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ABSTRACT

This paper analyzes Nn,d’ the average number of terminal nodes examined by the «-8
pruning algorithm in a uniform game-tree of degree n and depth d for which the termi-
nal values are drawn at random from a continuous distribution. It is shown that Nn,d
attains the branching factor SQQ_B(H) = gn/]—gn where & is the positive root of
xM4x-1 = 0. The quantity gn/1wgn has previously been identified as a lower bound

for all directional algorithms. Thus, the equality g?a_s(h) = En/]'gn renders a-8

asymptotically optimal over the class of directional, game-searching algorithms.

1. INTRODUCTION

The «-g pruning algorithm is the most commonly used procedure in game-playing
applications. It serves to determine the minimax value of the roct of a tree for
which the terminal nodes are assigned arbitrary numerical values [1]. Although the
exponential growth of such game-iree searching is slowed significantly by that algo-
rithm, quantitative analyses of its effectiveness have been frustrated for over a
decade. One concern has been to determine whether the o-g algorithm is optimal over
other game-searching procedures.

The model most frequently used for evaluating the performance of game-searching
methods consists of a uniform tree of depth d and degree n, where the terminal posi-
tions are assigned random, independent, and identically distributed values. The
number of terminal nodes examined during the search has become a standard criterion
for the complexity of the search method.

Slagle and Dixon (1969) showed that the number of terminal nodes examined by

Las2] , Td/2]

a-B must be at least n ~ 1 but may, in the worst case, reach the entire
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set of nd terminal nodes [2]. The analysis of expected performance using uniform
trees with random terminal values had begun with Fuller, Gaschnig, and Gillogly [3]
who obtained formulas by which the average number of terminal examinations, Nn,d’

can be computed. Unfortunately, the formula would not facilitate asymptotic analysis;
simulation studies led to the estimate g?u_sz (n)‘72.

Knuth and Moore [1] analyzed a less powerful but simpler version of the o-8
procedure by ignoring deep cutoffs. They showed that the branching factor of this
simplified model is 0(n/log n) and speculated that the inclusion of deep cutoffs
would not alter this behavior substantially. A more recent study by Baudet [4] con-
firmed this conjecture by deriving an integral formula for Nn,d (deep cutoffs includ-
ed) from which the branching factor can be estimated. In particular, Baudet shows
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that éﬁh_ is bounded by gn/1-gn < R < M

g = M where gn is the pozwtlve roeg gf
1-x0 , 1-{1-x7]
n

1-x

B
X'4x-1 = 0 and Mn is the maximal value of the polynomial P(x) =

X
in the range 0 < x < 1. Pearl [5] has shown both that gn/1~£n Tower bounds the

branching factor of every directional game-searching algorithm and that an algorithm
exists {called SCOUT) which actually achieves this bound. Thus, the enigma of
whether o-8 is optimal remained contingent upon determining the exact magnitude of
R, g within the range delineated by Baudet.

This paper now shows that the branching factor of a-g indeed coincides with the

Tower bound gn/1-gn, thus establishing the optimality of -8 over the class of direc-

tional search algorithms.

2. ANALYSIS

Qur starting point is Baudet's formula for Nn 4

b

Theorem 1: (Baudet [4], Theorem 4.2)

Let fO(x) = x and, for i =1, 2, ..., define:
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R.(x) = rl(x) X ... 0% r[i/Z](X) ,

S.{x) = s](x) X ... % SL%/Zj(X) .

The average number, Nn d4° of terminal nodes examined by the «-8 pruning algorithm
in a uniform game-tree of degree n and depth d for which the bottom values are drawn

from a continuous distribution is given by:

N (t) dt (1)

d

1
hd ntd/2l g Ry(t) S

The difficulty in estimating the integral in (1) stems from the recursive
nature of fi(x) which tends to obscure the behavior of the integrand. We circumvent
this difficulty by substituting for fo(x) another function, ¢{x), which makes the
regularity associated with each successive iteration more transparent.

The value of the integral in (1) does not depend on the exact nature of fO(x)
as lTong as it is monotone from some interval [a, b] onto the range [0, 1]. This is

evident by noting that by substituting fo(x) = ¢(x) the integral becomes:
b X 1 dR,(¢)

. d
fTsd{¢(x}}dx = ¢£DT¢— Sd(¢) d¢

which is identical to that in (1). The significance of this invariance is that,
when the terminal values are drawn from a continuous distribution, the number of
terminal positions examined by the a-g procedure does not depend on the shape of
that distribution. Consequently, fo(x), which represents the terminal values' distri-
bution, may assume an arbitrary form, subject to the usual constraints imposed on
continuous distributions.

A convenient choice for the distribution fo(x) would be a characteristic function
#{x} which would render the distributions of the minimax value of every node in the
tree identical in shape. Such a characteristic distribution indeed exists [6] and

satisfies the functional equation:

o{x) = gle(ax)] (2)
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where:

g(e) = 1-(1-¢M" , (3)

and a is a real-valued parameter to be determined by the requirement that (2} possesses
a non-trivial solution for ¢(x). This choice of ¢(x) renders the functions {fi(x)}

in Theorem 1 identical in shape, save for a scale factor. Accordingly we can write:

£.(x) = o(x/a’) 4
ri(x) = r(x/ai) (5)
s;(x) = s(x/a') (6)
where:
n
r(x) = Ljlefdl (7)
and:

s{x) = l:il:iiié%lﬂlﬁ (8)
[s(x)]

Equation (2), known as Poincare Equation [7], has a non-trivial solution ¢(x)

with the following properties [6]:

i) ¢(0) = g, (9)

where & is the root of x™#x-1 = 0

s 1 - En 2 10
N GO = E B (19)

iii) ¢'(0) can be chosen arbitrarily, e.g., ¢'(0) =1

iv) x(s) = Tim a*[g™(0)-¢,]
koo

$(x) = 1-(n)-n/n-1 exp[—(x)’]" n/in ay
X->om

() ~ ()T expl-(x)7 1 n/1n aq
om0

However, only properties (9) and {10) will play a role in our analysis. Most signif-

jcantly, parameter a, which is an implicit function of n, remains lower than 1 for
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all n.
Substituting equations (4), {5}, and {6) into (1) and considering, without loss

of generality, the case where d is an even integer, d = 2h, we obtain:

P h r;(x)'
Mg =0+ T w0 (L sy o (1)
where:
h-1 )
m(x) = 1 p(x/a') , (12)
=0
p(x) = r(x) s{x) = PLe(x)] , (13)
and:
_ 1= 116"
Ple) = 11 - 1 X (14)

Using equations (5} and {7), it can be easily shown that r;(x)/ri(x) satisfies:

ri(x)

rilxi B

A

MEl) /ety 17l (15)

and conseguently, {11) becomes:

h

Ny gsn+ 200 p o6 L ¥ (x/a’ 1) 1727717 dx (16)
H —o }‘:

We now wish to bound the tem wh(x) from above. An examination of p(x) = P[e(x)]
(equations (13) and (14)) reveals that p(x) is unimodal in x, p(0) = [gnll-gn]z, and
that p(x) lies above the asymptotes p{-=) = p(+=) = n. Moreover, the maximum of
P(4) occurs below ¢ = £ and, consequently, p(x) attains its maximum, Mn’ below x = 0.

At this point, were we to use the bound nh(x) < Mnh in (16), it would result in
Nod < nl o+ ﬂig:llh»mnh and Tead to Baudet's bound Ry S Mn]/z. Instead, a tighter
bound can be established by exploiting the unique relationships between the factors

of nh(x).

Lemma 1: Let Xg < 0 be the unique negative solution of p(xO) = p{0). wh(x) attains

h-1
X

its maximal value in the range a g S X% 0.
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Proof: Since p{x) is unimodal we have p{x) < p{0) and p'(x)} » 0 for all x <« X
Consequently, for all x < Xy any decrease in the magnitude of |x] would
result in increasing p(x), i.e., p{cx) > p{x) for al1 0 < ¢ < 1. Now

Consider wh(ax):

[}

p(x/a"?) p(X/ah‘3) ... p(x) p(ax)
m, (x) plax)/p(x/a"") 5

nh(ax)

t

for all x' satisfying x'/ah'1 < Xq we must have p(ax') > p(x‘/ah'])

{using c=ah<1) and nh(ax') > nh(x'), implying that nh(x') could not be
maximal. Consequently, for ﬁh(x‘) to be maximal, x' must be in the

range xoah'] £ x' < 0.
Lemma 2: nh(x) can be bounded by:
ry(x) < A(n) [p(0)1" (17)
where A(n) is a constant multiplier independent on h.

Proof: Since p{x) is continuous, there exists a constant o such that

p{x) < p(0) ~ ax for all x £ 0. Consequently, using Lemma 1, we can

write:
h-1 5
max nh(x) = max wh(x) < max T {p{0)-ax/a }
X h-1 h-1 i=0
a xosxso a xosst
h h-1 aX
< [p(0}] max exp ( ] - -3 )
ah_]xoﬁxso i=0 ap(0)
h "Xy pey Bt
= 1
[p(01" exp [ 515y @ izo /a’]

]

A

-aX
[p(0)1" exp [ 5(3;‘(%:5;

=-otX
selecting A{n) = exp [ ETES“T%TET.] proves the Lemma.
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Theorem 2: The branching factor of the a~g procedure for a uniform tree of degree n

is given by:

(18)
where gn is the positive root of the equation xn+x—1 = 0.

Proof: Substituting (17) in {16) yields:

® h-1 . .
—“(3'” A(n) [P(0)I" / .ZQ (1/72') ¢'(x/a') dx
-0 }:

A
o
-

n,d

=+ 20D a0y [p(0)IN

Finally, using p(0) = (gn/l—gn}z > n, we obtain:

I 1/2h
Ry = 1IN (Nn,d) s g /1-g (19)

This, together with Baudet's Tower bound g?a_ez gnfl-gn, completes the proof of

Theorem 2.

Corollary: The a-8 procedure is asymptotically optimal over the class of directional

game-searching algorithms.

The corollary follows from (18) and the fact that gn/l-gn Tower bounds the branching

factor of any directional algorithm [5].

3. CONCLUSIONS AND OPEN PROBLEMS

The asymptotic behavior °f4%;,5 is 0(n/log n), as predicted by Knuth's analysis
[1]. However, for moderate values of n (n < 1000) gn/1—gn is fitted much better by
the formyla (.925)n'747 (see Figure 4 of reference [5]) which vindicates the simula-
tion results of Fuller et al. [3]. This approximation offers a more meaningful
appreciation of the pruning power of the a-g algorithm. Roughly speaking, a fraction

‘747/n ] n']/4 of the legal moves will be explored by «-8. Alterna-

of only (.925)n
tively, for a given search time allotment, the a-g pruning allows the search depth

to be increased by a factor log n/log gfa_Bw 4/3 over that of an exhaustive minimax
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search.

The establishment of the precise value of @& _

_ 12
a n

trees [5], resolve two major uncertainties regarding the asymptotic behavior of o-g.

g for continuous~valued trees,

together with a previous result that & _ for almost all discrete-valued
However, the global optimality of a~8 remains an unresolved issue. Naturally, the
focus of attention now turns to non-directional algorithms, raising the question of
whether any such algorithm exists which exhibits a branching factor lower than

£,/ 1=,

Recently, Stockman [8] has introduced a non-directional algorithm which examines
fewer nodes than a-g8. The magnitude of this improvement has not been evaluated yet,
and it is not clear whether the superiority of Stockman's algorithm reflects a reduced
branching factor or merely a marginal improvement at Tow h's which disappears on taller
trees. The latter seems more likely.

Notably, the problem of determining the existence of an algorithm superior to
a-8 can be reduced to the simpler problem of finding a superior algorithm for search-
ing a standard bi-valued tree, i.e., a tree for which the terminal nodes are assigned
the value 1 and 0 with probability £ and 1-gn, respectively {5]. Unfortunately,

even this reduced problem currently seems far from solution.
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