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SUMMARY 

Let N be a planar undirected network with distinguished vertices s, t, a 

total of n vertices, and each edge labeled with a positive real (the edge's cost) 

from a set L. This paper presents an algorithm for computing a minimum (cost) s-t 

cut of N. For general L, this algorithm runs in time O(n log2(n)) time on a 

(uniform cost criteria) RAM. For the case L contains only integers ~n 0(1) , the 

algorithm runs in time O(n log(n)loglog(n))° Our algorithm also constructs a mini- 

mum s-t cut of a planar graph (i.e., for the case L= {i}) in time 0(n log(n)). 

The fastest previous algorithm for computing a minimum s-t cut of a planar un- 

directed network [Gomory and Hu, 1961] and [Itai and Shiloach, 1979] has time 

O(n 2 log(n)) and the best previous time bound for minimum s-t cut of a planar graph 

(Cheston, Probert, and Saxton, 1977] was O(n2). 

i. Introduction 

The importance of computing a minimum s-t cut of a network is illustrated by 

Ford and Fulkerson's [1962] Theorem which states that the value of the minimum s-t 

flow of a network is precisely the minimum s-t cut. The best known algorithms 

[Galil, Naamad, 1979; Shiloach, 1978] for computing the max flow or minimum s-t cut 

of a sparse directed or undirected network (with n vertices and O(n) edges) has 

time O(n 2 log2(n)). This paper is concerned with a planar undirected network N, 

which occurs in many practical applications. 

Ford and Fulkerson [1956] have an elegant minimum s-t cut algorithm for the 

case N is (s,t)-planar (both s and t are on the same face) which efficiently 

implemented by Gomory and Hu [1961] and Itai and Shiloach [1979] has time 

O(n log(n)). Moreover, O(n) executions of their algorithm suffices to compute the 

minimum s-t cut of an arbitrary planar network in total time o(n 2 log(n)). Also, 

Cheston, Probert, Saxton [1977] have an O(n 2) algorithm for the minimum s-t cut of 

a planar graph. 

Let QL(n) be the time to maintain a queue of O(n) elements with costs from 

a set L of nonnegative reals, and with O(n) insertions and deletions. For 
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57 

simplicity, we assume QL(O(n)) =O(QL(n)). For the general case, QL(n) =O(nlog(n)) 

(see [Hopcroft and Ullman, 1974]). For the special case L is a set of positive 

integers ~n 0(1) [Boas, Kaas and Zijlstra, 1977], QL(n) =0(n loglog(n)). It is 

obvious that if L= {i}, QL(n) =O(n). 

A key element of the [Ford and Fulkerson, 1956] algorithm for (s,t)-planar net- 

works was an efficient reduction to finding a minimum cost path between two vertices 

in a sparse network. Dijkstra [1959] gives an algorithm for a generalization of this 

problem (to find a minimum cost path from a fixed "source" vertex s to each other 

vertex). Dijkstra's algorithm may be implemented (see [Aho, Hopcroft and Ullman, 

1974]) in time O(QL(n)) for a sparse network with n vertices, and L is the set 

of nonnegative reals labeling the edges. 

Our algorithm for computing the minimum s-t cut of a planar undirected network 

has time O(QL(n)log(n))° This algorithm also utilizes an efficient reduction to 

minimum cost path problems. Our fundamental innovation is a divide and conquer 

approach for cuts on the plane. 

The paper is organized as follows: The next section gives preliminary defini- 

tions of graphs, networks, min cuts, and duals of planar networks. Section 3 gives 

the Ford-Fulkerson Algorithm for (s,t)-planar graphs. Section 4 gives an efficient 

algorithm for minimum cut graphs containing a given face. Our divide and conquer 

approach is described and proved in Section 5. Section 6 presents our algorithm for 

minimum s-t cuts of planar networks. Finally, Section 7 concludes the paper. 

2. Preliminary Definitions 

2.1 Graphs. Let a graph G = (V,E) consists of a vertex set v and a collec- 

tion of edges E. Each edge e 6 E connects two vertices u,v 6 V (edge e is a 

loop if it connects identical vertices). We let e = {u,v} denote edge e connects 

u and v. Edges e, e' are multiple if they have the same connections. Let a 

path be a sequence of edges p = e I .... ,e k such that e i = {Vi_l,V i} for i = I, .... k 

(we say p traverses vertices v0,...~Vk). Let p be a cycle if v 0=v k (cycles 

containing the same edges are considered identical). A path p' is a subpath of p 

if p' is a subsequence of p. Let G be a standard graph if G has no multiple 

edges nor loops. Generally we let n be the number of vertices of graph G. G is 

sp~se if the number of edges is O(n). If G is planar, then by Euler's formula 

G is sparse and contains at most 6n - 12 edges. 

2.2 Networks. Let an undirected network N = (G,c) consists of a graph 

G = (V,E) and a mapping c from E to the positive reals. For each edge e 6 V, 

c(e) is the cost of e. For any edge set E' ~E, let c(E') =Ze6E, c(e). Let the 

cost of path p=e I , .... e k be c(p) =Z k i=l c(ei)" Let a path p from vertex u to 

vertex v be mini~z~ if c(p) ~ c(p') for all paths p' from u to v. Let 

N = (G,c,s,t) be a stanc~rdnei72ork if (G,c) is an undirected network, with 
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G= (V,E) a standard graph, and s,t are distinguished vertices of V (the source, 

sink, respectively). 

2.3 Min Cuts and Flows in Networks. Let N= (G,c,s,t) he a standard network 

with G: (V,E). An edge set XCE is a s-t cut if (V,E-X) has no paths from s 

to t. Let s-t cut X be minimum if c(X) ~ c(X') for each s-t cut X. A 

function f mapping E to the nonnegative reals is a f~ow if 

(i) VeC E, f(e) ~c(e), and 

(ii) VvkV- {s,t}, ID(f,v) =OUT(f,v) 

where IN(f,v) = E f(e) and OUT(f,v) = E f(e) 
eke ekE 
vke vke 

The ~alue of the flow f is OUT(f,s) - IN(f,t). The following motivates our work 

on minimum s-t cuts: 

THEOREM i. [Ford and Fulkerson, 1962]. The maxi~mn value of any flow is the 

cost of a minimum s-t cut. o 

2.4 Planar Networks and Duals. Let G= (V,E) be a planar standard graph, with 

a fixed embedding on the plane. Each connected region of G is a face and has a 

corresponding cycle of edges which it borders. For each edge e 6 E, let D(e) be 

the corresponding dual edge connecting the two faces bordering e. Let D(G) = 

(~,D(E)) be the dual graph of G, with vertex set ~= the faces of G, and with 

edge set D(E) =UeC E D(e). Note that the dual graph is not necessarily standard 

(i.e., it may contain multiple edges and loops), but is planar. Let a cycle q of 

D(G) be a cut-cycle if the region bounded by q contains exactly one of s or t. 

PROPOSITION i. D induces an i-i correspondence between the s-t cuts of G 

and the cut-cycles of D(G). D 

Let N= (G,c,s,t) he a planar standard network, with G= (V,E) planar. Let 

the dual network D(N) = (D(G),D(c)) have edge costs D(c), where D(c) (D(e)) = c(e) 

for all edges e k E. (Generally we will use just c in place of D(c) where no 

confusion will result ) For each face Fk/~, let a cut-cycle q in D(N) be F - 
• i 

mini~m if q contains F i and c(q) ~c(q') for all cut-cycles q' containing 

F i • 

PROPOSITION 2. A minimum s-t cut has the so~e cost as a minimum cost cut- 

cycle of D(G) . [] 

3. Ford and Fulkerson's Min s-t Cut Algorithm for (s,t)-Planar Networks 

Let N= (G,c,s,t) be a planar standard network. G (and also N) is (s,t)- 

planar if there exists a face F 0 containing both s and t. Let planar network 

N' be derived from N by adding on edge e 0 connecting s and t with cost ~. 

Let e 0 be embedded onto a line segment from s to t in F0, which separates F 0 
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into two new faces F I and F 2. Ford and Fu]kerson [1956] have an elegant charac- 

terization of the minimum s-t cut of (s,t)-planar network N. 

THEOREM 2. There is an i-i correspondence between the s-t c~ts of N and the 

paths of D(N') from F 2 to F 1 and avoiding D(e0). Furthermore, this corres- 

pondence preserves edge costs. Therefore, the minimum s-t cuts of N corresponds 

to the minimum cost paths in D(N ~ ) from F 2 to F 1 (which avoid D(e0)). D 

COROL~hRY 2. A mini~m~ cost cut of (s,t)-planar N with n vertices may be 

computed in time O(QL(n)) , where L : range(c). D 

Note that this implies the O(n log(n)) time minimum s-t cut algorithm of 

Gomory and Hu [1961] and Itai and Shiloach [1979] for (s,t)-planar undirected net- 

works, and the O(n) time minimum s-t cut algorithm of Cheston, Probert, and 

Saxton [1977] for (s,t)-planar graphs. 

4. An O(n log(n)) Algorithm for F-minimu~m Cut Cycles 

Let N= (G,c,s,t) be a planar standard network, with G= (V,E) and L:range(c). 

Our algorithm for minimum s-t cuts will require efficient construction of F-minimum 

cut cycles for certain given faces F. Let be the set of faces bordering s 
s 

and let t be the faces bordering t. Let a ~(s,t) path be a minimum cost path 

in D(N) from a face of to a face of 
s t" 

PROPOSITION 3. Let ~ be a ~(s~t) path traversing faces F 1 ..... F d. Let qi 

be a F.-minimuml cut-cycle of D(N) ~or i = i ..... d. Then D-l(qi0 ) is a minimum 

s-t cut of N, where c(qi0) :min{c(qi)li = 1 ..... d}. D 

(NOTE: It is easy to compute a ~(s,t) path in time O(QL(n)). Let M be the 

planar network derived from D(N) by adding new vertices v s, v t an4 an edge 

connecting v s to each face in s and an edge connecting each face in t to v t. 

Let the cost of each of these edges be i. Let p be a minimum cost path in M from 

v s to v t. Then p, less its first and last edges, is a p(s,t) path.) 

Let ~ be a Z(s,t) path traversing faces FI,...,F d. By viewing ~ as a 

horizontal line segment with s on the left and t on the right, each edge of D(N) 

connected to a face F. may be considered to be connected to F. from the below or 
1 1 

above (or both). Let ~' be a copy of ~ traversing new vertices Xl,...,x d. Let 

D' be the network derived from D(N) by reconnecting to x i each edge entering F. 
l 

:from above. If p is a path of D~I then a corresponding path ~ in D(N) is 

constructed by replacing each edge and face appearing in ~' with the corresponding 

edge or face of ~. Clearly, c(p) = c(~). 

THEO~i]M 3. If p is a minimum cost path connecting F. and x. in m', then 
l 1 

is a F-minimum cut cycle of D(N). [] 
l 

Proof. Clearly, ~ is a cut-cycle of D(N). Suppose 

q be a El-minimum cut-cycle of D(N); with c(q) < c(~). 

is not Fi-minimum. 

Let Then there must be a 
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subpath ql of q connecting faces Fj~ F k of ~ but otherwise disjoint from 

and such that the edges of ql together with ~ form a cut-cycle of D(N), else we 

can show q is not a cut-cycle (see Figure I). Let ~i be the minimal subpath of 

containing faces Fi, Fj, and F k. Observe that the edges of ql together with 

w U 1 form a F.-minimum cut-cycle, else U is not a ~(s,t) path. Let qi be 
i 

derived from ql by reconnecting the last edge to x k instead of F k. Let U 2 be 

the subpath of ~i connecting F. and F. and let U3 be the subpath of ~i 
i 3 

connecting F.i and F k. Also, let U~ be the subpath of U' in D' corresponding 

to ~3" Then the edges of ~2' ql' and ~ form a path from F i to x i in D' 

and with cost c(q). But c(q) < c(~) = c(p) is a contradiction with the assumption 

that p is a minimum cost path from F~ to x.. (See Figure 2.) 
1 1 

COROLLARY 3. There is an O(QL(n)) time algorithm to compute a F.-minimum~ cut 

cycle for any face Fo of a D(s,t) path in DIN). 
1 

5. A Divide and Conquer Approach 

Let ~ be a U(s,t) path of D(N) traversing faces FI,...,F d as in Section 4. 

Note that any s-t cut of planar network N must contain an edge bounding on a face 

FI,..., or F d. Thus an obvious algorithm for computing a minimum s-t cut of N is 

to construct a F.-minimum cut cycle qi in D(N) for each i= l,...,d. This may be 
1 

done by d executions of the O(QL(n)) time algorithm of Corollary 3. Then by 

Proposition 3, D-l(qi0 ) is a minimum s-t cut where c(qi 0) = min~c(ql) ..... c(qd)}. 

In the worst case, this requires O(QL(n)-n) total time. This section presents a 

divide and conquer approach which requires only log(d) recursive executions of a 

F.-minimum cut algorithm. 
l 

LEMMA i. Let Fi, F. be distinct faces of V, with i < j. Let p be any 
J 

F.-minimum ~it-cycle of D(N) such that the closed region R bounded by p contains 
3 

s. Then there exists an F.-minimum cut-cycle q contained entirely in R. (See 
l 

Figure 3. ) m 

Proof. Let q be any F.-minimum cut-cycle. Let q' be the cut-cycle derived 
i 

from q by repeatedly replacing subpaths connecting faces traversed by U with the 

appropriate subpaths of ~ (only apply replacements for which the resulting q' is 

cut-cycle). Observe c(q') Sc(q) (else we can show ~ is not a U(s,t) path). Let 

R ~ be the closed region botlnded by q'. Suppose R ~ R. Then there must be a sub- 

path ql of q' connecting faces F a, F b of p such that ql only intersects R 

at F a and F b. Let Pl be the subpath of p connecting F a and F b in R'. 

We claim c(Pl) ~c (ql) . Suppose c (pl) > c (ql) . By our construction of q', either 

. = F a or F. = F b. In any case, we may derive a cut-cycle p' from ql avoids Fj, F 3 3 

p by substituting ql for PI" But this implies c(p') < c(p), contradicting our 

assumption that p is a Fi-minimum cut-cycle. Now substitute Pl for ql in q'. 

The resulting cut-cycle is no more costly than q', since c(Pl) ~c(ql). (See 
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Figure 4.) The lemma follows by repeated application of this process. 

The above lemma implies a method for dividing the planar standard network N, 

given an s-t cut X. Let N be the network derived from N by deleting all 
x 

edges of X. N x can be partitioned into two networks N s, N t, where no vertex of 

N has a path to t, and no vertex of N t has a path to s. Also, each edge 
s 

c 6 X must have connections to a vertex of N s and a vertex of N t. Let N's be 

the planar network consisting of N s, a new vertex t', and for each e 6 X, add a 

new edge with cost c(e) connecting t' to the vertex of e contained in N . 
s 

' be the planar network consisting of Nt, a new vertex s', and Similarly, let N t 

adding a new edge of cost c(e) connecting s' to the vertex of e contained in 

Nt, for each e 6 x (see Figure 5). Note that N's and N t' are not necessarily 

standard since they may contain multiple edges connecting a given vertex to s or 

t. Let DIVIDE(N,X,s) and DIVIDE(N,X,t) be the planar standard networks derived 

m ! from Ns, N t respectively by merging multiple edges and setting the cost of each 

resulting edge to be the sum of the costs of the multiple edges from which it was 

derived (see Figure 6). 

Let E be the edges of network N, and let Y be a set of edges of N (or 
s 

Nt). Also, let E(Y) be the set of edges of E derived from Y by substituting 

for any edge e connecting t' (or s') the corresponding edges of X from which 

e was derived. The following theorem follows immediately from the above lemma and 

Proposition 3. 

THEOREM 4. Let X be an s-t cut of plan~r standard network N such that D (x) 

. be is a F-minimum cut-cycle, for some face F in a V(s,t) path of D(N) Let X s 

a minimum s-t' cut of DIVIDE(N,X,s) and let X t be a minimum s'-t cut of 

DIVIDE(N,X,s). Then E(Xs) or E(X t) is a minimum s-t cut of N. D 

6. The Min s-t Cu t Algorithm for Planar Networks 

Theorem 4 of the previous Section 4 yields a very simple, but efficient, 

"divide and conquer" algorithm for computing minimum s-t cut of a planar standard 

network. We assume the [Ford and Fulkerson, 1956] Algorithm (given in Section 3): 

(i) (s,t)-PLANAR-MIN-CUT(N) which computes a minimum s-t of (s,t)-planar 

standard network N in time O(QL(n) ) . 

We also assume algorithms (given in Section 4): 

(ii) ~(s,ft) PATH(DiN)) computes a ~(s,t) path of D(N) in time O(QL(n)). 

(iii) F-MIN-CUT-CYCLE(N,Fi,~) computes a F.-minimum cycle of N (for F. in 
1 1 

Z(s,t) path ~), in time O(QL(n)). 
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Recursive Algorithm PLANAR-MIN-CUT(N,b) 

input planar standard network N: (G,c,s,t)~ where 
beg±__n 

Let Fl,•..,P d be the faces traversed by p. 
if d = 1 then return (s,t)-PLANAR-MIN-CUT(N); 
else begin 

~+D---~(F-MIN-CU~-CYCLE(N,F~d/2~,~)); 
N 0÷DIVIDE(N,X,s); N I+DIVIDE(N,S,t); 
Let Z0 and ~i be the subpaths of H contained in N O 
X 1 ÷ PLANAR-MIN-CUT(NI,~I); X 0 + PLANAR-MIN-CUT(N0,P0 ) 
if c(E(X0)) ~c(E(X1)) then return E(X 0) else return 

end; 
end 

G= (V,E) ,  and p ( s , t )  p a t h  ~. 

and N1, respectively 

E(X 1 ) ; 

For any eC {0,1} r, r~ O, inductively let N = (G ,cW, sw,t ) be the planar 

standard network and let N~ be the B(s ,tw)-path in N defined by recursive calls 

to PLANAR-MIN-CUT. Let n and m be the number of vertices and edges of N 
~" W W 

(let n and m be the number of vertices and edges of N). Suppose PLANAR-MIN- 

CUT(Nw,Ne) is called. If ~k contains only one face, then let No} 0 and Nwl be 

empty networks, and let HW0 and ~w~ibe empty paths. Else let X w be the s -t 

cut of N W computed by the call to D (F-MIN-CUT-CYCLE(-)) and let Nw0, Nwl be 

the planar standard networks constructed by the calls to DIVIDE, and let ~e0' ~i 

be the subpaths of ~ contained in N O , NWI. Then it is easy to verify that ~w0 

is a ~(sw0,t 0)-path in N O and ~wl is a N(s l,t l)-path in Nwl. Furthermore, 

if d is the length of 9 (the ~(s,t) path of N), there can be no more than 

log(d) !log(n) recursive calls. The following theorem provides an upper bound on 

the sum of the series of graphs derived by r recursive calls to PLANAR-MIN-CUT. 

THEOREM 5. For each r ~ 0, E m ~ 2m + 2 r. o 

Proof. Note that by definition of DIVIDE, each of the edges of N@ are 

• Fix an edge e of N. Let e be derived from disjoint sets of edges of N w 

the edge (if it exists) of N w derived from a set of edges of N containing e. 

For each r~ O, let Br(e ) = {ewle ~ {s ,t W} and ~6 {0,l}r}. 

We require a technical le~ma: 

LEMMA 2. iBr(e) [ S2, and furthermore if Br(e ) = {ew, e z} for 9< z, then edge 

e is connected to t and edge ez is connected to Sz. 

Proof by induction. Suppose for some fixed r0, this lemma holds for all 

r ~r 0. If Bro(e ) :@ then clearly Br0+l(e ) :@. Suppose IBr0(e) ! ~ 1 and con- 

sider any e 6 Bro(e). If e W~ X W then by definition of DIVIDE, either e W= em0 

appears in NW0 or e =eel appears in N i, but not both. On the other hand, 

if e CX , then e 0 appears in N O connected to two and also eel appears in 

IB (e} I S 2. N 1 connected to Swl. In either case, if IBr0(e) I : I, then i r0+ 1 

Else suppose there exists some e z6 Br0(e) with ~< z. By the induction hypothesis, 
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e 

(if it exists) is connected to t j and edge ezj (if it exists) is connected to 

Szj. Hence if e 6 X then ezl = {Sz!,tzl}. In each case, IBr0+l(e) ] ~ 2. 

To complete the proof of Theorem 5, observe that l{{sw,t }iwC {0~l}r}] = 2 r. 

Hence 

E m ~ (e~E IBr(e)i) + i{{s~rt~}[wC {0'l}r}I ~ 2m+2r 
W{{0,1}r r 

by Lemma 2. 

is connected to t and e is connected to s . Thus for j = 0,i edge e 
W z z w] 

Given a planar staT~dard network N = (G,e,s,t) with L : range(c)~ 

and ~ is a ~(s,t) path of N then PLANAR-MIN-CUT(N,~) computes a minimmm s-t 

cut of N in time O(QL(n)log(n)). 

Proof. The total time cost is 

E O (9L (m%3)) : E O (QL (2m + 2r)) 
~{{0,I} r r~logn 
r~ipgn 

hy Theorem 5 

0(QL(n)logn), since 2m+ 2 l°gn = O(n) 

THEOREM 6. 

By known upper bounds on the cost of maintaining queues (as discussed in the 

Introduction), we also have: 

COROLLARY 4. J minimum s-t cut of N is computed i~ time o(n log2(n)) for 

general L (i.e., a set of positive reals), in time 0(n log(n)loglog(n)) for the 

case L is a set of positive integers bounded by a polynomial in n and in time 

0(n log(n)) for the case L= {1} (in this case N is a graph with identically 

weighted edges). D 

7. Conclusion 

We have presented an algorithm for computing a minimum s-t cut of a planar un- 

directed network. Our algorithm runs in an order of magnitude less time than 

previous algorithms for this problem. An additional attractive feature of this 

algorithm is its simplicity, as compared to other algorithms for computing minimum 

s-t cuts for sparse networks (Galil, Naamad, 1979] and [Shiloach, 1978]. 
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Fig. I. F,-minimum cut cycle ~ in D(N) with ~ = ~lql. 
l 
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= ' '- ~. ~ from x, to F in D~. Fig. 2. Path p ~2 ql ~3 i i 
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Fig. 3. FI,F 2 ..... F d is a ~(s,t) path in D(N). p= (Fj,Xl,X2,...,x k) is a 

F.-minimum cut-cycle enclosing region R. The F.~minimum cut-cycle 
] l 

q= (Fi,Yl,Y2,...,yl) is contained in R. 

. 

o 
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@R-6> 

t e 0 g ~ m 

° 

° ,°" 

Fig. 4. FI,F 2 .... ,E d is a p(s,t)-path, p=pl'P2 

q = ql-q2 is a cut-cycle containing F..l 

p' =ql-P2 is a cut-cycle containing Fj 

is a cut-cycle containing 

If c(ql) < C(Pl ), then 

and with cost c(p') <c(p). 

F.. 
3 
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I 

network N s 
i 

network N+ 

l Fig. 5. The networks N s and N t derived from network N with s-t cut x. 

Fig. 6. The merging of multiple edges connected to vertex x and vertex y, 

into a single edge. 


