
ON CENTRALITY FUNCTIONS OF A GRAPH 

G. Kishi 

Graduate School of Coordinated Science 

Tokyo Institute of Technology 

Nagatsuta-cho 4259, Midori-ku, Yokohama, Japan 

Abstract: For a connected nondirected graph, a centrality function is 

a real valued function of the vertices defined as a linear combination 

of the numbers of the vertices classified according to the distance 

from a given vertex. Some fundamental properties of the centrality 

functions and the set of central vertices are summarized. Inserting 

an edge between a center and a vertex, the stability of the set of 

central vertices are investigated. 

For a weakly connected directed graph, we can prove similar 

theorems with respect to a generalized centrality function based on a 

new definition of the modified distance from a vertex to another ver- 

tex. 

i. Introduction 

In many practical applications, it is often necessary to find the 

best location of facilities in networks or graphs. In this context, a 

real number f(G,v) is associated with every vertex v of the graph G 

for the criterion of deciding what vertex is best. The criterion of 

optimality may be taken to be the minimization of the function f(G,v) 

with respect to v. 

One of the most important problems is to determine what kind of 

functions is suitable for the measure of centrality of vertices in a 

graph. It is well-known that the transmission number is an example of 

such functions. In this survey, the centrality function, a generalized 

form of the transmission number, is defined as a linear combination 

with real coefficients of the numbers of vertices classified according 

to the distance from a given vertex in a connected nondirected graph. 

As a fundamental theorem, a necessary and sufficient condition 

for the function to satisfy the centrality axioms is stated in terms 
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of the coefficients. 

Inserting an edge between a center and a vertex, the sets of cen- 

tral vertices settled before and after the edge inserting are general- 

ly different. Some stability theorems of the sets of central vertices 

are presented for a connected nondirected graph. 

However the situation often arises where a nondirected graph will 

not be able to meet various requirements and what is then needed is to 

introduce a centrality function for a directed graph. For a weakly 

connected directed graph, a modified distance from a vertex to another 

vertex is defined as a two-dimensional vector of integer components 

showing the numbers of forward and backward edges contained in the 

shortest path with respect to a newly defined order relation. It is 

shown that the major results for a nondirected graph can be extended 

similarly to a directed graph with respect to a generalized centrality 

function based on the modified distance. 

2. Transmission Number 

Let G be a connected nondirected graph with the set of vertices 

V. A distance d(u,v) between a pair of vertices u and v in G is de~ 

fined as the minimum number of edges in a path connecting u and v. 

We now define c0(G,v) for every vertex v in G as follows : 

c0(G,v) = Z d(v,w) (i) 
wgV 

The number c0(G,v) is often refered to as the transmission number[l]. 

A central vertex v 0 for which 

c0(G,v0) = Min c0(G,v) (2) 
vgV 

is called a median[l] of the graph G. 

3. Centrality Function 

Let c(G,v) be a real valued function of vertices of G. Then the 

function is said to be a centrality function if c(G,v) satisfies the 

following centrality axioms[2]. 

Centrality Axioms : If there exist no edges between a pair of 

vertices p and q in a connected nondirected graph G, the insertion of 

an edge between p and q yields the graph Gpq and the difference 

Apq(V) = c(G,v) - C(~pq,V) (3) 
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for any vertex v in G. 

Now the function c(G,v) is called a centrality function if and 

only if 

(i) A (p) > 0 (4) 
Pq 

(ii) Apq(p) > Apq(V) for any v satisfying 

d(v,p) <__ d(v,q) (5) 

for any pair of vertices p and q which are not adjacent. (End) 

As a generalized form of the transmission number, we deal with a 

real valued function c(G,v) as follows : 
co 

c(G,v) = E aknk(v ) (6) 
k=l 

where nk(v ) stands for the number of vertices whose distances from v 

are k and a 's are real constants. 
' k 

For the function defined by (6), the following theorem can be 

proved[ 3 ]. 

Theorem I : The function c(G,v) defined by (6) is 

function for any graph G if and only if a's satisfy 
k 

(i) a I < a 2 < a 3 < a 4 _< ... 

(ii) 2a k > ak_ I + ak+l, (k > 2) 

As an illustrative example, suppose 

a k = k, (k = 1,2,3 .... ). 

It is easily shown that 

k nk(v) = E d(v,w) = c0(G,v) (I0) 
k=l wsV 

and ak's given by (9) satisfy (7) and (8). 

the transmission number is a centrality function. 

Let c(G,v) defined by (6) be a centrality function for any con- 

nected nondirected graph G. A vertex v 0 for which 

c(G,v0) = Min c(G,v) (Ii) 
vcV 

is called a center of G with respect to c(G,v) or shortly a c-center. 

Let St(G) be the set of all the c-centers of G. 

a centrality 

(7) 

(8) 
(End) 

(9) 

Thus we can conclude that 

4. Stability Theorems 

If a c-center p and a vertex q in G are not adjacent, the inser- 

tion of an edge between p and q yields the graph Gpq with its set of 
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all the c-centers Sc(Gpq). 

Case A : Sc(Gpq ) C Sc(G)~'{ q} 

or 

Case B : Sc(Gpq) ~__ Sc(G)~7[q} 

for any vertex p in Sc(G) and q in V. 

is said to be unstable with respect to c(G,v). 

Case A can be classified into two cases, 

Case A-I : Sc(Gpq) ~ Sc(G) and p e Sc(Gpq) 

and 

Then two cases can occur, either 

(12) 

(13) 

A graph for which case B occurs 

(14) 

Case A-2 : Sc(Gpq) ~ Sc(G) or p ~ Sc(Gpq) (15) 

for any vertex p in Sc(G ) and q in V. 

A graph G is said to be stable if case A-I occurs. A quasi- 

stable graph is a graph for which case A-2 occurs. 

We can then prove the following theorem[4]. 

Theorem 2 : For any centrality function c(G,v) satisfying 

a 2 < a3, there exist a quasi-stable graph. (End) 

A quasi-stable graph with respect to the transmission number is 

shown in Fig. 114]. 
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(a) G (b) GDq_ 

Fi~. i. Quasi-stable graph. 

Theorem 3 : For any centrality function c(G,v) satisfying 

a 2 = a3, all the connected nondi~ected graphs are stable. (End) 

Theorem 4 : Any connected nondirected graph is stable if and 

only if the centrality function c(G,v) given by (6) satisfies a 2 = a 3. 
(End) 

Theorem 5 : For any centrality function c(G,v) satisfying 

a 3 < a4, there exists an unstable graph. (End) 

An unstable graph with respect to the transmission number is 

shown in Fig. 2[3]. 
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(a) G (b) Gpq 

Fig. 2. Unstable graph. 

Theorem 6 : For any centrality function satisfying a 3 = a 4 all 

the connected nondirected graphs are quasi-stable or stable. (End) 

Theorem 7 : Any connected nondirected graph is not unstable if 

and only if the centrality function given by (6) satisfies a 3 = a4. 

(End) 

5. Stable Graphs 

The theorems in the preceding section show that a centrality 

function with which all the graphs are stable or quasi-stable is 

rather trivial one. Characterizing stable or quasi-stable graphs 

with respect to a given centrality function is an important problem to 

be solved. The following theorem[2] is basic with respect to the 

centrality function specified as the transmission number. 

Theorem 8 : If a graph G forms a tree, then G is stable with 

respect to the transmission number. (End) 

Let H k (k = 0,1,2 .... ) be the collection of all the connected 

graphs of nullity k. Then Theorem 8 shows that any graph of H 0 is 

stable. Since H 2 contains an unstable graph shown in Fig. 2, we may 

ask if there exists an unstable or a quasi-stable graphs in H I . Count- 

ing the number m of edges in the only loop contained in any graph of 

HI, we can define a subset Hi(m) as the collection of graphs contain- 
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ing the single loop of length m. 

Recent results with respect to the transmission number include 

the following two theorems[5]. 

Theorem 9 : For any m ~ 4, all the graphs of Hl(m) are stable. 

For any m ~ 5, Hl(m) contains a quasi-stable graph. (End) 

Theorem i0 : For m = 7, Hl(m) contains an unstable graph. For 

m ~ 6, Hl(m) contains no unstable Graphs. (End) 

The ~raph shown in Fig. 3 is an example of unstable graph of m=7. 
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(a) G (b) Gpq 

Fig. 3. Unstable graph. 

6. Centrality Functions for A Directed Graph 

The definitions and the theorems discussed so far can be extended 

for a directed graph[6]. Let us begin with some preliminary defini- 

tions. 

Let R 2 be the two dimensional real space defined by 

R 2 = {(x,y) I x,y ~ R } (16) 

where R is the set of real numbers. For the simplicity, a vector 

(x,y) ~ R 2 is expressed by x+y~ E R 2, where m is the symbol specifying 

the second component. 

A natural order and the vector addition can be defined in R 2 as 

follows. 

(i) x+ym > 0 if and only if y > 0 

or y = 0 and x > 0 (17) 

(ii) (x+y~)+(x'+y'~) = (x+x')+(y+y')~ 

where 0 = 0 + 0w (18) 

Let N 2 be the subset of R 2 similarly defined with the set of non- 

negative integer N. It is obvious that R 2 is an ordered abelian 

group, while N 2 is an ordered semigroup contained in R 2. 

Let a directed graph G be weakly connected. A path P between two 

vertices u and v may be oriented as from u to v. We can then define a 

vector (ap,bp) of integer component associated with the path P where 
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ap and bp are the number of coincide and opposite edges in the path P, 

respectively. Since (ap,bp) can be interpreted as an element ap+bpm 

in N 2, we can define a generalized length of the path P such that 

Luv(P) = ap+ bpW (19) 

The modified distance from vertex u to vertex v in a weakly con- 

nected graph is given by 

D(u,v) = Min Luv(P ) (20) 
P 

where P is an arbitrary path connecting u and v. 

Naturally D(u,v) does not fulfil the reflective law, but still 

satisfies 

D(u,v) ~ D(u,w) + D(w,v) (21) 

Similar to the centrality axioms for a nondirected graph, a 

centrality function C(G,v) whose values are in R 2 can be defined in 

terms of the modified distance. 

Centrality Axioms : If there exist no edges between a pair of 

vertices p and q in a weakly connected directed graph G, the insertion 
! of edges from p to q and from q to D yields two graphs G pq and G" 

- pq, 
respectively. Let us define 

~pq(V) = C ( G , v ) - C ( G ~ , v )  
~ (22) 

A"pq(V) = C(G,v)-C(GUq, v) 

for any vertex v in G. 

Now the function C(G,v) is called a centrality function if and 

only if 
A~| i x 

(i) A'pq(p) > 0, pq<p) => 0 (23) 

(ii) Aiq(p)~ > AJq(V)p and A" (p) > A" (v) 
_ = p q  = pq 

for any v satisfying 

D(v,p) ~ D(v,p) (24) 

for any pair of vertices D and q which are not adjacent. (End) 

We will deal with the function defined by 

C(G,v) = Z ~ n (v) (25) 

where ~ (~ R 2) does not depend on G and n (v) denotes the number of 

vertices whose modified distance from v are ~(s N2). 

Corresponding to Theorem I, we now obtain the following theorem. 

Theorem ii : The function defined by (25) is a centrality func- 

tion if ~ 's satisfy 

(i) ~i < ~2' ~ < ~ (26) 

> ~ (27) 
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where i ~ ~ < ~2 and i ~ ~. (End) 

For a directed graph, we can also prove some stability theorems 

corresponding to those for a nondirected graph. 

7. Conclusion 

It has been supposed to be true that any connected nondirected 

graph is stable with respect to the transmission number [2]. The 

theorems given here show that the conjecture is false. 

Theorem 4 and 6 show that centrality functions with which all the 

nondirected graphs are stable or quasi-stable are rather trivial. 

Characterizing stable or quasi-stable graphs with respect to a given 

centrality function is an interesting problem. 

The definitions and theorems of centrality functions for a non- 

directed graph can be extended for a directed graph, employing the 

concept of modified distance which seems to be useful in the theory of 

directed graphs. 
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