inductive theory

equational theory of
types sequence and
of append is in the
effective. Generally
powerful enough.

For example, consider the function f defined on natural numbers (with generators 0 and S)
by the rewrite rules: f(0) ~ 0 and f(S(x)) --* f(x). The equation f(x) ~--- 0 is not in the

natural numbers with f but is in the inductive theory. For the data
queue for example, the equational formula expressing the associativity
inductive theory. It should be noted that this inference rule is not
weaker forms of this inference rule are used which are practically

The equations in the inductive theory are not theorems in the logical sense because they
do not hold good in all the models of the specification. They do hold good in the initial
algebra model of the specification. They are useful for our purpose because we use the initial
algebra semantics for data types. The inductive theory is the basis for our method since the
programs synthesized by our inference rules lie in the inductive theory of the specification.

Henceforth, we will assume that the specifications of all data types being used in the
synthesis procedure are well-spanned and each specification has a canonical term rewriting

195

system associated with it (modulo an equivalence relation specified by special properties such
as associativity, commutativity, etc.).

3.2. Specifying the Desired Implementation

Implementing a data type consists of choosing a representation for the data type, and
implementing every operation of the data type in terms of the operations of the
representation type. The implementation for the operations can, in general, be expressed in
an arbitrary language. In the present work we express the implementation in a language
identical to the one used to express the specification. That is, an implementation for an
operation is expressed as a set of well-formed rewrite rules that defines the operation as a
function on the chosen representation type.

In order to synthesize interesting implementations for a data type D, we require the user
to furnish information about how the values of the representing type(s) R are used to
represent the values of D. This information is specified by the user as an abstraction function
h from R to D again as a set of rewrite rules. In general, not all the values of R may be
used to represent the values of D; the subset of values of R that are used is specified by an
invariant predicate. In this paper we will assume that the set of values of R used for
representing D is identical to the domain of the abstraction function h . Some of the issues
concerning data type synthesis in the presence of nontrivial invariants are discussed in [Sri82].

The abstraction mapping can be complex and may use additional auxiliary functions on
D and/or R which are specified using the operations of D and R again as rewrite rules such
that they are completely defined. Further, we will assume that these rewrite rules for h and
auxiliary functions also satisfy the completeness and consistency conditions stated earlier.
Our experience suggests that the more complex the abstraction funcion is, the more difficult
it is to generate implementations for the operations of D. The rewrite rules (HI) through
(H2) of t]he example in section 2 specify the abstraction function for an implementation of
mult iset . Specified below is another abstraction function for representing queues in terms of
sequences. The empty queue is represented by the empty sequence. A nonempty queue is
represented by a sequence whose elements are identical to the ones in the queue, but are
arranged in the reverse order. The motivation for such a scheme is that the reading and
deletion of elements from a queue can be performed efficiently. The specification of h uses
an auxiliary function add at_head on queues. This function adds an element at the front
end of a queue.

(H1) h ([]) -4 nullq
(H2) h (e -[- v) -4 add_at_head(h (e), h (v))

(H3) add_at_head(e, nullq) -* enqueue(e, nullq~
(H4) add_at_head(el, enqueue(e2, q)) -~ enqueue~e2, add_at_head(el, q))

An implementation F for an operation f of D is then completely characterized by the
following homomorphism property:

(*) h (F(xl, ..., xn)) --, f(h (xl), ..., h (xn))

196

The mapping h is assumed to behave like an identity function on values of data types other
than R . This is natural because we generate implementations for data types one at a time
and in a hierarchical way. For each f , the above rewrite rule that specifies the implementing
function F is said to be the specification rule of F.

4. Proof Based Approach for Synthesis

Our approach to synthesis is proof based because (1) we employ concepts used in
theorem proving based on term rewriting systems, and (2) an implementation is derived as a
theorem of the specification. The goal of our synthesis task, however, is fundamentally
different from that of theorem proving. In theorem proving the goal is to establish that a
given property is a theorem of a set of axioms (specification). In synthesis we have to search
for a rewrite rule of an appropriate form that is known to be a theorem of the specification.
The rewrite rules we are looking for are to constitute an implementation. Note that our
characterization of the synthesis task is different from that of Waldinger [MAW80]. In
[MaW80] a program is derived as a proof of a theorem which is an input/output specification
of the program. Our approach is better suited for taking advantage of theorem proving ideas
based on term rewriting systems.

In our approach, synthesis is performed with help of a system of inference rules. Every
inference rule acts on a set of rewrite rules R and produces a new rewrite rule that is
guaranteed to be consistent (i.e., a theorem in the inductive theory) with R . The set R
initially consists of

(1) the specification of all data types,

{2) the specification of the abstraction function h, and

{3) the specification rule for the implementing functions.

Note that (1) and (2) form a well-formed system of rewrite rules. When (3) is added the set
R remains canonical but is no longer well-spanned. This is because the functions (F)
implementing the operations (f) are not yet defined on all values of the representation type.
The synthesis process consists of repeatedly invoking appropriate inference rules on R so as
to make it well-spanned. An implementation for an operation f of a data type is synthesized
by deriving a well-span~ed set of rewrite rules that implements f as a function on the
representation type. The implementation is guaranteed to be correct since every rewrite rule,
being derived by one or more application of an inference rule, is consistent with the
specification rule of f . We first present the inference rules of the system, and then describe
the strategies for invoking the inference rules.

4.1. Inference Rules

In the following we state the inference rules of our system. Every inference rule has the
e

general form l ' C 2 " ' " C n where e n are a set of conditions, and a--+/~ is a new - -) ,~) ¢ I , " ")

rewrite rule. The inference rule is to be read as "if the conditions el, ..., c a hold good for a
rewriting system S, then the rewrite rule a --* j3 may be added to S." The soundness of the
inference rules is guaranteed by ensuring that the new rule a -*/3 is in the inductive theory
of data types and the functions under consideration. In every inference rule it is also assumed

197

that the new re~rite rule a --* 8 is added to S only if it preserves the uniform termination
property of S. This can be ensured by checking that under the termination ordering > being
used a > 8. (In all our examples given later we use the recursiv~ path ordering defined by
Dershowitz [Der82].)

Instantiation

<% 6> is a derived pair of the f irst rewrite rule on the second

A derived pair [GKM82] <% 6> of a I -*/31 on a2 -* 82 obtained by superposing [KnB70] 81
on a 2 is defined as follows: consider a nonvariable subterm t of 81 which unifies with a2; let
be the most general unifier of t and a 2. Then "t = ~(al), and 6 ---- ~(/311), where /~H is
obtained by replacing t in /~1 by 82. For instance, in the case of the union example of
section 2, the derived pair of rewrite rule (S1) on rewrite rule (H1) produces the rewrite rule
h (UNION([], ~)) -~ unlon(h ([]), h (~)) .

Derived pairs are a generalization of reduction applied on rules except that derived pairs
are constructed using unification instead of matching. Derived pair generation is similar to
narrowing ~aB79]. Clearly, the new rewrite rule derived by this inference rule is in the
equational theory of S; An advantage of using the derived pair mechanism rather than
arbitrary instantiation (like done in [BUD77] [Fea82]) to instantiate rewrite rules is that it is
possible to generate a well*spanned set of instantiations automatically. This is done (as will
be explained more clearly in section 4.2) by computing derived pairs between a specification
rule and every other possible rewrite rule. The fact that each of the functions in the
specification are completely specified ensures that the function being implemented will also be
defined completely when all the derived pairs are computed.

Simplification

Let/~-,* "7 stand for fl simplifies to ,~ (i.e., q is the normal form of 8) using rewrite rules in S.

Or--+. I

The justification of this rule of inference is obvious from the definition of reduction; the new
rule in this case is also in the equational theory and preserves the termination ordering. The
new rewrite rule obtained using this inference rule is put in to the same set of rewrite rules
from where a -+ 8 comes.

Expansion

We say ~/ezpands to 6 in S(written ~ 6) using a rewrite rule a --* 8 E S if the following
conditions bold:

(1) There exists a subterm t of 7 such that t is unifiable s with]~.

Slf any ©,f the functions eatisfy apecial properties auclt u mmociativity sad commut~ivity then it is aeceelzxy to use unillcztion algo-
rithms under equxtional theories [StiS1].

198

(2) ~ ----- a(ffz) , where "h is obtained by replacing t in '7 by a.

The rule is
--+ ~ e s , /3~,ffi8 with ~ being the ,mff !er ~sed for expansion

0~ ¢,) --* 6

Expanding a term "7 using a rewrite rule a ~ ~ is roughly equivalent to reducing '7 using the
rule/~ ~ a. The difference lies in the fact that expansion uses unification (~/with fl) whereas
reduction uses matching (~/with/~). Note that whenever/~ (~ffi ~f, ~f necessarily reduces to a(/~)
for some substitution a. The new rewrite rule obtained from the expansion rule of inference
is also in the equational theory as the following diagram illustrates.

/ , , ,
= ~(~)

The difference between expansion and folding [BuD77] is that the former uses unification
while the latter uses matching. To see the advantage of expansion over folding it would be
instructive to consider the purpose an expansion/folding inference is serving in the synthesis
process: To obtain an arbitrary term ~f that is reducible to a given term fl using the rewrite
rules in the S. Folding (used repeatedly) is adequate for the purpose only if every rewrite
rule lhs--,rhs in S is variable preserving (i.e., is such that every variable in ihs also appears
in rhs). However, if S has non-variable-preserving rewrite rules then folding alone is not
sufficient, and we need expansion as illustrated by the following example. Let us suppose we
wish to obtain from cons(x, nil) the term Reml(Inse r ta l l (cons(x , nil))) using the following
set of rewrite rules. The following sequence of expansion steps achieves the desired result
while no sequence folds does. Specifically, the last step in the sequence (in which rewrite rule
(4) is used) cannot be performed if folding were being used.

(1) Reml(cons (x , nil)) - , nil
(2) Reml(eons (x , cons(y, L))) -* cons(x, Reml(cons(y, L)))
(3) Insertall(nil) --* nil
(4) Inse r ta l l (cons(x , L)) --* cons(x, cons (l , Inser ta l l (L)))

cons(x, nil) ~:=~ Reml(cons (x , cons(x*, Inser ta l l (n | l))))
(~= Reml (In se r ta l l (cons(x, nil))

Note that every expansion step can in general be replaced by an arbitrary substitution
for the variables followed by a folding. Mixing substitutions and folding, however,
complicates the strategy for invocation of the inference rules since there are potenially infinite
substitutions possible. The use of unification in expansion determines the productive
substitutions automatically.

Further, while expanding a term /~ (with the hope of determining a term 6 that is
reducible to fl) it is necessary to consider for unification only those variables that are newly
introduced during expansion, but not the ones in/~. New variables are introduced whenever a
term is expanded using a rewrite rule that is not variable-preserving. We refer to such
variables as f ree variables. For instance, the asterisked variables in the expansion sequence
shown above are free variables. It can be shown that every term 6 reducible to fl is an

199

instance of some term 6" (for some substitution of the free variables in $*) that is obtained
after performing a finite number of expansions on ft. Intutively, the free variables are place-
holders for an abitrary term. In our synthesis strategy the binding of the free variables is
delayed uutil a decision is either automatically made by the unification performed during an
expansion step (as in the above example), or expanding the term any further makes it bigger
than a term even if the free variable is replaced by a least term in the ordering on the terms
being used.

Hypothesis Testing

{~ ~ ~}US is-KB-completable

where is-KB-completable is a predicate that acts on a rewriting system S.

The above predicate, which is a partial function, characterizes the outcome of running
the Indictive Knuth-Bendix completion proecedure (/HullS0/) on S which is a semidecision
procedure for checking the confluence (i.e., consistency [KaM82]) of S. The predicate
is-KB-completable returns true if the inductive Knuth-Bendix completion procedure
terminatet successfully; otherwise, it is undefined if the completion procedure does not
terminate; in the other two cases, the preducate is false. This rule is powerful as it provides
a way to check whether a hypothesis made based on derivations, or by generalizing a
definition of a function on a class of examples (this technique is further discussed in the next
section, and illustrated by the examples in section 5.) is indeed consistent with the rest of the
specification. The new rewrite rule derived using this inference rule is in the inductive theory
of the data types being considered.

The above inference rule is more powerful and provides a more effective way of
introducing new definitions into the system than the redefinitio n mechanism /BUD77/ of
Burstall and Darlington. In the redifinition mechanism, to hypothesize a new definition for a
function one adds it to the system, and one tries to generate the rewrite rules constituting the
existing definition for the function using fold/unfold transformations. This, however, is only
a sufficient condition for the new definition to be consistent. For instance, one might have to
introduce definitions besides the one being hypothesized in order to obtain the original
definition. The inductive KB-completion procedure does this automatically in a significant
number of cases. Also, inductive KB-completion procedure uses only reductions (not
expansions}, and hence is more effective.

The h -dropping Rule

This inference rule can be used to obtain a new rewrite rule a --~ fl from a rewrite rule of
the form h (a) ~ h (~). It is not always sound to drop h , since h may be many-to-one and
dropping it may cause inconsistencies. It would be sound to drop the symbol provided a --,/~
does not introduce any inconsistency, i.e., does not introduce any relationships among values
that are distinct in the system. This condition is usually satisfied when a involves a function
which is unimplemented in the system.

h (~0 -" h (~) E S , a --./~ U S is-KB-completabls

200

The new rule derived this way is also in the inductive theory of data types being considered.

4.2. Strategies for Synthesis

A common mode in which the inference rules of our system is used to synthesize an
implementation is to set up a foal that specifies the approximate form a program to be
synthesized is supposed to take, and then make a judicious selection of the inference rules
that achieves the goal. A synthesis stratefy is a procedure which determines a sequence of
invocations of the inference rules that will generate a new rewrite rule satisfying the desired
goal. For instance, the goal in synthesizing an implementation for an operation f of a data
type is to derive a well-spanned set of rewrite rules of the form F(gl) ~ t i , where g is a
generator term and t is an arbitrary term that does not involve any operations of the type
being implemented. Each of these rewrite rules is derived by deriving theorems of the form
h(F(gi))--.h (t i), and then dropping the symbol h on either side using the h-dropping
inference rule.

In the following we present two general strategies for using the inference rules of our
system to derive theorems of the form h (F(gi))-*h (t~.). The two strategies differ in the
theory to which the new rewrite rules being derived belong. The first one derives rewrite
rules in the equational theory, while the second can also derive rewrite rules in the inductive
theory.

Different rewrite rules in the specification play different roles during the synthesis
process. Based on their role we have categorized the rewrite rules into the following groups.
This categorization facilitates our synthesis strategies greatly.

(1) Rules specifying the functions to be synthesized form the specification set.

(2) Rules used for expanding terms form the ezpansion-set.

(3) Rules that are used only for simplification and/or computing derived pairs form the
reduction -set.

In the case of data type synthesis, the specification set initially consists of the rewrite
rules expressing the homomorphism property between the abstract operations and their
implementing function. For example, in the informal derivation shown in section 2, the
specification set initially consists of only the rewrite rule ($1). The rewrite rules that go into
the expansion set will, in general, depend on the desired form of the new rewrite rule to be
derived. In addition to the specification rule and the rules specifying the abstraction function
and its auxiliary functions, the expansion set includes the rules determined as follows.
Suppose F is the set of function symbols that are permitted to appear on the right hand side
of the rewrite rule to be derived. (This information has to be furnished by the user, in
general.) Let us suppose that we have a esea relationship defined on the function symbols
that holds if the definition of a function uses another function. Let F* be the reflexive,
transitive closure of uses applied to F. The expansion set will include the rewrite rules that
define the functions in F*. The reduction set will normally include the entire system.

4.2.1. Equat ional S t ra tegy

The equational strategy is based on the property that a rewrite rule lhs--*rhs in an
implementation is in the equational theory of R if lhs and rh8 have the same normal form

201

in R. Thus, if lhs of the desired rewrite rule can be determined somehow, then rhs has to
be a term that has the same normal form as lhs. The lhs's of the rewrite rules are fixed
based on the requirement that they have to be of the form h (F(gi)) such that {g~ } forms a
well-spanned set of generator terms.

This strategy synthesizes an implementation by repeatedly performing the following
steps in sequence: The Instantiation Step, the Simplification Step, and the Expansion Step.
Every iteration of the loop generates at most one rewrite rule lhs i--*rhs i which is inserted
into the set I (initially empty). The loop is terminated when a well-spanned set of rewrite
rules are collected in I. The instantiation step consists of setting up lhsi. The instantiation
step is perfomed in such a way that every possible well-spanned set of lhs i is generated after
a finite number of iterations. The simplification step consists of simplifying the right hand
side of the rewrite rule obtained in the first step to its normal form. The expansion step
consists of repeatedly expanding the right hand side of the rewrite rule obtained in the
simplification step. The rewrite rule returned by the expansion step is inserted into I. The
expansion step, which is guaranteed to terminate (see below), may not yield an appropriate
rhs i for the lhs i set up in the instantiation step. In such a case nothing is inserted into I
during that iteration.

The instantiation step essentially consists of invoking the Instantiation-inference rule
between ~, rewrite rule in the specification set and a rewrite rule outside the specification set.
Although the exact rewrite rules which participate in the instantiation step are left
unspecified, we assume that all the rewrite rules in the specifictaion set are treated /airly.
This essentially means no rewrite rule in the specification set is ignored infinitely often. In
other words the instantiation step has to ensure that the Instantiation-inference rule is
invoked on every rewrite rule in the specification set and every other possible rewrite rules in
the system after a finite number of iterations. This ensures every possible well-spanned set is
generated after finite number of execution of the instaniation step. To see this is why, note
that the specification set initially consists of the rewrite rule h(F(x))--* /(h(z)).
Computing derived pairs between this rewrite rule and every other possible rule generates the
first well-spanned set. Each of the resulting rewrite rule (after simplification) is inserted into
the specification set. Computation of derived pairs using each of these rules will generate the
next well-spanned set, and so on.

repeat

{1) Apply lnstantiation-inference between a rewrite rule in the specification set, and any
other rewrite rule in the program.

(2) Repeatedly apply Simplification-inference to the new rewrite rule generated in step 1
until it is no longer applicable. Let the resulting rewrite rule be a--* 8. Add the
simplifed rewrite rule to the specification set.

(3) Carry out the Expansion step (described below) on a- - , /~ to obtain the rewrite rule
a--*-/.

(4) Replace any free variable in "t by an appropriate least element, and insert into the
output set I .

unti l a well-spanned set of rewrite rules is obtained in I

202

The Expansion Step

The expansion step takes a rewrite rule a ~ #, and produces another rewrite rule a ~ "t
using the E:tpansion-inference rule repeatedly. The rewrite rules used for the expansion of fl
are picked from the expansion set. At each step there can be several different rewrite rules
may be used for expanding. We assume that the algorithm uses a "dove tailing" technique in
which all possible expansions are considered one step at a time. Also while checking if a < / ~
below we assume that a free variable in/~ are treated as a least element in the ordering. It is
important to note that the expansion step is guaranteed to terminate assuming there is a
termination ordering on the terms. This is because the right hand side of a rewrite rule is
expanded only as long as it is less than its left hand side.

whi le /~ < a and/~ is not of the desired form do
(1) Apply Ezpansion-inference rule between a --* fl and a rule from the
expansion set to obtain a new rewrite rule a --, 7.

(2) Replace ~q by 7.

endwhile

The equational strategy will find an implementation as long there is an implementation
{lhs i --, rhsl} in the equational theory such that lhs i > rhs~.. This is because the
instantiation step is guranteed to generate the desired lh8 i . For such an lhs i repeated
expansion is guaranteed to find an rhs i as long there is one that is less than (in the ordering
>) lhs i . If there is no such implementation then the strategy may not terminate. In such a
case the user would have to interrupt the strategy himself.

4.2.2. S t r a t e g i e s f o r t he I n d u c t i v e T h e o r y

When the equational strategy is unsuccessful, we end up in a partial implementation
that defines the function being implemented on a subset of the domain values. Even when
successful one might wish to derive a better implementation that is not in the equational
theory. Under such circumstances we switch over to an inductive strategy. The KB-
Completion inference rule is the one that gives our system the ability to derive rewrite rules
in the inductive theory. Inference by KB-completion, unlike the rest of the inferences, does
not derive a new rewrite rule by directly modifying an existing rewrite rule in the program.
The Kt~eompletion rule only gives a condition under which a candidate rewrite rule
hypothesized to be consistent with the program can be added to the program. Thus,
developing inductive strategies involves finding ways to systematically hypothesize candidate
rewrite rules. The h-dropping inference rule provides one way of generating a candidate
rewrite rule: a ~ fl is obtained from an existing rule of the form h (a) --* h (/~).

Another inductive strategy tha t is more generally applicable uses the technique of
generalization. This strategy is related to the technique of synthesis by example [Sum75].
This strategy is based on the following fact: If a --, fl is a rewrite rule in the inductive theory
then every ground instance of it is in the equational theory. We pick an instance of one of

203

the rewrite rules that belongs to the partial implementation derived by the equational
strategy. ']'he rewrite rule so chosen is then "massaged" by applying a few expansion steps
until the rewrite rule obtained appears to be an instance of the desired rewrite rule. The
"massaged" rewrite rule is then generalized by replacing selected constants on either side of
the rewrite rule by appropriate variables. The generalized rule is used as the candidate rule.
Steps (3) and (4) need some human intervention in this strategy. In step (3) the user has to
check if the rewrite rule derived has the suitable form; if not, the expansion step has to be
continued further. In step (4) the user has to help the synthesis process in deciding which
terms to generalize.

(1) Pick a rewrite rule a --* fl (from a partial implementation derived by other means)
that defines the function being synthesized on a subset of the domain values.

(2) Simplify ~ to its irreducible form (say ~/).

(3) Apply the expansion step (described above) starting with the rewrite rule c~ ~ %
Let tile outcome of this step be a --* ~f.

(4) Generalize: The candidate rewrite rule is a I --* ~f 1 such that a(C~l)~--a and
a(~il) = ~i, where a is an appropriate substitution.

5. Examples

In the following we present two examples. The first is a data type synthesis example;
the second one is a short example presented mainly to illustrate the advantage of expansion
over folding. To keep the presentation simple, we have not shown all the steps of the
strategy, but only the interesting ones.

Example 1: Synthesis of Queue in terms of Sequence

We synthesize an implementation for queue (specified in section 2) using sequence as
the representation type. The representation scheme used is the same as the one described in
section 4. Here we show a complete derivation of two different implementations for the
operation enqueue only. Derivation of the first implementation uses the equational strategy
while the second employs the inductive strategy. Implementations for the remaining
operations of queue can also be derived similarly.

For the derivation of the first implementation of E N Q U E U E , we categorize the rewrite
rules of the various specifications as follows. Note that the goal here is to derive rewrite rules
of the form h (ENQUEUE{g)} --+ h {t), where g is a generator term of type sequence, and t
is an abitrary term. The specification set will initially consists of the homomorphism rewrite
rule spec[[ying E N Q U E U E . We first wish to synthesize a recursive implementation that
does not vise any defined function symbols besides E N Q U E U E . Hence the expansion set will
consist of only the rewrite rules defining the abstraction function and the functions it is
dependent, on. The reduction set will include all the rewrite rules in the specification.

Derivatkm of a Recurslve Implementation
Expansion Set

204

(H1) h ([]) --* nullq
(H2) h (e -}- v) --+ add_at_head(h (e), h (v))

(H3) add_at_head(e, nullq) --* enqueue(e, nuilq)
(H4) add_st._head(el, enqueue(e2, q)) -~ enqueue(e2, add_at_head(el, q))

($1) h (ENQUEUE(e , v)) --* enqueue(h (e), h (v))

Specification Set

($1) h (ENQUEUE(e, v)) --* enqueue(h (e), h (v))

Reduction Set ---- Ezpansion Set U Specification Set

h (ENQUEUE(e , []))
--* enqueue(h (e), h ([]))
-4 enqueue(h (e), nullq)

add_at_head(h (e), nuilq)
-4 add_at_head(h (e), h ([]))
- . h(e + [])

Derived pair of (S1) on (t11)
Simplify using (HI)
Ezpansion using (H3)

Ezpansion using (H1)
Ezpansion using (H~)

(I1) ENQUEUE(e , []) --* e -t- [] h.dropping

h (ENQUEUE(e , e l + v l))
--* enqueue(h (e), h (el -]- v l))
--, enqueue(h (e), add_at_head(h (el), h (vl)))
--* add_at_head(h (el), enqueue(h (e), h (vl)))
-* add_at_head(h (el), h (ENQUEUE(e, vl)))
--, h (el + ENQUEUE(e , v l))

Derived pair of (81) on (H2)
Simplify usino (H2)
Ezpansion using (H4)
Ezpansion using (St)
Ezpansion using (H~)

(I2) ENQUEUE(e , e l + v l) --, e l + ENQUEUE(e , v l) h -dropping

Rewrite rules (I1) and (I2) form a well-formed implementation for ENQUEUE.

Derivation of a Nonrecursive Implementat ion

The second implementation of E N Q U E U E is intended to be a nonrecursive
implementation in terms of only the operations of sequence. Hence, the expansion set in this
case will only include the rewrite rules in the specification of sequence. (Below, we only
show the part of the expansion set that is used in the derivation.) The specification set
consists of the rewrite rules (I1) and (I2), above, snce the nonrecursive implementation is
derived from the recursive implementation. The reduction set consists of the rewrite rules in
the specification of sequence. We employ the inductive strategy by picking the rewrite rule
(I1) from the specifictaion set.

Specification Set

205

(I1) ENQUEUE(e, []) -4 e + []
(I2) ENQUEUE(e, el -4- vI) -* e l ÷ ENQUEUE(e, v l)

Ezpansion ,Set

(7) rotate([]) ~--~ []
(8) rotate(e -I- []) ~-~ e -t- []
(9) ro ta te(e l "t" (e2 "t- v)) ~ e2 -I- ro ta te(e l -t- v)

Reduction Set ~ Ezpansion Set U Specification Set

(I1) ENQUEUE(e, []) - , e -I- [] Pick {11]
ENQUEUE(e, []) -~ rotate(e -t- []) Ezpansion using (8]

(G) ENQUEUE(e, s) --, rotate(e + s) Generalize [] to get a candidate rewrite rule

(NR) ENQUEUE(e, s) -4 rotate(e + s) tbpothesia-Testino ssing (G]
(NR) is the desired nonrecursive implementation.

Example 2" Non-reeurslve Implementat ion

The goal of the synthesis in this example is to convert a recursive implementation of a
function Inser t - rest into a non-recursive one. Reml and Insertall are two functions (for
which efficiLent implementations are assumed to exist) on List with generators nll and cons.
Reml removes the last element of a list, and Insertall inserts the atom 1 before every
element in a list. Specifications for InsertaU (rules 4-5) and Remi (rules 1-3) are given
below. We employ the inductive strategy to derive the new implementation.

(1) Reml(nU) - , Er ror
(2) Reml(cons(x, nil)) -4 nil
(3) Reml(cons(x, cons(y, L))) -4 cons(x, Reml(eons(y, L)))

(4) Insertall(nil) --~ rill
(5) Insertall(eons(x, L)) --* cons(x, cons(l, Insertall(L)))

Consider tile function Insert_rest that inserts 1 before every element of a list except the first
one. A recursive implementation for Insert_rest is:

(6) Inser t res t (n i l) -* Error
(7) Insert_rest(cons(x, nil)) --* cons(x, nil)
(8) Insert_rear, cons(x, cons(y, L))) --* cons(x, cons(l, Insert_rest(cons(y, L))))

We want t~ transform the above implementation of Insert_rest into one that us~ Reml
and Insertall. The method used is to "guess" an implementation for Insert rest by trying
out Insert_rest on a few concrete list objects. The concrete objects are determined by
computing derived pairs. The guess is generated by generalizing, i.e., replacing
subexpressiions by variables, in the rewrite rules derived with concrete instances. The
Hypothesis-Testing inference rule is then used to confirm that our guess is a correct
implementation. In this example the expansion set consists of rewrite rules (1) through (5)
(which define the functions Reml and Insertall) and nothing else because the intent is to

206

synthesize an implementation for Inser t - res t in terms Reml and Insertali.

Insert_rest(cons(x, nil)) --* cons(x, nil)
-* cons(x, Reml(cons(=, nil))) Derived Pair of (7) on (~)
-~ Reml(Insertall(eons(x, nil))) Ezpansion using (~), (~), (5)

(9) Insert_rest(cons(x, nil)) --, Reml(Insertall(eons(x, nil)))

(10) Insert_rest(L) --* Reml(Insertali(L)) Hypothesis-Testing on the rule obtained by
replacing cons(x, nil)by L in (9)

Note that although this implementation involves pipelining of Reml and Insertall, it
could be more efficient than the recursive implementation since Insertall and Reml are
assumed to be primitive operations.

6. References

[BUD77] R . M . Burstall and J. Darlington, "A Transformation System for Developing
Recursive Pro~ams", Journal of the Association for Computing Machinery, 24, 1
(January 1977), 44-67.

[Dar82] J. Darlington, "Program Transformation", in Fnnctional Programming and its
Applications, An advanced course, J. D. al, (ed.), Cambridge University Press,
1982, 193-209.

[Der82] N. Dershowitz, "Orderings for Term Rewriting Systems", J. TCS, 17, 3 (1982),
279-301.

[DHJ83] N. Dershowitz, J. Hsiang, N. Josephson and D. Plaisted, "Assoeiative~
Commutative Rewriting", in Proc. 8th IJCAI, Karlsruhe, Germany, 1983.

[Fen82] M.S. Feather, "A System for Assisting Program Transformation", Transactions
on Programming Languages and Systems, 4, 1 (January 1982),.

[GOT79] J .A . Go~uen and J. Tardo, "An Introduction to OBJ-T", in Specification of
Reliable Software, IEEE, 1979.

[GTWS.] J .A. Goguen, J. W. Thatcher and E. G. Wagner, "Initial Algebra Approach to
the Specification, Correctness, and Implementation of Abstract Data Types", in
Current Trends in Programming Methodology, vol. IV Data Structuring, R. T.
Yeh, (ed.), Prentice Hall (Automatic Computation Series}, Englewood Cliffs, N J,
1978..

[GuH78] J .V . Guttag and J. J. Homing, "The Algebraic Specification of Abstract Data
Types", Acts Information, 10, 1 (1978), 27-52.

[GKM82] J.V. Guttag, D. Kaput and D. R. Musser, "On Proving Uniform Termination and
Restricted Termination of Rewriting Systems", in Proe. 9th ICALP, Aarhus,
Denmark, 1982.

[Hsi82] J. Itsiang, "Topics in Automated Theorem Proving and Program Generation",
UIUCDCS-R-82-1113, U. of Illinois at Urbana Champaign, Urbana Illinios, Dee.
1982.

207

[HuHS0]

lKap80]

[KaMS2]

[KaS84]

[KnB70]

[Kot82]

[LAB771

IL~B79]

[Lan81]

[LesS3]

[MAWS0]

[MusS0a]

[Mus80b]

[PeS81]

[Sri82]

[Sti81]

G. Huet and J. M. Hullot, "Proofs by Induction in Equational Theories with
Constructors", in 21st IEEE Symposium on Foundations of Computer Science,
1980, 06-107.

D. K. Kapur, "Towards a Theory for Abstract Data Types,", Tech. Rep.-237,
Lab. for Computer Science, MIT, Cambridge, MA 02139, May 1980.

D. K. Kapur and D. R. Musser, "Rewrite Rule Theory and Abstract Data Type
Analysis", in Computer Algebra, EUROSAM 1982, Lecture Notes in Computer
Science 144, Calmet, (ed.), Springer Verlag, April 1982, 77-00.

D. Kapur and M. K. Srivas, "A Rewrite Rule Based Approach for Synthesizing
Abstract Data Types", Tech. Rep. 84/080, Dept. of Computer Science, SUNY at
Stony Brook, Stony Brook, NY 11794, July 1984.

D. E. Knuth and P. B. Bendix, "Simple Word Problems in Universal Algebras", in
Computational Algebra, J. Leach, (ed.), Pergamon Press, 1970, 263-297.

L. Kott, "Unfold/Fold Program Transformations", Research Report No. 155,
INRIA, Le Chesnay, France, August 1982.

D. S. Lankford and A. M. Ballantyne, "Decision Procedure for Simple Equational
Theories with Commutative-Associative Axioms", Report ATP-39, Univ. of TExas
at Austin, 1977.

D. S. Lankford and A. M. Ballantyne, "The Refutation Completeness of Blocked
Permutative Narrowing and Resolution", in ~th Conf. on Automated Deduction,
Austin, TX, 1979.

D. S. Lankford, "A Simple Explanation of Inductionless Induction", MTP-14,
Louisiana Tech Univ., 1981.

P. Lescanne, "Computer Experiments with the REVE Term Rewriting System
Generator", in lOth Annual Symposium on Principles of Prgoramming Languages,
Austin, Texas, January 1983.

Z. Manna and R. Waldinger, "A Deductive Approach to Program Synthesis",
ACM Trans. Prog. Lang. and Systems, 2, 1 (January 1980), 90-121.

D. R. Musser, "Abstract Data Types in the AFFIRM System", Trans. on Software
Eng., 1(6), (Jan. I980),, IEEE.

D. R. Musser, "On Proving Inductive Properties of Abstract Data Types", in
Conference record of the Seventh Annual ACM Symposium on Principles of
Programming Languages, Las Vegas, Nevada, January 1980, 154-162.

G. E. Peterson and M. E. Stiekel, "Complete Sets of Reductions for Some
Equational Theories", J. ACM, 28, (1981), 233-264.

M. K. Srivas, "Automatic Synthesis of Implementations for Abstract Data Types
from Algebraic Specifications", MIT/LCS/Teeh. Rep.-276, Laboratory for
Computer Science, MIT, June 1982.

M. E. Stickel, "A Unification Algorithm for Associative-Commutative Functions",
J. ACM, 28, (1981), 233-264.

