
TYPED CATEGORICAL COMBINATORY LOGIC

P-L. Cur/~n

CNRS-Universit~ Paris VII, LITP, Tour 55-56 ler ~tage,
3 Place Jussieu, 75221 PARIS CEDEX 05

ABSTRACT

The subject of the paper is the connection between the typed
~,-calcuius and the cartesian closed categories, pointed out by
several authors. Three languages and their theories, defined by
equations, are shown to be equivalent I the typed hc-calculus (i.e.
the ~,-caleulus with explicit products and projections) ~,c/~ the free
cartesian closed category CCCz and a third intermediary
language, the typed categorical combinatory logic CCLK, intro-
duced by the author. In contrast to CCCK, CCLK.has the same types
as ~,cz and roughly the terminal object in CCCK is replaced by the
application and couple operators in CCLK. In CCLK E-reductions as
weU as evaluations w.r.t, environments (the basis of most practical
implementations of h-calculus based languages) may be simulated
in the well-known framework of a same term rewriting system.
Finally the introduction of CCLK allowed the author to understand
the untyped underlying calculus, investigated in a companion
paper. Another companion paper describes a general setting for
equivalences between equational theories and their induced
~:emantic equivalences, the equivalence between CCL~r and CCCIcis
am instance of which.

1. Introducing categorical combinators

Ceitegories and ;k-calculus are alternative theories of functionality, based on
composition of functions (more abstractly arrows), substitution of actual param-
eters to formal ones respectively. A part from the interest in itself to be able to
connect two different formalisms, and to let benefit one from the other (see the
end of section 2 for an example), there is an operational significance: roughly
k-calcu:[us is well-suited for programming, and combinators (of Curry, or those
introduced here) allow for implementations getting rid of some difficulties in the
scope of variables, indeed we intend to develop implementations of functional
programming languages based on categorical combinators, which we introduce
now, letting them arise from the known principle that a formal semantic
description yields a compilation.

158

Suppose tha t x has value .q (3 is under l ined to s tress that_3 is the represen-
ta t ion of 3), and that we want to e x p r e s s t h e funct ion associating y(.q) (also writ-
t en simply y,q) with every funct ion y . The h-calculus provides the elegant nota-
t ion hy.yx (M in the sequel) for tha t function.

Hence N=hf. f (iF z) will designate the funct ion associating with iF the
resul t of applying f to f (3). One may like to re la te those two so-called h-
expressions and to point out some modular i ty by showing tha t the second
express ion may be built f rom the first one and a third expression.

Indeed two const ruct ions are involved in the informal definition of N: first

we associate with iF = zt--->f(x) the funct ion f o f = x~-:->f (f (x)), and then we
apply the funct ion descr ibed by M. This can be summarized by

N' = Mo (h f . f o f)

where we have mixed the h-notation with the nota t ion for composing functions,
the basic concept of the theory of categories . We may t u rn N' into a pure A-
express ion (i.e. code the composi t ion in t e rms of h-notation): we obtain

P = hi . (hy.yz)((hyz.y (yz)) f)

It is an interes t ing exercise for r eade r s not familiar with h-calculus to experi-
ment with the fl-reduction, which is the formal application of a funct ion to its
argument , involving subst i tu t ion of the formal a rgument at each occu r rence of
the formal pa ramete r . Repeated applicat ion of this rule yields N back f rom P:

17 ---> h f . (hy.yx)(hz.f (f z)) ---> h f . (hz.f (f z)) x ---> h f . f (f x)

It will be clear f rom the res t of the sect ion that we could have made the o ther

choice, i.e. express N' in a pure categor ical notation.

Now we t u rn back to the initio] goal: the formal descr ipt ion of the meaning
of say hy.yz which we shall give in t e rms of the meanings of the sub-expressions
z, y, yz. Those expressions clear ly depend on the value of at least x, The values
of the variables are kept in an environment (a pile if one thinks of an implemen-
tation). We r ep re sen t the envi ronment as follows: one considers one more vari-
able z, D~, D r, Dz are the sets of possible values of x , y and z, and ".." is the res t
of the environment which needs not be detai led for the p resen t description, and
x denotes the usual ca r tes ian p roduc t of set theory.

Env = ((..xD.)xD.)xD~

(Represented as a t ree , Env looks like a comb.)

The meaning of an express ion depends on Env. For instance the meaning of z
(y) is obtained by having access to the Dz (D r) par t of the environment, which
may be clone through the first and second projections, denoted by Fst and Snd.
Whence the meanings of x and y , deno ted by ~x~ and [y] (more general ly I /d]
denotes the semant ics of M):

[~ x] = s n c t o F s t

~v] sna

159

The behaviour of o ,Fst and Snd m a y be desc r ibed by equations:

=

(y s t) = =

snd) Snd(x,y) = y

(applying a funct ion to its a rgum en t is deno ted by s imple juxtaposition; of
course = ,y,z are f resh var iables and have nothing to do with those in Ay.yx)

Now we define [yx] f rom [y~ and [x] , which a re funct ions f rom Env to Dy, f rom

Env to Dx respect ively. Firs t we m a y fo rm the pa i r <~y~J[x~>, which is a func-

t ion f rom Env to DyxD~. To f ~ ideas we set D~=W and Dy=~=>~, the se t of

functions f rom/~g t o / N (which is cohe ren t with the above value of x) . Remark-

ing tha t the semant i c s of yx has to be a funct ion f r o m Env to W we obta in

where App is the application function from (/~ r~)x /~V to 2V. The following
equations describe the behaviOur of @ , < >:

(-.pp) App (z,y) ~y
< = , y > z = (= z , y ,)

The meaning of ~,y.yz depends on Env for x , bu t not for y which is bound (see

below'). It is a funct ion f rom Env to Dy =>/V whereas [yx]] is a funct ion f rom
Env'xD~ to 2V, where Env'= (..xDz)xDx. We are t e m p t e d to use the currying

which t r a n s f o r m s a funct ion f with two a r g u m e n t s a and b into a funct ion h (f)
of a having as resul t a funct ion of b such t ha t

= f

or in equational form

{ (dA) (A(x)y)z = x (y , z)

So we would like to write

[Xy.y= l = A(~V= l)

relying on the intui t ion t h a t ~yz] is the funct ion associat ing yz with x and y ,

and t ha t [ky.yx] is the funct ion associat ing with x the funct ion associat ing yz
with y . But t hen we loose s y m m e t r y since h ([y x]) is not a funct ion f r o m Env to

2V, but f rom E n v ' to $V. So we have to take some care to ensure t h a t the seman-
tics t akes always its a r g u m e n t in Env. We define [ky.yz] as the currying of a

funct ion in EnvxDv=>~ which itself is the compos i t ion of I[yx] and a funct ion
Substy f rom EnvxDy to Env which assoc ia tes with a couple (p,a) a modified

env i ronment p[y~a], where only the c o m p o n e n t y has b e e n changed (to a). We
leave the r e a d e r check tha t in the p r e s e n t case

Substy = <Fsto Fst ,Snd>

yielding

160

[xy.y=] h([vz]o ~bst~,) h((~p o o >)o o _ ~ t , S ~ >) <Snd Fst <Fst

Obviously the last expression may be simplified using the following equations
(which the reader may "check" by applying both members to a same formal
argument):

)

(As~) (~ov)°z = ~ o (voz)

iDP~r) <z,y>oz : <z.z,yoz>
(S.a) Sndo <z,y> = y .

(Fst) ~t ° <z,y> = z

Using these rules we obtain

[[xv.y=] = A (. ~ o <s,,,d.s~° (~t o ~t)>
We have in t roduced all the ca tegor ica l combina to r s but the iden t i ty constant ,

which will ar ise below.

Now we p r e s e n t ano the r way of associat ing a ca tegor ica l t e rm, i.e. of the

kind bu~t above, with any h-expression, i.e. a t e r m built f r om var iables by appli-

ca t ion (MN) and abs t r ac t ion (Az.M). We shall use the following notation.

S ~ d o F~t n = n !

(By Ass this is unambiguous.)

,~zrp o <A,B> = S(A,B)
So we have

(1) [Xy.V=] = A(S(0~,20)

Now we manipula te a more involved term:
P

[Q = (hz. (hz.zz)y)((ht.t)z)
Q has a disguised fo rm of M as a sub te rm, name ly hz.zz (exercise: define

~hz.zz~ as above and check [hz.zx] = [k y . y z] using the above equations).

This observa t ion t ha t the name of bound var iables is indifferent is the basis of a

var iable n a m e free nota t ion due do N. De Bruljn, which we descr ibe now.

N. De Bruijn 's idea is to r ep lace bound variable n a m e s by a n u m b e r record-

ing where they are bound in an expression, which is the only i m p o r t a n t informa-

t ion abou t them. Free var iables are included in this t r e a t m e n t by consider ing in
our example

R = kzzy. Q (hzzy. Q is an abbrevia t ion for kz. (hz. (by. Q)))
where the order z , z , y is cons is ten t with the discussion above. The n u m b e r
assoc ia ted with any o c c u r r e n c e u of a variable, a leaf in the t r ee r e p r e s e n t a t i o n

of R, is the n u m b e r of nodes labelled kv, with v # u , which a re m e t in the p a t h
f rom tha t leaf to the roo t until a node ku is encounte red . The re su l t of tha t
t r an s fo rma t ion is

161

[R'= (A.(A.OO1)((X.O)@)
Now we make only a textual tranformation and replace h by A, "." by S, n by n!

and obtain what we shall call the De Bruijn translation of Q and denote by

QDB(z,z.,y):
[ODB(.,x.~,) = S(A(S(A(S(O!,I!)),I!)),S(A(O!),8!))

The reader may check that (I I above indeed defines

We end this introduction by suggesting that one may compute with the

categorical expressions (that they may be called so ~dll result from the precise

connection ~th cartesian closed categories established in the next section).

Q reduces by E-reduction to yz, which is 5 if y is s~cc (the successor func-
tion) rand z is 4. But first the outermost/~-reduction yields

q' = (Xu.u ((Xt. t)z))y
(The bound variable z was renamed to avoid the free occurrence of z becoming

bound after substitution,)

We show that QDs(z,z,y) reduces to Q'gB(~,z,y); we shall need some more equations.

We decompose @gB(z,z,u) as follows
09B(z;...u) = App o <A(A),B> where
B = App o < A (S n d) , S n d o Fst o Fs t>

A = App ~ <A(C),Snd~ F s t > where

C = A1~2o < S n d , S n d o Fs t>

Firs t we use the following rule, which m a y be "checked" as above

(Bet=) App o <A(z) ,y> = xo <Id ,y>

We get.

QgB(z.=~.u) = A o E where

E = <Id ,B>

Now we lift E down to the leaves of the t r ee r e p r e s e n t a t i o n of A. Combining Ass

and DPuir allows to dis t r ibute E along an S node:

Ao E = Appo <A(C)o E , (S ~ d o F ~) o E>

The leaf cor responding to the free occur rence of y in Q has a l ready b e e n

reached; we m a y use Ass ,DPair,Fsg and the r ight ident i ty equat ion

(tdR) x o I d = x

We obta in

4opo <A(C) o E, (S,~d o F~t)o E> = 4~PO <A(C) o E, S~d >

162

Now we need an equat ion allowing to distr ibute E inside A(C):

I DA) h(x)o y = A(xo <yo Fst ,Snd>)

We get

App o <h(C) o E , S n d >

= App o <A(App o <Snd o <E o Fst , Snd >, (Snd o Fst) o <E o Fst, Snd >>), Snd >

After some dressing

App o <h(C)o E , S n d > = App o <A(App o <Snd,Sndo (Eo Fs t)>) ,Snd>
= Zpp ° <A(App o < S n d . B o Fst >) , S n d >

r emember ing E = <[d,B>. Now we compute B o F s t by distributing Fst in the
same way:

B o Fst = App o <A(Snd o <Fst o Fst ,Snd>) ,Snd o ~ s t . Fst o Fst >
= ~ . A (~ d , S n d ° F~t s) = s(a(o!) ,3!)

Finally

Q~BC~,~.~) = S(A(S(0!,S(A(0!) ,3!))) ,0!) = Q'~BC~.~.~)

We have s imulated a E-reduct ion by categorical rewritings. These rewritings
have been able to r ecompu te the number associated with the free occu r rence of
y in Q which is i in QDB(~,.v.,y) and O in PnB(z,z,y) because the node h.z has disap-
peared; t hey also recompose the fact tha t the free occu r r ence of z becomes 2 in

Q/)B(~,~,~) and 3 in Q'l)B(z..:c,y) because a node kz is inser ted in the sequence of
nodes Xv up to the root.

Now we compute Q comple te ly in the environment suggested above, using
the rules with only lower case le t te rs (ass r a the r t han Ass, etc..). This looks
very m u c h like usual implementat ions of applieaUve languages. We s ta r t f rom

S(A(A) ,B)p where

p = (((p ' ~ .) , : ~) , ~)

We get by ass,dpa.ir and app

S(A(A) ,B)p = (A(A)p)(Bp)

We use dA and set

p' = (p,Bp)

We get

(A(A)p)(Bp) = Ap'

We manipula te A similarly and get

Ap' = Cp" where

p" = (p',l~p')

Then

Cp"= (O!p")(l!p")

1,63

Makir~] the lef tmost reduct ions , and remember ing the definitions of of p", p', we

get

(O!p")(l!p") = (l !p')(l !p") = (O!p)(l!p") = s'ucc (l!p")

NOW wie r educe the argument of sue t .

suet (l !p") =suec (O!p ') = s u c c (Bp) = s u c c (O ! (p ,2 !p)) = s u c c (2!p) = s u c c (.4.) = 5

Summarizing, we have in t roduced categorical combinators and we have sug-
ges ted tha t the i r world was full of computat ions corresponding to those known in
the k-calculus world (E-reduction, abs t rac t in te rpre ta t ion machines based on
envi ronment m a n i p t a t i o n s) . Moreover all these computat ions are descr ibed in
the unified f ramework o f a first o rder rewriting system, whereas the formalisms
of/~-conversion and P. ~ n d i n ' s SECD machine [Lan] are quite different. The res t
of the pape r descr ibes the typed categor ical combinators formally.

2. Ty[md categorical combinators
First we define kc x and CCL K formally.

2.1. Def ini t /on

The /~:typed kc-calculus kc K and the K-typed categorical combinatory logic

CCLzare defined as follows:

Kis a set of basic types; each term has a type, which is a term of Tx.~(/O,.and if

/d has the type a, we write

/ga or M: #.

We agree that x has precedence over =>, and we write

=

The structure of terms is as follows:

For kcK,

- If x is a variable and a is a type, then z: a is a term

- if M: ~=>~- and N: a, then MN:

- if z: a and/¢/: r, then Lz.M: a:>T

if M: # and N: ~-, then (M,N): axr

- if M: axv, t h en l s t (M):

- ff M: axT, t h e n s n d (M) : 1-

For CCLK

1 6 4

- I f z is a variable and a is a type, t h e n x : a i s a t e r m

- irA: a2=>as and B: ax=>a~, t h e n Ao/?: ax=>a.~

Id: a=>a

ff A: a=>~- 1 and B: a=>~- 2, t hen <A,B>: a~'rlx7 ~

Fst: ax?=>a (we shall often write FsU 'r)

Snd: ax~':=>T (we shall of ten write Snd ~;,r)

ff A: alxae=>c%, thenA(A): al=>(~=>aQ

App : (a=>T)xa=>T (we shall of ten write App ~x)

if A: a:>~" andB: a, then AB: ?

if A: a and B: ?, then (A,B): axT

Hence CCLKiS an algebra of first order terms. The theorles are:

9~SPK

(b~t,z) (~ . ~) N ~ =U[x,-N]
(~7) mq.Mq-->rx = M if x ¢ FV(M)

(f s t) f s t (U % N ') = M

(~ d) ~ a (i ~ , N ~) = N

(SP) (g~t (M ~) , ~ (M)) = M

AA~

(IdL) I d ~ % x ~'~" = x q~r

(ldR) x~#'% ld q°~ = x

(Snd') ~drl'Ve° <x*:~rl,y ~:~r~'> -" y

(Beta.) App~8'%o <h(xa~uqe~qS),yU~> = x o < I d ~ q ~ , y >

(~) A(4~p~.-) = ~.(o*.)*co~.)

(FSI) <Fst~'~,Snd~'~> = Id ~X~X~

(fst) l~xt"~a(x~' ,y") = x

(Quote i) A(Fste'e')z% y " ~ " = A(Fste'e')x

(Quote 2) App'a"% <z ' * (' * ' g ° h(Fs t ' " ')y ' , z ' t* ' z> = z y o z

Some of these equations must be applied with caution. For instance we only can
replace Id by h(App), <Fst ,Snd> if Id is of type (a :~v) :~ (a :~) , a×~':~ax~

respectively.

The following lemma states some equational consequences of A~.

2.2. b--mma

The foUowir~ equations are consequences of

(Q~ote3) A(z"x'~%)y" = xo <A(P-kt' ')y,Id"l>

(~) Id"~'z" = x
(d^) ^(=°.'°,~°3)v°',°' = =(v.*)

The system AAKis equivalent to the system obtained by replacing Quote 2 by the
two following equations:

(QUot, 2a) A(F~t"~"')~ ''~°' = h(~ ° S ~ ' " ')

(Q~ote 80) ^(F~t°"%(=°'*'~ °') = = . AiF~t°'")V
Proof: We only prove Quote 80 from Quote 2.

A(rst)(zy) =ass (A(~Ist) ° x)y =D .̂Fst A(x ° _~st)y
=ti~t, sxo Fst° <h(Fst)y , Id> = ~ xo h (Fs t) y .

Now we define formally last section's De Bruijn's translation as well as the
translations between ~kn K and CCL~.

166

2.3. DefiniUozl

Let M: a E AcK, and xo: ao zn: an be s.t. FV(M) ~ Izo,..,zn~. We define
MDB~xo,..,~) as follows:

• •. x~+ I ~ ~ ~xa~ •. • xat,a~_lo o Fst vx~n " " ' Xal'~O

DBxgXo %)

where i is minimu_rn s.t. x=x~

(/d~*~N~)~BK = APP ~'~o <MDB~N~BK>

(M,N)/~¢ = <M1)BxN~Bx,>

) ' s t (m~x~)o~ = Fst".% tg~BK

sn4 (m~x~)DB~ = sna", 'o M,~Bx

One has

M~" % ~'n : ° ' x f f n " ' " x f f ° : = > T
~B~x o x n)

(~o a n,T are determined by M,zo,..,x n while a is any type).

We define

[Ms~ L ¢-.~ ~ an z%', K = M T % ~n ~ y ' n , " , 0 1
DBX(*o *n)

where y is different from all x, and has the type ~ in MDBx (we apply the De

Bruijn's translation to the environment formally),

We define the translation in the reverse direction by

ld ~*~ = kz%z
Xe K

Fst g ~ = hz~xL f s t (z)

~.~ = K z c % s n a (*) S n d x~ ~.

(A"** B'%,o ~ = &o ~flxo x
0=~7-1 ~1:.-r~ :

<A ,B >xc x ~rL (Axcaz,Bx, x~)

A¢, . O'lXe~----~O' ~ . O" 0" 8 ~A)x=x ¢= hx ~ .Ax, x(z ,y) .

Ctearly

M~c~x: T and A~x:

167

~e suppose that x,y do not appear in A B •

In [CuCCL,CuTh] the untyped version of these calculi and translations is

defined The main difference is that in the untyped case the application and cou-

ple operators are defined and not primitive There we proved a First equivalence

theorem of which the Second theorem below is just a typed copy (we refer to

[CuCCL] for a sketchy proof and to [CuTh] for a full proof)

2,4..Second e q u i v a l e n c e t h e o r e m

For any t e r m s M , N e hcm A,B ~ CCL K, t he following holds:

(I) 2rV]CCI, K, Xc K -- t~Spt~

(3) A = ~ K B =# Ax~ K=~sP K B ~ K

(4) M =~vspKN -'# ,, MCCLK= ~KNCCLz¢ •

Actually neither U nor SP are needed in (i) (see [CuTh])

Now we introduce CCCK

2.5 Definition

Let K be a set of basic objects The types are now couples written a-->r of

terms aT of Tx~(KU}sl) where s, called terminal object is different from all
the e]ements of K The elements of Tx,~(KUI~I) are the objects

The free cartesian closed categor)r CCCKis defined as follows:

if x is a va r i ab le a n d a ,? a re objects , t h e n x: a - ->? is a t e r m

ff f : c;~--->a~ a n d g : al-->o2 are t e r m s , t h e n f o g : ~1-->a3 is a t e r m

Id : a - ->a is a t e r m

ff I : ~7--->rl a n d g : a--->~-~ a re t e r m s , t h e n < f ,g >: ~-->T1×~-2 is a t e r m

Fst : ax~--->a is a t e r m

Snd: ~x?--->T is a t e r m

1: a - ->s is a t e r m

if f : atx=e-->as is a t e rm , t h e n h (/) : al-'->(ae~gs) is a t e r m

App : (=~?)xc r - ->? is a t e r m

We use as above the n o t a t i o n Fs~ =z, Sr~d a,r a n d 29rp =z, a nd we also wri te Id ~ for

Id: a--->a a n d t a for 1: a-->~.

CCCKis t he se t of equa t ions CCL[bTSP + Ter where

(Ter) 1 ~ = z ~-->~ •

CCL#~SP consists of the equations from Ass until FS[included in AAK above (in
the t}q~es some => have to be replaced by --->) (more on CCL~7SP in [CuCCL])

168

Here typing is cr i t ical since Ter without types would r educe to: "everything
equals 0". The difference to the definition 2.1 is the absence of applicat ion and
couple opera tors , and the p resence of a family of constants 1, the unique arrows
to the te rmina l object.

Now we establish the equivalence of CCLK, AAKand CCCK, CCCm First we have
to connec t the types of bo th theories. We shall use the well-known isomorphism
between A-*B and 1-->(A=>B) in a car tes ian closed ca tegory (A,B are any

objects, 1 is the te rminal object), which is as follows in our setting:

[(~:--->~)+ = ^(::o m , , ~ , ~)

[(=~-->,,~,-)- = App~.,o ~ o lo-->~ s,~<,>

One proves easily the following equations:

[((~°-->')+)- =~<~ and ((~:->°*")-)+ =~,<~

2.6. Definit ion

With every object a we associate

{~r" e T ~ . (K) u ~ s l ~r-: cr-->~" e ~+: o ' - ->o e CCCx CCC x I

defined as follows:

o ' = 0 . ~ + = a = I d r i f 0 r e K u j ~ l

For the product we proceed by cases:
• #'

f f l , 0 .2#~ :

(0.1x~) ° = ~;xc%" , (alx#2) + = <a~-o F~t,~ 'o S'r~> , (a l x ~) - = < a f o / ~ t ,~{o Snd>

(~×==)* = =; , (o~x=2) + = < [d ,=~o P ' > o =~ , (=~×==)- = =~-o .~t
0.~=~ , a~*~: symmet r i c

0"1,0" 2 =

(0"~x0"~)" = e , (0"~x0"9 + = <0"L0"~> , (0"~x0"~)- = i

Now the exponenUation:

(0",~0"2)" = 0"1~0"~" "

(~1~0.2) + = ^ (~ o ~ o < ~ t . 0 " r ° z ~ >) . (o 1 ~) - = ^(0.~° ~ o <~st ,0"to s ~ >)

169

(,~=>~2) + = A (J ~ t) o ~+ , (~ 2) - = ~ 0 App ° <[~,~t° 1"~-->%>

(;2=~

(, 7 , ~ a ~) * = ~ , (o ~) + = A (~ o f r o) , (~ = > ~) - = i •

We omitted many types, and shah do so in the sequel. ~" can be viewed as a

canonical representent for a when identifying ~rxs, sxa, ~=>~ with ~, and a=>~

with 8. This is justified by the following lemrna:

2.7. I ~ m m a

F o r a n y a E Tx .~(KU~s t) t h e following herds:

0"+0 g-- =COCKICl ~ and ~;-o a ÷ =CCCKId a"

Proof: We only check one case,

<Id,a;~ ° 1"*>o ~o a {o Fst ~'xa~ =r,=.T~r <Fst ,a~ o l~X%>

=7er <Fst ,g~o 1%o SndalX~z>

=r~= < F s t , S n d > = Id

Now we def ine t h e t r a n s l a t i o n s b e t w e e n CCLKand CCCK

2.8. Definition

With any term A: o of CCLKwe associate a term Acct.: 8-->~ of CCCKdefined

as foltows:

AcOCx "- A ÷, if A = [d ,Fs t ,Sncl,App

(Ao B)cccK= (Ac~o B6cc~) ~

<A,B > ccc x = <Ac-oox,BSccK> ÷

A(A)ccc K = A(A~ccK) +

(AB)cccx = ~ x o Bccc~

(A,B)cccx = <AcccscBccc~>
Conversely wi th any t e r m f : a--->'r of CCCKs.t. (~=>'r)*~s (i.e. " r *~) , we associ-

ate a te rm JCCL E (a:O'r) ° of CCLKdefined by

170

z ~ ~" = x C ~) °

]~tcr~x = FSt ~%" if r* ~ = Id ~" *(T" ff r*=~

S y m m e t r i c a l l y for S n d

A p p ~ x = App '7"'~'" if a * ~ = Id "'*~'" if a*=~

- - f fa -c 'aao O l " ~ f f ~ " 0 * * .,r g)c'vzx = I c ~ u gc'vL~ if e z , c r ~ s

= Fst ca'el if e ~ ez=z
L'~L K

=fCCL x if * * f f l , f f 2 = ~

< . o '-->"r t ° - - - > ' r ~ > . , ~ .
Y .g c'cI, x = <fccLx, gCCLx > i~ (7 .T t , ' rZ~ ,

(f ~) ' ' = OOLvrgC'~,L if 0""=~' , TI,T2:~

= g ~ ff "cT=c, " c ~

,A I - O'IXffZ--->0"3,, =,,, . . , . . *
~Y)c~z x = A(Icc~x) ff ~,~re~

Now we m a y s ta te the Third equivalence t h e o r e m .

2 . 9 . Thi rd e q u i v a l e n c e t h e o r e m

For all t e r m s A,B of CCL x and f ,g of CUCK of a p p r o p r i a t e types , t he follow-

ing ho!.ds:

(1) A =~xB ~ ~ c x = c c c x B ~ x

(2) f~-->~ = cccxg ~->~" =~ f CCLK----~XyCC~K if r*#z

(3) &~CC~CCLK = ~ A

(4) f & 7 ~ : ~ ~ (f [=o~-~(=o),..,~ ~ - ~ (~)])
where V(A) = ~zo,..,zn~ and ~ , n - - ~ - a re def ined by

~ (f ° - - > ~) = (T - o f o a +) + i f~*~* = r - o f o a ÷ i r a*=*

..... = ~ '+of o q - if e*=*

Proof: Tedious bu t easy. We only c h e c k (4) for App.

.¢:,p~cX~ccc x = A
(~,*#,) (~,pr.,')+

171

We have to check

[r-o A~,~"o (@=>'r)xc;) + = ~°"'"
Let

(o~)+ = A(B)
T-. A~,-o ((o=>-r)x~) + = -r-o AS~o o <A(B)o ~t,~+o S,~d>

= ~-o -f+o App o <Fst ,a-o Snd>o <Fst ,a+o Snd>
= x%1~'IOO <Fs t ,a - ,a%Snd> = App

(a'=~) A = (I d ' *) ÷

We have to check

[~'-o App'.% ((a=>-r)xa) + = Id r°

nr-o .A4c~o"% ((a~-)xa) + = ~--o ~ ~ <Id,o% i>o k(Fst) o ~r +
= ~--o x~op o < A (F s t) , . . > o r +

= T-o]q~t o < / d , , , > o T + = td ~"
m

We end the section by pointing out that the two equivalence theorems of the
section may be used to decide the equational equality in CCCK (and also in
CCLI¢). Indeed the rewriting system obtained by orienting the rules of {bTSPK
from left to right is confluent (cf. [Pot]) and noetherian. We refer to [LamSeo]
for a proof of that property, which was actually established by J. Lambek and
P.J. Scott for the same purpose. For concluding on decidability, we just have to
remark

k e r r =cccz~.g~-->r ICCLK=AAflC~L K ICCLK, XCK: ~Spt~CCLz,:.Xcz~ iff iff

using
~ (, , ~ (.)) = ~ p et . - - > ~ (~ (.)) = ~ p

B. Conclusion

We have exhibited the connection between X-calculus and cartesian closed

categories, which goes back to [Lam, Sco] and quite independently to

[BeSy, CuTh3], in a very syntactical and computational fashion. We refer to

[CuTh, CuEq] for the semantic equivalences induced by the theorems in this

paper.

It is very tempting to implement evaluators of categorical cornbinators. A

result in [CuTh, CuTh] states that the evaluator last informally described in sec-

tion 1, worldng by leftmost-outermost reductions, is complete with respect to

the models of the underlying theory (namely CCLK enriched with arithmetic
combinators). Moreover the author devised a categorical abstract machine
transforming categorical eombinators into actual machine instructions. This
machine will be described in a forthcoming paper with G. Cousineau, who
significantly improved the original proposal.

172

Related (and independent) work appears in [PaGho,Poi, Dyb,LamSco].
[Poi],[LamSco] explicitely state an equivalence in the kind of tbis paper between
(quite) kcK and CCCK, in a syntactic, a more semantic setting respectively. The
differences of the present paper to these references are mainly the introduction
of CCL~ and the connection with De Bruijn's ideas, both contributing to an
operational setting.

4. References

[BeSy] G. Berry, Some Syntactic and Categorical Constructions of Lambda-
calculus models, Rapport INRIA 80 (1981).

[Bru] N.G. De Bruijn, Lambda-calculus Notation without Nameless Dummies, a
Tool for Automatic Formula Manipulation, Indag Math. 84, 381-392 (1972).

[CuTh3] P-L. Curien, Algorithmes S6quentiels sur Structures de Donn~es
Concretes, Th~se de Troisi~me Cycle, Universit~ Paris VII (Mars 1979).

[CuTh] P-L. Curien, Combinateurs Cat~goriques, Algorithmes S6quenUels et Pro-
grammation Applicative, Th~se d'Etat, Universit6 Paris VII (D~cembre 83), to be
published in english as a monograph.

[CuCCL] P-L. Curien, Categorical Combinatory Logic, submitted to ICALP 85.

[CuEq] Syntactic Equivalences Inducing Semantic Equivalences, submitted to
EUROCAL 1985.

[Dyb] P. Dybjer, Category-Theoretic Logics and Algebras of Programs, PhD
Thesis, Chalmers University of Technology, Goteborg (1983).

[Lam] J. Lambek, From Lambda-ealculus to Cartesian Closed Categories, in To
H.B. Curry: Essays on Cornbinatory Logic, Lambda-calculus and Formalism, ed.
J.P, Seldin and J,R. Hindley, Academic Press (1980).

[LarnSco] J. Lambek and P.J. Scott, Introduction to Higher Order Categorical
Logic, to be published by Cambridge University Press (1984).

[Lan] P.J. Landin, The Mechanical Evaluation of Expressions, Computer Journal 6,
808-320 (1964).

[PaGhoTh] K. Parsaye-Ghomi, Higher Order Abstract Algebras, Pb_D Thesis, UCLA
(1981).

[Poll A. Poign~, Higher Order Data Structures, Cartesian Closure Versus X-
calculus, STACS 84, Leer. Notes in Comput. Sci.

[Pot] O. Porringer, The Church-Rosser Theorem for the Typed X-calculus with
Extensional Pairing, preprint, Carnegie-Mellon University, Pittsburgh (March
1979).
[Sco4] D. Scott, Relating Theories of the Lambda-caleulus, cf. [Lain].

