THE SOLUTION FOR the branching factor of the alpha-beta pruning algorithm

Judea Pearl
Cognitive Systems Laboratory
School of Engineering and Applied Science
University of California, Los Angeles
Los Angeles, California 90024

ABSTRACT

This paper analyzes $N_{n, d}$, the average number of terminal nodes examined by the $\alpha-\beta$ pruning algorithm in a uniform game-tree of degree n and depth d for which the terminal values are drawn at random from a continuous distribution. It is shown that $N_{n, d}$ attains the branching factor $\mathscr{R}_{\alpha-\beta}(n)=\xi_{n} / 1-\xi_{n}$ where ξ_{n} is the positive root of $x^{n}+x-1=0$. The quantity $\xi_{n} / 1-\xi_{n}$ has previously been identified as a lower bound for all directional algorithms. Thus, the equality $\mathscr{R}_{\alpha-\beta}(n)=\xi_{n} / 1-\xi_{n}$ renders $\alpha-\beta$ asymptotically optimal over the class of directional, game-searching algorithms.

1. INTRODUCTION

The $\alpha-\beta$ pruning algorithm is the most commonly used procedure in game-playing applications. It serves to determine the minimax value of the root of a tree for which the terminal nodes are assigned arbitrary numerical values [1]. Although the exponential growth of such game-tree searching is slowed significantly by that algorithm, quantitative analyses of its effectiveness have been frustrated for over a decade. One concern has been to determine whether the $\alpha-\beta$ algorithm is optimal over other game-searching procedures.

The model most frequently used for evaluating the performance of game-searching methods consists of a uniform tree of depth d and degree n, where the terminal positions are assigned random, independent, and identically distributed values. The number of terminal nodes examined during the search has become a standard criterion for the complexity of the search method.

Slagle and Dixon (1969) showed that the number of terminal nodes examined by $\alpha-\beta$ must be at least $n^{\lfloor d / 2\rfloor}+n^{\lceil d / 2\rceil}-1$ but may, in the worst case, reach the entire
set of n^{d} terminal nodes [2]. The analysis of expected performance using uniform trees with random terminal values had begun with Fuller, Gaschnig, and Gillogly [3] who obtained formulas by which the average number of terminal examinations, $N_{n, d}$, can be computed. Unfortunately, the formula would not facilitate asymptotic analysis; simulation studies led to the estimate $\mathscr{R}_{\alpha-\beta} \approx(n)^{.72}$.

Knuth and Moore [1] analyzed a less powerful but simpler version of the $\alpha-\beta$ procedure by ignoring deep cutoffs. They showed that the branching factor of this simplified model is $0(n / \log n)$ and speculated that the inclusion of deep cutoffs would not alter this behavior substantially. A more recent study by Baudet [4] confirmed this conjecture by deriving an integral formula for $N_{n, d}$ (deep cutoffs included) from which the branching factor can be estimated. In particular, Baudet shows that $\mathscr{R}_{\alpha-\beta}$ is bounded by $\xi_{n} / 1-\xi_{n} \leq \mathscr{R}_{\alpha-\beta} \leq M_{n}^{1 / 2}$ where ξ_{n} is the positive root of $x^{n}+x-1=0$ and M_{n} is the maximal value of the polynomial $P(x)=\frac{1-x^{n}}{1-x} \cdot \frac{1-\left[1-x^{n}\right]^{n}}{x^{n}}$ in the range $0 \leq x \leq 1$. Pear1 [5] has shown both that $\xi_{n} / 1-\xi_{n}$ lower bounds the branching factor of every directional game-searching algorithm and that an algorithm exists (called SCOUT) which actually achieves this bound. Thus, the enigma of whether $\alpha-\beta$ is optimal remained contingent upon determining the exact magnitude of $\mathscr{R}_{\alpha-\beta}$ within the range delineated by Baudet.

This paper now shows that the branching factor of $\alpha-\beta$ indeed coincides with the lower bound $\xi_{n} / 1-\xi_{n}$, thus establishing the optimality of $\alpha-\beta$ over the class of directional search algorithms.

2. ANALYSIS

Our starting point is Baudet's formula for $N_{n, d}$:
Theorem 1: (Baudet [4], Theorem 4.2)
Let $f_{0}(x)=x$ and, for $i=1,2, \ldots$, define:

$$
\begin{aligned}
& f_{i}(x)=1-\left\{1-\left[f_{i-1}(x)\right]^{n_{n}}\right\}^{n} \\
& r_{i}(x)=\frac{1-\left[f_{i-1}(x)\right]^{n}}{1-f_{i-1}(x)} \\
& s_{i}(x)=\frac{f_{i}(x)}{\left[f_{i-1}(x)\right]^{n}}
\end{aligned}
$$

$$
\begin{aligned}
& R_{i}(x)=r_{1}(x) \times \ldots \times r_{\lceil i / 2\rceil}(x) \\
& s_{i}(x)=s_{1}(x) \times \ldots \times s_{\lfloor i / 2\rfloor}(x)
\end{aligned}
$$

The average number, $N_{n, d}$, of terminal nodes examined by the $\alpha-\beta$ pruning algorithm in a uniform game-tree of degree n and depth d for which the bottom values are drawn from a continuous distribution is given by:

$$
\begin{equation*}
N_{n, d}=n^{\lfloor d / 2\rfloor}+\int_{0}^{1} R_{d}^{\prime}(t) S_{d}(t) d t \tag{1}
\end{equation*}
$$

The difficulty in estimating the integral in (1) stems from the recursive nature of $f_{\mathfrak{i}}(x)$ which tends to obscure the behavior of the integrand. We circumvent this difficulty by substituting for $f_{0}(x)$ another function, $\phi(x)$, which makes the regularity associated with each successive iteration more transparent.

The value of the integral in (1) does not depend on the exact nature of $f_{0}(x)$ as long as it is monotone from some interval $[a, b]$ onto the range [0,1$]$. This is evident by noting that by substituting $f_{0}(x)=\phi(x)$ the integral becomes:

$$
\int_{x=a}^{b} \frac{d R_{d}[\phi(x)]}{d x} S_{d}[\phi(x)] d x=\int_{\phi=0}^{1} \frac{d R_{d}(\phi)}{d \phi} S_{d}(\phi) d \phi
$$

which is identical to that in (1). The significance of this invariance is that, when the teminal values are drawn from a continuous distribution, the number of terminal positions examined by the $\alpha-\beta$ procedure does not depend on the shape of that distribution. Consequently, $f_{0}(x)$, which represents the terminal values' distribution, may assume an arbitrary form, subject to the usual constraints imposed on continuous distributions.

A convenient choice for the distribution $f_{0}(x)$ would be a characteristic function $\phi(x)$ which would render the distributions of the minimax value of every node in the tree identical in shape. Such a characteristic distribution indeed exists [6] and satisfies the functional equation:

$$
\begin{equation*}
\phi(x)=g[\phi(a x)] \tag{2}
\end{equation*}
$$

where:

$$
\begin{equation*}
g(\phi)=1-\left(1-\phi^{n}\right)^{n}, \tag{3}
\end{equation*}
$$

and a is a real-valued parameter to be determined by the requirement that (2) possesses a non-trivial solution for $\phi(x)$. This choice of $\phi(x)$ renders the functions $\left\{f_{i}(x)\right\}$ in Theorem 1 identical in shape, save for a scale factor. Accordingly we can write:

$$
\begin{align*}
& f_{i}(x)=\phi\left(x / a^{i}\right) \tag{4}\\
& r_{i}(x)=r\left(x / a^{i}\right) \tag{5}\\
& s_{i}(x)=s\left(x / a^{i}\right) \tag{6}
\end{align*}
$$

where:

$$
\begin{equation*}
r(x)=\frac{1-[\phi(x)]^{n}}{1-\phi(x)} \tag{7}
\end{equation*}
$$

and:

$$
\begin{equation*}
s(x)=\frac{1-\left\{1-[\phi(x)]^{n}\right\}^{n}}{[\phi(x)]^{n}} \tag{8}
\end{equation*}
$$

Equation (2), known as Poincare Equation [7], has a non-trivial solution $\phi(x)$ with the following properties [6]:
i) $\phi(0)=\xi_{n}$
where ξ_{n} is the root of $x^{n}+x-1=0$
ii) $a=\frac{1}{g^{\prime}\left(\xi_{n}\right)}=\left[\frac{\xi_{n}}{n\left(1-\xi_{n}\right)}\right]^{2}<1$
iii) $\phi^{\prime}(0)$ can be chosen arbitrarily, e.g., $\phi^{\prime}(0)=1$
iv) $x(\phi)=\lim _{k \rightarrow \infty} a^{k}\left[g^{-k}(\phi)-\xi_{n}\right]$
$\phi(x) \underset{x \rightarrow \infty}{\approx 1-(n)^{-n / n-1}} \exp \left[-(x)^{-\ln n / \ln a}\right]$
$\phi(x) \underset{x \rightarrow-\infty}{\approx(n)^{-1 / n-1}} \exp \left[-(x)^{-\ln n / \ln a_{]}}\right.$

However, only properties (9) and (10) will play a role in our analysis. Most significantly, parameter a, which is an implicit function of n, remains lower than 1 for
all n.
Substituting equations (4), (5), and (6) into (1) and considering, without loss of generality, the case where d is an even integer, $d=2 h$, we obtain:

$$
\begin{equation*}
N_{n, d}=n^{h}+\int_{x=-\infty}^{\infty} \pi_{h}(x)\left(\sum_{i=1}^{n} \frac{r_{i}^{\prime}(x)}{r_{i}(x)}\right) d x \tag{11}
\end{equation*}
$$

where:

$$
\begin{align*}
\pi_{h}(x) & =\prod_{j=0}^{h-1} p\left(x / a^{i}\right) \tag{12}\\
p(x) & =r(x) s(x)=P[\phi(x)] \tag{13}
\end{align*}
$$

and:

$$
\begin{equation*}
P(\phi)=\frac{1-\phi^{n}}{1-\phi} \cdot \frac{1-\left(1-\phi^{n}\right)^{n}}{\phi^{n}} . \tag{14}
\end{equation*}
$$

Using equations (5) and (7), it can be easily shown that $r_{i}^{\prime}(x) / r_{i}(x)$ satisfies:

$$
\begin{equation*}
\frac{r_{i}^{\prime}(x)}{r_{i}(x)} \leq \frac{n(n-1)}{2} \phi^{\prime}\left(x / a^{i-1}\right) 1 / a^{i-1} \tag{15}
\end{equation*}
$$

and consequently, (11) becomes:

$$
\begin{equation*}
N_{n, d} \leq n+\frac{n(n-1)}{2} \int_{-\infty}^{\infty} \pi_{h}(x)\left[\sum_{i=1}^{n} \phi^{\prime}\left(x / a^{i-1}\right) 1 / a^{i-1}\right] d x \tag{16}
\end{equation*}
$$

We now wish to bound the term $\pi_{h}(x)$ from above. An examination of $p(x)=P[\phi(x)]$ (equations (13) and (14)) reveals that $p(x)$ is unimodal in $x, p(0)=\left[\xi_{n} / 1-\xi_{n}\right]^{2}$, and that $p(x)$ lies above the asymptotes $p(-\infty)=p(+\infty)=n$. Moreover, the maximum of $P(\phi)$ occurs below $\phi=\xi_{n}$ and, consequently, $p(x)$ attains its maximum, M_{n}, below $x=0$.

At this point, were we to use the bound $\pi_{h}(x) \leq M_{n}{ }^{h}$ in (16), it would result in $N_{n, d}<n^{h}+\frac{n(n-1) h}{2} M_{n}^{h}$ and lead to Baudet's bound $\mathscr{R}_{\alpha-\beta} \leq M_{n}^{1 / 2}$. Instead, a tighter bound can be established by exploiting the unique relationships between the factors of $\pi_{h}(x)$.

Lemma 1: Let $x_{0}<0$ be the unique negative solution of $p\left(x_{0}\right)=p(0) . \quad \pi_{h}(x)$ attains its maximal value in the range $a^{h-1} x_{0} \leq x \leq 0$.

Proof: Since $p(x)$ is unimodal we have $p(x)<p(0)$ and $p^{\prime}(x)>0$ for all $x<x_{0}$. Consequently, for all $x<x_{0}$, any decrease in the magnitude of $|x|$ would result in increasing $p(x)$, i.e., $p(c x)>p(x)$ for all $0 \leq c<1$. Now Consider $\pi_{h}(a x)$:

$$
\begin{aligned}
\pi_{h}(a x) & =p\left(x / a^{h-2}\right) p\left(x / a^{h-3}\right) \ldots p(x) p(a x) \\
& =\pi_{h}(x) p(a x) / p\left(x / a^{h-1}\right) ;
\end{aligned}
$$

for all x^{\prime} satisfying $x^{\prime} / a^{h-1}<x_{0}$ we must have $p\left(a x^{\prime}\right)>p\left(x^{\prime} / a^{h-1}\right)$ (using $c=a^{h}<1$) and $\pi_{h}\left(a x^{\prime}\right)>\pi_{h}\left(x^{\prime}\right)$, implying that $\pi_{h}\left(x^{\prime}\right)$ could not be maximal. Consequently, for $\pi_{h}\left(x^{\prime}\right)$ to be maximal, x^{\prime} must be in the range $x_{0} a^{h-1} \leq x^{\prime} \leq 0$.

Lemma 2: $\pi_{h}(x)$ can be bounded by:

$$
\begin{equation*}
\pi_{h}(x) \leq A(n)[p(0)]^{h} \tag{17}
\end{equation*}
$$

where $A(n)$ is a constant multiplier independent on h.

Proof: Since $p(x)$ is continuous, there exists a constant a such that $p(x) \leq p(0)-\alpha x$ for all $x \leq 0$. Consequently, using Lemma 1 , we can write:

$$
\begin{aligned}
& \max _{x} \pi_{h}(x)=\max _{a^{h-1} x_{0} \leq x \leq 0} \pi_{h}(x) \leq \max _{a^{h-1} x_{0} \leq x \leq 0} \prod_{i=0}^{h-1}\left(p(0)-a x / a^{i}\right) \\
& \leq[p(0)]^{h} \max _{a^{h-1} x_{0} \leq x \leq 0} \exp \left(\sum_{i=0}^{h-1}-\frac{a x}{a^{i} p(0)}\right) \\
& =[p(0)]^{h} \exp \left[\frac{{ }^{-\alpha x} 0}{p(0)} a^{h-1} \sum_{i=0}^{h-1} 1 / a^{i}\right] \\
& \leq[p(0)]^{h} \exp \left[\frac{-\alpha x_{0}}{p(0)(1-a)}\right] \\
& \text { Selecting } A(n)=\exp \left[\frac{-\alpha x_{0}}{p(0)(1-a)}\right] \text { proves the Lemma. }
\end{aligned}
$$

Theorem 2: The branching factor of the $\alpha-\beta$ procedure for a uniform tree of degree n is given by:

$$
\begin{equation*}
\mathscr{R}_{\alpha-\beta}=\frac{\xi_{n}}{1-\xi_{n}} \tag{18}
\end{equation*}
$$

where ξ_{n} is the positive root of the equation $x^{n}+x-1=0$.
Proof: Substituting (17) in (16) yields:

$$
\begin{aligned}
N_{n, d} & \leq n^{h}+\frac{n(n-1)}{2} A(n)[P(0)]^{h} \int_{-\infty}^{\infty} \sum_{i=0}^{h-1}\left(1 / a^{i}\right) \phi^{\prime}\left(x / a^{i}\right) d x \\
& =n^{h}+\frac{n(n-1)}{2} A(n)[P(0)]^{h} h
\end{aligned}
$$

Finally, using $p(0)=\left(\xi_{n} / 1-\xi_{n}\right)^{2}>n$, we obtain:

$$
\begin{equation*}
\mathscr{R}_{\alpha-\beta}=\lim \left(N_{n, d}\right)^{1 / 2 h} \leq \xi_{n} / 1-\xi_{n} \tag{19}
\end{equation*}
$$

This, together with Baudet's lower bound $\mathscr{R}_{\alpha-\beta} \geq \xi_{n} / 1-\xi_{n}$, completes the proof of Theorem 2.

Corollary: The $\alpha-\beta$ procedure is asymptotically optimal over the class of directional game-searching algorithms.

The corollary follows from (18) and the fact that $\xi_{\mathrm{n}} / 1-\xi_{\mathrm{n}}$ lower bounds the branching factor of any directional algorithm [5].

3. CONCLUSIONS AND OPEN PROBLEMS

The asymptotic behavior of $\mathscr{R}_{\alpha-\beta}$ is $0(n / \log n)$, as predicted by Knuth's analysis [1]. However, for moderate values of $n(n \leq 1000) \xi_{n} / 1-\xi_{n}$ is fitted much better by the formula (.925)n. ${ }^{747}$ (see Figure 4 of reference [5]) which vindicates the simulation results of Fuller et al. [3]. This approximation offers a more meaningful appreciation of the pruning power of the $\alpha-\beta$ algorithm. Roughly speaking, a fraction of only $(.925) n^{.747} / n \approx n^{-1 / 4}$ of the legal moves will be explored by oi-B. Alternatively, for a given search time allotment, the $\alpha-\beta$ pruning allows the search depth to be increased by a factor $\log n / \log \mathscr{R}_{\alpha-\beta} \approx 4 / 3$ over that of an exhaustive minimax
search.
The establishment of the precise value of $\mathscr{R}_{\alpha-\beta}$ for continuous-valued trees, together with a previous result that $\mathscr{R}_{\alpha-\beta}=n^{1 / 2}$ for almost all discrete-valued trees [5], resolve two major uncertainties regarding the asymptotic behavior of $\alpha-\beta$. However, the global optimality of $\alpha-\beta$ remains an unresolved issue. Naturally, the focus of attention now turns to non-directional algorithms, raising the question of Whether any such algorithm exists which exhibits a branching factor lower than $\xi_{n} / 1-\xi_{n}$.

Recently, Stockman, [8] has introduced a non-directional algorithm which examines fewer nodes than $\alpha-\beta$. The magnitude of this improvement has not been evaluated yet, and it is not clear whether the superiority of Stockman's algorithm reflects a reduced branching factor or merely a marginal improvement at low h's which disappears on taller trees. The latter seems more likely.

Notably, the problem of determining the existence of an algorithm superior to $\alpha-\beta$ can be reduced to the simpler problem of finding a superior algorithm for searching a standard bi-valued tree, i.e., a tree for which the terminal nodes are assigned the value 1 and 0 with probability ξ_{n} and $l-\xi_{n}$, respectively [5]. Unfortunately, even this reduced problem currently seems far from solution.

REFERENCES

[1] Knuth, D. E., and Moore, R. N. An analysis of alpha-beta pruning. Artificial Intelligence 6 (1975), 293-326.
[2] Slagle, J. R., and Dixon, J. K. Experiments with some programs that search game trees. Journal of the ACM 2 (1969), 189-207.
[3] Fuller, S. H., Gaschnig, J. G., and Gillogly, J. J. An analysis of the alphabeta pruning algorithm. Department of Computer Science Report, Carnegie-Mellon University (1973).
[4] Baudet, G. M. On the branching factor of the alpha-beta pruning algorithm. Artificial Intelligence 10 (1978), 173-199.
[5] Peari, J. Asymptotic properties of minimax trees and game-searching procedures. Artificial Intelligence 14 (1980), 113-138.
[6] Pearl, J. A space-efficient on-line method of computing quantile estimates. UCLA-ENG-CSL-8018, University of California, Los Angeles (1980). To appear in Journal of Algorithms.
[7] Kuczma, M. Functional Equations in a Single Variable. Polish Scientific Publishers, Warszawa (1968), p. 141.
[8] Stockman, G. A minimax algorithm better than alpha-beta? Artificial Intelligence 12 (1979), 179-196.

