PARIKH-BOUNDED LANGUAGES*

Meera Blattner University of California, Davis

and

Lawrence Livermore National Laboratory Livermore, California

and

Michel Latteux Université de Lille Villeneuve d'Ascq, France

ABSTRACT

A string y is in C(x), the commutative image of a string x, if y is a permutation of the symbols in x. A language L is Parikh-bounded if L contains a bounded language B and all x in L have a corresponding y in B such that x is in C(y). The central result in this paper is that if L is context-free it is also Parikh-bounded. Parikh's theorem follows as a corollary. If L is not bounded but is a Parikh-bounded language closed under intersection with regular sets, then for any positive integer k there is an x in L such that $\#(C(x) \cap L) \ge k$. The notion of Parikh-discreteness is introduced.

^{*}This research was supported in part by NSF Grant No. MCS 77-02470.

I. INTRODUCTION

A language L is a collection of finite length strings over a finite alphabet Σ . The commutative image C(L) of L is the set of strings y such that y is a permutation of the symbols of some x in L. A language is commutative if L=C(L). Commutative languages arise naturally mathematically and share many properties with those of bounded languages [GS].

A string x is letter-equivalent or Parikh-equivalent to y if x and y have the same number of occurrences of each symbol. If x and y are letter-equivalent then C(x) = C(y).

Section III of this paper contains the main theorem: every context-free language L has associated with it a bounded set $B \subseteq w_1 * w_2 * \dots * w_n^*$, and $B \subseteq L$, for some $n \ge 1$, and each x in L has a y in B such that x and y are letter-equivalent.

The w_1, w_2, \ldots, w_n may be regarded as basic words or building blocks of L. Put differently, the theorem states that each string in L has a rearranged counterpart in B. This property of families of languages is called Parikh-boundedness by Latteux and Leguy [LL]. Another proof of Parikh's Theorem, that is, each context-free language is letter-equivalent to a regular set [P], is a corollary of the main theorem.

In the Section IV examples of noncontext-free languages are given that do not have the Parikh-bounded property. More specifically, the nonerasing stack languages and the ETOL do not have the property.

Let \mathcal{L} be a family of languages with the Parikh-bounded property and closed under intersection with regular sets. Then for each nonbounded L in \mathcal{L} and integer k there is a string x in L such that x has more that k letter-equivalent strings in L.

A language L is Parikh-discrete if for all x and y in L C(x) = C(y) implies x = y. It follows from the main theorem that all Parikh-discrete context-free languages are bounded.

Commutative languages were studied by Latteux [L1], [L2], [L3] while Latteux and Leguy proved that the family GRE is Parikh-bounded [LL].

II. PRELIMINARY DEFINITIONS

Let Σ be a finite alphabet. A <u>language</u> L is a set of strings contained in Σ^* . L is <u>context-free</u> if L is generated by a grammar G where G = (V, Σ , P, S), V is a finite vocabulary, Σ is the set of terminal symbols, $\Sigma \subset V$, S is the start symbol and P is finite a set set of rules X + α , where X is in V- Σ and α is in V.*

A context-free grammar G is <u>nonterminal bounded</u> if there is an integer k for G so that every string generated by G has less than k nonterminals. A context-free grammar G is <u>derivation bounded</u> if G has an integer k and each x in L(G) has a derivation such that each string generated in the derivation has less than k nonterminals.

A context-free grammar G is <u>expansive</u> if there is some derivation in G where $X \stackrel{*}{=} \alpha X \beta X_{\gamma}$, X in V- Σ , α , β , γ in V*, and X $\stackrel{*}{=}$ w, w in Σ^+ , and G is <u>nonexpansive</u> otherwise. It is known that if a context-free language L has a nonexpansive grammar then

L(G) is in the family of derivation bounded languages.

A language L is bounded if $L \subseteq w_1 * \dots * w_n^*$, where w_i is in Σ^* , $1 \leq i \leq n$. The commutative image C(L) of L is $\{a_i a_i \dots a_i | a_1 a_2 \dots a_n \text{ is in L and } (i_1, \dots, i_n) \}$ is a permutation of $(1, 2, \dots, n)$, and L is commutative if L = C(L).⁺

Let $\Sigma = \{a_1, a_2, \dots, a_n\}$ and define a mapping ψ , called the <u>Parikh mapping</u>, from Σ^* into Nⁿ by: $\psi(w) = (\#a_1(w), \dots, \#a_n(w))$ where $\#a_i(w)$ denotes the number of occurrences of a_i in w. Define $\psi(L) = \{\psi(x) | x \in L\}$. Languages L_1 and L_2 in Σ^* are called <u>letter-equivalent</u> (or <u>Parikh-equivalent</u>) if $\psi(L_1) = \psi(L_2)$.

A language L is called <u>Parikh-bounded</u> if there is a bounded language B contained in L such that if x is in L there is a y in B so that C(x) = C(y).

A set of strings L is a semilinear set if $\psi(L)$ is the union of linear sets of the form

$$\sum_{i=1,n} C_i(n_{i1},...,n_{ik}) + (d_1,...,d_k) , \text{ for some } k \ge 0$$

A language L is called <u>Parikh-discrete</u> if for all x and y in L, C(x) = C(y) implies x = y.

III. THE PARIKH BOUNDNESS OF CONTEXT FREE LANGUAGES

Theorem 1: (Latteux and Leguy) Greibach's family, denoted by GRE, is the least substitution closed rational cone containing the linear and one counter languages. Every language in this family is Parikh-bounded; namely, it contains a bounded language with the same commutative image.

We extend the results of Theorem 1 to those of Theorem 2. But first we must prove an intermediate result.

Lemma 1: Every context-free language contains a derivation-bounded language with the same commutative image.

<u>Proof</u>: For every context-free language L there is a context-free grammar $G=(V, \Sigma, P, A)$ such that L=L(G) and G and the properties: i) $P \subseteq N \times (N^2 \cup \Sigma * N\Sigma * \cup \{e\}), N = V - \Sigma$. ii) For all B + u in P, if u = vCw, v,w in V*, then $B \neq C$. Construct a new grammar G' = (V', Σ , P', A) as follows: $N_i = \{B_i | B \in N\}, i \text{ in } \{1, 2\}$

[†]This definition is not equivalent to that in Harrison [H].

 $N' = N \cup N_1 \cup (N_2 - \{A_2\})$ $V^{i} = N^{i} \cup \Sigma$ Let h_1 and h_2 be homomorphisms from V to V' where $h_1(a) = h_2(a) = a$, if $a \in \Sigma$, and $h_1(B) = B_1, h_2(B) = B_2$ if BeN. Let: $\dot{P}_0 = \{B \neq C_1 D, B \neq C D_1 | B \neq C D \text{ in } P \cap N \times N^2\} \cup (P - N \times N^2)$ $P_{1} = \{B_{1} \neq h_{1}(u) | B \neq u \text{ in } P, B \neq A\}$ $P_2 = \{B_2 \rightarrow h_2(u) | B \rightarrow u \text{ in } P, B \neq A, u \neq vAw \text{ for any } v, w \text{ in } V^*\}$ $P_3 = \{A_1 + h_2(u) | A + u \text{ in } P\}$ $P' = P_0 \cup P_1 \cup P_2 \cup P_3$ Now we define another homomorphism π which maps the symbols of V' back to V, so $\pi(z) = z$, if $z \in V^+$, $\pi(B_1) = \pi(B_2) = B$ if B_1 in V'-V, i in {1,2}. In order to prove the lemma we need to establish two claims. Claim 1: $L(G') \subseteq L(G)$. Proof: For each derivation in G', A => $s_1 => s_2 => \dots => w$, we have $\pi(A) =>$ $\pi(s_1) \implies \dots \implies \pi(w) = w \text{ in } G.$ <u>Claim 2</u>: For each w in L(G) there is a w' in L(G') such that C(w') = C(w). Proof: The proof is by induction on the length of the derivation. Hence, we shall show that if $A \stackrel{*}{=} x$, x in V*, then there is an x' in (V')* so that $A \stackrel{=}{=} x'$ G and $C(\pi(x')) = C(x)$. The result follows when x is a terminal string. If n = 0 then A => A and A => A so the result holds. m G G' Assume that A => x, for all m<n, implies A $\stackrel{*}{=}$ x' and C($\pi(x')$) = C(x). n-1 G G' If A => uBv => usv then we know there is a derivation: A $\stackrel{*}{=}$ u'B'v' where B' G' in {B, B₁, B₂} and $C(\pi(u'v')) = C(uv)$, for u, v in V* and u', v' in (V')*. <u>Case 1</u>: $B' \neq B_2$. In this case there is a rule B' \rightarrow s' and $\pi(s') = s$, so the result holds. Case 2: $B' = B_2$ and $s \neq s_1 A s_2$. The same conclusion may be drawn as in Case 1. <u>Case 3</u>: $B' = B_2$ and $s = s_1As_2$. If $A \stackrel{*}{=} u'B_2v'$ then $A \stackrel{*}{=} yA_1z$ and $A_1 \stackrel{*}{\subseteq} y'B_2z'$ with yy' = u' and z'z = v'. If we knew that $A = h_1 o \pi(y') B h_1 o \pi(z')$ then we would obtain the desired derivation in G' because: $C(x) = C(\pi(x'))$ and the x' above satisfies that condition since $\pi(y'y) = u$ and $\pi(zz') = v.$

It remains only to show that if $A_1 \stackrel{*}{\underset{G'}{=}} y'B_2z'$ then $A \stackrel{*}{\underset{G'}{=}} h_1 o\pi(y')Bh_1 o\pi(z')$. This will be done by induction on the length of the derivation. If the length is one the result follows. Otherwise we have:

<u>Case 3</u>: $s = t_1B_2t_2$ with $y' = y''t_1$, $z' = t_2z''$ and $C_2 + t_1B_2t_2$. By the inductive hypothesis we have $A \stackrel{*}{=} \pi_1(y'')C\pi_1(z'')$ and clearly $C + \pi_1(t_1)B\pi_1(t_2)$ in P_0 so $A \stackrel{*}{=} \pi_1(y'')\pi_1(t_1)B\pi_1(t_2)\pi_1(z'') = \pi_1(y')B\pi_1(z')$. Now π is the identity on Σ^* so from claim-one and claim two we know that C(L) = C(L').

Let $P_t = \{X + w | w \in \Sigma^*\} \cap P$ and G_0 be the linear grammar $G_0 = (V \cup N_1, \Sigma \cup N_1, P_t, A)$ then $L_0 = L(G_0)$ is a linear language and L' is obtained from L_0 by substituting for each B_1 in $\Sigma \cup N_1$ the set derived from B_1 in G'. Let $G_1 = (V_1, \Sigma, P_1 \cup P_2 \cup P_3, B_1)$ where $V_1 = \Sigma \cup N_1 \cup (N_2 - \{A_2\})$, for each B_1 in N_1 , and t be the substitution t(a) = a, for all a in Σ , and $t(B_1) = L(G_1)$ for all B_1 in N_1 , then $t(L_0) = L'$.

The proof that L = L(G) contains a derivation bounded language with the same commutative image will be made by induction on the number of nonterminals. We assume that G has properties i) and ii). If N = 1 then by property ii) the productions are all of the type A + w, we Σ^* , hence L(G) is finite.

Assume that G has n+1 nonterminals. If L' contains a derivation bounded language with the same commutative image then we are finished since C(L) = C(L') and $L' \subseteq L$. Since L' is $t(L_0)$ it suffices to show the property for each G_1 since the family of derivation bounded languages is closed by substitution.

Consider the grammar $G_1' = (V_1', \Sigma \cup \{A_1\}, P_1, B_1)$, $V_1' = N_1 \cup \Sigma$. This grammar has properties i) and ii) and $\#(N_1 - \{A_1\}) = \#(N) - 1$. Now one can use the induction hypothesis and so for each B_1 in $N_1 - \{A_1\}$ there is a language $L_{B_1} \subseteq L(G_1')$, L_{B_1} derivation bounded, and $C(L_{B_1}) = C(L(G_1'))$. Now observe that $L(G_1)$ is obtained from $L(G_1')$ by replacing each A_1 by $L(G_2)$ where $G_2 = (V_2, \Sigma, P_2 \cup P_3, A_1)$ and $V_2 = \Sigma \cup \{A_1\} \cup (N_2 - \{A_2\})$ so to finish the proof we must show that $L(G_2)$ contains a derivation bounded language with the same commutative image. But it suffices to show this for $L(G_2')$, where $G_2' = (\Sigma \cup N_2 - \{A_2\}, \Sigma, P_2, B_2)$ for each B_2 in $N_2 - \{A_2\}$. Properties i) and ii) hold for G_2' and $\#(N_2 - \{A_2\}) = \#(N) - 1$, so the inductive hypothesis is applied and the proof is finished. Every derivation bounded language is in GRE [G] so Lemma 1 and Theorem 1 imply:

Theorem 2: The context-free languages are Parikh bounded.

Since it is easy to show directly that the derivation bounded languages are semilinear, Lemma l implies:

Corollary: (Parikh's Theorem) Every context-free language is semilinear.

IV. NONCONTEXT-FREE LANGUAGES AND THE PARIKH BOUNDED PROPERTY

Proposition: The nonerasing counter stack languages are not Parikh-bounded.

Observe that $L_1 = \{1010^{2}1...10^{h}1|h\geq 1\}$ is a nonerasing counter language. One need not go far from the context-free to find examples of languages that are not Parikhbounded. Since L_1 is not semilinear the natural conjecture arises as to whether all languages that are semilinear are Parikhbounded.

Proposition: $L_2 = L_1 \cup \{1^i 0^j | C(1^i 0^j) \cap L_1 = \emptyset\}$ is semilinear but not Parikh-bounded.

Since $\psi(L_1) \subseteq \psi\{1^i 0^j | i < j\}$ and $\psi\{1^i 0^j | i < j\}$ is semilinear the result follows. However $L_2 \cap 1*0*$ is not semilinear even though $\psi(L_2) = \psi(1*0*)$. The authors were unable to find an example of a family of languages that were semilinar under closure with regular sets that were not Parikh-bounded.

Proposition: The OL, EOL, ETOL, DOL, EDOL are not Parikh bounded.

An example proves this result. $P = \{2 + 201, 1 + 01, 0 + 0\}$. Let G = ({2,0,1},P,2) then L(G) is in all of the above.

A simple observation that follows from Theorem 2 is:

Proposition: Let L1 and L2 be languages such that:

1. $L_1 \subseteq L_2$ 2. $C(L_1) = C(L_2)$ 3. L_1 is context-free Then L_2 is Parikh-bounded.

V. PARIKH-DISCRETENESS

In this section we examine the number of times strings with the same commutative images may occur in a language.

A language L is <u>Parikh-discrete</u> if for all x and y in L, C(x) = C(y) implies x = y. Within the context-free the Parikh-discrete languages must be bounded languages by Theorem 2.

Proposition: If L is Parikh-discrete and context-free then L is bounded.

If L is not bounded (and not necessarily context-free) then what can we say about the number of occurrences of strings in L with the same commutative image? Surprisingly enough, if \pounds is a Parikh-bounded family closed under intersection with regular sets then for each L in \pounds which is not bounded we may not put a limit on the number of occurrences of strings with the same commutative image. That is, for any integer k there are strings x_1, x_2, \ldots, x_n in L, $x_j \neq x_j$, if $i \neq j$, and $C(x_1) = C(x_2) = \ldots = C(x_n)$, $n \ge k$.

Theorem 3: Let \mathcal{L} be a family of Parikh-bounded languages closed under intersection with regular sets. If L is not bounded and L is in \mathcal{L} , then for all k > 1, there is a string w in L such that $\#(C(w) \cap L) > k$.

<u>Proof</u>: By induction on k. Trivial for k = 1. Assume that the result holds for all k' < k. By the definition of Parikh-boundedness we know that $\psi(L) = \psi(L \cap w_1^* \dots w_n^*)$ for some bounded set $w_1^* \dots w_n^*$. Now let use consider L' = L - $w_1^* \dots w_n^* = L \cap \overline{w_1^* \dots w_n^*}$. We know L' is in \mathcal{L} and L' is not bounded (or $L \subseteq L' \cup w_1^* \dots w_n^*$ would be bounded). So for all w in L we know $\#(C(w) \cap L') < \#(C(w) \cap L)$. By the induction hypothesis the theorem is proved.

VI. SUMMARY AND FUTURE RESEARCH DIRECTIONS

The authors are continuing to examine the properties of Parikh-boundedness and Parikh-discreteness. Parikh-boundedness for some other subfamilies of the contextsensitive languages is known.

The Parikh-discrete languages may also be subdivided into those that are adiscrete. A Parikh discrete language L is <u>a-discrete</u> if for all x and y in L if the number of a's in x is equal to the number of a's in y implies x = y. As an example, $\{a^{n}b^{n}|n \ge 1\}$ is a-discrete while $\{a^{i}b^{j}|i < j\}$ is not. Parsing a-discrete languages may be very efficient since only the occurrences of a's are required to discriminate between strings in the language.

The authors are examining the discomposition properties of Parikh-discrete languages are well as those operations that preserve Parikh-discreteness and a-discreteness.

ACKNOWLEDGMENT

This work was done while Meera Blattner was visiting the University of Paris 7. The authors would like to than Maurice Nivat and the University of Paris 7 for making this collaboration possible. The authors would also like to thank Faith Fich for her comments and suggestions.

REFERENCES

- G Greibach, S., "Chains of full AFL's," <u>Math. Systems Theory</u>, Vol. 4, No. 3, 1970, pp. 231-242.
- GS Ginsburg, S. and Spanier, E. H., "Bounded ALGOL-like languages," <u>Trans. of the</u> <u>AMS</u>, Vol. 113, 1964, pp. 333-368.
- H Harrison, M., <u>Introduction to Formal Language Theory</u>. Addison-Wesley, Reading, Mass. 1978.
- L1 Latteux, M., "Languages Commutatifs," These Sc. Math., Lille, 1978.
- L2 Latteux, M., "Mots infinis et languages commutatifs," RAIRO Informatique theorique / Theor. Comp. Science, Vol. 12, No. 3, 1978, pp. 185-192.
- L3 Latteux, M., "Cones rationnels commutatifs," <u>JCSS</u>, Vol. 18, No. 3, June 1979, pp. 307-333.
- LL Latteux, M. and Leguy, J., "Une propriete de la famille GRE." <u>Fundamentals of</u> <u>Computation Theory, FCT 1979.</u> Akademie-Verlag, Berlin 1979.
- P Parikh, R. J., "On context-free languages," JACM, Vol. 13, 1966, pp. 570-581.