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Abstract: For a connected nondirected graph, a centrality function is
a real valued function of the vertices defined as a linear combination
of the numbers of the vertices classified according to the distance

from a given vertex. Some fundamental properties of the centrality
functions and the set of central vertices are summarized. Inserting
an edge between a center and a vertex, the stability of the set of

central vertices are investigated.

For a weakly connected directed graph, we can prove similar
theorems with respect to a geﬁeralized centrality function based on a
new definition of the modified distance from a vertex to another wver-
tex.

1. Introduction

In many practical applications, it is often necessary to find the
best location of facilities in networks or graphs. 1In this context, a
real number f(G,v) is associated with every vertex v of the graph G
for the criterion of deciding what vertex is best. The criterion of
optimality may be taken to be the minimization of the function £(G,v)
with respect to v.

One of the most important problems is to determine what kind of
functions is suitable for the measure of centrality of vertices in a
graph. It is well-known that the transmission number is an example of
such functions. In this survey, the centrality function, a generalized
form of the transmission number, 1is defined as a linear combination
with real coefficients of the numbers of vertices classified according
to the distance from a given vertex in a connected nondirected graph.

As a fundamental theorem, a necessary and sufficient condition
for the function to satisfy the centrality axioms is stated in terms
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of the coefficients.

Inserting an edge between a center and a vertex, the sets of cen-
tral vertices settled before and after the edge inserting are general-
ly different. Some stability theorems of the sets of central vertices
are presented for a connected nondirected graph.

However the situation often arises where a nondirected graph will
not be able to meet various requirements and what is then needed is to
introduce a centrality function for a directed graph. For a weakly
connected directed graph, a modified distance from a vertex to another
vertex is defined as a two-dimensional vector of integer components
showing the numbers of forward and backward edges contained in the
shortest path with respect to a newly defined order relation. It is
shown that the major results for a nondirected graph can be extended
similarly to a directed graph with respect to a generalized centrality
function based on the modified distance.

2. Transmission Number

Let G be a connected nondirected graph with the set of vertices
V. A distance d(u,v) between a pair of vertices u and v in G 1is de-
fined as the minimum number of edges in a path connecting u and v.
We now define cO(G,v) for every vertex v in G as follows

¢y (G,v) = £ d(v,w) n
weV

The number cO(G,v) is often refered to as the transmission number[1].
A central vertex vy for which

cO(G,VO) = gis cO(G,v) (2)

is called a medianl[l] of the graph G.

3. Centrality Function

Let ¢{G,v) be a real walued function of vertices of G. Then the
function is said to be a centrality function if c¢(G,v) satisfies the
following centrality axioms[2].

Centrality Axioms : If there exist no edges between a pair of
vertices p and g in a connected nondirected graph G, the insertion of
an edge between p and g yields the graph G__ and the difference

- . pq 3)
qu(w = ¢c(G,v) - c( ,pq,V)
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for any vertex v in G.
Now the function c¢(G,v) is called a centrality function if and

only if
(1 qu(P) >0 (4
(ii) qu(p) > qu(v) for any v satisfying
d(v,p) £ d(v,q) 5)
for any pair of vertices p and q which are not adjacent. (End)

As a generalized form of the transmission number, we deal with a
real valued function c(G,v) as follows

oo

c(G,v) = L am(v) (6

where nk(v) stands for the number of vertices whose distances from v
are k, and ak's are real constants.

For the function defined by (6), the following theorem can be
proved[3].

Theorem 1 : The function c¢(G,v) defined by (6) is a centrality
function for any graph G if and only if ak's satisgfy

(1) a) <ay<ag<a, ... (7
(ii) Zak 281 + apiqs k > 2) (8)
(End)
As an illustrative example, suppose

a, = k, (k =1,2,3, ...), 9)

It is easily shown that
Tk nk(v) = % d(v,w) = cO(G,v) (10

k=1 weV
and ak's given by (9) satisfy (7) and (8). Thus we can conclude that

the transmission number is a centrality function.
Let c(G,v) defined by (6) be a centrality function for any con-
nected nondirected graph G. A vertex Vo for which

c(G,vO) = Min c(G,v) (11)
veV

is called a center of G with respect to ¢(G,v) or shortly a c-center.
Let SC(G) be the set of all the c-centers of G.

4, Stability Theorems

If a c-center p and a vertex q in G are not adjacent, the inser-
tion of an edge between p and q yields the graph qu with its set of
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all the c-centers Sc<Goq)‘ Then two cases can occur, either

Case A : sc(qu) € s, Gwiq} (12)
or

Case B : Sc(qu)fé SC(G)k/{q} (13)

for any vertex p» in SC(G) and g in V. A graph for which case B occurs
is said to be unstable with respect to c¢(G,v).
Case A can be classified into two cases,
- . <
Case A-1 : SC(qu) g,uc(G) and p € SC<G?q> (14)
and

Case A-2 : 8,(G,.) €s.(6) or p¢ 8. (G, (15)

for any vertex p in SC(G) and q in V.

A graph G is said to be stable if case A-1 occurs. A quasi-
stable graph is a graph for which case A-2 occurs.

We can then prove the following theorem[4].

Theorem 2 : For any centrglity function ¢(G,v) satisfying
a, < ag, there exist a quasi-stable graph. (End)

A quasi-stable graph with respect to the transmission number is
shown in Fig. 1[4].
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Fig. 1. Quasi-stable graph,
Theorem 3 : For any centrality funection ¢(G,v) satisfying
ap = as, all the connected nondirected graphs are stable. (End)
Theorem 4 : Any connected nondirected graph 1is stable if and
only if the centrality function c(G,v) given by (6) satisfies a, = aj.
{(End)
Theorem 5 : For any centrality function c(G,v) satisfying
ag < a,, there exists an unstable graph. (End)

An unstable graph with respect to the transmission number 1is

shown in Fig. 2[3].
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Fig. 2. TUnstable graph,

Theorem 6 : For any centrality function satisfying ag = a, all
the connected nondirected graphs are quasi-stable or stable. (End)
Theorem 7 : Any connected nondirected graph is not unstable if

and only if the centrality function given by (6) satisfies as = a,.
(End)

5. Stable Graphs

The theorems in the preceding section show that a centrality
function with which all the graphs are stable or quasi-stable is

rather trivial one. Characterizing stable or quasi-stable graphs
with respect to a given centrality function is an important problem to
be solved. The following theorem[2] 1is basic with respect to the
centrality function specified as the transmission number.
Theorem 8 : If a graph G forms a tree, then G is stable with
respect to the transmission number. (End)
Let Hk (k = 0,1,2, ...) be the collection of all the connected

graphs of nullity k. Then Theorem 8 shows that any graph of Hy is
stable. Since HZ contains an unstable graph shown in Fig. 2, we may
ask if there exists an unstable or a quasi-stable graphs in H;. Count-
ing the number m of edges in the only loop contained in any graph of
Hl’ we can define a subset Hl(m) as the collection of graphs contain-
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ing the single loop of length m.

Recent results with respect to the transmission number include
the following two theorems[5].

Theorem 9 : For any m < 4, all the graphs of Hl(m) are stable.

For any m > 5, Hl(m) contains a quasi-stable graph. (End)
Theorem 10 : For m = 7, Hl(m) contains an unstable graph. For
m < 6, Hy(m) contains no unstable graphs. (End)

The graph shown in Fig. 3 is an example of unstable graph of m=7.

70 Qo pp O

6. Centrality Functions for A Directed Graph

The definitions and the theorems discussed so far can be extended
for a directed graph[6]. Let us begin with some preliminary defini-
tions.

Let R2 be the two dimensional real space defined by

R% = {(x,y) | x,y e R } (16)
where R is the set of real numbers. For the simplicity, a vector
(x,y) € R2 is expressed by xtyw € R2, where w is the symbol specifying
the second component.

A natural order and the vector addition can be defined in R2 as
follows.

(i) xtyw > 0 if and only if y > 0

or y=0 and x >0 7))
(ii) (xtyw)+H(x"+y'w) = (xtx")+(y+y" dw
where 0 = 0 + Ow : (18)
Let N2 be the subset of R2 similarly defined with the set of mnon-
negative integer N. It is obvious that R% is an ordered abelian

group, while N2 is an ordered semigroup contained in Rz.
Let a directed graph G be weakly connected. A path P between two
vertices u and v may be oriented as from u to v. We can then define a

vector (ap,bp) of integer component associated with the path P where
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ap and bp are the number of coincide and opposite edges in the path P,
respectively. Since (a ’bp) can be interpreted as an element a _+b_w
in Nz, we can define a generalized length of the path P such that

Lyy () = a + bow (19)

The modified distance from vertex u to vertex v in a weakly con-
nected graph is given by
D(u,v) = M;n Luv(p) (20)

where P is an arbitrary path connecting u and v.

Naturally D(u,v) does not fulfil the reflective law, but still
satisfies

D(u,v) < D(u,w) + D(w,v) 21)

Similar to the centrality axioms for a nondirected graph, a
centrality function C(G,v) whose values are in R2 can be defined in
terms of the modified distance.

Centrality Axioms : If there exist no edges between a pair of
vertices p and q in a weakly connected directed graph G, the insertion
of edges from p to q and from q to p yields two graphs G'pq and G”pq’
respectively. Let us define

Aéq(v) C(G,v)-C(Géq,v)

Bpq ¥

for any vertex v in G.

H

(22)

fi

C(G,v)-C(qu,v)

Now the function C(G,v) is called a centrality function if and

only if
(1) Aéq(p) > 0, qu(P) 20 (23)
(ii) qu(p) > qu(V) and Aﬁq(p) > qu(V)
for any v satisfying
D(v,p) < D(v,p) (24)
for any pair of vertices p and q which are not adjacent. (End)
We will deal with the function defined by
CG,v) = % a. . (v) (25)

1<U€N2 Hou
where au(e R2) does not depend on G and n“(v) dengtes the number of
vertices whose modified distance from v are u(e N7).
Corresponding to Theorem 1, we now obtain the following theorem.
Theorem 11 : The function defined by (25) 1s a centrality func-
tion if uu's satisfy

(i) a3 < Gy, O < o (26)

(ii) auz-apl > uu2+6—mul+§ @27



52
where 1 < uy < ys and 1 < 6. (End)

For a directed graph, we can also prove some stability theorems
corresponding to those for a nondirected graph.

7. Conclusion

It has been supposed to be true that any connected nondirected
graph is stable with respect to the transmission number [2]. The
theorems given here show that the conjecture is false.

Theorem 4 and 6 show that centrality functions with which all the
nondirected graphs are stable or quasi-stable are rather trivial.
Characterizing stable or quasi-stable graphs with respect to a given
centrality function is an interesting problem.

The definitions and theorems of centrality functions for a non-
directed graph can be extended for a directed graph, employing the
concept of modified distance which seems to be useful in the theory of

directed graphs.
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