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ABSTRACT 

A str ing y is in C(x), the commutative image of a str ing x, i f  y is a permuta- 

t ion of the symbols in x. A language L is Parikh-bounded i f  L contains a bounded 

language B and a l l  x in L have a corresponding y in B such that x is in C(y). The 

central resul t  in this paper is that i f  L is context- free i t  is also Parikh-bounded. 

Parikh's theorem fol lows as a coro l lary .  I f  L is not bounded but is a Parikh-bounded 

language closed under intersect ion with regular sets, then for  any pos i t ive integer k 

there is an x in L such that #(C(x) ~ L) > k. The notion of Parikh-discreteness is 

introduced. 

*This research was supported in part by NSF Grant No. MCS 77-02470. 



317 

I .  INTRODUCTION 

A language L is  a c o l l e c t i o n  of f i n i t e  length s t r i ngs  over a f i n i t e  alphabet s~ 

The commutative image C(L) of  L is  the set of s t r i ngs  y such tha t  y is a permutat ion 

of  the symbols of some x in L. A language is  commutative i f  L=C(L). Commutative lan-  

guages ar ise  n a t u r a l l y  mathemat ica l ly  and share many p rope r t i es  w i th  those of bounded 

languages [GS]. 

A s t r i n g  x is  l e t t e r - e q u i v a l e n t  or Par ikh-equ iva len t  to  y i f  x and y have the 

same number of occurrences of each symbol. I f  x and y are l e t t e r - e q u i v a l e n t  then 

C(x) = C(y) .  

Sect ion I I I  of t h i s  paper contains the main theorem: every con tex t - f r ee  language 

L has associated w i th  i t  a bounded set B c _ Wl*W2*...Wn*, and B ~ L, f o r  some n ~ I ,  

and each x in L has a y in B such tha t  x and y are l e t t e r - e q u i v a l e n t .  

The Wl, w 2 . . . .  , w n may be regarded as basic words or bu i l d i ng  blocks of L. Put 

~ i f f e r e n t l y ,  the theorem s ta tes  tha t  each s t r i n g  in L has a rearranged counterpar t  in 

~ .  This p roper ty  of  f a m i l i e s  of languages is  ca l l ed  Parikh-boundedness by Lat teux and 

Leguy ILL ] .  Another proof  of Par ikh 's  Theorem, tha t  i s ,  each c o n t e x t - f r e e  language is  

l e t t e r - e q u i v a l e n t  to  a regu la r  set  [P ] ,  is a c o r o l l a r y  of the main theorem. 

In the Section IV examples of noncontex t - f ree  languages are given tha t  do not have 

the Parikh-bounded p rope r t y .  More s p e c i f i c a l l y ,  the nonerasing stack languages and the 

ETOL do not have the p roper t y .  

L e t £  be a f am i l y  of languages wi th  the Parikh-bounded p roper ty  and closed under 

i n t e r s e c t i o n  w i th  regu la r  sets.  Then f o r  each nonbounded L in £ and in teger  k there 

is  a s t r i n g  x in L such tha t  x has more tha t  k l e t t e r - e q u i v a l e n t  s t r i ngs  in L. 

A language L is Pa r i kh -d i sc re te  i f  f o r  a l l  x and y in L C(x) = C(y) imp l ies  x = y .  

I t  f o l l ows  from the main theorem tha t  a l l  Pa r i kh -d i sc re te  con tex t - f r ee  languages are 

bounded. 

Commutative languages were studied by Lat teux I L l ] ,  [L2 ] ,  [L3]  wh i le  Lat teux and 

Leguy proved tha t  the f a m i l y  GRE is Parikh-bounded [LL ] .  

I I .  PRELIMINARY DEFINITIONS 

Let s be a f i n i t e  a lphabet .  A.ianguage L is  a set of s t r i ngs  contained in s*.  L 

is  c o n t e x t - f r e e  i f  L is  generated by a grammar G where G = (V,s ,P,S) ,  V is  a f i n i t e  

vocabulary,  s is  the set of  termina l  symbols, s c V, S is the s t a r t  symbol and P is 

f i n i t e  a set set of  ru les  X ~ ~, where X is  in V-s and ~ is in V.* 

A c o n t e x t - f r e e  grammar G is  nonterminal bounded i f  there is  an in teger  k f o r  G so 

t h a t  every s t r i n g  generated by G has less than k nonterminals .  A con tex t - f r ee  grammar 

G is  d e r i v a t i o n  bounded i f  G has an in teger  k and each x in L(G) has a de r i va t i on  such 

tha t  each s t r i n g  generated in the d e r i v a t i o n  has less than k nonterminals .  

A c o n t e x t - f r e e  grammar G is  expansive i f  there is  some d e r i v a t i o n  in G where 

X => :X~Xy, X in V-s, ~,B,~ in V*, and X :> w, w in s+, and G is nonexpansive o ther -  

wise.  I t  is  known tha t  i f  a con tex t - f r ee  language L has a nonexpansive grammar then 
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L(G) is in the fami ly  of de r i va t i on  bounded languages. 

A language L is bounded i f  L ~  Wl*...Wn* , where w i is in z*, l < i < n. The 

~ o m m u t a t i  image C(L) of L is {a i a i . . . a  i fa la2. .oan is in L and ( i  l . . . .  , in )  is 

a permutation of (1,2 . . . .  ,n ) } ,  andIL ~s commutative i f  L = C(L). t 

Let s = { a l , a  2 . . . .  ,a n } and def ine a mapping @, ca l led the Parikh mapping, from z* 

in to  N n by: ~(w) = (#al(w) . . . . .  #an(W)) where #ai(w ) denotes the number of occurrences 

of a i in w. Define ~(L) = {@(x) Ix~L}. Languages L l and L 2 in s* are ca l led  l e t t e r -  

equiva lent  (or Par ikh-equiva lent )  i f  ¢(L l) = ~(L2). 

A language L is ca l led  Parikh-bounded i f  there is a bounded language B contained 

in L such that  i f  x is in L there is a y in B so that  C(x) = C(y). 

A set of s t r ings L is a semi l inear  set i f  @(L) is the union of l i nea r  sets of the 

form 

C i ( n i l , . . . , n i k  ) + ( d l , . . . , d k )  , fo r  some k ~ 0 
i = l , n  

A language L is ca l led  Par ikh-d iscre te  i f  f o r  a l l  x and y in L, C(x) = C(y) impl ies 

x = y .  

I l l .  THE PARIKH BOUNDNESS OF CONTEXT FREE LANGUAGES 

Theorem I :  (Latteux and Leg..u.y)Greibach's fami ly ,  denoted by GRE, is the least  

subs t i t u t i on  closed ra t iona l  cone contain ing the l i nea r  and one counter languages r.. 

Every language in this...famj}y is Parikh-bounded; namely, i t  contains a bounded 

language ~i th the s...a.me commutative image. 

We extend the resu l ts  of Theorem l to those of Theorem 2. But f i r s t  we must 

prove an intermediate resu l t .  

Lemma I :  Every con tex t - f ree  language contains a derivat ion-bounded language with the 

same commutative image. 

Proof:  For every con tex t - f ree  language L there is a con tex t - f ree  grammar 

G=(V,z,P,A) such that  L=L(G) and G and the p roper t ies :  

i )  p c  N x (N 2 U S*NS* U {e} ) ,  N ='V-s. 

i i )  For a l l  B ÷ u in P, i f  u = vCw, v,w in V*, then B # C. 

Construct a new grammar G' = (V ' , z ,P ' ,A )  as fo l l ows :  

N i = {B i B~N}, i in {1,2} 

tThis d e f i n i t i o n  s not equivalent  to that  in Harrison [HI.  
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N' = N U N 1U  (N2-{A2})  

V ~ = N ~ U 

Let h I and h 2 be homomorphisms ~rom V to  V' where h i (a )  = h2(a) = a, i f  act ,  and 

h i (B)  = Bl ,  h2(B ) = B 2 i f  BeN. Le t :  

PO = {B ÷ CID, B ÷ CDIIB ÷ CD in P N N x N 2} U (P-NxN2) 

Pl = {Bl  ÷ h l (U)  jB ÷ u in P, B f A} 

P2 = {B2 ÷ h2(u) lB ÷ u in  P, B { A, u { v A w  f o r  any v, w in V*} 

P3 = {Al + h2(u) IA  ÷ u in  P} 

P' = PoU Pl u P2 U P3 

Now we de f i ne  another  homomorphism ~ which maps the symbols of  V' back to V, so 

~(z)  = z, i f  zCV +, ~ (B l )  = ~(B2) = B i f  B i in  V ' -V,  i in  ( 1 , 2 } .  

In o rde r  to  prove the lemma we need to  e s t a b l i s h  two c l a i m s .  

Claim l :  L(G' )  ~ L(G).  

P roo f :  For each d e r i v a t i o n  in G' ,  A => s I => s 2 => . . .  => w, we have ~(A) => 

~ (S l )  => . . .  => ~(W) = W i n  G. 

Claim 2: For each w in  L(G) there  is  a w' in  L(G')  such t h a t  C(w') = C(w). 

Proof :  The p roo f  i s  by i n d u c t i o n  on the length  of  the d e r i v a t i o n .  Hence, we 

sha l l  show t h a t  i f  A => x, x in  V*, then the re  is  an x '  in ( V ' ) *  so t h a t  A => x '  
G G' 

and C ( ~ ( x ' ) )  = C(x ) .  The r e s u l t  f o l l o w s  when x is  a t e rm ina l  s t r i n g .  
0 0 

I f  n = 0 then A => A and A => A so the r e s u l t  ho lds .  
m G G' , 

Assume t h a t  A => x, f o r  a l l  m<n, i m p l i e s  A => x '  and C ( ~ ( x ' ) )  = C (x ) .  
n - l  G G' 

I f  A => uBv => usv then we know the re  i s  a d e r i v a t i o n :  A ~> u ' B ' v '  where B' 
G G' 

i n  {B, B l ,  B 2} and C ( ~ ( u ' v ' ) )  = C(uv),  f o r  u, v in  V* and u ' ,  v '  in  ( V ' ) * .  

Case l :  B' f B 2. 

In t h i s  case there  is  a r u l e  B' ÷ s' and ~ ( s ' )  = s, so the r e s u l t  ho lds .  

Case 2: B' = B 2~nd  s { siAs 2. 

The same conc lus ion  may be drawn as in  Case I .  

Case 3: B' = B 2 and s = siAs 2. 

I f  A G' => u 'B2v'  then A ;>  YAtz and A l ~> Y 'B2z '  w i t h  yy '  = u' and z ' z  = v ' .  I f  

we knew t h a t  A ~> h lO~(y ' )Bh lO=(Z '  ) then we would ob ta in  the des i red  d e r i v a t i o n  in  G' 

because: 

A G' :> h l ° = ( Y ' ) B h l ° ~ ( z ' )  ~ h l ( ~ ( Y ' ) S l ) A h l ( S 2 = ( z ' ) ) n  G'=> h l ( = ( Y ' ) S l )  y A l z h l ( s m ~ ( z ' ) )  = x ' .  

Our o b j e c t i v e  was t o  show t h a t  i f  A => usIAS2v = x then the re  is  a x '  such t h a t  
G 

C(x) = C ( ~ ( x ' ) )  and the x '  above s a t i s f i e s  t h a t  c o n d i t i o n  s ince ~ ( y ' y )  = u and 

~ ( z z ' )  = v .  
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I t  remains on ly  to show tha t  i f  A 1 ~ Y'B2z' then A G' => h l ° ~ ( Y ' ) B h l ° ~ ( z ' ) "  This 

w i l l  be done hy induct ion  on the length of  the de r i va t i on .  I f  the length is  one the 

resu l t  f o l l ows .  Otherwise we have: 
+ 

A 1 => y"C2z" => y"sz" = Y'B2z' .  There are again three cases: 
G' G' + 

Case I :  y" = Y'B2Y ~ and so z' = y~sz". A 1 => Y'B2Y~C2z" and the induct ion 
G' 

( "~C ~ fz "~ hypothesis impl ies A => ~l (Y ' )BXl(YyC2z")  = ~ l (Y ' )B~l~Yl~ 1 1 ~ ~ w i th  ~I = hl°~" As 
G' 

C 2 ÷ s in  P2' C1 + ~I (s) in P1 we have A => ~ l (Y ' )B~l (Y"SZ")  = ~ l ( Y ' ) B X l ( Z ' ) .  
G' 

Case 2: z" = z~B2z' by the same reasoning. 

= = ,, = t2z,, Case 3: s t lB2 t  2 wi th  y '  y t I ,  z' and C 2 + t lB2 t  2. By the induct ive  

hypothesis we have A => x l ( y " )C~ l (Z "  ) and c l e a r l y  C + x l ( t l ) B ~ l { t 2 )  in PO so 
G 

A :> ~ l ( y " ) ~ l ( t l ) B ~ l ( t 2 ) ~ l ( Z " )  = ~ l ( Y ' ) B ~ l ( Z ' ) .  Now ~ is  the i d e n t i t y  on s* so from 
G 

claim-one and claim two we know that  C(L) = C(L ' ) .  

Let Pt = {X ÷ wLwcs*} h P and G O be the l i nea r  grammar G O : (V U NI,Z u NI, 

Pt,A) then L 0 = L(G O) is  a l i nea r  language and L' is  obtained from L 0 by subs t i t u t i ng  

f o r  each B 1 in s U N 1 the set derived from B 1 in G'. Let G 1 = (VI,Z,P 1U P2 u P3, BI) 

where V 1 : s b N 1U (N2-{A2}),  fo r  each B 1 in  NI, and t be the s u b s t i t u t i o n  t (a )  = a, 

f o r  a l l  a in  z, and t (B l )  = L(GI) f o r  a l l  B 1 in  NI, then t (Lo) = L ' .  

The proof tha t  L = L(G) contains a de r i va t ion  bounded language wi th  the same com- 

mutat ive image w i l l  be made by induct ion on the number of nonterminals.  We assume that  

G has proper t ies  i )  and i i ) .  I f  N = 1 then by property i i )  the product ions are a l l  of 

the type A ÷ w, wEs*, hence L(G) is f i n i t e .  

Assume that  G has n+l nonterminals.  I f  L' contains a de r i va t ion  bounded language 

wi th  the same commutative image then we are f i n i shed  since C(L) = C(L') and L ' ~  L. 

Since L' is  t (L  O) i t  su f f i ces  to show the property f o r  each G 1 since the fami l y  of 

de r i va t i on  bounded languages is closed by s u b s t i t u t i o n .  

Consider the grammar G I '  = (V I ' ,S  U { A I } , P I , B I ) ,  V I '  = N 1U s. This grammar has 

proper t ies  i )  and i i )  and # (NI - {A I }  ) = # (N) - I .  Now one can use the induct ion hypo- 

thes is  and so f o r  each B I in NI-{A I }  there is a language L R q L (G I ' ) ,  L B der i va t ion  

bounded, and C(L B ) : C (L (G I ' ) i .  Now observe tha t  L(GI) i s lob ta ined  fromlL(Gl ' )  by 

rep lac ing each A l l by  L(G 2) where G 2 = (V2, s,P 2 U P3,AI) and V 2 = s u {A I }  U (N2-{A2}) 
so to f i n i s h  the proof we must show tha t  L(G2) contains a de r i va t ion  bounded language 

wi th  the same commutative image. But i t  su f f i ces  to show t h i s  f o r  L(G2' ) ,  where 

G 2' = (z UN2-{A2},s,P2,B2) fo r  each B 2 in  N2-{A2}. Propert ies i )  and i i )  hold f o r  

G 2' and #(N2-{A2}) : # (N) - I ,  so the induc t i ve  hypothesis is appl ied and the proof is 

f i n i shed .  
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Every de r i va t i on  bounded language is in  GRE [G] so Lemma 1 and Theorem 1 imply: 

Theorem 2: The con tex t - f ree  languages are Parikh bounded. 

Since i t  is easy to show d i r e c t l y  that  the de r i va t ion  bounded languages are semi- 

l i nea r ,  Lemma 1 impl ies :  

Coro l la ry :  (Pa [ i kh 's  Theorem) Every con tex t - f ree  language is semi l inear .  

IV. NONCONTEXT-FREE LANGUAGES AND THE PARIKH BOUNDED PROPERTY 

Prepos i t ion :  The nonerasing counter stack languages are not Parikh-bounded. 

Observe that  L 1 = { l O l 0 2 1 . . . l o h l l h ~ l }  is  a nonerasing counter language. One need 

not go fa r  from the con tex t - f ree  to f i nd  examples of languages that  are not Parikh- 

bounded. Since L l is not semi l inear  the natural  conjecture ar ises as to whether a l l  

languages that  are semi l inear  are Parikh-bounded. 

Propos i t ion :  L2=L 1U { l i o J l c ( l i O  j )  N LI=~} is semi l inear  but not Parikh-bounded. 

Since ¢(LI)  ~ @{ l iOJ l i< j }  and ~ { l i O J l i < j }  is  semi l inear  the resu l t  fo l l ows .  

However L 2 n I *0 ,  is  not semi l inear  even though @(L2) = ¢ ( l *O* ) .  The authors were 

unable to f i nd  an example of a fami l y  of languages tha t  were semi l inar  under c losure 

w i th  regu lar  sets tha t  were not Parikh-bounded. 

Propos i t ion :  TheOL, EOL, ETOL, DOL, EDOL are not Parikh bounded. 

An example proves th i s  r esu l t .  P = {2 ÷ 201, 1 + 01, 0 + 0}. 

Let G = ( {2 ,0 ,  I } ,P ,2 )  then L(G) is in  a l l  of the above. 

A simple observat ion tha t  fo l lows from Theorem 2 i s :  

Propos i t ion :  Let LI and L 2 be languages such tha t :  

I .  L 1 ~ L 2 

2. C(LI) = C(L2) 

3. L 1 is  con tex t - f ree  

Then L 2 is  Parikh-bounded. 

V. PARIKH-DISCRETENESS 

In t h i s  sect ion we examine the number of times s t r ings  wi th  the same commutative 

images may occur in  a language. 
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A language L is  Pa r i kh -d i sc re te  i f  f o r  a l l  x and y in L, C(x) = C(y) impl ies  x = y. 

Within the c o n t e x t - f r e e  the Par i kh -d i sc re te  languages must be bounded languages 

by Theorem 2. 

P ropos i t i on :  I f  L is Pa r i kh -d i sc re te  and c o n t e x t - f r e e  then L is bounded. 

I f  L is not bounded (and not necessar i l y  con tex t - f ree )  then what can we say about 

the number of occurrences of s t r ings  in L wi th  the same commutative image? Su rp r i s i ng l y  

enough, i f £  is  a Parikh-bounded fam i l y  closed under i n t e r sec t i on  wi th regu la r  sets then 

f o r  each L in £ which is not bounded we may not put a l i m i t  on the number of occurrences 

of s t r i ngs  w i th  the same commutative image. That i s ,  f o r  any in teger  k there are 

s t r i ngs  Xl,X 2 . . . .  ,x n in L, x i i x j ,  i f  i # j ,  and C(Xl) = C(x 2) = . . .  = C(Xn), n ~ k. 

Theorem 3: Let £ be a f am i l y  of  Parikh-bounded languages closed under i n t e r sec t i on  w i th  

regu la r  sets.  I f  L is  not bounded and L is  i n £ ,  then f o r  a l l  k > l ,  there is a s t r i ng  

w in L such tha t  #(C(w) C~L) > k. 

Proof:  By induct ion  on k. T r i v i a l  f o r  k = I .  Assume tha t  the r esu l t  holds f o r  

a l l  k' < k. By the d e f i n i t i o n  of Parikh-boundedness we know that  

* Now l e t  use consider ~(L) = @(L Nw~ . . .w~ )  f o r  some bounded set w~. . .w n. 

L '  = L - w~...W*n = L~w~. . .W* .n  We know L' is in £ and L' is  not bounded (or  

L ~ L ' U  w # . . . ~  would be bounded). So f o r  a l l  w in L we know 

#(C(w)( -1L ' )  < #(C(w) N L) .  By the induct ion  hypothesis the theorem is  proved. 

VI. SUMMARY AND FUTURE RESEARCH DIRECTIONS 

The authors are cont inu ing to examine the p rope r t i es  of Parikh-boundedness and 

Par ikh-d isc re teness .  Parikh-boundedness f o r  some other  subfami l ies  of the con tex t -  

sens i t i ve  languages is known. 

The Pa r i kh -d i sc re te  languages may also be subdivided in to  those tha t  are a- 

d i s c re te .  A Parikh d i sc re te  language L is  a -d i sc re te  i f  f o r  a l l  x and y in L i f  the 

number of  a 's in x is  equal to  the number of a 's in y imp l ies  x = y. As an example, 

{anbnln > l }  is a -d i sc re te  wh i le  { a i b J I i  < j }  is  not .  Parsing a -d i sc re te  languages 

may be very e f f i c i e n t  since only the occurrences of a's are requi red to d i sc r im ina te  

between s t r ings  in the language. 

The authors are examining the d iscomposi t ion p rope r t i es  of Pa r i kh -d i sc re te  lan- 

guages are wel l  as those operat ions tha t  preserve Par ikh-d iscre teness and a-d iscre teness .  
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