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0. INTRODUCTION

A method is described to exiract from an untyped A-expression information about
the sequence of intermediate A-expressions obtained during its evaluation. The in-
formation can be used to give ''safe positive answers" to questions involving termina~
tion or nontermination of the evaluation, dependence of one subexpression on another
and type errors encountered while applving § rules, thus providing an alternative to
techniques of Morris and L.evy ([ Mor‘68], [L_ev75] ). The method warks by building a
'safe description! of the set of states entered by a call-by-name interpreter and
analyzing this description. A similar and more complete analysis of a call-by-value
interpreter may be found in [ Jon81].

From a flow analysis viewpoint these results extend existing interprocedural
analysis methods to include call-by~-name and the use of functions both as arguments
to other functions and as the results returned by them. Further, the method natural-
ly handles both local and global variables, extending [ Cou77a] and [ Sha80). It seems
clear that other traditional analyses such as available expressions, constant propa-
gation, etc. can be carried out in this framework.

The main emphasis is on development of the framework and showing its relation
to abstract interpretation, rather than on its efficient use in applications. A sim-
plified and optimized version of the method would have applications in the efficient
compilation of A-calculus~based programming languages such as LISP, SCHEME
and SASL ([McC83], [Ste?5], [ Tur76]).

The method provides a general way to find safe approximate descriptions of
computations by algorithms which manipulate recursive data structures. It is thus
not limited to the A-calculus, but may be applied to analyze any programming lan-
guage whose semantics can be implemented by an appropriate definitional Interpreter.

Another application would be to extend the method to the flow analysis of deno-
tational definitions of programming languages. This could be used in semantics-
directed compiler generation as described in [ JoS80], and provided the initial mo-

tivation for this study.

Related work

i_ambda calculus evaluators have been studied in [ 8oh72], [Lan64], [McG70],
[Ple75], [Rey72], [ Sch80] and [ Wegb8]. Sufficient conditions for termination of
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reduction sequences have been developed by Morris and Levy, and Mycroft has
investigated the replacement of call-by-name by call-by-value ([Moré8], [Lev75],
[Myc80]).

interprocedural flow analysis has been studied by Rosen, Cousot and Cousot,
and Sharir and Pnueli {{Ros79], [Cou77a], [ShP81]). Sharir describes a general
technigue for flow analysis of applicative programs and develops a more efficient
version for bitvectoring analyses ({ShaSO] ). The techniques do not handle call-by~
name or the use of functions as arguments and results. Pleban describes a method

to flow-analyze SCHEME in [F’Ie81], using a denotational semantics framework.

Cutline of the paper

In Section 1 we introduce a call-by-name )A-expression evaluator CBN, and
establigh a useful property of its computation.
Section 2 develops analysis methods for a closed A~expression MO without con-

stants; this we call the controf flow analysis of the call-by-value computation. The

result is a safe description of
States(MO) = {g | CBV enters state ¢ during its computation on Mof

More specifically a finite fattice D of descriptions will be defined, each of
whose elements d describes a set Desc{d} of machine states. An algorithm will be
given to obtain from M, a "safe!" description d(MO) such that States(Mo) c Desc(d(MO)).
This will be shown to imply that '"safe positive answers" may be effectively obtained
for a number of interesting questions about the computation. Note that precise
answers cannot always be given, due to the undicidability, for instance, of the
halting problem.

Section 3 briefly describes a similar development including constants and §
rules; a more complete development is found in [ Jon81]. Section 4 ends with con-

clusions, future directions and acknowledgements.

Notational Conventions

The power set of X, written P{X)

Given sets X and VY, X _F: Y is the set of all partial functions f from X to Y, and

X 3 Y is the set of all fin X 5 ¥ such that

. is the set of all subsets of X.

Domain(f) = { x | f(x) is defined }

is a finite set. @ is the unique function in X E Y with empty domain. Two functions
are equal iff they have the same domain and the same values on arguments in that
domain. The notation f{x +y| (where f € X B Y, x € X, y € Y) denotes the function
1 €x B ¥ suchthat for all z € X, f1(z) = if x = 2 then y else f(z).

Given a relation -+ (always in infix notation), 3 is its ntth power (n = 0}, 5

- - N w %‘ - ry - .,
is its transitive closure and = is its reflexive transitive closure.
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The L.ambda Calculus

Given predefined disjoint sets Var = fx, Yy Zyooo § and Con = {a, b,cy... } of

variables and constants respectively, the set of A-calculus terms Lam = {M,N, ... }

is épecified inductively by the abstract syntax
Lam 3= Var | Con | Lam Lam | X Var Lam

A combination is a term of form MN, and has operator M and operand N. An

abstraction is a term AxM, and a value is a term which is not a combination.

The free and bound variables FV(M) and BV(M) of a term M are defined by

(1} FVial=@; FV(x)={x}; FVIMN)=FV{M) U FVIN); FV(xM:=EVIM)\ {x}
(2) BV(a)l=@; BVIx}=¢ ; BVIMN)=BV(M) U BV(N); BVOxM)}=BV(m)y {x}

A term M is closed if FVIM)=@. The substitution prefix [ M/x] defines the following

operation on Lam: [M/x]N is the result of substituting M for all free occurrences of

x in N, renaming variables of N as necessary to avoid capturing bound variables as
in [ Cur58]. A closed term is called a program as in [ Plo75].

Now supposing we are given a partial function (Cap = "Constant apply")
Cap: Con X Con 5 Con
we define the reduction relation > on terms by
1. M av|y/xIM (if y § FV(M)) o reduction
2, DxMIN > [N/x]M B reduction
3. ab > Constapplyl(a, b) (if this is defined) 6 reduction

4. M>N for any context ¢[ | reduction in context
cfM] > [N]

A machine independent call-by-name evaluation function eval: Program E

FProgram is defined as follows; it comes from [ Pl1o75], which also contains a call-

by~value analogue:

eval(a) = a; eval(AxM) = AxM;
eval([ N/x]M!}  if Evai{M) = Axm!
eval(MN) = at if eval(M) = a, eval(N) = b and

Constapplyla, b) = a! is defined

Lemma If M is a program and eval{M) is defined then M % eval(M) without renaming.

1. A CALL -BY-NAME \-EXPRESSION EVAL UATOR

We introduce a A—~calculus interpreter without constants and establish some
useful properties. Due to space limitations we only consider a simple call-by-name
interpreter CBN, very similar to one studied by Schmidt [SchSO]. The same flow
analysis techniques are also applicable to call-by-value; [Jonsl] presents a CBV
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interpreter, proves that it correctly performs call-by-value evaluation and that the
flow analysis of CBV is "safe!. Further, [Jon81] shows that Landin's original
SECD machine {Lan64] is quivalent to the simpler CBV, using a characterization
of SECD by Plotkin [ Plo75]. The notations and ideas in this section owe much to
[Plo75].

Closures and Environments

Following Landin we avoid explicit substitution into A-expressions by repre-
senting a A-expression by a closure (M, e}, where M is a term and e is an environ-
ment giving the values of those free variables of M which have been bound as the
result of 8 reductions.

Letting CL denote the set of ail closures, the function Real: CL = L.am wilil
take a closure cl € CL into the A-expression it represents. Real, CL and the set

of environments E are defined as follows:

Closures P cle€CL=Lamx E
Environments : e € E =Var = CL
Real : CL. » Lam
Real((M, e)) = [ Reai(e(x,))/x, ]...[Reallelx ))/x 1M

where Domain(e) = {xl yeees X }

Figure 1. Environment Closures and Real

The equations  above are to be taken as inductive definitions of certain sets,
not as Scott-style domains {elemenis of E and CL may be thought of as finite trees
due to the restriction to environments with finite domains). In this paper Real(cl)

will always be closed. For example

a) if cly = Ayy, @) then Real (cl1)= Ayy
b) if cl, = (xx, @[x + cl,]) then Real(cl,) = (Ayy) (xyy)

Interpreter States and Transition Rules

The interpreter evaluates an expression M0 by performing a series of state tran—
sitions 05 =0, > ... =0, where g, = Load (MO) is the initial state corresponding
to My, and o is terminal (meaning that for no o does 0,30 hold). The result of the
evaluation is Unload(on).

A state is a pair g = <cl, cI', veey cln> where c! is the control closure and

cl1 ...cl Is a sequence of closures called the context stack. It represents the A~

n
expression Unload{g) = Real(c! )Reai{c!1 )... Reat(cln). A state transition oy » 0y is

determined by the form of a4 's control closure. The following tabie defines CBN,
using ¢ to indicate the empty context stack.
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cEL=ClLxC
c & C= CL%*

Readin Function{l.ocad: Lam + ©):

Iinterpreter States:

Context Stacks :

Load(MO) = <(MO’ B}, €>

Readout Function(Unload: T~ L.am):

Transition Rules

Scan Operator:
Expand Variable: <(x,e), chyev.cl >

B reduction:

Unload<ely,cly, ..., cl > = Real(clo}. - «Real{cl )

<(MN, e), cly...cl >= <(M, e), (N, e)cl1. -acl >
= <elx), cl1. .. cln>
<DxM,elel ch,. . el >= <M, e[x 4 cly]),cl,...cl >

Figure 2. CBN interpreter Without Constants

Figure 3 shows how CBN carries out the reduction sequence M,= DoexxYiyyMzz >

ODyyYdyyWzz > Diyyzz > dzz. The CBN computation is considerably longer than

the reduction sequence due to the need for explicit steps to descend into syntactic

substructures and to fookup variable bindings.

Actions

Reductions

Interpreter States
Load(MO) =
= <{(xxxMiyyWzz, ¢}, € >
= <{(xxxNvyy, @ ) {Azz, §}>
= <(xxx, @) , Qwy, @zz, d)>
= <(xx,[x =+ O\yy, #)]), (\zz, @)>
- LT
= <(xx, call thise,) , (Azz, @}>
= <(x,e;) » (%, e.)hzz, @)>
= <{iyy, @) ,  {x, e Yzz, @)>
= <y, ¢[y-’(x,61)]) , \zz, @ >
= <(x,e;) , (A\zz, @§)>
5 <y, @) , \zz, @) >
= <{y, v - zz, &1}, € >
» <{zz, P} s € >

scan operator
scan operator

B reduce

scan operator
expand x

B reduce
expand y
expand x

B reduce
expand vy

halt

ODoaxx Y yyzz

s

OyyMayyhzz

>

AyyWzz

Xzz

<Conirol Closure , Context S$tack >

Figure 3. Example Computation by CBN

The following asserts the correctness of CBN, and is proven by induction on

the definition of eval and the number of steps in a CBN computation. Note that the

value of a A-expression without constants can only be an abstraction.
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Theorem 1. L.et M be a program without constants.

a)  if eval{iM) = N then 3o {Load{M}3 5 and N = Unload{o)}
b) if Load(M) 3 ¢ and Unload(g) is a value then eval(M) = Unload{g)

A Useful Property

In every closure (M, e) which was obtained in the example computation, M was

a subexpression of the starting expression. Thig is in fact always true.

*
Lemma 2. Suppose M is closed and Load(Mo) = <{M, el, cly...cl > Then

a) Domain{e) ¢ BV(MG} and

b} M is a subexpression of MO

Proof Define "p appears in ci!' for A-expressions or environments p and closures
cl as follows: M and e appear in (M, e); if p appears in e(x) then p appears in (M, e).

An easy induction on n now verifies that if Load(Mo)g <clg,chy. .. cln> and p

1
appears in any closure C]i’ then p satisfies a) or b) above. [

O
Lemma 2 implies that for each fixed input MO we may regard CBN as operating

on occurrences of expressions {in MO) rather than onarbitrary expressions. This useful

property follows from the fact that we only do outside-in reductions. It implies that

a computer implementation of CBN can manipulate pointers instead of arbitrary A-

expressions. Incidentally, the SECD machine also has this property. Another way

to view this is that A calculus evaluation cannot create new "|program text"; it can

only reinterpret the original program text in new environments. A similar result

also holds if § reduction is included.

The CBN(MO) Interpreter

The approximate description of MO to be developed shortly will trace occurren—

ces, so that for example not all x's in M, are treated alike. Hence we define

Sub(Mo) = {M ‘ M is an occurrence of a subexpression in MO}

Define CBN(MO) to be the result of specializing CBN to a specific input MO as
follows:
1. Closures and environments are redefined to be
CL = Sub(MO) X E
E = BV(M,) 3oL
2. Real, L.oad, Unload and the transition relation = are defined exactly as

they were for CBN; However they are interpreted over the new E and C
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Clearly CBN(MO) has a computation Load(Mo) =020, ... 20, with
Urxload{o-n) = M if and only if CBN has a corresponding computation Load(Mo) =
i t ' wi 1} =
o)t 20y' s 20, with Unload{o-n J=M,

2. ANAL YSIS OF CONTROL. FL OW

It is well known that most forward program flow analysis methods essentially

carry out an abstract interpretation of the program over a lattice whose elements

approximate sets of states. Descriptions of this approach may be found in [Sin?Z]
and [ Cou?7b]. Given a closed A-expression MO without constants, we will use
abstract interpretation to construct effectively a t'safe!’ description of the computa-

tion by CBN{MO). More precisely we show how to find a description of a superset of

States(Mo) = {o | Load(Mo)g o by CBN(MO)}

Overview

1. A finite set D of descriptions will be defined, along with a function Desc:

D 2 P{Z). Each description d € D will represent a set of states Desc(d)

2. Define d to be cloged if 016 Desci{d) and 020, implies czeDesc(d). D will be given
a lattice strucdture, and & form of abstract interpretation will be used to prove:
Lemma {Simulation Lemma)} There is an effective way to obtain from MO a non-
trivial closed description d(Mo) such that Load(Mo) = Desc(d(Mo)).

Corollary {Safeness Theorem) States(Mo) [ Desc(d(Mo)).

3. it will be shown that d(Mo) may be analyzed to give "safe positive angwers' to
the following questions
« will evaluation terminate ?
« will evaluation not terminate?

« is M independent of N, for given subexpressions M, N of MO?

Representation of CBN(MC) Data Structures

The sets of closures, states,etc. are infinite so for effective approximation it
is desirable to represent them finitely. We first develop a method to do this.

The sets of E and CL. are infinite since defined by mutual recursion. Notice
that during a computation every binding e[x -+ cl] occurs as the result of popping
cl off the context stack during a B reduction. In fact CBN(M,) could be easily modi-
fied to work with E = B\/(MO}’?& C, that is CL. could be replaced by C.

Consequently a finite representation C! for C provides finite representations

for all the other data structures of CBN(MO), to wit:
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Closures rciteClt = Sub(MO) X Et

Environments: e! € E} = BV(MO) R¥el
Interpreter
States :g! €20 =CL!'xC!

The exact nature of C! turns out to be inessential to our development of methods
for data representation and abstract interpretation, so we defer its choice to later,
It is only important now to know that each token ¢! € C! will represent one or more
context stacks.

It seems difficult at first sight to see how to represent an arbitrary context
stack ¢ = dl' .. cln with unbounded n by a fixed finite token set C! in such a way that
the structure of c can be retrieved; however this must be done to simulate 8 reduc~
tion. As often happens the problem turns out to be simpler if embedded in a larger
problem ~ that of developing a finite description d of a possibly infinite set of states.

T o this end we use in addition to C! an auxiliary retrieval function r: C! 2+

P(CL! x C'). The intention is that if token Cl| represents context stack c, = cl1clz. ..

1
cl , then r‘(c1 ) will contain a pair (c:l1 N clz') where cl,! represents cl, and c,' re-
presents clz. . cln. The representation relations ¢! L ¢ and cI' £ ¢l are defined

recursively since C,E and CL. are also defined by mutual recursion.

Definition Let r: C' » P(CL.! x C!') be a retrieval function and let ¢! € Ci be a
designated token. The representation relation Lecctxcy E'xE U CL! x CL is

defined as follows
al 'l ¢ {i.e. token ¢! represents the emptly stack)
.0 i 1.0 L i
b} <y c!’ciz...clh if cl, 011 and cz‘ cl?...cln for some pair
i H ¥
(CII 1Sy } € i"(c:1 }
c} M,e) < (M,e) ife!d e

d) e'L e if for all x € Domain(e) there exists {clt, ¢’} € r{e!{x)) such that

et S e{x). O

Example Suppose ric!} = {(cfl‘,e‘),(clz‘,c')} where ci,! = (M1,¢), chyt=
(M2,¢). Letcl, = (cly") and cl, =cl,' € Cl.. Then

1. B @ by d), so cll'rs ci1and clz'ﬁ cl2 by c}.

2. ¢'Sebya), soc‘rscl.“byb)‘
3. Applying b) repeatedly, et L clzcl1, 'l clzclzcll, eic.

4, ¢[x-§cl1]£ P[x = c'] by d) and 2.
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Remark For each c!'€ C! and r, the set {c ] 'l c} is essentially a regular set
of trees (assuming C! is finite). In fact rules a)-d) may be regarded as productions

in a regular tree grammar ([Eng75], [ Tha73]) with nonterminal set CI.

Definition 1. A description is a pair d = (S,r) where r is a retrieval function and

S X! =ClLtx Cl. The set of states described by d is

Descid} = {<cl,c> | ci'S ¢l and ¢'& ¢ for some <cit,c!'> € 3}

2. LetR =C!+pPCL!'x C!) be the set of all reirieval functions and D =P(Z!} x R
the set of all descriptions. D may be made into a lattice (f‘inite if C! is finite} by

giving it the ordering E (where < is subset inclusion):
| H 1 1 f t
(Si’ri} _(Sz,r‘z) n‘fS1 cS,and Ve €C (r‘,(c | = rz(c 1.

3. A descriptiond is closed if 0120, implies 0y € Desc{d) whenever o, € Desc{d}.
O

Remark Given a description d = (S, r) it is not difficuli to construct a context-free
grammar which generates Desc(d) {environments are represented in a linear form).
The technique is closely related to that of the previous remark; an example is found
in [Jon81].

Abstract Interpretation of CBN(MO) over [

Our task is to find a closed description d = (S, r) such that Load(Mo) € Desc(d).

Suppose 0= <cl 12€1> 2 <c|z
€ S with cl1'£ cl1 and cl'rs cqe

Ifo 120, by a variable expansion then = cz, and if ¢ 1204, by 8 reduction
then SF is popped to give Coe in either case the closure property can be maintained
by adding appropriate pairs <c|2‘,c2'> to S, where clz' and cz' are easily deter-

, Cp> =0, wher‘ea1 is represented ind by <c11',01'>

2

mined from cl,‘,ci‘ and r.

if c:lT = (MN, e} then 0, = <(M,e),(N,e)c1>, $0 a new token cz‘ may be required
to represent ¢, = (N,e)cl; further the retrieval function r must be extended to re-
trieve representations of {N, e} and CT from cz‘. As before we defer discussion of
the token set C! and of how c,' is chosen, and simply write cz’ = ioken{cr!‘}.

This informal description of the abstract interpretation is made precise in
Figure 4. The lattice structure of D ensures that d(MO) is uniquely defined (the
figure may be taken to define a function f: D + D whose least fixpoint is d(Mo); fiis
clearly monotone and so continuous since D Is finite, so its least fixpoint is well-

defined).
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Data siructures

Closures clt&€ CL! = Sub{Mo) x E!
Environments el g EY = BV(MO)T‘ C!
Context Stacks ct g€ C! = gpecified later
States o €I = CL'x C!
Descriptions d €D = PEZ) xR
Retrieval function r E€R = C'3p(CL!'x C")

The Description d(Mo) = (S, r)

d(Mo) is the smallest element of D satisfying:
0. <(M0,¢),€ > €S (description of Load(Mo) in d(Mo))

1. Scan operatort! simulation:
Ifo! =<{MN,e'),c'>€ S
then < (M, &'}, token{g')> € S and {{N, e!), c!) € r{token{g'})

2. y/ariable expansion' simulation:
If <{x,e'),c’> € S and (ci‘,cT’) € r{e!'(x))

then <cll,c'> € S

3. "B reduction'' simulation:
If <(AxM,el),c'> € S and (ci‘,c1') € r{ct)
then <(M,e![x -+ c‘]),c1‘> €S

Figure 4. Abstract Interpretation of CBN(MO)
Lemma 3 {(Simulation LLemma). d{MO) is closed and L.oad{Mo) € Desc(d(Mo}}.
Corollary 4 {Safeness Theorem). States(Mo) c Desc(d(Mo)).

Proof of Lemma 3 is straightforward from the definition of & . Corollary 4 is

immediate.

Representation of Context Stacks

Given the description d(MO) = (S, r), each token c' € C'! represents a set of
context stacks, namely {c \ o' o c} . intuitively it seems clear that the larger C!
is,the more precise the abstract interpretation can be, since each token can re-
present a smaller set of context stacks. As one exireme we may get a precise simu-

fation of CBN(MO) at the expense of an infinite set of tokens:
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Theorem 5 Suppose C! = (CL.'} ¥, ¢! = ¢ and token{ g'}) = {N, e'jc! for all gt =
<{MN,el},c!'> € ¢'. Then States(Mo) = Desc(d(Mo)).

A more practical choice is the following:

1. Ct={e'} uimn | MN is an occurrence of a combination in Mof

2. token<{MN, ef},c!> = MN

With this approach flow information pertinent to all of the times the interpreter
enters a state <{MN, e}, c> is combined under the single token MN. This is analogous
to conventional flow analysis, in which flow information pertinent to all times con-
trol passes through a given program point is associated with that point.

The following table illustrates the abstract interpretation of the CBN(MO) com-

putation exemplified before where My = AB and A = (Axxx)Ayy), B =xzz.

Actual State Sequence Simulated States Retrieval Function
<(AB, @), € > || <(AB, @), €' >
<(A,9), (B,0)> |[<(A,9), AB> (((B,@),¢') € r(AB)
< (Axxx, D), Myy, @) (B,0)> || <(ixxx, D), A> [{(Ayyy,d), AB)E r(A)
<(xx,@B[x =+ Qyy,B)]), (B,B)> || <ixx,B[x + A]), AB>

| — LS

e, e]‘
<(x,e1), (x,e,)(B,QS):- <(x,e1'), XX> ((x,el'),AB)E r(xx)
<Qyy,P), (x,e 0B, D)> | <(\yy,B), xx>
<(y,¢[y-0(x,e1)]), B,9)> | <ly, B[y » xx]), AB>
<(x,e,}, B,0)> <(x,e", AB>
<{Ayy, 9}, B8,8)> 1 <(yy, ), AB>
<{y, @[y =+ (B,8}]), e >l <ly,®ly = AB]), ¢'>
<{B,9), € > |1 <(B,0), et>
-l

Figure 5, Abstract Interpretation Example

Applications

Let a Wsafe positive reply! PP to a questions whose answer is Q be one such
that P logically implies Q. Given N € Sub(Mo) and (M, e} € CL define {M, e} to depend
on N if either M = N or for some x € FV(M), e(x) depends on N. We say that M
depends on N for M,N € Sub(Mo) if S contains a state c[(M, e)] with (M, e) dependent

on N.

Theorem 6. There is a decidable method to obtain nontrivial safe positive replies

to the following questions about a closed constant-free-A-expression Mo:
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1. Is evaluation of M € Sub(Mo} never attempted ? {Meaning: does States(MO)

contain no state <{M, e},c> 7)
2. Will the computation terminate?
3. Will the computation fail to terminate?
4. is States(MO) finite ?

5. Is M independent of N {given M,N & Sub(MO))?

Proof is by showing how to analyze the structure of d(Mo) = (S, r). Question 1
is simple: if S contains no pair <{M, e!},c'>, then States(Mo) contains no state
<{M, e},c> by Corollary 4 and the definition of Desc(d(Mo)).

Define the flowchart of M to be a directed graph with nodes in ! and edges
01‘.—.> oz' just in case 01' € 5 implies 02' € S according to the rules of Figure 4.
Clearly if we let the CBN(MO) computation be Load(Mo) =000 1D ... 20, there

exists a corresponding path 0'0' -+ 01' * .. - cn‘ in the flow chart, such that if g,
<cl,c> then cri‘ =<cl, !> for some cll,c! with ci'L cland ¢! L c.

If the computation is infinite there must exist g' such thato‘o‘ iy c'g o', since
2! is finite. This condition is certainly decidable, and its falsity implies the compu~

tation is finite. Question 3 may be answered "yes" if there is no path g ':')>e g! where

0
olho " for all 01‘. Note that safe answers to questions 2 and 3 can both be ''no'.,
Questions 4 and 5 may be answered by analysis of d(Mo) - see [Jon81] for

details. )

Remarks on the Method

The token set C! may be "tuned! to give varying degrees of faithfulness in the
approximation, even including exact execution by Theorem 5. This desirable pro~
perty of a flow analysis method is unfortunately not shared by most other inter—
procedural methods (but [Cou?7a] is an exception).

The method with the finite C!' mentioned above could be inefficient on some A~
expressions with complex reduction sequences due to the size of the set E! of
simulated environments. A more practical approach could inveive merging together
all the environments associated with a single "contro! point!! in Sub(Mo). This could
be accomplished by replacing the subset S ¢ 5t = Sub(Mo) X E! x C! by the function
S: Sub(Mo) 2 PE x P(C') where PE = BV(MO) -+ P(C'), and defining abstract inter-
pretation rules accordingly. This would reduce the worst—case storage requirement
for S from an exponential function (of the size of MO) to a polynomial, at the ex-
pense of some precision in simulation, This version would not, however, allow

Theorem 5 to be proved,
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3. ANALYSIS OF DATA FLOW

The method of Section 2 can be extended io inciude A~expressions with con-
stants,
Due to space limitations we only give an overview here; [JonB]] contains a

more complete treatment for call-by-value evaluation.
{ The CBN Interpreter is extended to perform § reductions as follows

a) Suppose the control closure (MN, e} is reached and that (M, e} evaluates
to a constant (a,ei). Then {N, &) must also be evaluated; meanwhile a will
be put on the context stack for safekeeping (so C = (CL + Con}¥). Thus

we add to Figure 1 the transition rule:
<{a, ei), (N,e)zi. ez > <{N, e),az,. cez>
b) Perform § reduction if {N, e) evaluates to a constant (b,ez). Add the
transition rule
<(b, ez),az1. cez> 2 <(Cap(a, b), @), Zyeee (if Capla,b) is defined)
c) 1f (N, e) evaluates to a non-constant value or Cap(a,b) is undefined,

transit to state <{ERROR,®),¢> (ERROR is assumed to be a special

element of Con}.

11 An analog of L.emma 2 holds: if Load(MO) iy <(M, e}, c> then M is either a con-

stant or a subexpression of Mo {or both).

11l A constant approximation method is needed since Con will usually be infinite.

This can be done along the lines of [Cou79]:

a) Con! will be a lattice of finite height whose elements represent sets of

constants via an abstraction function abs: P(Con) » Con! and a concreti-

zation function conc: Con' » P(Con). Desirable properties of abs and conc
are found in [Cou79].

b) The constant application function Cap is approximated by a function
Cap': Con! x Con! = Con! satisfying for all al,b! € Con! (& is the lattice

order on Cont'):
Cap'(a',b!) 2 abs|{Capla,b) | a € conc{a'} and b € conc(b}}
IV A description lattice D approximating sets of states may be defined using Conl,

Vv A set of rules similar to those of Figure 4 can be defined; their effect is to

abstractly simulate the transition rules over D.

“inally, it appears straightforward to extend the methods of Theorem 6 to ob-

tain effectively safe positive answers 1o the five questions stated there, plus:
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6, Is the computation free of error halis?

7. Is a given variable occurrence bound only to a single constant value?

(I so, its value can be obtained.)

4, CONCLUSIONS AND ACKNOWL EDGEMENTS

it has been shown that saf.e answers may be effectively obtained to a variety of
questions about call-by-name reduction sequences including finiteness, termination,
freedom of errors, and independence of subexpressions. The methods used are
clearly applicable to call-by-value; further since abstract interpretation does not
depend on determinism it seems likely that similar methods could be used to give in-
formation about arbitrary reduction sequences. One application would be to determine
from the flow analytic information a combination of call-by-value and call-by-need
which have the same termination properties as call-by-name but allow a more effi~
cient Implementation, extending results of Mycroft [Myc80],

The analysis method applied the classical flow-analytic idea of abstract inter-
pretation to a call-by-name interpreter CBN. This application required a new
description technique involving both local and globa! data representations due to the
recursiveness of CB!s data structures. The technique is applicable to many programs
which manipulate tree-like data structures; it is anticipated that it can be used to
develop practical interprocedural flow analysis methods for more conventional im-
perative programming languages. Another application would be the development of
compiling methods for applicative languages capable of producing highly efficient

object code.

Discussions with Flemming Nielson, David Schmidt, Peter Mosses, Mogens

Nielsen and Steven Muchnick on various aspecis of this work have been very helpful,
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