PARIKH-BOUNDED LANGUAGES*

Meera Blattner
 University of California, Davis

and
Lawrence Livermore National Laboratory
Livermore, California
and
Michel Latteux
Université de Lille
Villeneuve d'Ascq, France

ABSTRACT
A string y is in $C(x)$, the commutative image of a string x, if y is a permutation of the symbols in x. A language L is Parikh-bounded if L contains a bounded language B and all x in L have a corresponding y in B such that x is in $C(y)$. The central result in this paper is that if L is context-free it is also Parikh-bounded. Parikh's theorem follows as a corollary. If L is not bounded but is a Parikh-bounded language closed under intersection with regular sets, then for any positive integer k there is an x in L such that $\#(C(x) \cap L) \geq k$. The notion of Parikh-discreteness is introduced.
*This research was supported in part by NSF Grant No. MCS 77-02470.

I. INTRODUCTION

A language L is a collection of finite length strings over a finite alphabet Σ. The commutative image $C(L)$ of L is the set of strings y such that y is a permutation of the symbols of some x in L. A language is commutative if $L=C(L)$. Commutative languages arise naturally mathematically and share many properties with those of bounded 1 anguages [GS].

A string x is letter-equivalent or Parikh-equivalent to y if x and y have the same number of occurrences of each symbol. If x and y are letter-equivalent then $C(x)=C(y)$.

Section III of this paper contains the main theorem: every context-free language L has associated with it a bounded set $B \subseteq w_{1} *_{w_{2}} * \ldots w_{n}{ }^{*}$, and $B \subseteq L$, for some $n \geq 1$, and each x in L has a y in B such that x and y are letter-equivalent.

The $w_{1}, w_{2}, \ldots, w_{n}$ may be regarded as basic words or building blocks of L. Put differently, the theorem states that each string in L has a rearranged counterpart in B. This property of families of languages is called Parikh-boundedness by Latteux and Leguy [LL]. Another proof of Parikh's Theorem, that is, each context-free language is letter-equivalent to a regular set [P], is a corollary of the main theorem.

In the Section IV examples of noncontext-free languages are given that do not have the Parikh-bounded property. More specifically, the nonerasing stack languages and the ETOL do not have the property.

Let \mathcal{L} be a family of languages with the Parikh-bounded property and closed under intersection with regular sets. Then for each nonbounded L in \mathcal{L} and integer k there is a string x in L such that x has more that k letter-equivalent strings in L.

A language L is Parikh-discrete if for all x and y in $L C(x)=C(y)$ implies $x=y$. It follows from the main theorem that all Parikh-discrete context-free languages are bounded.

Commutative languages were studied by Latteux [LI], [L2], [L3] while Latteux and Leguy proved that the family GRE is Parikh-bounded [LL].

II. PRELIMINARY DEFINITIONS

Let Σ be a finite alphabet. A language L is a set of strings contained in Σ^{\star}. L is context-free if L is generated by a grammar G where $G=(V, \Sigma, P, S), V$ is a finite vocabulary, Σ is the set of terminal symbols, $\Sigma \subset V, S$ is the start symbol and P is finite a set set of rules $X \rightarrow \alpha$, where X is in $V-\Sigma$ and α is in $V . *$

A context-free grammar G is nonterminal bounded if there is an integer k for G so that every string generated by G has less than k nonterminals. A context-free grammar G is derivation bounded if G has an integer k and each x in $L(G)$ has a derivation such that each string generated in the derivation has less than k nonterminals.

A context-free grammar G is expansive if there is some derivation in G where $X \stackrel{*}{\Rightarrow} \alpha X_{\beta} X_{\gamma}, X$ in $V-\Sigma, \alpha, \beta, \gamma$ in V^{\star}, and $X^{*} \stackrel{*}{\Rightarrow} w, w$ in Σ^{+}, and G is nonexpansive otherwise. It is known that if a context-free language L has a nonexpansive grammar then

L(G) is in the family of derivation bounded languages.
A language L is bounded if $L \subseteq w_{1}^{*} \ldots w_{n}^{*}$, where w_{i} is in $\Sigma^{*}, 1 \leq i \leq n$. The commutative image $C(L)$ of L is $\left\{a_{i} a_{i_{2}} \ldots a_{i} \mid a_{1} a_{2} \ldots a_{n}\right.$ is in L and $\left(i_{1}, \ldots, i_{n}\right)$ is a permutation of $(1,2, \ldots, n)\}$, and L is commutative if $L=C(L)$.

Let $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and define a mapping ψ, called the Parikh mapping, from Σ^{*} into N^{n} by: $\psi(w)=\left(\# a_{i}(w), \ldots, \# a_{n}(w)\right)$ where $\# a_{i}(w)$ denotes the number of occurrences of a_{i} in w. Define $\psi(L)=\{\psi(x) \mid x \in L\}$. Languages L_{1} and L_{2} in Σ^{\star} are called letterequivalent (or Parikh-equivatent) if $\psi\left(L_{1}\right)=\psi\left(L_{2}\right)$.

A language L is called Parikh-bounded if there is a bounded language B contained in L such that if x is in L there is a y in B so that $C(x)=C(y)$.

A set of strings L is a semilinear set if $\psi(L)$ is the union of linear sets of the form

$$
\sum_{i=1, n} c_{i}\left(n_{i 1}, \ldots, n_{i k}\right)+\left(d_{1}, \ldots, d_{k}\right) \quad \text {, for some } k \geq 0
$$

A language L is called Parikh-discrete if for all x and y in $L, C(x)=C(y)$ implies $x=y$.

III. THE PARIKH BOUNDNESS OF CONTEXT FREE LANGUAGES

Theorem 1: (Latteux and Leguy) Greibach's family, denoted by GRE, is the least substitution closed rational cone containing the linear and one counter languages. Every language in this family is Parikh-bounded; namely, it contains a bounded language with the same commutative image.

We extend the results of Theorem 1 to those of Theorem 2. But first we must prove an intermediate result.

Lemma 1: Every context-free language contains a derivation-bounded language with the same commutative image.

Proof: For every context-free language L there is a context-free grammar $G=(V, \Sigma, P, A)$ such that $L=L(G)$ and G and the properties:
i) $P \subseteq N \times\left(N^{2} \cup \Sigma * N L^{\star} \cup\{e\}\right), N=V-\Sigma$.
ii) For all $B \rightarrow u$ in P, if $u=v C w, v, w$ in v^{*}, then $B \neq C$.

Construct a new grammar $G^{\prime}=\left(V^{\prime}, \Sigma, P^{\prime}, A\right)$ as follows:

$$
N_{i}=\left\{B_{i} \mid B \in N\right\}, i \text { in }\{1,2\}
$$

[^0]\[

$$
\begin{aligned}
& N^{\prime}=N \cup N_{1} \cup\left(N_{2}-\left\{A_{2}\right\}\right) \\
& V^{\prime}=N^{\prime} \cup \Sigma
\end{aligned}
$$
\]

Let h_{1} and h_{2} be homomorphisms from V to V ' where $h_{1}(a)=h_{2}(a)=a$, if as , and $h_{1}(B)=B_{1}, h_{2}(B)=B_{2}$ if $B \varepsilon N$. Let:

$$
\begin{aligned}
& P_{0}=\left\{B \rightarrow C_{1} D_{,} B \rightarrow C D_{1} \mid B \rightarrow C D \text { in } P \cap N \times N^{2}\right\} \cup\left\{P-N \times N^{2}\right) \\
& P_{1}=\left\{B \rightarrow h_{1}(u) \mid B \rightarrow u \text { in } P, B \neq A\right\} \\
& P_{2}=\left\{B_{2} \rightarrow h_{2}(u) \mid B \rightarrow u \text { in } P, B \neq A, u \neq \text { vAw for any } v, w \text { in } V^{*}\right\} \\
& P_{3}=\left\{A_{1}+h_{2}(u) \mid A \rightarrow u \text { in } P\right\} \\
& P^{1}=P_{0} \cup P_{1} \cup P_{2} \cup P_{3}
\end{aligned}
$$

Now we define another homomorphism π which maps the symbols of V ' back to V, so $\pi(z)=z$, if $z \varepsilon V^{+}, \pi\left(B_{1}\right)=\pi\left(B_{2}\right)=B$ if B_{i} in $V^{\prime}-V$, in in $\{1,2\}$.

In order to prove the lemma we need to establish two claims.
Claim I: $L\left(G^{\prime}\right) \subseteq L(G)$.
Proof: For each derivation in $G^{\prime}, A \Rightarrow S_{1} \Rightarrow s_{2} \Rightarrow \ldots \Rightarrow W$, we have $\pi(A) \Rightarrow$ $\pi\left(s_{1}\right) \Rightarrow \ldots \Rightarrow \pi(w)=w$ in G.

Claim 2: For each w in $L(G)$ there is a w^{\prime} in $L\left(G^{\prime}\right)$ such that $C\left(w^{\prime}\right)=C(w)$.
Proof: The proof is by induction on the length of the derivation. Hence, we shall show that if $A \stackrel{*}{\Rightarrow} x, x$ in V^{*}, then there is an x^{\prime} in $\left(V^{\prime}\right) *$ so that $A \Rightarrow x^{\prime}$ and $C\left(\pi\left(x^{\prime}\right)\right)=C(x)$. The result follows when x is a terminal string.

If $n=0$ then $A \stackrel{0}{\Rightarrow} A$ and $A \stackrel{0}{\Rightarrow} A$ so the result holds.
Assume that $A \stackrel{m}{\Rightarrow} \underset{G}{=} \times$, for all $\mathrm{G}^{\prime} \mathrm{m} n$, implies $A \stackrel{*}{\Rightarrow} \mathrm{G}^{\prime}$ and $C\left(\pi\left(x^{\prime}\right)\right)=C(x)$.
If $A \stackrel{n-1}{\Rightarrow} \quad$ UBV \Rightarrow usv then we know there is G^{\prime} derivation: $A \stackrel{*}{\Rightarrow} \mathcal{U}^{\prime} B^{\prime} v^{\prime}$ where B^{\prime} G in $\left\{B, B_{1}, B_{2}\right\}$ and $C\left(\pi\left(u^{\prime} v^{\prime}\right)\right)=C(u v)$, for u, v in v^{*} and u^{\prime}, v^{\prime} in $\left(V^{\prime}\right)^{*}$.

Case 1: $B^{\prime} \neq B_{2}$.
In this case there is a rule $B^{\prime} \rightarrow s^{\prime}$ and $\pi\left(s^{\prime}\right)=s$, so the result holds.
Case 2: $B^{\prime}=B_{2}$ and $s \neq s_{1} A s_{2}$.
The same conclusion may be drawn as in Case 1.
Case 3: $B^{\prime}=B_{2}$ and $s=s_{1} A s_{2}$.
If $A \stackrel{*}{\Rightarrow} \underset{G^{\prime}}{\Rightarrow} u^{\prime} B_{2} v^{\prime}$ then $A \stackrel{*}{G^{\prime}} y_{1} A_{1} z$ and $A_{1} \stackrel{G^{\prime}}{\stackrel{*}{\Rightarrow}} y^{\prime} B_{2^{\prime}} z^{\prime}$ with $y y^{\prime}=u^{\prime}$ and $z^{\prime} z=v^{\prime}$. If we knew that $A \stackrel{*}{=} G^{\prime} h_{T}$ or $\left(y^{\prime}\right) B h_{T} O \pi\left(z^{\prime}\right)$ then we would obtain the desired derivation in G^{\prime} because:
 Our objective was to show that if $A \Rightarrow U s_{1} A s_{2} v=x$ then there is a x^{i} such that $C(x)=C\left(\pi\left(x^{\prime}\right)\right)$ and the x^{\prime} above satisfies that condition since $\pi\left(y^{\prime} y\right)=u$ and $\pi\left(z z^{\prime}\right)=v$.

It remains only to show that if $A_{1} \stackrel{*}{G^{\prime}} y^{\prime} B_{2} z^{\prime}$ then $A_{G^{\prime}}^{\stackrel{*}{\prime}} h_{1}$ or $\left(y^{\prime}\right) B h_{1}$ or $\left(z^{\prime}\right)$. This will be done py induction on the length of the derivation. If the length is one the result follows. Otherwise we have:
$A_{1} \underset{G^{\prime}}{\Rightarrow} y^{\prime \prime} C_{2} z^{\prime \prime} \Rightarrow G_{G^{\prime}}^{\Rightarrow} y^{\prime \prime} s z^{\prime \prime}=y^{\prime} B_{2} z^{\prime}$. There are again three cases:
Case 1: $y^{\prime \prime}=y^{\prime} B_{2} y_{1}^{\prime \prime}$ and so $z^{\prime}=y_{1}^{\prime \prime} s z^{\prime \prime} . A_{1} \Rightarrow G^{\prime} y^{\prime} B_{2} y_{1}^{\prime \prime} C_{2} z^{\prime \prime}$ and the induction hypothesis implies $A \stackrel{*}{=} G^{\prime} \pi_{1}\left(y^{\prime}\right) B \pi_{1}\left(y_{1}^{\prime \prime} C_{2} z^{\prime \prime}\right)=\pi_{1}\left(y^{\prime}\right) B \pi_{1}\left(y_{1}^{\prime \prime}\right) C_{1} \pi_{1}\left(z^{\prime \prime}\right)$ with $\pi_{1}=h_{1}$ or. As $C_{2}+s \operatorname{in} P_{2}, C_{1} \rightarrow \pi_{1}(s)$ in P_{1} we have $A \stackrel{\star}{G^{\prime}} \underset{G_{1}}{\Rightarrow}\left(y^{\prime}\right) B \pi_{1}\left(y^{\prime \prime} s z^{\prime \prime}\right)=\pi_{1}\left(y^{\prime}\right) B \pi_{1}\left(z^{\prime}\right)$.

Case 2: $z^{\prime \prime}=z_{1}^{\prime \prime} B_{2} z^{\prime \prime}$ by the same reasoning.
Case 3: $s=t_{1} B_{2} t_{2}$ with $y^{\prime}=y^{\prime \prime} t_{1}, z^{\prime}=t_{2} z^{\prime \prime}$ and $C_{2} \rightarrow t_{1} B_{2} t_{2}$. By the inductive hypothesis we have $A \stackrel{\star}{G} \pi_{1}\left(y^{\prime \prime}\right) C \pi_{1}\left(z^{\prime \prime}\right)$ and clearly $C \rightarrow \pi_{1}\left(t_{1}\right) B \pi_{1}\left(t_{2}\right)$ in P_{0} so $A \stackrel{*}{=} \stackrel{\pi_{1}}{G}\left(y^{\prime \prime}\right) \pi_{1}\left(t_{1}\right) B \pi_{1}\left(t_{2}\right) \pi_{1}\left(z^{\prime \prime}\right)=\pi_{1}\left(y^{\prime}\right) B \pi_{1}\left(z^{\prime}\right)$. Now π is the identity on Σ^{*} so from claimone and claim two we know that $C(L)=C\left(L^{\prime}\right)$.

Let $P_{t}=\left\{X+w \mid w \in \Sigma^{\star}\right\} \cap P$ and G_{0} be the linear grammar $G_{0}=\left(V \cup N_{1}, \Sigma \cup N_{1}\right.$, $\left.P_{t}, A\right)$ then $L_{0}=L\left(G_{0}\right)$ is a linear language and L^{\prime} is obtained from L_{0} by substituting for each B_{1} in $\Sigma \cup N_{1}$ the set derived from B_{1} in G. Let $G_{1}=\left(V_{1}, \Sigma, P_{1} \cup P_{2} \cup P_{3}, B_{1}\right)$ where $V_{1}=\Sigma \cup N_{1} \cup\left(N_{2}-\left\{A_{2}\right\}\right)$, for each B_{1} in N_{1}, and t be the substitution $t(a)=a$, for all a in Σ, and $t\left(B_{1}\right)=L\left(G_{1}\right)$ for all B_{1} in N_{1}, then $t\left(L_{0}\right)=L '$.

The proof that $L=L(G)$ contains a derivation bounded language with the same commutative image will be made by induction on the number of nonterminals. We assume that G has properties i) and ii). If $N=1$ then by property $i i)$ the productions are all of the type $A+w, w \in \Sigma^{*}$, hence $L(G)$ is finite.

Assume that G has $n+1$ nonterminals. If L ' contains a derivation bounded language with the same commutative image then we are finished since $C(L)=C\left(L^{\prime}\right)$ and $L^{\prime} \subseteq L$. Since L^{\prime} is $t\left(L_{0}\right)$ it suffices to show the property for each G_{1} since the family of derivation bounded languages is closed by substitution.

Consider the grammar $G_{1}^{\prime}=\left(V_{1}{ }^{\prime}, \Sigma \cup\left\{A_{1}\right\}, P_{1}, B_{1}\right), V_{1}^{\prime}=N_{1} \cup \Sigma$. This grammar has properties i) and $i i)$ and $\left.\#\left(N_{1}-\left\{A_{1}\right\}\right)=\#(N)-\right\}$. Now one can use the induction hypothesis and so for each B_{1} in $N_{1}-\left\{A_{1}\right\}$ there is a language $L_{B_{1}} \subseteq L\left(G_{1}{ }^{\prime}\right)$, $L_{B_{1}}$ derivation bounded, and $C\left(L_{B_{1}}\right)=C\left(L\left(G_{1}\right)\right)$. Now observe that $L\left(G_{1}\right)$ is ${ }_{\text {obtained }}$ from $L\left(G_{1}{ }^{\prime}\right)$ by replacing each $A_{1} l_{\text {by }} L\left(G_{2}\right)$ where $G_{2}=\left(V_{2}, \Sigma, P_{2} \cup P_{3}, A_{1}\right)$ and $V_{2}=\varepsilon \cup\left\{A_{1}\right\} \cup\left(N_{2}-\left\{A_{2}\right\}\right)$ so to finish the proof we must show that $L\left(G_{2}\right)$ contains a derivation bounded language with the same commutative image. But it suffices to show this for $L\left(G_{2}{ }^{\prime}\right)$, where $G_{2}^{\prime}=\left(\Sigma \cup N_{2}-\left\{A_{2}\right\}, \Sigma, P_{2}, B_{2}\right)$ for each B_{2} in $N_{2}-\left\{A_{2}\right\}$. Properties i) and ii) hold for G_{2}^{\prime} and $\#\left(N_{2}-\left\{A_{2}\right\}\right)=\#(N)-1$, so the inductive hypothesis is applied and the proof is finished.

Every derivation bounded language is in GRE [G] so Lemma 1 and Theorem 1 imply:

Theorem 2: The context-free languages are Parikh bounded.

Since it is easy to show directly that the derivation bounded languages are semilinear, Lemma 1 implies:

Corollary: (Parikh's Theorem) Every context-free language is semilinear.

IV. NONCONTEXT-FREE LANGUAGES AND THE PARIKH BOUNDED PROPERTY

Proposition: The nonerasing counter stack languages are not Parikh-bounded.

Observe that $L_{1}=\left\{1010^{2} 1 \ldots 10^{h} 1 / h \geq 1\right\}$ is a nonerasing counter language. One need not go far from the context-free to find examples of languages that are not Parikhbounded. Since L_{1} is not semilinear the natural conjecture arises as to whether all languages that are semilinear are Parikh-bounded.

Proposition: $\left.L_{2}=L_{1} \cup\{ \rceil^{i} 0^{j} \mid C\left(1^{j} 0^{j}\right) \cap L_{1}=\emptyset\right\}$ is semilinear but not Parikh-bounded.
Since $\psi\left(L_{y}\right) \subseteq \psi\left\{1^{i} 0^{j} \mid i<j\right\}$ and $\psi\left\{1^{i} 0^{j} \mid i<j\right\}$ is semilinear the result follows. However $L_{2} \cap 1 * 0^{*}$ is not semilinear even though $\psi\left(L_{2}\right)=\psi\left(1 * 0^{*}\right)$. The authors were unable to find an example of a family of languages that were semilinar under closure with regular sets that were not Parikh-bounded.

Proposition: The OL, EOL, ETOL, DOL, EDOL are not Parikh bounded.

An example proves this result. $P=\{2 \rightarrow 201,1 \rightarrow 01,0 \rightarrow 0\}$.
Let $G=(\{2,0,1\}, P, 2)$ then $L(G)$ is in all of the above.
A simple observation that follows from Theorem 2 is:

Proposition: Let L_{1} and L_{2} be languages such that:

1. $L_{1} \subseteq L_{2}$
2. $C\left(L_{1}\right)=C\left(L_{2}\right)$
3. L_{1} is context-free

Then L_{2} is Parikh-bounded.
V. PARIKH-DISCRETENESS

In this section we examine the number of times strings with the same commutative images may occur in a language.

A language L is Parikh-discrete if for all x and y in $L, C(x)=C(y)$ implies $x=y$. Within the context-free the Parikh-discrete languages must be bounded languages by Theorem 2 .

Proposition: If L is Parikh-discrete and context-free then L is bounded.

If L is not bounded (and not necessarily context-free) then what can we say about the number of occurrences of strings in L with the same commutative image? Surprisingly enough, if \mathcal{L} is a Parikh-bounded family closed under intersection with regular sets then for each L in \mathcal{L} which is not bounded we may not put a limit on the number of occurrences of strings with the same commutative image. That is, for any integer k there are strings $x_{1}, x_{2}, \ldots, x_{n}$ in $L, x_{i} \neq x_{j}$, if $i \neq j$, and $C\left(x_{1}\right)=C\left(x_{2}\right)=\ldots=C\left(x_{n}\right), n \geq k$.

Theorem 3: Let \mathcal{L} be a family of Parikh-bounded languages closed under intersection with regular sets. If L is not bounded and L is in f, then for all $k>1$, there is a string w in L such that $\#(C(w) \cap L)>k$.

Proof: By induction on k. Trivial for $k=1$. Assume that the result holds for all $k^{\prime}<k$. By the definition of Parikh-boundedness we know that $\psi(L)=\psi\left(L \cap w_{1}^{*} \ldots w_{n}^{*}\right)$ for some bounded set $w_{1}^{*} \ldots w_{n}^{*}$. Now let use consider $L^{\prime}=L-w_{1}^{\star} \ldots w_{n}^{*}=L \cap \overline{w_{1}^{\star} \ldots w_{n}^{*}}$. We know L^{\prime} is in \mathcal{L} and L^{\prime} is not bounded (or $L \subseteq L^{\prime} \cup w_{l}^{k} \cdots w_{n}^{*}$ would be bounded). So for all win L we know $\#\left(C(w) \cap L^{\prime}\right)<\#(C(w) \cap L)$. By the induction hypothesis the theorem is proved.

VI. SUMMARY AND FUTURE RESEARCH DIRECTIONS

The authors are continuing to examine the properties of Parikh-boundedness and Parikh-discreteness. Parikh-boundedness for some other subfamilies of the contextsensitive languages is known.

The Parikh-discrete languages may also be subdivided into those that are adiscrete. A Parikh discrete language L is a-discrete if for all x and y in L if the number of $a^{\prime} s$ in x is equal to the number of a^{\prime} s in y implies $x=y$. As an example, $\left\{a^{n} b^{n} \mid n \geq 1\right\}$ is a-discrete while $\left\{a^{i} b^{j} \mid i<j\right\}$ is not. Parsing a-discrete languages may be very efficient since only the occurrences of a's are required to discriminate between strings in the language.

The authors are examining the discomposition properties of Parikh-discrete languages are well as those operations that preserve Parikh-discreteness and a-discreteness.

ACKNOWLEDGMENT

This work was done while Meera Blattner was visiting the University of Paris 7. The authors would like to than Maurice Nivat and the University of Paris 7 for making this collaboration possible. The authors would also like to thank Faith Fich for her comments and suggestions.

REFERENCES

G Greibach, S., "Chains of full AFL's," Math. Systems Theory, Vol. 4, No. 3, 1970, pp. 231-242.

GS Ginsburg, S. and Spanier, E. H., "Bounded ALGOL-like languages," Trans. of the AMS, Vol. 113, 1964, pp. 333-368.
H Harrison, M., Introduction to Formal Language Theory. Addison-Wesley, Reading, Mass. 1978.

L1 Latteux, M., "Languages Commutatifs," These Sc. Math., Lille, 1978.
12 Latteux, M., "Mots infinis et languages commutatifs," RAIRO Informatique theorique / Theor. Comp. Science, Vol. 12, No. 3, 1978, pp. 185-192.

L3 Latteux, M., "Cones rationnels commutatifs," JCSS, Vo1. 18, No. 3, June 1979, pp. 307-333.

LL Latteux, M. and Leguy, J., "Une propriete de la famille GRE." Fundamentals of Computation Theory, FCT 1979. Akademie-Verlag, Berlin 1979.

P Parikh, R. J., "On context-free languages," JACM, Vol. 13, 1966, pp. 570-587.

[^0]: ${ }^{\dagger}$ This definition is not equivalent to that in Harrison [H].

